

JAVA™ FOR PROGRAMMERS
SECOND EDITION
DEITEL® DEVELOPER SERIES

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as trademarks.
Where those designations appear in this book, and the publisher was aware of a trademark claim, the designations have
been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or implied warranty
of any kind and assume no responsibility for errors or omissions. No liability is assumed for incidental or consequential
damages in connection with or arising out of the use of the information or programs contained herein.

The publisher offers excellent discounts on this book when ordered in quantity for bulk purchases or special sales,
which may include electronic versions and/or custom covers and content particular to your business, training goals,
marketing focus, and branding interests. For more information, please contact:

U. S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside the U. S., please contact:

International Sales
international@pearsoned.com

Visit us on the Web: informit.com/ph

Library of Congress Cataloging-in-Publication Data

On file

© 2012 Pearson Education, Inc.

All rights reserved. Printed in the United States of America. This publication is protected by copyright, and permission
must be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval system, or transmis-
sion in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information re-
garding permissions, write to:

Pearson Education, Inc.
Rights and Contracts Department
501 Boylston Street, Suite 900
Boston, MA 02116
Fax (617) 671-3447

ISBN-13: 978-0-13282154-4
ISBN-10: 0-13-282154-0

Text printed in the United States on recycled paper at RR Donnelley in Crawfordsville, Indiana.
First printing, March 2012

JAVA™ FOR PROGRAMMERS
SECOND EDITION

DEITEL® DEVELOPER SERIES

Paul Deitel
Deitel & Associates, Inc.

Harvey Deitel
Deitel & Associates, Inc.

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

Trademarks
DEITEL, the double-thumbs-up bug and DIVE INTO are registered trademarks of Deitel and Associates,
Inc.

Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks
of their respective owners.

Microsoft, Internet Explorer and the Windows logo are either registered trademarks or trademarks of
Microsoft Corporation in the United States and/or other countries.

UNIX is a registered trademark of The Open Group.

Apache is a trademark of The Apache Software Foundation.

CSS, XHTML and XML are registered trademarks of the World Wide Web Consortium.

Firefox is a registered trademark of the Mozilla Foundation.

Google is a trademark of Google, Inc.

Web 2.0 is a service mark of CMP Media.

Throughout this book, trademarks are used. Rather than put a trademark symbol in every occurrence of
a trademarked name, we state that we are using the names in an editorial fashion only and to the benefit
of the trademark owner, with no intention of infringement of the trademark.

In memory of Clifford “Spike” Stephens,
A dear friend who will be greatly missed.

Paul and Harvey Deitel

This page intentionally left blank

Preface xxi

Before You Begin xxix

1 Introduction 1
1.1 Introduction 2
1.2 Introduction to Object Technology 2
1.3 Open Source Software 5
1.4 Java and a Typical Java Development Environment 7
1.5 Test-Driving a Java Application 11
1.6 Web 2.0: Going Social 15
1.7 Software Technologies 18
1.8 Keeping Up to Date with Information Technologies 20
1.9 Wrap-Up 21

2 Introduction to Java Applications 22
2.1 Introduction 23
2.2 Your First Program in Java: Printing a Line of Text 23
2.3 Modifying Your First Java Program 27
2.4 Displaying Text with printf 29
2.5 Another Application: Adding Integers 30
2.6 Arithmetic 34
2.7 Decision Making: Equality and Relational Operators 35
2.8 Wrap-Up 38

3 Introduction to Classes, Objects, Methods
and Strings 39

3.1 Introduction 40
3.2 Declaring a Class with a Method and Instantiating an Object of a Class 40
3.3 Declaring a Method with a Parameter 44
3.4 Instance Variables, set Methods and get Methods 47
3.5 Primitive Types vs. Reference Types 52
3.6 Initializing Objects with Constructors 53

Contents

viii Contents

3.7 Floating-Point Numbers and Type double 56
3.8 Wrap-Up 60

4 Control Statements: Part 1 61
4.1 Introduction 62
4.2 Control Structures 62
4.3 if Single-Selection Statement 64
4.4 if…else Double-Selection Statement 65
4.5 while Repetition Statement 68
4.6 Counter-Controlled Repetition 70
4.7 Sentinel-Controlled Repetition 73
4.8 Nested Control Statements 78
4.9 Compound Assignment Operators 81
4.10 Increment and Decrement Operators 82
4.11 Primitive Types 85
4.12 Wrap-Up 85

5 Control Statements: Part 2 86
5.1 Introduction 87
5.2 Essentials of Counter-Controlled Repetition 87
5.3 for Repetition Statement 89
5.4 Examples Using the for Statement 92
5.5 do…while Repetition Statement 96
5.6 switch Multiple-Selection Statement 98
5.7 break and continue Statements 105
5.8 Logical Operators 107
5.9 Wrap-Up 113

6 Methods: A Deeper Look 114
6.1 Introduction 115
6.2 Program Modules in Java 115
6.3 static Methods, static Fields and Class Math 115
6.4 Declaring Methods with Multiple Parameters 118
6.5 Notes on Declaring and Using Methods 121
6.6 Argument Promotion and Casting 122
6.7 Java API Packages 123
6.8 Case Study: Random-Number Generation 125

6.8.1 Generalized Scaling and Shifting of Random Numbers 129
6.8.2 Random-Number Repeatability for Testing and Debugging 129

6.9 Case Study: A Game of Chance; Introducing Enumerations 130
6.10 Scope of Declarations 134
6.11 Method Overloading 137
6.12 Wrap-Up 139

Contents ix

7 Arrays and ArrayLists 140
7.1 Introduction 141
7.2 Arrays 141
7.3 Declaring and Creating Arrays 143
7.4 Examples Using Arrays 144
7.5 Case Study: Card Shuffling and Dealing Simulation 153
7.6 Enhanced for Statement 157
7.7 Passing Arrays to Methods 159
7.8 Case Study: Class GradeBook Using an Array to Store Grades 162
7.9 Multidimensional Arrays 167
7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 171
7.11 Variable-Length Argument Lists 177
7.12 Using Command-Line Arguments 178
7.13 Class Arrays 180
7.14 Introduction to Collections and Class ArrayList 183
7.15 Wrap-Up 186

8 Classes and Objects: A Deeper Look 187
8.1 Introduction 188
8.2 Time Class Case Study 188
8.3 Controlling Access to Members 192
8.4 Referring to the Current Object’s Members with the this Reference 193
8.5 Time Class Case Study: Overloaded Constructors 195
8.6 Default and No-Argument Constructors 201
8.7 Notes on Set and Get Methods 202
8.8 Composition 203
8.9 Enumerations 206
8.10 Garbage Collection and Method finalize 209
8.11 static Class Members 210
8.12 static Import 213
8.13 final Instance Variables 214
8.14 Time Class Case Study: Creating Packages 215
8.15 Package Access 221
8.16 Wrap-Up 222

9 Object-Oriented Programming: Inheritance 224
9.1 Introduction 225
9.2 Superclasses and Subclasses 226
9.3 protected Members 228
9.4 Relationship between Superclasses and Subclasses 228

9.4.1 Creating and Using a CommissionEmployee Class 229
9.4.2 Creating and Using a BasePlusCommissionEmployee Class 235
9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee

Inheritance Hierarchy 240

x Contents

9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance
Hierarchy Using protected Instance Variables 242

9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance
Hierarchy Using private Instance Variables 245

9.5 Constructors in Subclasses 250
9.6 Software Engineering with Inheritance 251
9.7 Class Object 252
9.8 Wrap-Up 253

10 Object-Oriented Programming: Polymorphism 254
10.1 Introduction 255
10.2 Polymorphism Examples 257
10.3 Demonstrating Polymorphic Behavior 258
10.4 Abstract Classes and Methods 260
10.5 Case Study: Payroll System Using Polymorphism 262

10.5.1 Abstract Superclass Employee 263
10.5.2 Concrete Subclass SalariedEmployee 266
10.5.3 Concrete Subclass HourlyEmployee 268
10.5.4 Concrete Subclass CommissionEmployee 270
10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee 271
10.5.6 Polymorphic Processing, Operator instanceof and Downcasting 273
10.5.7 Summary of the Allowed Assignments Between Superclass and

Subclass Variables 277
10.6 final Methods and Classes 278
10.7 Case Study: Creating and Using Interfaces 279

10.7.1 Developing a Payable Hierarchy 280
10.7.2 Interface Payable 281
10.7.3 Class Invoice 282
10.7.4 Modifying Class Employee to Implement Interface Payable 284
10.7.5 Modifying Class SalariedEmployee for Use in the Payable

Hierarchy 286
10.7.6 Using Interface Payable to Process Invoices and Employees

Polymorphically 288
10.7.7 Common Interfaces of the Java API 289

10.8 Wrap-Up 290

11 Exception Handling: A Deeper Look 292
11.1 Introduction 293
11.2 Example: Divide by Zero without Exception Handling 293
11.3 Example: Handling ArithmeticExceptions and

InputMismatchExceptions 296
11.4 When to Use Exception Handling 301
11.5 Java Exception Hierarchy 301
11.6 finally Block 304
11.7 Stack Unwinding and Obtaining Information from an Exception Object 308

Contents xi

11.8 Chained Exceptions 311
11.9 Declaring New Exception Types 313
11.10 Preconditions and Postconditions 314
11.11 Assertions 315
11.12 (New in Java SE 7) Multi-catch: Handling Multiple Exceptions in

One catch 316
11.13 (New in Java SE 7) try-with-Resources: Automatic Resource Deallocation 316
11.14 Wrap-Up 317

12 ATM Case Study, Part 1:
Object-Oriented Design with the UML 318

12.1 Case Study Introduction 319
12.2 Examining the Requirements Document 319
12.3 Identifying the Classes in a Requirements Document 327
12.4 Identifying Class Attributes 333
12.5 Identifying Objects’ States and Activities 338
12.6 Identifying Class Operations 342
12.7 Indicating Collaboration Among Objects 348
12.8 Wrap-Up 355

13 ATM Case Study Part 2:
Implementing an Object-Oriented Design 359

13.1 Introduction 360
13.2 Starting to Program the Classes of the ATM System 360
13.3 Incorporating Inheritance and Polymorphism into the ATM System 365
13.4 ATM Case Study Implementation 371

13.4.1 Class ATM 372
13.4.2 Class Screen 377
13.4.3 Class Keypad 378
13.4.4 Class CashDispenser 379
13.4.5 Class DepositSlot 380
13.4.6 Class Account 381
13.4.7 Class BankDatabase 383
13.4.8 Class Transaction 386
13.4.9 Class BalanceInquiry 387
13.4.10 Class Withdrawal 388
13.4.11 Class Deposit 392
13.4.12 Class ATMCaseStudy 395

13.5 Wrap-Up 395

14 GUI Components: Part 1 398
14.1 Introduction 399
14.2 Java’s New Nimbus Look-and-Feel 400

xii Contents

14.3 Simple GUI-Based Input/Output with JOptionPane 401
14.4 Overview of Swing Components 404
14.5 Displaying Text and Images in a Window 406
14.6 Text Fields and an Introduction to Event Handling with Nested Classes 410
14.7 Common GUI Event Types and Listener Interfaces 416
14.8 How Event Handling Works 418
14.9 JButton 420
14.10 Buttons That Maintain State 423

14.10.1 JCheckBox 423
14.10.2 JRadioButton 426

14.11 JComboBox; Using an Anonymous Inner Class for Event Handling 429
14.12 JList 433
14.13 Multiple-Selection Lists 435
14.14 Mouse Event Handling 438
14.15 Adapter Classes 443
14.16 JPanel Subclass for Drawing with the Mouse 446
14.17 Key Event Handling 450
14.18 Introduction to Layout Managers 453

14.18.1 FlowLayout 454
14.18.2 BorderLayout 457
14.18.3 GridLayout 460

14.19 Using Panels to Manage More Complex Layouts 462
14.20 JTextArea 464
14.21 Wrap-Up 467

15 Graphics and Java 2D 468
15.1 Introduction 469
15.2 Graphics Contexts and Graphics Objects 471
15.3 Color Control 472
15.4 Manipulating Fonts 479
15.5 Drawing Lines, Rectangles and Ovals 484
15.6 Drawing Arcs 488
15.7 Drawing Polygons and Polylines 491
15.8 Java 2D API 494
15.9 Wrap-Up 501

16 Strings, Characters and Regular Expressions 502
16.1 Introduction 503
16.2 Fundamentals of Characters and Strings 503
16.3 Class String 504

16.3.1 String Constructors 504
16.3.2 String Methods length, charAt and getChars 505
16.3.3 Comparing Strings 506
16.3.4 Locating Characters and Substrings in Strings 511

Contents xiii

16.3.5 Extracting Substrings from Strings 513
16.3.6 Concatenating Strings 514
16.3.7 Miscellaneous String Methods 514
16.3.8 String Method valueOf 516

16.4 Class StringBuilder 517
16.4.1 StringBuilder Constructors 518
16.4.2 StringBuilder Methods length, capacity, setLength

and ensureCapacity 518
16.4.3 StringBuilder Methods charAt, setCharAt, getChars

and reverse 520
16.4.4 StringBuilder append Methods 521
16.4.5 StringBuilder Insertion and Deletion Methods 523

16.5 Class Character 524
16.6 Tokenizing Strings 529
16.7 Regular Expressions, Class Pattern and Class Matcher 530
16.8 Wrap-Up 538

17 Files, Streams and Object Serialization 539
17.1 Introduction 540
17.2 Files and Streams 540
17.3 Class File 542

17.4 Sequential-Access Text Files 546
17.4.1 Creating a Sequential-Access Text File 546
17.4.2 Reading Data from a Sequential-Access Text File 553
17.4.3 Case Study: A Credit-Inquiry Program 556
17.4.4 Updating Sequential-Access Files 561

17.5 Object Serialization 562
17.5.1 Creating a Sequential-Access File Using Object Serialization 563
17.5.2 Reading and Deserializing Data from a Sequential-Access File 569

17.6 Additional java.io Classes 571
17.6.1 Interfaces and Classes for Byte-Based Input and Output 571
17.6.2 Interfaces and Classes for Character-Based Input and Output 573

17.7 Opening Files with JFileChooser 574
17.8 Wrap-Up 577

18 Generic Collections 578
18.1 Introduction 579
18.2 Collections Overview 579
18.3 Type-Wrapper Classes for Primitive Types 580
18.4 Autoboxing and Auto-Unboxing 581
18.5 Interface Collection and Class Collections 581
18.6 Lists 582

18.6.1 ArrayList and Iterator 583
18.6.2 LinkedList 585

xiv Contents

18.7 Collections Methods 590
18.7.1 Method sort 591
18.7.2 Method shuffle 594
18.7.3 Methods reverse, fill, copy, max and min 596
18.7.4 Method binarySearch 598
18.7.5 Methods addAll, frequency and disjoint 600

18.8 Stack Class of Package java.util 602
18.9 Class PriorityQueue and Interface Queue 604
18.10 Sets 605
18.11 Maps 608
18.12 Properties Class 612
18.13 Synchronized Collections 615
18.14 Unmodifiable Collections 615
18.15 Abstract Implementations 616
18.16 Wrap-Up 616

19 Generic Classes and Methods 618
19.1 Introduction 619
19.2 Motivation for Generic Methods 619
19.3 Generic Methods: Implementation and Compile-Time Translation 622
19.4 Additional Compile-Time Translation Issues: Methods That

Use a Type Parameter as the Return Type 625
19.5 Overloading Generic Methods 628
19.6 Generic Classes 628
19.7 Raw Types 636
19.8 Wildcards in Methods That Accept Type Parameters 640
19.9 Generics and Inheritance: Notes 644
19.10 Wrap-Up 645

20 Applets and Java Web Start 646
20.1 Introduction 647
20.2 Sample Applets Provided with the JDK 648
20.3 Simple Java Applet: Drawing a String 652

20.3.1 Executing WelcomeApplet in the appletviewer 654
20.3.2 Executing an Applet in a Web Browser 656

20.4 Applet Life-Cycle Methods 656
20.5 Initialization with Method init 657
20.6 Sandbox Security Model 659
20.7 Java Web Start and the Java Network Launch Protocol (JNLP) 661

20.7.1 Packaging the DrawTest Applet for Use with Java Web Start 661
20.7.2 JNLP Document for the DrawTest Applet 662

20.8 Wrap-Up 666

Contents xv

21 Multimedia: Applets and Applications 667
21.1 Introduction 668
21.2 Loading, Displaying and Scaling Images 669
21.3 Animating a Series of Images 675
21.4 Image Maps 682
21.5 Loading and Playing Audio Clips 685
21.6 Playing Video and Other Media with Java Media Framework 688
21.7 Wrap-Up 692
21.8 Web Resources 692

22 GUI Components: Part 2 694
22.1 Introduction 695
22.2 JSlider 695
22.3 Windows: Additional Notes 699
22.4 Using Menus with Frames 700
22.5 JPopupMenu 708
22.6 Pluggable Look-and-Feel 711
22.7 JDesktopPane and JInternalFrame 716
22.8 JTabbedPane 720
22.9 Layout Managers: BoxLayout and GridBagLayout 722
22.10 Wrap-Up 734

23 Multithreading 735
23.1 Introduction 736
23.2 Thread States: Life Cycle of a Thread 738
23.3 Creating and Executing Threads with Executor Framework 741
23.4 Thread Synchronization 744

23.4.1 Unsynchronized Data Sharing 745
23.4.2 Synchronized Data Sharing—Making Operations Atomic 749

23.5 Producer/Consumer Relationship without Synchronization 752
23.6 Producer/Consumer Relationship: ArrayBlockingQueue 760
23.7 Producer/Consumer Relationship with Synchronization 763
23.8 Producer/Consumer Relationship: Bounded Buffers 769
23.9 Producer/Consumer Relationship: The Lock and Condition Interfaces 776
23.10 Concurrent Collections Overview 783
23.11 Multithreading with GUI 785

23.11.1 Performing Computations in a Worker Thread 786
23.11.2 Processing Intermediate Results with SwingWorker 792

23.12 Interfaces Callable and Future 799
23.13 Java SE 7: Fork/Join Framework 799
23.14 Wrap-Up 800

xvi Contents

24 Networking 801
24.1 Introduction 802
24.2 Manipulating URLs 803
24.3 Reading a File on a Web Server 808
24.4 Establishing a Simple Server Using Stream Sockets 811
24.5 Establishing a Simple Client Using Stream Sockets 813
24.6 Client/Server Interaction with Stream Socket Connections 813
24.7 Datagrams: Connectionless Client/Server Interaction 825
24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 833
24.9 [Web Bonus] Case Study: DeitelMessenger 848
24.10 Wrap-Up 848

25 Accessing Databases with JDBC 849
25.1 Introduction 850
25.2 Relational Databases 851
25.3 Relational Database Overview: The books Database 852
25.4 SQL 855

25.4.1 Basic SELECT Query 856
25.4.2 WHERE Clause 857
25.4.3 ORDER BY Clause 859
25.4.4 Merging Data from Multiple Tables: INNER JOIN 860
25.4.5 INSERT Statement 862
25.4.6 UPDATE Statement 863
25.4.7 DELETE Statement 864

25.5 Instructions for Installing MySQL and MySQL Connector/J 864
25.6 Instructions for Setting Up a MySQL User Account 865
25.7 Creating Database books in MySQL 866
25.8 Manipulating Databases with JDBC 867

25.8.1 Connecting to and Querying a Database 867
25.8.2 Querying the books Database 872

25.9 RowSet Interface 885
25.10 Java DB/Apache Derby 887
25.11 PreparedStatements 889
25.12 Stored Procedures 904
25.13 Transaction Processing 905
25.14 Wrap-Up 905
25.15 Web Resources 906

26 JavaServer™ Faces Web Apps: Part 1 907
26.1 Introduction 908
26.2 HyperText Transfer Protocol (HTTP) Transactions 909
26.3 Multitier Application Architecture 912
26.4 Your First JSF Web App 913

26.4.1 The Default index.xhtml Document: Introducing Facelets 914

Contents xvii

26.4.2 Examining the WebTimeBean Class 916
26.4.3 Building the WebTime JSF Web App in NetBeans 918

26.5 Model-View-Controller Architecture of JSF Apps 922
26.6 Common JSF Components 922
26.7 Validation Using JSF Standard Validators 926
26.8 Session Tracking 933

26.8.1 Cookies 934
26.8.2 Session Tracking with @SessionScoped Beans 935

26.9 Wrap-Up 941

27 JavaServer™ Faces Web Apps: Part 2 942
27.1 Introduction 943
27.2 Accessing Databases in Web Apps 943

27.2.1 Setting Up the Database 945
27.2.2 @ManagedBean Class AddressBean 948
27.2.3 index.xhtml Facelets Page 952
27.2.4 addentry.xhtml Facelets Page 954

27.3 Ajax 956
27.4 Adding Ajax Functionality to the Validation App 958
27.5 Wrap-Up 961

28 Web Services 962
28.1 Introduction 963
28.2 Web Service Basics 965
28.3 Simple Object Access Protocol (SOAP) 965
28.4 Representational State Transfer (REST) 965
28.5 JavaScript Object Notation (JSON) 966
28.6 Publishing and Consuming SOAP-Based Web Services 966

28.6.1 Creating a Web Application Project and Adding a
Web Service Class in NetBeans 966

28.6.2 Defining the WelcomeSOAP Web Service in NetBeans 967
28.6.3 Publishing the WelcomeSOAP Web Service from NetBeans 970
28.6.4 Testing the WelcomeSOAP Web Service with GlassFish

Application Server’s Tester Web Page 971
28.6.5 Describing a Web Service with the Web Service Description

Language (WSDL) 972
28.6.6 Creating a Client to Consume the WelcomeSOAP Web Service 973
28.6.7 Consuming the WelcomeSOAP Web Service 975

28.7 Publishing and Consuming REST-Based XML Web Services 978
28.7.1 Creating a REST-Based XML Web Service 978
28.7.2 Consuming a REST-Based XML Web Service 981

28.8 Publishing and Consuming REST-Based JSON Web Services 983
28.8.1 Creating a REST-Based JSON Web Service 983
28.8.2 Consuming a REST-Based JSON Web Service 985

xviii Contents

28.9 Session Tracking in a SOAP Web Service 987
28.9.1 Creating a Blackjack Web Service 988
28.9.2 Consuming the Blackjack Web Service 991

28.10 Consuming a Database-Driven SOAP Web Service 1002
28.10.1 Creating the Reservation Database 1003
28.10.2 Creating a Web Application to Interact with the

Reservation Service 1006
28.11 Equation Generator: Returning User-Defined Types 1009

28.11.1 Creating the EquationGeneratorXML Web Service 1012
28.11.2 Consuming the EquationGeneratorXML Web Service 1013
28.11.3 Creating the EquationGeneratorJSON Web Service 1017
28.11.4 Consuming the EquationGeneratorJSON Web Service 1017

28.12 Wrap-Up 1020

A Operator Precedence Chart 1022

B ASCII Character Set 1024

C Keywords and Reserved Words 1025

D Primitive Types 1026

E Using the Java API Documentation 1027
E.1 Introduction 1027
E.2 Navigating the Java API 1028

F Using the Debugger 1036
F.1 Introduction 1037
F.2 Breakpoints and the run, stop, cont and print Commands 1037
F.3 The print and set Commands 1041
F.4 Controlling Execution Using the step, step up and next Commands 1043
F.5 The watch Command 1046
F.6 The clear Command 1049
F.7 Wrap-Up 1051

G Formatted Output 1052
G.1 Introduction 1053
G.2 Streams 1053
G.3 Formatting Output with printf 1053

Contents xix

G.4 Printing Integers 1054
G.5 Printing Floating-Point Numbers 1055
G.6 Printing Strings and Characters 1057
G.7 Printing Dates and Times 1058
G.8 Other Conversion Characters 1060
G.9 Printing with Field Widths and Precisions 1062
G.10 Using Flags in the printf Format String 1064
G.11 Printing with Argument Indices 1068
G.12 Printing Literals and Escape Sequences 1068
G.13 Formatting Output with Class Formatter 1069
G.14 Wrap-Up 1070

H GroupLayout 1071
H.1 Introduction 1071
H.2 GroupLayout Basics 1071
H.3 Building a ColorChooser 1072
H.4 GroupLayout Web Resources 1082

I Java Desktop Integration Components 1083
I.1 Introduction 1083
I.2 Splash Screens 1083
I.3 Desktop Class 1085
I.4 Tray Icons 1087

J UML 2: Additional Diagram Types 1089
J.1 Introduction 1089
J.2 Additional Diagram Types 1089

Index 1091

This page intentionally left blank

Live in fragments no longer, only connect.
—Edgar Morgan Foster

Welcome to Java and Java for Programmers, Second Edition! This book presents leading-
edge computing technologies for software developers.

We focus on software engineering best practices. At the heart of the book is the Deitel
signature “live-code approach”—concepts are presented in the context of complete
working programs, rather than in code snippets. Each complete code example is accompa-
nied by live sample executions. All the source code is available at

As you read the book, if you have questions, send an e-mail to deitel@deitel.com;
we’ll respond promptly. For updates on this book, visit the website shown above, follow
us on Facebook (www.facebook.com/DeitelFan) and Twitter (@deitel), and subscribe to
the Deitel® Buzz Online newsletter (www.deitel.com/newsletter/subscribe.html).

Features
Here are the key features of Java for Programmers, 2/e:

Java Standard Edition (SE) 7
• Easy to use as a Java SE 6 or Java SE 7 book. We cover the new Java SE 7 features

in modular sections. Here’s some of the new functionality: Strings in switch

statements, the try-with-resources statement for managing AutoClosable ob-
jects, multi-catch for defining a single exception handler to replace multiple ex-
ception handlers that perform the same task and inferring the types of generic
objects from the variable they’re assigned to by using the <> notation. We also
overview the new concurrency API features.

• Java SE 7’s AutoClosable versions of Connection, Statement and ResultSet.
With the source code for Chapter 25, Accessing Databases with JDBC, we pro-
vide a version of the chapter’s first example that’s implemented using Java SE 7’s
AutoClosable versions of Connection, Statement and ResultSet. AutoClos-
able objects reduce the likelihood of resource leaks when you use them with Java
SE 7’s try-with-resources statement, which automatically closes the AutoClos-

able objects allocated in the parentheses following the try keyword.

Object Technology
• Object-oriented programming and design. We review the basic concepts and ter-

minology of object technology in Chapter 1. Readers develop their first custom-
ized classes and objects in Chapter 3.

www.deitel.com/books/javafp2/

Preface

www.facebook.com/DeitelFan
www.deitel.com/newsletter/subscribe.html
www.deitel.com/books/javafp2/

xxii Preface

• Exception handling. We integrate basic exception handling early in the book and
cover it in detail in Chapter 11, Exception Handling: A Deeper Look.

• Class Arrays and ArrayList. Chapter 7 covers class Arrays—which contains
methods for performing common array manipulations—and class ArrayList—
which implements a dynamically resizable array-like data structure.

• OO case studies. The early classes and objects presentation features Time, Employ-
ee and GradeBook class case studies that weave their way through multiple sec-
tions and chapters, gradually introducing deeper OO concepts.

• Case Study: Using the UML to Develop an Object-Oriented Design and Java Im-
plementation of an ATM. The UML™ (Unified Modeling Language™) is the
industry-standard graphical language for modeling object-oriented systems.
Chapters 12–13 include a case study on object-oriented design using the UML.
We design and implement the software for a simple automated teller machine
(ATM). We analyze a typical requirements document that specifies the system to
be built. We determine the classes needed to implement that system, the attri-
butes the classes need to have, the behaviors the classes need to exhibit and specify
how the classes must interact with one another to meet the system requirements.
From the design we produce a complete Java implementation. Readers often report
having a “light-bulb moment”—the case study helps them “tie it all together” and
really understand object orientation in Java.

• Reordered generics presentation. We begin with generic class ArrayList in Chap-
ter 7. Because you’ll understand basic generics concepts early in the book, our later
data structures discussions provide a deeper treatment of generic collections—
showing how to use the built-in collections of the Java API. We then show how
to implement generic methods and classes.

Database and Web Development

• JDBC 4. Chapter 25, Accessing Databases with JDBC, covers JDBC 4 and uses
the Java DB/Apache Derby and MySQL database management systems. The
chapter features an OO case study on developing a database-driven address book
that demonstrates prepared statements and JDBC 4’s automatic driver discovery.

• Java Server Faces (JSF) 2.0. Chapters 26–27 have been updated with JavaServer
Faces (JSF) 2.0 technology, which greatly simplifies building JSF web applica-
tions. Chapter 26 includes examples on building web application GUIs, validat-
ing forms and session tracking. Chapter 27 discusses data-driven and Ajax-
enabled JSF applications. The chapter features a database-driven multitier web
address book that allows users to add and search for contacts.

• Web services. Chapter 28, Web Services, demonstrates creating and consuming
SOAP- and REST-based web services. Case studies include developing blackjack
and airline reservation web services.

• Java Web Start and the Java Network Launch Protocol (JNLP). We introduce
Java Web Start and JNLP, which enable applets and applications to be launched
via a web browser. Users can install locally for later execution. Programs can also
request the user’s permission to access local system resources such as files—en-

Teaching Approach xxiii

abling you to develop more robust applets and applications that execute safely us-
ing Java’s sandbox security model, which applies to downloaded code.

Multithreading
• Multithreading. We completely reworked Chapter 23, Multithreading [special

thanks to the guidance of Brian Goetz and Joseph Bowbeer—two of the co-au-
thors of Java Concurrency in Practice, Addison-Wesley, 2006].

• SwingWorker class. We use class SwingWorker to create multithreaded user interfaces.

GUI and Graphics
• GUI and graphics presentation. Chapters 14, 15 and 22, and Appendix H pres-

ent Java GUI and Graphics programming.

• GroupLayout layout manager. We discuss the GroupLayout layout manager in the
context of the GUI design tool in the NetBeans IDE.

• JTable sorting and filtering capabilities. Chapter 25 uses these capabilities to sort
the data in a JTable and filter it by regular expressions.

Other Features
• Android. Because of the tremendous interest in Android-based smartphones and

tablets, we’ve included a three-chapter introduction to Android app development
online at www.deitel.com/books/javafp. These chapters are from our new Dei-
tel Developer Series book Android for Programmers: An App-Driven Approach. After
you learn Java, you’ll find it straightforward to develop and run Android apps on
the free Android emulator that you can download from developer.android.com.

• Software engineering community concepts. We discuss agile software develop-
ment, refactoring, design patterns, LAMP, SaaS (Software as a Service), PaaS
(Platform as a Service), cloud computing, open-source software and more.

Teaching Approach
Java for Programmers, 2/e, contains hundreds of complete working examples. We stress
program clarity and concentrate on building well-engineered software.

Syntax Shading. For readability, we syntax shade the code, similar to the way most inte-
grated-development environments and code editors syntax color the code. Our syntax-
shading conventions are:

Code Highlighting. We place gray rectangles around each program’s key code.

Using Fonts for Emphasis. We place the key terms and the index’s page reference for each
defining occurrence in bold text for easier reference. On-screen components are empha-
sized in the bold Helvetica font (e.g., the File menu) and Java program text in the Lucida

font (e.g., int x = 5;).

comments appear like this
keywords appear like this

constants and literal values appear like this

all other code appears in black

www.deitel.com/books/javafp

xxiv Preface

Web Access. All of the source-code examples can be downloaded from:

Objectives. The chapter opening quotations are followed by a list of chapter objectives.

Illustrations/Figures. Abundant tables, line drawings, UML diagrams, programs and pro-
gram outputs are included.

Programming Tips. We include programming tips to help you focus on important aspects
of program development. These tips and practices represent the best we’ve gleaned from a
combined eight decades of programming and teaching experience.

Thousands of Index Entries. We’ve included a comprehensive index, which is especially
useful when you use the book as a reference.

Software Used in Java for Programmers, 2/e
All the software you’ll need for this book is available free for download from the web. See
the Before You Begin section that follows the Preface for links to each download.

www.deitel.com/books/javafp2
www.pearsonhighered.com/deitel

Good Programming Practice
The Good Programming Practices call attention to techniques that will help you pro-
duce programs that are clearer, more understandable and more maintainable.

Common Programming Error
Pointing out these Common Programming Errors reduces the likelihood that you’ll
make the same errors.

Error-Prevention Tip
These tips contain suggestions for exposing and removing bugs from your programs; many
of the tips describe aspects of Java that prevent bugs from getting into programs.

Performance Tip
These tips highlight opportunities for making your programs run faster or minimizing the
amount of memory that they occupy.

Portability Tip
The Portability Tips help you write code that will run on a variety of platforms.

Software Engineering Observation
The Software Engineering Observations highlight architectural and design issues that
affect the construction of software systems, especially large-scale systems.

Look-and-Feel Observation
These observations help you design attractive, user-friendly graphical user interfaces that
conform to industry norms.

www.deitel.com/books/javafp2
www.pearsonhighered.com/deitel

Discounts on Deitel Developer Series Books xxv

We wrote most of the examples in Java for Programmers, 2/e, using the free Java Stan-
dard Edition Development Kit (JDK) 6. For the Java SE 7 modules, we used the
OpenJDK’s early access version of JDK 7 (download.java.net/jdk7/). In Chapters 26–
28, we also used the Netbeans IDE, and in Chapter 25, we used MySQL and MySQL
Connector/J. You can find additional resources and software downloads in our Java
Resource Centers at:

Discounts on Deitel Developer Series Books
If you’d like to receive information on professional Deitel Developer Series titles, including
Android for Programmers: An App-Driven Approach, please register your copy of Java for
Programmers, 2/e at informit.com/register. You’ll receive information on how to pur-
chase Android for Programmers at a discount.

Java Fundamentals: Parts I, II and III, Second Edition LiveLessons
Video Training Product
Our Java Fundamentals: Parts I, II and III, Second Edition LiveLessons video training prod-
uct shows you what you need to know to start building robust, powerful software with Java.
It includes 20+ hours of expert training synchronized with Java for Programmers, 2/e. Check
out our growing list of LiveLessons video products:

• Java Fundamentals I and II

• C# 2010 Fundamentals I, II, and III

• C# 2008 Fundamentals I and II

• C++ Fundamentals I and II

• iPhone App-Development Fundamentals I and II

• JavaScript Fundamentals I and II

• Visual Basic 2010 Fundamentals I and II

Coming Soon
• Java Fundamentals I, II and III, Second Edition

• C Fundamentals I and II

• Android App Development Fundamentals I and II

• iPhone and iPad App-Development Fundamentals I and II, Second Edition

For additional information about Deitel LiveLessons video products, visit:

Acknowledgments
We’d like to thank Abbey Deitel and Barbara Deitel for long hours devoted to this project.
Barbara devoted long hours to Internet research to support our writing efforts. Abbey wrote
the new engaging Chapter 1 and the new cover copy. We’re fortunate to have worked on
this project with the dedicated team of publishing professionals at Pearson. We appreciate

www.deitel.com/ResourceCenters.html

www.deitel.com/livelessons

www.deitel.com/ResourceCenters.html
www.deitel.com/livelessons

xxvi Preface

the guidance, savvy and energy of Mark Taub, Editor-in-Chief of Computer Science. John
Fuller managed the book’s production. Sandra Schroeder did the cover design.

Reviewers
We wish to acknowledge the efforts of the reviewers who contributed to the recent editions
of this content. They scrutinized the text and the programs and provided countless sug-
gestions for improving the presentation: Lance Andersen (Oracle), Soundararajan An-
gusamy (Sun Microsystems), Joseph Bowbeer (Consultant), William E. Duncan
(Louisiana State University), Diana Franklin (University of California, Santa Barbara),
Edward F. Gehringer (North Carolina State University), Huiwei Guan (Northshore
Community College), Ric Heishman (George Mason University), Dr. Heinz Kabutz
(JavaSpecialists.eu), Patty Kraft (San Diego State University), Lawrence Premkumar (Sun
Microsystems), Tim Margush (University of Akron), Sue McFarland Metzger (Villanova
University), Shyamal Mitra (The University of Texas at Austin), Peter Pilgrim (Java
Champion, Consultant), Manjeet Rege, Ph.D. (Rochester Institute of Technology), Man-
fred Riem (Java Champion, Consultant, Robert Half), Simon Ritter (Oracle), Susan Rod-
ger (Duke University), Amr Sabry (Indiana University), José Antonio González Seco
(Parliament of Andalusia), Sang Shin (Sun Microsystems), S. Sivakumar (Astra Infotech
Private Limited), Raghavan “Rags” Srinivas (Intuit), Monica Sweat (Georgia Tech), Vi-
nod Varma (Astra Infotech Private Limited) and Alexander Zuev (Sun Microsystems).

Well, there you have it! As you read the book, we’d appreciate your comments, criti-
cisms, corrections and suggestions for improvement. Please address all correspondence to:

We’ll respond promptly. We hope you enjoy working with Java for Programmers, 2/e.
Good luck!

Paul and Harvey Deitel

About the Authors
Paul J. Deitel, CEO and Chief Technical Officer of Deitel & Associates, Inc., is a graduate
of MIT, where he studied Information Technology. He holds the Sun (now Oracle) Certi-
fied Java Programmer and Certified Java Developer certifications, and is an Oracle Java
Champion. Through Deitel & Associates, Inc., he has delivered Java, C#, Visual Basic, C++,
C and Internet programming courses to industry clients, including Cisco, IBM, Sun Micro-
systems, Dell, Siemens, Lucent Technologies, Fidelity, NASA at the Kennedy Space Center,
the National Severe Storm Laboratory, White Sands Missile Range, Rogue Wave Software,
Boeing, SunGard Higher Education, Stratus, Cambridge Technology Partners, One Wave,
Hyperion Software, Adra Systems, Entergy, CableData Systems, Nortel Networks, Puma,
iRobot, Invensys and many more. He and his co-author, Dr. Harvey M. Deitel, are the
world’s best-selling programming-language textbook/professional book authors.

Dr. Harvey M. Deitel, Chairman and Chief Strategy Officer of Deitel & Associates,
Inc., has 50 years of experience in the computer field. Dr. Deitel earned B.S. and M.S.
degrees from MIT and a Ph.D. from Boston University. He has extensive industry and
academic experience, including earning tenure and serving as the Chairman of the Com-
puter Science Department at Boston College before founding Deitel & Associates, Inc.,

deitel@deitel.com

About Deitel & Associates, Inc. xxvii

with his son, Paul J. Deitel. He and Paul are the co-authors of dozens of books and multi-
media packages and they are writing many more. With translations published in Japanese,
German, Russian, Chinese, Spanish, Korean, French, Polish, Italian, Portuguese, Greek,
Urdu and Turkish, the Deitels’ texts have earned international recognition. Dr. Deitel has
delivered hundreds of professional seminars to major corporations, academic institutions,
government organizations and the military.

About Deitel & Associates, Inc.
Deitel & Associates, Inc., founded by Paul Deitel and Harvey Deitel, is an internationally
recognized authoring, corporate training and software development organization specializ-
ing in computer programming languages, object technology, Android and iPhone app de-
velopment, and Internet and web software technology. The company offers instructor-led
training courses delivered at client sites worldwide on major programming languages and
platforms, such as Java™, C, C++, Visual C#®, Visual Basic®, Objective-C, and iPhone and
iPad app development, Android app development, XML®, Python®, object technology, In-
ternet and web programming, and a growing list of additional programming and software
development courses. The company’s clients include many of the world’s largest companies,
government agencies, branches of the military, and academic institutions.

Through its 35-year publishing partnership with Prentice Hall/Pearson, Deitel &
Associates, Inc., publishes leading-edge programming professional books, college text-
books, and LiveLessons DVD- and web-based video courses. Deitel & Associates, Inc. and
the authors can be reached at:

To learn more about Deitel’s Dive Into® Series Corporate Training curriculum, visit:

subscribe to the free Deitel® Buzz Online e-mail newsletter at:

and follow the authors on Facebook

and Twitter

To request a proposal for on-site, instructor-led training at your company or organization,
e-mail

Individuals wishing to purchase Deitel books and LiveLessons DVD training courses
can do so through www.deitel.com. Bulk orders by corporations, the government, the
military and academic institutions should be placed directly with Pearson. For more infor-
mation, visit www.pearsoned.com/professional/index.htm.

deitel@deitel.com

www.deitel.com/training/

www.deitel.com/newsletter/subscribe.html

www.facebook.com/DeitelFan

@deitel

deitel@deitel.com

www.deitel.com
www.pearsoned.com/professional/index.htm
www.deitel.com/training/
www.deitel.com/newsletter/subscribe.html
www.facebook.com/DeitelFan

This page intentionally left blank

This section contains information you should review before using this book and instruc-
tions to ensure that your computer is set up properly for use with this book. We’ll post
updates (if any) to the Before You Begin section on the book’s website:

Font and Naming Conventions
We use fonts to distinguish between on-screen components (such as menu names and
menu items) and Java code or commands. Our convention is to emphasize on-screen com-
ponents in a sans-serif bold Helvetica font (for example, File menu) and to emphasize Java
code and commands in a sans-serif Lucida font (for example, System.out.println()).

Software Used in the Book
All the software you’ll need for this book is available free for download from the web.

Java SE Software Development Kit (JDK) 6 and 7
We wrote most of the examples in Java for Programmers, 2/e, using the free Java Standard
Edition Development Kit (JDK) 6, which is available from:

For the Java SE 7 modules, we used the OpenJDK’s early access version of JDK 7, which
is available from:

Java DB, MySQL and MySQL Connector/J
In Chapter 25, we use the Java DB and MySQL Community Edition database manage-
ment systems. Java DB is part of the JDK installation. At the time of this writing, the
JDK’s 64-bit installer was not properly installing Java DB. If you are using the 64-bit ver-
sion of Java, you may need to install Java DB separately. You can download Java DB from:

At the time of this writing, the latest release of MySQL Community Edition was
5.5.8. To install MySQL Community Edition on Windows, Linux or Mac OS X, see the
installation overview for your platform at:

• Windows: dev.mysql.com/doc/refman/5.5/en/windows-installation.html

• Linux: dev.mysql.com/doc/refman/5.5/en/linux-installation-rpm.html

• Mac OS X: dev.mysql.com/doc/refman/5.5/en/macosx-installation.html

www.deitel.com/books/javafp2/

www.oracle.com/technetwork/java/javase/downloads/index.html

dlc.sun.com.edgesuite.net/jdk7/binaries-/index.html

www.oracle.com/technetwork/java/javadb/downloads/index.html

Before You Begin

www.deitel.com/books/javafp2/
www.oracle.com/technetwork/java/javase/downloads/index.html
www.oracle.com/technetwork/java/javadb/downloads/index.html

xxx

Carefully follow the instructions for downloading and installing the software on your plat-
form. The downloads are available from:

You also need to install MySQL Connector/J (the J stands for Java), which allows pro-
grams to use JDBC to interact with MySQL. MySQL Connector/J can be downloaded
from

At the time of this writing, the current generally available release of MySQL Connector/J
is 5.1.14. The documentation for Connector/J is located at

To install MySQL Connector/J, carefully follow the installation instructions at:

We do not recommend modifying your system’s CLASSPATH environment variable, which
is discussed in the installation instructions. Instead, we’ll show you how use MySQL Con-
nector/J by specifying it as a command-line option when you execute your applications.

Obtaining the Code Examples
The examples for Java for Programmers, 2/e are available for download at

If you’re not already registered at our website, go to www.deitel.com and click the Register
link below our logo in the upper-left corner of the page. Fill in your information. There’s
no charge to register, and we do not share your information with anyone. We send you
only account-management e-mails unless you register separately for our free Deitel® Buzz
Online e-mail newsletter at www.deitel.com/newsletter/subscribe.html. After regis-
tering for the site, you’ll receive a confirmation e-mail with your verification code. Click
the link in the confirmation e-mail to complete your registration. Configure your e-mail client
to allow e-mails from deitel.com to ensure that the confirmation email is not filtered as
junk mail.

Next, go to www.deitel.com and sign in using the Login link below our logo in the
upper-left corner of the page. Go to www.deitel.com/books/javafp2/. You’ll find the
link to download the examples under the heading Download Code Examples and Other Pre-
mium Content for Registered Users. Write down the location where you choose to save the
ZIP file on your computer. We assume the examples are located at C:\Examples on your
computer.

Setting the PATH Environment Variable
The PATH environment variable on your computer designates which directories the com-
puter searches when looking for applications, such as the applications that enable you to
compile and run your Java applications (called javac and java, respectively). Carefully fol-
low the installation instructions for Java on your platform to ensure that you set the PATH envi-
ronment variable correctly.

dev.mysql.com/downloads/mysql/

dev.mysql.com/downloads/connector/j/

dev.mysql.com/doc/refman/5.5/en/connector-j.html

dev.mysql.com/doc/refman/5.5/en/connector-j-installing.html

www.deitel.com/books/javafp2/

www.deitel.com
www.deitel.com/newsletter/subscribe.html
www.deitel.com
www.deitel.com/books/javafp2/
www.deitel.com/books/javafp2/

Setting the CLASSPATH Environment Variable xxxi

If you do not set the PATH variable correctly, when you use the JDK’s tools, you’ll
receive a message like:

In this case, go back to the installation instructions for setting the PATH and recheck your
steps. If you’ve downloaded a newer version of the JDK, you may need to change the name
of the JDK’s installation directory in the PATH variable.

Setting the CLASSPATH Environment Variable
If you attempt to run a Java program and receive a message like

then your system has a CLASSPATH environment variable that must be modified. To fix the
preceding error, follow the steps in setting the PATH environment variable, to locate the
CLASSPATH variable, then edit the variable’s value to include the local directory—typically
represented as a dot (.). On Windows add

at the beginning of the CLASSPATH’s value (with no spaces before or after these characters).
On other platforms, replace the semicolon with the appropriate path separator charac-
ters—often a colon (:)

Java’s Nimbus Look-and-Feel
Java comes bundled with an elegant, cross-platform look-and-feel known as Nimbus. For
programs with graphical user interfaces, we’ve configured our systems to use Nimbus as
the default look-and-feel.

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

For more information on locating these installation folders visit java.sun.com/javase/
6/webnotes/install/index.html. [Note: In addition to the standalone JRE, there’s a
JRE nested in your JDK’s installation folder. If you’re using an IDE that depends on the
JDK (e.g., NetBeans), you may also need to place the swing.properties file in the nested
jre folder’s lib folder.]

'java' is not recognized as an internal or external command,
operable program or batch file.

Exception in thread "main" java.lang.NoClassDefFoundError: YourClass

.;

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

This page intentionally left blank

1
Introduction

O b j e c t i v e s
In this chapter you’ll learn:

� Exciting recent developments in the computer field.

� Basic object-technology concepts.

� A typical Java program-development environment.

� To test-drive a Java application.

� Some key recent software technologies.

Man is still the most
extraordinary computer of
all.
—John F. Kennedy

Good design is good
business.
—Thomas J. Watson, Founder of
IBM

How wonderful it is that
nobody need wait a single
moment before starting to
improve the world.
—Anne Frank

2 Chapter 1 Introduction

1.1 Introduction
Welcome to Java—the world’s most widely used computer programming language. In this
book, you’ll learn object-oriented programming—today’s key programming methodology.
You’ll create and work with many software objects in this text.

Java is the preferred language for meeting many organizations’ enterprise program-
ming needs. Java has also become the language of choice for implementing Internet-based
applications and software for devices that communicate over a network.

In use today are more than a billion general-purpose computers and billions more
Java-enabled cell phones, smartphones and handheld devices (such as tablet computers).
According to a study by eMarketer, the number of mobile Internet users will reach approx-
imately 134 million by 2013.1 Other studies have projected smartphone sales to surpass
personal computer sales in 20112 and tablet sales to account for over 20% of all personal
computer sales by 2015.3 By 2014, the smartphone applications market is expected to
exceed $40 billion,4 which is creating significant opportunities for programming mobile
applications.

Java Editions: SE, EE and ME
Java for Programmers, Second Edition is based on Java Standard Edition 6 (Java SE 6) and
Java SE 7. Java is used in such a broad spectrum of applications that it has two other editions.
The Java Enterprise Edition (Java EE), which we use later in the book, is geared toward de-
veloping large-scale, distributed networking applications and web-based applications.

The Java Micro Edition (Java ME) is geared toward developing applications for
small, memory-constrained devices, such as BlackBerry smartphones. Google’s Android
operating system—used on numerous smartphones, tablets (small, lightweight mobile
computers with touch screens), e-readers and other devices—uses a customized version of
Java not based on Java ME.

1.2 Introduction to Object Technology
Building software quickly, correctly and economically remains an elusive goal at a time
when demands for new and more powerful software are soaring. Objects, or more precise-
ly—as we’ll see in Chapter 3—the classes objects come from, are essentially reusable soft-
ware components. There are date objects, time objects, audio objects, video objects,

1.1 Introduction
1.2 Introduction to Object Technology
1.3 Open Source Software
1.4 Java and a Typical Java Development

Environment
1.5 Test-Driving a Java Application

1.6 Web 2.0: Going Social
1.7 Software Technologies
1.8 Keeping Up to Date with Information

Technologies
1.9 Wrap-Up

1. www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by_2013/.
2. www.pcworld.com/article/171380/more_smartphones_than_desktop_pcs_by_2011.html.
3. www.forrester.com/ER/Press/Release/0,1769,1340,00.html.
4. Inc., December 2010/January 2011, pages 116–123.

www.circleid.com/posts/mobile_internet_users_to_reach_134_million_by_2013/
www.pcworld.com/article/171380/more_smartphones_than_desktop_pcs_by_2011.html
www.forrester.com/ER/Press/Release/0,1769,1340,00.html

1.2 Introduction to Object Technology 3

automobile objects, people objects, etc. Almost any noun can be reasonably represented as
a software object in terms of attributes (e.g., name, color and size) and behaviors (e.g., cal-
culating, moving and communicating). Software developers are discovering that using a
modular, object-oriented design and implementation approach can make software-devel-
opment groups much more productive than was possible with earlier popular techniques
like “structured programming”—object-oriented programs are often easier to understand,
correct and modify.

The Automobile as an Object
To help you understand objects and their contents, let’s begin with a simple analogy. Sup-
pose you want to drive a car and make it go faster by pressing its accelerator pedal. What must
happen before you can do this? Well, before you can drive a car, someone has to design it.
A car typically begins as engineering drawings, similar to the blueprints that describe the
design of a house. These drawings include the design for an accelerator pedal. The pedal
hides from the driver the complex mechanisms that actually make the car go faster, just as
the brake pedal hides the mechanisms that slow the car, and the steering wheel “hides” the
mechanisms that turn the car. This enables people with little or no knowledge of how en-
gines, braking and steering mechanisms work to drive a car easily.

Just as you cannot cook meals in the kitchen of a blueprint, you cannot drive a car’s
engineering drawings. Before you can drive a car, it must be built from the engineering
drawings that describe it. A completed car has an actual accelerator pedal to make the car
go faster, but even that’s not enough—the car won’t accelerate on its own (hopefully!), so
the driver must press the pedal to accelerate the car.

Methods and Classes
Let’s use our car example to introduce some key object-oriented programming concepts.
Performing a task in a program requires a method. The method houses the program state-
ments that actually perform its tasks. The method hides these statements from its user, just
as the accelerator pedal of a car hides from the driver the mechanisms of making the car
go faster. In Java, we create a program unit called a class to house the set of methods that
perform the class’s tasks. For example, a class that represents a bank account might contain
one method to deposit money to an account, another to withdraw money from an account
and a third to inquire what the account’s current balance is. A class is similar in concept to
a car’s engineering drawings, which house the design of an accelerator pedal, steering
wheel, and so on.

Instantiation
Just as someone has to build a car from its engineering drawings before you can actually
drive a car, you must build an object of a class before a program can perform the tasks that
the class’s methods define. The process of doing this is called instantiation. An object is
then referred to as an instance of its class.

Reuse
Just as a car’s engineering drawings can be reused many times to build many cars, you can
reuse a class many times to build many objects. Reuse of existing classes when building new
classes and programs saves time and effort. Reuse also helps you build more reliable and
effective systems, because existing classes and components often have gone through exten-

4 Chapter 1 Introduction

sive testing, debugging and performance tuning. Just as the notion of interchangeable parts
was crucial to the Industrial Revolution, reusable classes are crucial to the software revolu-
tion that has been spurred by object technology.

Messages and Methods Calls
When you drive a car, pressing its gas pedal sends a message to the car to perform a task—
that is, to go faster. Similarly, you send messages to an object. Each message is implemented
as a method call that tells a method of the object to perform its task. For example, a pro-
gram might call a particular bank account object’s deposit method to increase the account’s
balance.

Attributes and Instance Variables
A car, besides having capabilities to accomplish tasks, also has attributes, such as its color,
its number of doors, the amount of gas in its tank, its current speed and its record of total
miles driven (i.e., its odometer reading). Like its capabilities, the car’s attributes are repre-
sented as part of its design in its engineering diagrams (which, for example, include an
odometer and a fuel gauge). As you drive an actual car, these attributes are carried along
with the car. Every car maintains its own attributes. For example, each car knows how
much gas is in its own gas tank, but not how much is in the tanks of other cars.

An object, similarly, has attributes that it carries along as it’s used in a program. These
attributes are specified as part of the object’s class. For example, a bank account object has
a balance attribute that represents the amount of money in the account. Each bank account
object knows the balance in the account it represents, but not the balances of the other
accounts in the bank. Attributes are specified by the class’s instance variables.

Encapsulation
Classes encapsulate (i.e., wrap) attributes and methods into objects—an object’s attributes
and methods are intimately related. Objects may communicate with one another, but
they’re normally not allowed to know how other objects are implemented—implementa-
tion details are hidden within the objects themselves. This information hiding, as we’ll see,
is crucial to good software engineering.

Inheritance
A new class of objects can be created quickly and conveniently by inheritance—the new
class absorbs the characteristics of an existing class, possibly customizing them and adding
unique characteristics of its own. In our car analogy, an object of class “convertible” cer-
tainly is an object of the more general class “automobile,” but more specifically, the roof can
be raised or lowered.

Object-Oriented Analysis and Design (OOAD)
Soon you’ll be writing programs in Java. How will you create the code (i.e., the program
instructions) for your programs? Perhaps, like many programmers, you’ll simply turn on
your computer and start typing. This approach may work for small programs (like the ones

Software Engineering Observation 1.1
Use a building-block approach to creating your programs. Avoid reinventing the wheel—
use existing pieces wherever possible. This software reuse is a key benefit of object-oriented
programming.

1.3 Open Source Software 5

we present in the early chapters of the book), but what if you were asked to create a soft-
ware system to control thousands of automated teller machines for a major bank? Or sup-
pose you were asked to work on a team of 1,000 software developers building the next U.S.
air traffic control system? For projects so large and complex, you should not simply sit
down and start writing programs.

To create the best solutions, you should follow a detailed analysis process for deter-
mining your project’s requirements (i.e., defining what the system is supposed to do) and
developing a design that satisfies them (i.e., deciding how the system should do it). Ideally,
you’d go through this process and carefully review the design (and have your design
reviewed by other software professionals) before writing any code. If this process involves
analyzing and designing your system from an object-oriented point of view, it’s called an
object-oriented analysis and design (OOAD) process. Languages like Java are object ori-
ented. Programming in such a language, called object-oriented programming (OOP),
allows you to implement an object-oriented design as a working system.

The UML (Unified Modeling Language)
Many different OOAD processes exist, but a single graphical language for communicating
the results of any OOAD process has come into wide use. This language, known as the Uni-
fied Modeling Language (UML), is now the most widely used graphical scheme for model-
ing object-oriented systems. We present our first UML diagrams in Chapters 3 and 4, then
use them in our deeper treatment of object-oriented programming through Chapter 11. In
our ATM Software Engineering Case Study in Chapters 12–13 we present a simple subset
of the UML’s features as we guide you through an object-oriented design experience.

1.3 Open Source Software
The Linux operating system is perhaps the greatest success of the open-source movement.
Open-source software is a software development style that departs from the proprietary de-
velopment that dominated software’s early years. With open-source development, individ-
uals and companies contribute their efforts in developing, maintaining and evolving
software in exchange for the right to use that software for their own purposes, typically at
no charge. Open-source code is often scrutinized by a much larger audience than propri-
etary software, so errors often get removed faster. Open source also encourages more in-
novation. Sun open sourced its implementation of the Java Development Kit and many
of its related Java technologies.

Some organizations in the open-source community are the Eclipse Foundation (the
Eclipse Integrated Development Environment helps Java programmers conveniently
develop software), the Mozilla Foundation (creators of the Firefox web browser), the
Apache Software Foundation (creators of the Apache web server used to develop web-
based applications) and SourceForge (which provides the tools for managing open source
projects—it has over 260,000 of them under development). Rapid improvements to com-
puting and communications, decreasing costs and open-source software have made it
much easier and more economical to create a software-based business now than just a few
decades ago. A great example is Facebook, which was launched from a college dorm room
and built with open-source software.5

5. developers.facebook.com/opensource/.

6 Chapter 1 Introduction

The Linux kernel is the core of the operating system. It’s developed by a loosely orga-
nized team of volunteers, and is popular in servers, personal computers and embedded sys-
tems. Unlike that of proprietary operating systems like Microsoft’s Windows and Apple’s
Mac OS X, Linux source code (the program code) is available to the public for examina-
tion and modification and is free to download and install. As a result, users of the operating
system benefit from a community of developers actively debugging and improving the
kernel, an absence of licensing fees and restrictions, and the ability to completely cus-
tomize the operating system to meet specific needs.

A variety of issues—such as Microsoft’s market power, the small number of user-
friendly Linux applications and the diversity of Linux distributions, such as Red Hat
Linux, Ubuntu Linux and many others—have prevented widespread Linux use on
desktop computers. But Linux has become extremely popular on servers and in embedded
systems, such as Google’s Android-based smartphones.

Android
Android—the fastest growing mobile and smartphone operating system—is based on the
Linux kernel and Java. Experienced Java programmers can quickly dive into Android de-
velopment. One benefit of developing Android apps is the openness of the platform. The
operating system is open source and free.

The Android operating system was developed by Android, Inc., which was acquired
by Google in 2005. In 2007, the Open Handset Alliance™—a consortium of 34 compa-
nies initially and 79 by 2010—was formed to continue developing Android. As of
December 2010, more than 300,000 Android smartphones were being activated each
day!6 Android smartphones are now outselling iPhones.7 The Android operating system is
used in numerous smartphones (such as the Motorola Droid, HTC EVO™ 4G, Samsung
Vibrant™ and many more), e-reader devices (such as the Barnes and Noble Nook™),
tablet computers (such as the Motorola Xoom, the Dell Streak, the Samsung Galaxy Tab
and more), in-store touch-screen kiosks, cars, robots and multimedia players.

Android smartphones include the functionality of a mobile phone, Internet client (for
web browsing and Internet communication), MP3 player, gaming console, digital camera
and more, wrapped into handheld devices with full-color multitouch screens—these allow
you to control the device with gestures involving one touch or multiple simultaneous
touches. You can download apps directly onto your Android device through Android
Market and other app marketplaces. As of early 2011, there were over 280,000 apps in
Google’s Android Market.

Android App-Development Chapters on the Companion Website
Because of the tremendous interest in Android-based devices and apps, we’ve included on
the book’s website a three-chapter introduction to Android app development from our
new book, Android for Programmers: An App-Driven Approach. After you learn Java, you’ll
find it straightforward to begin developing and running Android apps. You can place your
apps on the online Android Market (www.market.android.com).

6. www.pcmag.com/article2/0,2817,2374076,00.asp.
7. mashable.com/2010/08/02/android-outselling-iphone-2/.

www.market.android.com
www.pcmag.com/article2/0,2817,2374076,00.asp

1.4 Java and a Typical Java Development Environment 7

1.4 Java and a Typical Java Development Environment
The microprocessor revolution’s most important contribution to date is that it made pos-
sible the development of personal computers. Microprocessors are having a profound im-
pact in intelligent consumer-electronic devices. Recognizing this, Sun Microsystems in
1991 funded an internal corporate research project led by James Gosling, which resulted
in a C++-based object-oriented programming language Sun called Java.

A key goal of Java is to be able to write programs that will run on a great variety of
computer systems and computer-control devices. This is sometimes called “write once,
run anywhere.”

The web exploded in popularity in 1993, and Sun saw the potential of using Java to
add dynamic content, such as interactivity and animations, to web pages. Java garnered the
attention of the business community because of the phenomenal interest in the web. Java
is now used to develop large-scale enterprise applications, to enhance the functionality of
web servers (the computers that provide the content we see in our web browsers), to pro-
vide applications for consumer devices (e.g., cell phones, smartphones, television set-top
boxes and more) and for many other purposes. Sun Microsystems was acquired by Oracle
in 2009. At the JavaOne 2010 conference, Oracle announced that 97% of enterprise desk-
tops, three billion handsets, and 80 million television devices run Java. There are currently
over 9 million Java developers, up from 4.5 million in 2005.8 Java is now the most widely
used software development language in the world.

Java Class Libraries
You can create each class and method you need to form your Java programs. However,
most Java programmers take advantage of the rich collections of existing classes and meth-
ods in the Java class libraries, which are also known as the Java APIs (Application Pro-
gramming Interfaces).

We now explain the commonly used steps in creating and executing a Java application
using a Java development environment (illustrated in Figs. 1.1–1.5). Java programs nor-
mally go through five phases—edit, compile, load, verify and execute. We discuss these
phases in the context of the Java SE Development Kit (JDK). You can download the most
up-to-date JDK and its documentation from www.oracle.com/technetwork/java/

javase/downloads/index.html. Read the Before You Begin section of this book to ensure that

8. jaxenter.com/how-many-java-developers-are-there-10462.html.

Performance Tip 1.1
Using Java API classes and methods instead of writing your own versions can improve pro-
gram performance, because they’re carefully written to perform efficiently. This also short-
ens program development time.

Portability Tip 1.1
Although it’s easier to write portable programs (i.e., programs that can run on many dif-
ferent types of computers) in Java than in most other programming languages, differences
between compilers, JVMs and computers can make portability difficult to achieve. Simply
writing programs in Java does not guarantee portability.

www.oracle.com/technetwork/java/javase/downloads/index.html
www.oracle.com/technetwork/java/javase/downloads/index.html

8 Chapter 1 Introduction

you set up your computer properly to compile and execute Java programs. You may also want
to visit Oracle’s New to Java Center at:

[Note: This website provides installation instructions for Windows, Linux and Mac OS X.
If you aren’t using one of these operating systems, refer to the documentation for your sys-
tem’s Java environment. If you encounter a problem with this link or any others referenced
in this book, please check www.deitel.com/books/javafp2/ for errata and please notify
us by e-mail at deitel@deitel.com.]

Phase 1: Creating a Program
Phase 1 consists of editing a file with an editor program, normally known simply as an editor
(Fig. 1.1). You type a Java program (typically referred to as source code) using the editor,
make any necessary corrections and save the program on a secondary storage device, such
as your hard drive. A file name ending with the .java extension indicates that the file con-
tains Java source code.

Two editors widely used on Linux systems are vi and emacs. On Windows, Notepad
will suffice. Many freeware and shareware editors are also available online, including Edit-
Plus (www.editplus.com), TextPad (www.textpad.com) and jEdit (www.jedit.org).

For organizations that develop substantial information systems, integrated develop-
ment environments (IDEs) are available from many major software suppliers. IDEs pro-
vide tools that support the software development process, including editors for writing and
editing programs and debuggers for locating logic errors—errors that cause programs to
execute incorrectly. Popular IDEs include Eclipse (www.eclipse.org) and NetBeans
(www.netbeans.org).

Phase 2: Compiling a Java Program into Bytecodes
In Phase 2, you use the command javac (the Java compiler) to compile a program
(Fig. 1.2). For example, to compile a program called Welcome.java, you’d type

in the command window of your system (i.e., the Command Prompt in Windows, the
shell prompt in Linux or the Terminal application in Mac OS X). If the program compiles,
the compiler produces a .class file called Welcome.class that contains the compiled ver-
sion of the program.

The Java compiler translates Java source code into bytecodes that represent the tasks
to execute in the execution phase (Phase 5). Bytecodes are executed by the Java Virtual
Machine (JVM)—a part of the JDK and the foundation of the Java platform. A virtual

www.oracle.com/technetwork/topics/newtojava/overview/index.html

Fig. 1.1 | Typical Java development environment—editing phase.

javac Welcome.java

Disk
Editor

Program is created in an

editor and stored on disk in

a file whose name ends

with .java

Phase 1: Edit

www.deitel.com/books/javafp2/
www.editplus.com
www.textpad.com
www.jedit.org
www.eclipse.org
www.netbeans.org
www.oracle.com/technetwork/topics/newtojava/overview/index.html

1.4 Java and a Typical Java Development Environment 9

machine (VM) is a software application that simulates a computer but hides the under-
lying operating system and hardware from the programs that interact with it. If the same
VM is implemented on many computer platforms, applications that it executes can be
used on all those platforms. The JVM is one of the most widely used virtual machines.
Microsoft’s .NET uses a similar virtual-machine architecture.

Unlike machine language, which is dependent on specific computer hardware, byte-
codes are platform independent—they do not depend on a particular hardware platform.
So, Java’s bytecodes are portable—without recompiling the source code, the same byte-
codes can execute on any platform containing a JVM that understands the version of Java
in which the bytecodes were compiled. The JVM is invoked by the java command. For
example, to execute a Java application called Welcome, you’d type the command

in a command window to invoke the JVM, which would then initiate the steps necessary
to execute the application. This begins Phase 3.

Phase 3: Loading a Program into Memory
In Phase 3, the JVM places the program in memory to execute it—this is known as loading
(Fig. 1.3).The JVM’s class loader takes the .class files containing the program’s bytecodes
and transfers them to primary memory. The class loader also loads any of the .class files
provided by Java that your program uses. The .class files can be loaded from a disk on your
system or over a network (e.g., your local college or company network, or the Internet).

Phase 4: Bytecode Verification
In Phase 4, as the classes are loaded, the bytecode verifier examines their bytecodes to en-
sure that they’re valid and do not violate Java’s security restrictions (Fig. 1.4). Java enforces

Fig. 1.2 | Typical Java development environment—compilation phase.

java Welcome

Fig. 1.3 | Typical Java development environment—loading phase.

Disk
Compiler

Compiler creates bytecodes

and stores them on disk in a

file whose name ends

with .class

Phase 2: Compile

Disk

Class Loader

Class loader reads

.class files

containing bytecodes

from disk and puts

those bytecodes in

memory

Phase 3: Load

.
.
.

Primary

Memory

10 Chapter 1 Introduction

strong security to make sure that Java programs arriving over the network do not damage
your files or your system (as computer viruses and worms might).

Phase 5: Execution
In Phase 5, the JVM executes the program’s bytecodes, thus performing the actions spec-
ified by the program (Fig. 1.5). In early Java versions, the JVM was simply an interpreter
for Java bytecodes. This caused most Java programs to execute slowly, because the JVM
would interpret and execute one bytecode at a time. Some modern computer architectures
can execute several instructions in parallel. Today’s JVMs typically execute bytecodes us-
ing a combination of interpretation and so-called just-in-time (JIT) compilation. In this
process, the JVM analyzes the bytecodes as they’re interpreted, searching for hot spots—
parts of the bytecodes that execute frequently. For these parts, a just-in-time (JIT) com-
piler—known as the Java HotSpot compiler—translates the bytecodes into the underly-
ing computer’s machine language. When the JVM encounters these compiled parts again,
the faster machine-language code executes. Thus Java programs actually go through two
compilation phases—one in which source code is translated into bytecodes (for portability
across JVMs on different computer platforms) and a second in which, during execution,

Fig. 1.4 | Typical Java development environment—verification phase.

Fig. 1.5 | Typical Java development environment—execution phase.

Bytecode Verifier

Bytecode verifier

confirms that all

bytecodes are valid and

do not violate Java’s

security restrictions

Phase 4: Verify

.
.
.

Primary

Memory

Java Virtual Machine (JVM)

Primary

Memory

Phase 5: Execute

.
.
.

To execute the program, the

JVM reads bytecodes and

just-in-time (JIT) compiles

(i.e., translates) them into a

language that the computer

can understand. As the

program executes, it may store

data values in primary

memory.

1.5 Test-Driving a Java Application 11

the bytecodes are translated into machine language for the actual computer on which the
program executes.

Problems That May Occur at Execution Time
Programs might not work on the first try. Each of the preceding phases can fail because of
various errors that we’ll discuss throughout this book. For example, an executing program
might try to divide by zero (an illegal operation for whole-number arithmetic in Java).
This would cause the Java program to display an error message. If this occurred, you’d
have to return to the edit phase, make the necessary corrections and proceed through the
remaining phases again to determine that the corrections fixed the problem(s). [Note:
Most programs in Java input or output data. When we say that a program displays a mes-
sage, we normally mean that it displays that message on your computer’s screen. Messages
and other data may be output to other devices, such as disks and hardcopy printers, or even
to a network for transmission to other computers.]

1.5 Test-Driving a Java Application
In this section, you’ll run and interact with your first Java application. You’ll begin by run-
ning an ATM application that simulates the transactions that take place when you use an
ATM machine (e.g., withdrawing money, making deposits and checking your account
balances). You’ll learn how to build this application in the object-oriented case study in-
cluded in Chapters 12–13. For the purpose of this section, we assume you’re running Mi-
crosoft Windows.9

In the following steps, you’ll run the application and perform various transactions.
The elements and functionality you see here are typical of what you’ll learn to program in
this book. [Note: We use fonts to distinguish between features you see on a screen (e.g.,
the Command Prompt) and elements that are not directly related to a screen. Our conven-
tion is to emphasize screen features like titles and menus (e.g., the File menu) in a semibold
sans-serif Helvetica font and to emphasize nonscreen elements, such as file names or input
(e.g., ProgramName.java) in a sans-serif Lucida font. As you’ve already noticed, the
defining occurrence of each key term in the text is set in bold. In the figures in this section,
we highlight in gray the user input required by each step and point out significant parts of
the application. To make these features more visible, we’ve changed the background color
of the Command Prompt windows to white and the foreground color to black.] This is a
simple text-only version. Later in the book, you’ll learn the techniques to rework this using
GUI (graphical user interface) techniques.

Common Programming Error 1.1
Errors such as division by zero occur as a program runs, so they’re called runtime errors
or execution-time errors. Fatal runtime errors cause programs to terminate immediately
without having successfully performed their jobs. Nonfatal runtime errors allow pro-
grams to run to completion, often producing incorrect results.

9. At www.deitel.com/books/javafp2/, we provide videos that help you get started with popular in-
tegrated development environments (IDEs) Eclipse and NetBeans.

www.deitel.com/books/javafp2/

12 Chapter 1 Introduction

1. Checking your setup. Read the Before You Begin section of the book to confirm
that you’ve set up Java properly on your computer and that you’ve copied the
book’s examples to your hard drive.

2. Locating the completed application. Open a Command Prompt window. This can
be done by selecting Start > All Programs > Accessories > Command Prompt.
Change to the ATM application directory by typing cd C:\examples\ch01\ATM,
then press Enter (Fig. 1.6). The command cd is used to change directories.

3. Running the ATM application. Type the command java ATMCaseStudy and
press Enter (Fig. 1.7). Recall that the java command, followed by the name of
the application’s .class file (in this case, ATMCaseStudy), executes the applica-
tion. Specifying the .class extension when using the java command results in
an error. [Note: Java commands are case sensitive. It’s important to type the name
of this application with a capital A, T and M in “ATM,” a capital C in “Case”
and a capital S in “Study.” Otherwise, the application will not execute.] If you
receive the error message, “Exception in thread "main" java.lang.NoClass-

DefFoundError: ATMCaseStudy," your system has a CLASSPATH problem. Please
refer to the Before You Begin section of the book for instructions to help you fix
this problem.

4. Entering an account number. When the application first executes, it displays a
"Welcome!" greeting and prompts you for an account number. Type 12345 at the
"Please enter your account number:" prompt (Fig. 1.8) and press Enter.

5. Entering a PIN. Once a valid account number is entered, the application displays
the prompt "Enter your PIN:". Type "54321" as your valid PIN (Personal Iden-
tification Number) and press Enter. The ATM main menu containing a list of

Fig. 1.6 | Opening a Command Prompt and changing directories.

Fig. 1.7 | Using the java command to execute the ATM application.

File location of the ATM application
Using the cd command to
change directories

1.5 Test-Driving a Java Application 13

options will be displayed (Fig. 1.9). We’ll show how you can enter a PIN private-
ly using a JPasswordField in Chapter 14.

6. Viewing the account balance. Select option 1, "View my balance", from the
ATM menu (Fig. 1.10). The application then displays two numbers—the
Available balance ($1000.00) and the Total balance ($1200.00). The avail-
able balance is the maximum amount of money in your account which is available

Fig. 1.8 | Prompting the user for an account number.

Fig. 1.9 | Entering a valid PIN number and displaying the ATM application’s main menu.

Fig. 1.10 | ATM application displaying user account-balance information.

Enter account number promptATM welcome message

ATM main menuEnter valid PIN

Account-balance information

14 Chapter 1 Introduction

for withdrawal at a given time. In some cases, certain funds, such as recent depos-
its, are not immediately available for the user to withdraw, so the available bal-
ance may be less than the total balance, as it is here. After the account-balance
information is shown, the application’s main menu is displayed again.

7. Withdrawing money from the account. Select option 2, "Withdraw cash", from
the application menu. You’re then presented (Fig. 1.11) with a list of dollar
amounts (e.g., 20, 40, 60, 100 and 200). You’re also given the option to cancel the
transaction and return to the main menu. Withdraw $100 by selecting option 4.
The application displays "Please take your cash now." and returns to the
main menu. [Note: Unfortunately, this application only simulates the behavior of
a real ATM and thus does not actually dispense money.]

8. Confirming that the account information has been updated. From the main
menu, select option 1 again to view your current account balance (Fig. 1.12).
Both the available balance and the total balance have been updated to reflect your
withdrawal transaction.

Fig. 1.11 | Withdrawing money from the account and returning to the main menu.

Fig. 1.12 | Checking the new balance.

ATM withdrawal menu

Confirming updated account-balance
information after withdrawal transaction

1.6 Web 2.0: Going Social 15

9. Ending the transaction. To end your current ATM session, select option 4, "Ex-

it", from the main menu (Fig. 1.13). The ATM will exit the system and display
a goodbye message to the user. The application will then return to its original
prompt, asking for the next user’s account number.

10. Exiting the ATM and closing the Command Prompt window. Most applications
provide an option to exit and return to the Command Prompt directory from
which the application was run. A real ATM does not provide a user with the op-
tion to turn off the ATM. Rather, when a user has completed all desired transac-
tions and chosen the menu option to exit, the ATM resets itself and displays a
prompt for the next user’s account number. As Fig. 1.13 illustrates, the ATM ap-
plication here behaves similarly. Choosing the menu option to exit ends only the
current user’s ATM session, not the entire ATM application. To actually exit the
ATM application, click the close (x) button in the upper-right corner of the Com-
mand Prompt window. Closing the window causes the running application to ter-
minate.

1.6 Web 2.0: Going Social
The web literally exploded in the mid-to-late 1990s, but the “dot com” economic bust
brought hard times in the early 2000s. The resurgence that began in 2004 or so has been
named Web 2.0. Google is widely regarded as the signature company of Web 2.0. Some
other companies with “Web 2.0 characteristics” are YouTube (video sharing), FaceBook
(social networking), Twitter (microblogging), Groupon (social commerce), Foursquare
(mobile check-in), Salesforce (business software offered as online services), Craigslist (free
classified listings), Flickr (photo sharing), Second Life (a virtual world), Skype (Internet
telephony) and Wikipedia (a free online encyclopedia).

Google
In 1996, Stanford computer science Ph.D. candidates Larry Page and Sergey Brin began
collaborating on a new search engine. In 1997, they changed the name to Google—a play
on the mathematical term googol, a quantity represented by the number “one” followed by
100 “zeros” (or 10100)—a staggeringly large number. Google’s ability to return extremely
accurate search results quickly helped it become the most widely used search engine and
one of the most popular websites in the world.

Google continues to be an innovator in search technologies. For example, Google
Goggles is a fascinating mobile app (available on Android and iPhone) that allows you to

Fig. 1.13 | Ending an ATM transaction session.

Account-number prompt for next user

ATM goodbye message

16 Chapter 1 Introduction

perform a Google search using a photo rather than entering text. You simply take pictures
of landmarks, books (covers or barcodes), logos, art or wine bottle labels, and Google Gog-
gles scans the photos and returns search results. You can also take a picture of text (for
example, a restaurant menu or a sign) and Google Goggles will translate it for you.

Web Services and Mashups
We include in this book a substantial treatment of web services (Chapter 28) and intro-
duce the applications-development methodology of mashups in which you can rapidly de-
velop powerful and intriguing applications by combining (often free) complementary web
services and other forms of information feeds (Fig. 1.14). One of the first mashups was
www.housingmaps.com, which quickly combines the real estate listings provided by
www.craigslist.org with the mapping capabilities of Google Maps to offer maps that
show the locations of apartments for rent in a given area.

Ajax
Ajax is one of the premier Web 2.0 software technologies. Ajax helps Internet-based ap-
plications perform like desktop applications—a difficult task, given that such applications

Web services source How it’s used

Google Maps Mapping services

Facebook Social networking

Foursquare Mobile check-in

LinkedIn Social networking for business

YouTube Video search

Twitter Microblogging

Groupon Social commerce

Netflix Movie rentals

eBay Internet auctions

Wikipedia Collaborative encyclopedia

PayPal Payments

Last.fm Internet radio

Amazon eCommerce Shopping for books and more

Salesforce.com Customer Relationship Management (CRM)

Skype Internet telephony

Microsoft Bing Search

Flickr Photo sharing

Zillow Real estate pricing

Yahoo Search Search

WeatherBug Weather

Fig. 1.14 | Some popular web services (www.programmableweb.com/apis/
directory/1?sort=mashups).

www.housingmaps.com
www.craigslist.org
www.programmableweb.com/apis/directory/1?sort=mashups
www.programmableweb.com/apis/directory/1?sort=mashups

1.6 Web 2.0: Going Social 17

suffer transmission delays as data is shuttled back and forth between your computer and
server computers on the Internet. Using Ajax, applications like Google Maps have
achieved excellent performance and approach the look-and-feel of desktop applications.
Although we don’t discuss “raw” Ajax programming (which is quite complex) in this text,
we do show in Chapter 27 how to build Ajax-enabled applications using JavaServer Faces
(JSF) Ajax-enabled components.

Social Applications
Over the last several years, there’s been a tremendous increase in the number of social ap-
plications on the web. Even though the computer industry is mature, these sites were still
able to become phenomenally successful in a relatively short period of time. Figure 1.15
discusses a few of the social applications that are making an impact.

Company Description

Facebook Facebook was launched from a Harvard dorm room in 2004 by classmates
Mark Zuckerberg, Chris Hughes, Dustin Moskovitz and Eduardo Saverin and
is already worth an estimated $70 billion. By January 2011, Facebook was the
most active site on the Internet with more than 600 million users—nearly 9%
of the Earth’s population—who spend 700 billion minutes on Facebook per
month (www.time.com/time/specials/packages/article/0,28804,2036683_
2037183,00.html). At its current growth rate (about 5% per month), Facebook
will reach one billion users in 2012, out of the two billion Internet users! The
activity on the site makes it extremely attractive for application developers.
Each day, over 20 million applications are installed by Facebook users
(www.facebook.com/press/info.php?statistics).

Twitter Twitter was founded in 2006 by Jack Dorsey, Evan Williams and Isaac “Biz”
Stone—all from the podcast company, Odeo. Twitter has revolutionized
microblogging. Users post tweets—messages of up to 140 characters long.
Approximately 95 million tweets are posted per day (twitter.com/about). You
can follow the tweets of friends, celebrities, businesses, government representa-
tives (including the U.S. President, who has 6.3 million followers), etc., or you
can follow tweets by subject to track news, trends and more. At the time of this
writing, Lady Gaga had the most followers (over 7.7 million). Twitter has
become the point of origin for many breaking news stories worldwide.

Groupon Groupon, a social commerce site, was launched by Andrew Mason in 2008. By
January 2011, the company was valued around $15 billion, making it the fast-
est growing company ever! It’s now available in hundreds of markets world-
wide. Groupon offers one daily deal in each market for restaurants, retailers,
services, attractions and more. Deals are activated only after a minimum num-
ber of people sign up to buy the product or service. If you sign up for a deal
and it has yet to meet the minimum, you might be inclined to tell others about
the deal by email, Facebook, Twitter, etc. If the deal does not meet the mini-
mum sales, it’s cancelled. One of the most successful national Groupon deals to
date was a certificate for $50 worth of merchandise from a major apparel com-
pany for $25. Over 440,000 vouchers were sold in one day.

Fig. 1.15 | Social applications. (Part 1 of 2.)

www.time.com/time/specials/packages/article/0,28804,2036683_2037183,00.html
www.time.com/time/specials/packages/article/0,28804,2036683_2037183,00.html
www.facebook.com/press/info.php?statistics

18 Chapter 1 Introduction

1.7 Software Technologies
Figure 1.16 lists a number of buzzwords that you’ll hear in the software development com-
munity. We’ve created Resource Centers on most of these topics, with more on the way.

Foursquare Foursquare—launched in 2009 by Dennis Crowley and Naveen Selvadurai—is
a mobile check-in application that allows you to notify your friends of your
whereabouts. You can download the app to your smartphone and link it to
your Facebook and Twitter accounts so your friends can follow you from mul-
tiple platforms. If you do not have a smartphone, you can check in by text
message. Foursquare uses GPS to determine your exact location. Businesses use
Foursquare to send offers to users in the area. Launched in March 2009, Four-
square already has over 5 million users worldwide.

Skype Skype is a software product that allows you to make mostly free voice and
video calls over the Internet using a technology called VoIP (Voice over IP; IP
stands for Internet Protocol). Skype was founded in 2003 by Niklas
Zennström and Dane Janus Friis. Just two years later, the company was sold to
eBay for $2.6 billion.

YouTube YouTube is a video-sharing site that was founded in 2005. Within one year, the
company was purchased by Google for $1.65 billion. YouTube now accounts
for 10% of all Internet traffic (www.webpronews.com/topnews/2010/04/16/
facebook-and-youtube-get-the-most-business-internet-traffic). Within
one week of the release of Apple’s iPhone 3GS—the first iPhone model to offer
video—mobile uploads to YouTube grew 400% (www.hypebot.com/hypebot/
2009/06/youtube-reports-1700-jump-in-mobile-video.html).

Technology Description

Agile software
development

Agile software development is a set of methodologies that try to get soft-
ware implemented faster and using fewer resources than previous methodol-
ogies. Check out the Agile Alliance (www.agilealliance.org) and the Agile
Manifesto (www.agilemanifesto.org).

Refactoring Refactoring involves reworking programs to make them clearer and easier to
maintain while preserving their correctness and functionality. It’s widely
employed with agile development methodologies. Many IDEs contain built-
in refactoring tools to do major portions of the reworking automatically.

Design
patterns

Design patterns are proven architectures for constructing flexible and main-
tainable object-oriented software. The field of design patterns tries to enu-
merate those recurring patterns, encouraging software designers to reuse
them to develop better-quality software using less time, money and effort.

Fig. 1.16 | Software technologies. (Part 1 of 2.)

Company Description

Fig. 1.15 | Social applications. (Part 2 of 2.)

www.webpronews.com/topnews/2010/04/16/facebook-and-youtube-get-the-most-business-internet-traffic
www.webpronews.com/topnews/2010/04/16/facebook-and-youtube-get-the-most-business-internet-traffic
www.hypebot.com/hypebot/2009/06/youtube-reports-1700-jump-in-mobile-video.html
www.hypebot.com/hypebot/2009/06/youtube-reports-1700-jump-in-mobile-video.html
www.agilealliance.org
www.agilemanifesto.org

1.7 Software Technologies 19

Figure 1.17 describes software product release categories.

LAMP MySQL is an open-source database management system. PHP is the most
popular open-source server-side “scripting” language for developing web
applications. LAMP is an acronym for the open-source technologies that
many developers use to build web applications—it stands for Linux, Apache,
MySQL and PHP (or Perl or Python—two other scripting languages).

Software as a
Service (SaaS)

Software has generally been viewed as a product; most software still is
offered this way. To run an application, you buy it from a software vendor.
You then install it on your computer and run it as needed. As new versions
appear, you upgrade the software, often at considerable expense. This pro-
cess can be cumbersome for organizations with tens of thousands of systems
that must be maintained on a diverse array of computer equipment. With
Software as a Service (SaaS), the software runs on servers elsewhere on the
Internet. When that server is updated, all clients worldwide see the new
capabilities—no local installation is needed. You access the service through
a browser. Browsers are quite portable, so you can run the same applications
on a wide variety of computers from anywhere in the world. Salesforce.com,
Google, and Microsoft’s Office Live and Windows Live all offer SaaS.

Platform as a
Service (PaaS)

Platform as a Service (PaaS) provides a computing platform for developing
and running applications as a service over the web, rather than installing the
tools on your computer. PaaS providers include Google App Engine, Ama-
zon EC2, Bungee Labs and more.

Cloud
computing

SaaS and PaaS are examples of cloud computing in which software, platforms
and infrastructure (e.g., processing power and storage) are hosted on demand
over the Internet. This provides users with flexibility, scalability and cost sav-
ings. For example, consider a company’s data storage needs which can fluctu-
ate significantly over the course of a year. Rather than investing in large-scale
storage hardware—which can be costly to purchase, maintain and secure, and
would most likely not be used to capacity at all times—the company could
purchase cloud-based services (such as Amazon S3, Google Storage, Microsoft
Windows Azure™, Nirvanix™ and others) dynamically as needed.

Software
Development
Kit (SDK)

Software Development Kits (SDKs) include the tools and documentation
developers use to program applications. For example, you’ll use the Java
Development Kit (JDK) to build and run Java applications.

Version Description

Alpha Alpha software is the earliest release of a software product that’s still under
active development. Alpha versions are often buggy, incomplete and unstable,
and are released to a relatively small number of developers for testing new fea-
tures, getting early feedback, etc.

Fig. 1.17 | Software product release terminology. (Part 1 of 2.)

Technology Description

Fig. 1.16 | Software technologies. (Part 2 of 2.)

20 Chapter 1 Introduction

1.8 Keeping Up to Date with Information Technologies
Figure 1.18 lists key technical and business publications that will help you stay up-to-date
with the latest news and trends and technology. You can also find a growing list of Inter-
net- and web-related Resource Centers at www.deitel.com/ResourceCenters.html.

Beta Beta versions are released to a larger number of developers later in the devel-
opment process after most major bugs have been fixed and new features are
nearly complete. Beta software is more stable, but still subject to change.

Release
candidates

Release candidates are generally feature complete and (supposedly) bug free, and
ready for use by the community, which provides a diverse testing environ-
ment—the software is used on different systems, with varying constraints and
for a variety of purposes. Any bugs that appear are corrected and eventually
the final product is released to the general public. Software companies often
distribute incremental updates over the Internet.

Continuous
beta

Software that’s developed using this approach generally does not have version
numbers (for example, Google search or Gmail). The software, which is
hosted in the cloud (not installed on your computer), is constantly evolving
so that users always have the latest version.

Publication URL

Bloomberg BusinessWeek www.businessweek.com

CNET news.cnet.com

Computer World www.computerworld.com

Engadget www.engadget.com

eWeek www.eweek.com

Fast Company www.fastcompany.com/

Fortune money.cnn.com/magazines/fortune/

InfoWorld www.infoworld.com

Mashable mashable.com

PCWorld www.pcworld.com

SD Times www.sdtimes.com

Slashdot slashdot.org/

Smarter Technology www.smartertechnology.com

Technology Review technologyreview.com

Techcrunch techcrunch.com

Wired www.wired.com

Fig. 1.18 | Technical and business publications.

Version Description

Fig. 1.17 | Software product release terminology. (Part 2 of 2.)

www.deitel.com/ResourceCenters.html
www.businessweek.com
www.computerworld.com
www.engadget.com
www.eweek.com
www.fastcompany.com/
www.infoworld.com
www.pcworld.com
www.sdtimes.com
www.smartertechnology.com
www.wired.com

1.9 Wrap-Up 21

1.9 Wrap-Up
In this chapter we discussed computer hardware, software, programming languages and
operating systems. We overviewed a typical Java program development environment and
you test-drove a Java application. We introduced the basics of object technology. We also
discussed some key software development terminology.

In Chapter 2, you’ll create your first Java applications. You’ll see how programs dis-
play messages on the screen and obtain information from the user at the keyboard for pro-
cessing. You’ll use Java’s primitive data types and arithmetic operators in calculations and
use Java’s equality and relational operators to write simple decision-making statements.

2
Introduction to Java
Applications

O b j e c t i v e s
In this chapter you’ll learn:

� To write simple Java applications.

� To use input and output statements.

� Java’s primitive types.

� To use arithmetic operators.

� The precedence of arithmetic operators.

� To write decision-making statements.

� To use relational and equality operators.

What’s in a name?
That which we call a rose
By any other name would
smell as sweet.
—William Shakespeare

When faced with a
decision,
I always ask, “What would
be the most fun?”
—Peggy Walker

The chief merit of language
is clearness.
—Galen

One person can make a
difference and every person
should try.
—John F. Kennedy

2.1 Introduction 23

2.1 Introduction
This chapter introduces Java application programming. We begin with examples of pro-
grams that display messages on the screen. We then present a program that obtains two
numbers from a user, calculates their sum and displays the result. The last example dem-
onstrates how to make decisions. The application compares numbers, then displays mes-
sages that show the comparison results.

This chapter uses tools from the JDK to compile and run programs. We’ve also posted
Dive Into® videos at www.deitel.com/books/javafp2/ to help you get started with the
popular Eclipse and NetBeans integrated development environments.

2.2 Your First Program in Java: Printing a Line of Text
A Java application is a computer program that executes when you use the java command
to launch the Java Virtual Machine (JVM). Later in this section we’ll discuss how to com-
pile and run a Java application. First we consider a simple application that displays a line of
text. Figure 2.1 shows the program followed by a box that displays its output. The program
includes line numbers. We’ve added these for instructional purposes—they’re not part of a
Java program. This example illustrates several important Java features. We’ll see that line 9
does the real work—displaying the phrase Welcome to Java Programming! on the screen.

Commenting Your Programs
By convention, we begin every program with a comment indicating the figure number and
file name. The comment in line 1 begins with //, indicating that it is an end-of-line com-

2.1 Introduction
2.2 Your First Program in Java: Printing a

Line of Text
2.3 Modifying Your First Java Program
2.4 Displaying Text with printf

2.5 Another Application: Adding Integers

2.6 Arithmetic
2.7 Decision Making: Equality and

Relational Operators
2.8 Wrap-Up

1 // Fig. 2.1: Welcome1.java
2 // Text-printing program.
3
4 public class Welcome1
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9 System.out.println("Welcome to Java Programming!");

10 } // end method main
11 } // end class Welcome1

Welcome to Java Programming!

Fig. 2.1 | Text-printing program.

www.deitel.com/books/javafp2/

24 Chapter 2 Introduction to Java Applications

ment—it terminates at the end of the line on which the // appears. An end-of-line com-
ment need not begin a line; it also can begin in the middle of a line and continue until the
end (as in lines 10 and 11). Line 2 is a comment that describes the purpose of the program.

Java also has traditional comments, which can be spread over several lines as in

These begin and end with delimiters, /* and */. The compiler ignores all text between the
delimiters. Java incorporated traditional comments and end-of-line comments from the C
and C++ programming languages, respectively. In this book, we use only // comments.

Java provides comments of a third type, Javadoc comments. These are delimited by
/** and */. The compiler ignores all text between the delimiters. Javadoc comments
enable you to embed program documentation directly in your programs. Such comments
are the preferred Java documenting format in industry. The javadoc utility program (part
of the Java SE Development Kit) reads Javadoc comments and uses them to prepare your
program’s documentation in HTML format.

Using Blank Lines
Line 3 is a blank line. Blank lines, space characters and tabs make programs easier to read.
Together, they’re known as white space (or whitespace). The compiler ignores white space.

Declaring a Class
Line 4 begins a class declaration for class Welcome1. Every Java program consists of at least
one class that you (the programmer) define. The class keyword introduces a class decla-
ration and is immediately followed by the class name (Welcome1). Keywords are reserved
for use by Java and are always spelled with all lowercase letters. The complete list of key-
words is shown in Appendix C.

Class Names and Identifiers
By convention, class names begin with a capital letter and capitalize the first letter of each
word they include (e.g., SampleClassName). A class name is an identifier—a series of char-
acters consisting of letters, digits, underscores (_) and dollar signs ($) that does not begin
with a digit and does not contain spaces. Some valid identifiers are Welcome1, $value,
_value, m_inputField1 and button7. The name 7button is not a valid identifier because
it begins with a digit, and the name input field is not a valid identifier because it con-
tains a space. Normally, an identifier that does not begin with a capital letter is not a class
name. Java is case sensitive—uppercase and lowercase letters are distinct—so value and
Value are different (but both valid) identifiers.

In Chapters 4–7, every class we define begins with the public keyword. For now, we
simply require this keyword. For our application, the file name is Welcome1.java. You’ll
learn more about public and non-public classes in Chapter 8.

/* This is a traditional comment. It
can be split over multiple lines */

Common Programming Error 2.1
A public class must be placed in a file that has the same name as the class (in terms of
both spelling and capitalization) plus the .java extension; otherwise, a compilation error
occurs. For example, public class Welcome must be placed in a file named Welcome.java.

2.2 Your First Program in Java: Printing a Line of Text 25

A left brace (as in line 5), {, begins the body of every class declaration. A corresponding
right brace (at line 11), }, must end each class declaration. Lines 6–10 are indented.

Declaring a Method
Line 6 is an end-of-line comment indicating the purpose of lines 7–10. Line 7 is the starting
point of every Java application. The parentheses after the identifier main indicate that it’s a
method. Java class declarations normally contain one or more methods. For a Java applica-
tion, one of the methods must be called main and must be defined as shown in line 7; oth-
erwise, the Java Virtual Machine (JVM) will not execute the application. Methods perform
tasks and can return information when they complete their tasks. Keyword void indicates
that this method will not return any information. In line 7, the String[] args in parenthe-
ses is a required part of the method main’s declaration—we discuss this in Chapter 7.

The left brace in line 8 begins the body of the method declaration. A corresponding
right brace ends it (line 10). Line 9 in the method body is indented between the braces.

Performing Output with System.out.println

Line 9 instructs the computer to perform an action—namely, to print the string of char-
acters contained between the double quotation marks (but not the quotation marks them-
selves). White-space characters in strings are not ignored by the compiler. Strings cannot
span multiple lines of code, but as you’ll see later, this does not restrict you from using
long strings in your code.

The System.out object is known as the standard output object. It allows a Java appli-
cations to display information in the command window from which it executes. In recent
versions of Microsoft Windows, the command window is the Command Prompt. In
UNIX/Linux/Mac OS X, the command window is called a terminal window or a shell.
Many programmers call it simply the command line.

Method System.out.println displays a line of text in the command window. The
string in the parentheses in line 9 is the method’s argument. When System.out.println

completes its task, it positions the output cursor (the location where the next character will
be displayed) at the beginning of the next line in the command window.

The entire line 9, including System.out.println, the argument "Welcome to Java

Programming!" in the parentheses and the semicolon (;), is called a statement. A method

Good Programming Practice 2.1
Indent the entire body of each class declaration one “level” between the left brace and the
right brace that delimit the body of the class. We recommend using three spaces to form a
level of indent. This format emphasizes the class declaration’s structure and makes it easier
to read.

Good Programming Practice 2.2
Many IDEs insert indentation for you in all the right places. The Tab key may also be used
to indent code, but tab stops vary among text editors. Most IDEs allow you to configure
tabs such that a specified number of spaces is inserted each time you press the Tab key.

Good Programming Practice 2.3
Indent the entire body of each method declaration one “level” between the braces that de-
fine the body of the method.

26 Chapter 2 Introduction to Java Applications

typically contains one or more statements that perform its task. Most statements end with
a semicolon. When the statement in line 9 executes, it displays Welcome to Java Program-
ming! in the command window.

Using End-of-Line Comments on Right Braces for Readability
We include an end-of-line comment after a closing brace that ends a method declaration
and after a closing brace that ends a class declaration. For example, line 10 indicates the
closing brace of method main, and line 11 indicates the closing brace of class Welcome1.
Each comment indicates the method or class that the right brace terminates.

Compiling and Executing Your First Java Application
We assume you’re using the Java Development Kit’s command-line tools, not an IDE.
Our Java Resource Centers at www.deitel.com/ResourceCenters.html provide links to
tutorials that help you get started with several popular Java development tools, including
NetBeans™, Eclipse™ and others. We’ve also posted NetBeans and Eclipse videos at
www.deitel.com/books/javafp2/ to help you get started using these popular IDEs.

To prepare to compile the program, open a command window and change to the
directory where the program is stored. Many operating systems use the command cd to
change directories. On Windows, for example,

changes to the fig02_01 directory. On UNIX/Linux/Max OS X, the command

changes to the fig02_01 directory.
To compile the program, type

If the program contains no syntax errors, this command creates a new file called
Welcome1.class (known as the class file for Welcome1) containing the platform-indepen-
dent Java bytecodes that represent our application. When we use the java command to
execute the application on a given platform, the JVM will translate these bytecodes into
instructions that are understood by the underlying operating system and hardware.

cd c:\examples\ch02\fig02_01

cd ~/examples/ch02/fig02_01

javac Welcome1.java

Error-Prevention Tip 2.1
When attempting to compile a program, if you receive a message such as “bad command or
filename,” “javac: command not found” or “'javac' is not recognized as an inter-
nal or external command, operable program or batch file,” then your Java software
installation was not completed properly. If you’re using the JDK, this indicates that the
system’s PATH environment variable was not set properly. Please carefully review the in-
stallation instructions in the Before You Begin section of this book. On some systems, after
correcting the PATH, you may need to reboot your computer or open a new command win-
dow for these settings to take effect.

Error-Prevention Tip 2.2
Each syntax-error message contains the file name and line number where the error oc-
curred. For example, Welcome1.java:6 indicates that an error occurred at line 6 in
Welcome1.java. The rest of the message provides information about the syntax error.

www.deitel.com/ResourceCenters.html
www.deitel.com/books/javafp2/

2.3 Modifying Your First Java Program 27

Figure 2.2 shows the program of Fig. 2.1 executing in a Microsoft® Windows® 7
Command Prompt window. To execute the program, type java Welcome1. This command
launches the JVM, which loads the .class file for class Welcome1. The command omits
the .class file-name extension; otherwise, the JVM will not execute the program. The
JVM calls method main. Next, the statement at line 9 of main displays "Welcome to Java

Programming!" [Note: Many environments show command prompts with black back-
grounds and white text. We adjusted these settings in our environment to make our screen
captures more readable.]

2.3 Modifying Your First Java Program
In this section, we modify the example in Fig. 2.1 to print text on one line by using mul-
tiple statements and to print text on several lines by using a single statement.

Displaying a Single Line of Text with Multiple Statements
Welcome to Java Programming! can be displayed several ways. Class Welcome2, shown in
Fig. 2.3, uses two statements (lines 9–10) to produce the output shown in Fig. 2.1. [Note:
From this point forward, we highlight the new and key features in each code listing, as
we’ve done for lines 9–10.]

The program is similar to Fig. 2.1, so we discuss only the changes here. Line 2 is an
end-of-line comment stating the purpose of the program. Line 4 begins the Welcome2 class
declaration. Lines 9–10 of method main display one line of text. The first statement uses
System.out’s method print to display a string. Each print or println statement resumes
displaying characters from where the last print or println statement stopped displaying

Error-Prevention Tip 2.3
The compiler error message “class Welcome1 is public, should be declared in a file
named Welcome1.java” indicates that the file name does not match the name of the pub-
lic class in the file or that you typed the class name incorrectly when compiling the class.

Fig. 2.2 | Executing Welcome1 from the Command Prompt.

Error-Prevention Tip 2.4
When attempting to run a Java program, if you receive a message such as “Exception in

thread "main" java.lang.NoClassDefFoundError: Welcome1,” your CLASSPATH envi-
ronment variable has not been set properly. Please carefully review the installation in-
structions in the Before You Begin section of this book. On some systems, you may need to
reboot your computer or open a new command window after configuring the CLASSPATH.

You type this
command to execute
the application

The program outputs to the screen
Welcome to Java Programming!

28 Chapter 2 Introduction to Java Applications

characters. Unlike println, after displaying its argument, print does not position the
output cursor at the beginning of the next line in the command window—the next char-
acter the program displays will appear immediately after the last character that print dis-
plays. Thus, line 10 positions the first character in its argument (the letter “J”)
immediately after the last character that line 9 displays (the space character before the
string’s closing double-quote character).

Displaying Multiple Lines of Text with a Single Statement
A single statement can display multiple lines by using newline characters, which indicate
to System.out’s print and println methods when to position the output cursor at the
beginning of the next line in the command window. Like blank lines, space characters and
tab characters, newline characters are white-space characters. The program in Fig. 2.4 out-
puts four lines of text, using newline characters to determine when to begin each new line.
Most of the program is identical to those in Fig. 2.1 and Fig. 2.3.

1 // Fig. 2.3: Welcome2.java
2 // Printing a line of text with multiple statements.
3
4 public class Welcome2
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9

10
11 } // end method main
12 } // end class Welcome2

Welcome to Java Programming!

Fig. 2.3 | Printing a line of text with multiple statements.

1 // Fig. 2.4: Welcome3.java
2 // Printing multiple lines of text with a single statement.
3
4 public class Welcome3
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9 System.out.println("Welcome to Java Programming!");

10 } // end method main
11 } // end class Welcome3

Welcome
to
Java
Programming!

Fig. 2.4 | Printing multiple lines of text with a single statement.

System.out.print("Welcome to ");
System.out.println("Java Programming!");

\n \n \n

2.4 Displaying Text with printf 29

Line 2 is a comment stating the program’s purpose. Line 4 begins the Welcome3 class
declaration. Line 9 displays four separate lines of text in the command window. Normally,
the characters in a string are displayed exactly as they appear in the double quotes. Note,
however, that the paired characters \ and n (repeated three times in the statement) do not
appear on the screen. The backslash (\) is an escape character. which has special meaning
to System.out’s print and println methods. When a backslash appears in a string, Java
combines it with the next character to form an escape sequence. The escape sequence \n

represents the newline character. When a newline character appears in a string being
output with System.out, the newline character causes the screen’s output cursor to move
to the beginning of the next line in the command window.

Figure 2.5 lists several common escape sequences and describes how they affect the
display of characters in the command window. For the complete list of escape sequences,
visit java.sun.com/docs/books/jls/third_edition/html/lexical.html#3.10.6.

2.4 Displaying Text with printf
The System.out.printf method (f means “formatted”) displays formatted data.
Figure 2.6 uses this method to output the strings "Welcome to" and "Java Program-

ming!". Lines 9–10

call method System.out.printf to display the program’s output. The method call speci-
fies three arguments. When a method requires multiple arguments, they’re placed in a
comma-separated list.

Lines 9–10 represent only one statement. Java allows large statements to be split over
many lines. We indent line 10 to indicate that it’s a continuation of line 9.

Escape
sequence Description

\n Newline. Position the screen cursor at the beginning of the next line.

\t Horizontal tab. Move the screen cursor to the next tab stop.

\r Carriage return. Position the screen cursor at the beginning of the current
line—do not advance to the next line. Any characters output after the car-
riage return overwrite the characters previously output on that line.

\\ Backslash. Used to print a backslash character.

\" Double quote. Used to print a double-quote character. For example,
System.out.println("\"in quotes\"");

displays "in quotes".

Fig. 2.5 | Some common escape sequences.

System.out.printf("%s\n%s\n",
"Welcome to", "Java Programming!");

Common Programming Error 2.2
Splitting a statement in the middle of an identifier or a string is a syntax error.

30 Chapter 2 Introduction to Java Applications

Method printf’s first argument is a format string that may consist of fixed text and
format specifiers. Fixed text is output by printf just as it would be by print or println.
Each format specifier is a placeholder for a value and specifies the type of data to output.
Format specifiers also may include optional formatting information.

Format specifiers begin with a percent sign (%) followed by a character that represents
the data type. For example, the format specifier %s is a placeholder for a string. The format
string in line 9 specifies that printf should output two strings, each followed by a newline
character. At the first format specifier’s position, printf substitutes the value of the first
argument after the format string. At each subsequent format specifier’s position, printf
substitutes the value of the next argument. So this example substitutes "Welcome to" for
the first %s and "Java Programming!" for the second %s. The output shows that two lines
of text are displayed.

We introduce various formatting features as they’re needed in our examples.
Appendix G presents the details of formatting output with printf.

2.5 Another Application: Adding Integers
Our next application reads (or inputs) two integers (whole numbers, such as –22, 7, 0 and
1024) typed by a user at the keyboard, computes their sum and displays it. This program
must keep track of the numbers supplied by the user for the calculation later in the program.
Programs remember numbers and other data in the computer’s memory and access that data
through program elements called variables. The program of Fig. 2.7 demonstrates these con-
cepts. In the sample output, we use bold text to identify the user’s input (i.e., 45 and 72).

1 // Fig. 2.6: Welcome4.java
2 // Displaying multiple lines with method System.out.printf.
3
4 public class Welcome4
5 {
6 // main method begins execution of Java application
7 public static void main(String[] args)
8 {
9

10
11 } // end method main
12 } // end class Welcome4

Welcome to
Java Programming!

Fig. 2.6 | Displaying multiple lines with method System.out.printf.

1 // Fig. 2.7: Addition.java
2 // Addition program that displays the sum of two numbers.
3
4

Fig. 2.7 | Addition program that displays the sum of two numbers. (Part 1 of 2.)

System.out.printf("%s\n%s\n",
"Welcome to", "Java Programming!");

import java.util.Scanner; // program uses class Scanner

2.5 Another Application: Adding Integers 31

Import Declarations
Lines 1–2

state the figure number, file name and purpose of the program.
A great strength of Java is its rich set of predefined classes that you can reuse rather

than “reinventing the wheel.” These classes are grouped into packages—named groups of
related classes—and are collectively referred to as the Java class library, or the Java Appli-
cation Programming Interface (Java API). Line 3

is an import declaration that helps the compiler locate a class that’s used in this program.
It indicates that this example uses Java’s predefined Scanner class (discussed shortly) from
package java.util.

5 public class Addition
6 {
7 // main method begins execution of Java application
8 public static void main(String[] args)
9 {

10
11
12
13
14
15
16
17 System.out.print("Enter first integer: "); // prompt
18
19
20 System.out.print("Enter second integer: "); // prompt
21
22
23
24
25
26 } // end method main
27 } // end class Addition

Enter first integer: 45
Enter second integer: 72
Sum is 117

// Fig. 2.7: Addition.java
// Addition program that displays the sum of two numbers.

import java.util.Scanner; // program uses class Scanner

Common Programming Error 2.3
All import declarations must appear before the first class declaration in the file. Placing
an import declaration inside or after a class declaration is a syntax error.

Fig. 2.7 | Addition program that displays the sum of two numbers. (Part 2 of 2.)

// create a Scanner to obtain input from the command window
Scanner input = new Scanner(System.in);

int number1; // first number to add
int number2; // second number to add
int sum; // sum of number1 and number2

number1 = input.nextInt(); // read first number from user

number2 = input.nextInt(); // read second number from user

sum = number1 + number2; // add numbers, then store total in sum

System.out.printf("Sum is %d\n", sum); // display sum

32 Chapter 2 Introduction to Java Applications

Declaring Class Addition
Line 5 begins the declaration of class Addition. The file name for this public class must
be Addition.java. Remember that the body of each class declaration starts with an open-
ing left brace (line 6) and ends with a closing right brace (line 27).

The application begins execution with the main method (lines 8–26). The left brace
(line 9) marks the beginning of method main’s body, and the corresponding right brace
(line 26) marks its end. Method main is indented one level in the body of class Addition,
and the code in the body of main is indented another level for readability.

Declaring and Creating a Scanner to Obtain User Input from the Keyboard
All Java variables must be declared with a name and a type before they can be used. A vari-
able’s name can be any valid identifier. Like other statements, declaration statements end
with a semicolon (;).

Line 11 is a variable declaration statement that specifies the name (input) and type
(Scanner) of a variable that’s used in this program. A Scanner enables a program to read
data (e.g., numbers and strings) for use in a program. The data can come from many
sources, such as the user at the keyboard or a file on disk. Before using a Scanner, you must
create it and specify the source of the data.

Line 11 initalizes Scanner variable input in its declaration with the result of the
expression to the right of the equals sign—new Scanner(System.in). This expression uses
the new keyword to create a Scanner object that reads keystrokes from the keyboard. The
standard input object, System.in, enables applications to read bytes of information typed
by the user. The Scanner translates these bytes into types (like ints) that can be used in a
program.

Declaring Variables to Store Integers
Lines 13–15 declare that variables number1, number2 and sum hold data of type int—they
can hold integer values (whole numbers such as 72, –1127 and 0). These variables are not
yet initialized. The range of values for an int is –2,147,483,648 to +2,147,483,647. [Note:
Actual int values may not contain commas.]

Other types of data include float and double, for holding real numbers, and char, for
holding character data. Real numbers contain decimal points, such as 3.4, 0.0 and –11.19.
Variables of type char represent individual characters, such as an uppercase letter (e.g., A), a
digit (e.g., 7), a special character (e.g., * or %) or an escape sequence (e.g., the newline char-
acter, \n). The types int, float, double and char are called primitive types.Primitive-type
names are keywords and must appear in all lowercase letters. Appendix D summarizes the
characteristics of the primitive types (boolean, byte, char, short, int, long, float and
double).

Several variables of the same type may be declared in a single declaration with the vari-
able names separated by commas (i.e., a comma-separated list of variable names). For
example, lines 13–15 can also be written as:

Error-Prevention Tip 2.5
Forgetting to include an import declaration for a class used in your program typically re-
sults in a compilation error containing a message such as “cannot find symbol.” When
this occurs, check that you provided the proper import declarations and that the names
in them are correct, including proper capitalization.

2.5 Another Application: Adding Integers 33

Prompting the User for Input
Line 17 uses System.out.print to display the message "Enter first integer: ". We use
method print here rather than println so that the user’s input appears on the same line
as the prompt. Recall from Section 2.2 that identifiers starting with capital letters typically
represent class names. Class System is part of package java.lang. Notice that class System
is not imported with an import declaration at the beginning of the program.

Obtaining an int as Input from the User
Line 18 uses Scanner object input’s nextInt method to obtain an integer from the user
at the keyboard. At this point the program waits for the user to type the number and press
the Enter key to submit the number to the program.

Our program assumes that the user enters a valid integer value. If not, a runtime logic
error will occur and the program will terminate. Chapter 11, Exception Handling: A
Deeper Look, discusses how to make your programs more robust by enabling them to
handle such errors. This is also known as making your program fault tolerant.

In line 18, we place the result of the call to method nextInt (an int value) in variable
number1 by using the assignment operator, =. The statement is read as “number1 gets the
value of input.nextInt().” Everything to the right of the assignment operator, =, is always
evaluated before the assignment is performed.

Prompting for and Inputting a Second int

Line 20 prompts the user to input the second integer. Line 21 reads the second integer and
assigns it to variable number2.

Using Variables in a Calculation
Line 23 calculates the sum of the variables number1 and number2 then assigns the result to
variable sum by using the assignment operator, =. When the program encounters the addi-
tion operation, it performs the calculation using the values stored in the variables number1
and number2. In the preceding statement, the addition operator is a binary operator—its
two operands are the variables number1 and number2. Portions of statements that contain
calculations are called expressions. In fact, an expression is any portion of a statement that
has a value associated with it. For example, the value of the expression number1 + number2

is the sum of the numbers. Similarly, the value of the expression input.nextInt() is the
integer typed by the user.

Displaying the Result of the Calculation
After the calculation has been performed, line 25 uses method System.out.printf to dis-
play the sum. The format specifier %d is a placeholder for an int value (in this case the value
of sum)—the letter d stands for “decimal integer.” The remaining characters in the format

int number1, // first number to add
number2, // second number to add
sum; // sum of number1 and number2

Software Engineering Observation 2.1
By default, package java.lang is imported in every Java program; thus, classes in
java.lang are the only ones in the Java API that do not require an import declaration.

34 Chapter 2 Introduction to Java Applications

string are all fixed text. So, method printf displays "Sum is ", followed by the value of
sum (in the position of the %d format specifier) and a newline.

Calculations can also be performed inside printf statements. We could have com-
bined the statements at lines 23 and 25 into the statement

The parentheses around the expression number1 + number2 are not required—they’re in-
cluded to emphasize that the value of the entire expression is output in the position of the
%d format specifier.

Java API Documentation
For each new Java API class we use, we indicate the package in which it’s located. This
information helps you locate descriptions of each package and class in the Java API docu-
mentation. A web-based version of this documentation can be found at

You can download it from

Appendix E shows how to use this documentation.

2.6 Arithmetic
The arithmetic operators are summarized in Fig. 2.8. The asterisk (*) indicates multipli-
cation, and the percent sign (%) is the remainder operator, which we’ll discuss shortly.

Integer division yields an integer quotient. For example, the expression 7 / 4 evaluates
to 1, and the expression 17 / 5 evaluates to 3. Any fractional part in integer division is
simply discarded (i.e., truncated)—no rounding occurs. Java provides the remainder oper-
ator, %, which yields the remainder after division. The expression x % y yields the remainder
after x is divided by y. Thus, 7 % 4 yields 3, and 17 % 5 yields 2. This operator is most com-
monly used with integer operands but can also be used with other arithmetic types.

Rules of Operator Precedence
Java applies the operators in arithmetic expressions in a precise sequence determined by the
rules of operator precedence, which are generally the same as those followed in algebra:

System.out.printf("Sum is %d\n", (number1 + number2));

download.oracle.com/javase/6/docs/api/

www.oracle.com/technetwork/java/javase/downloads/index.html

Java operation Operator Algebraic expression Java expression

Addition + f + 7 f + 7

Subtraction – p – c p - c

Multiplication * bm b * m

Division / x /y or or x ÷ y x / y

Remainder % r mod s r % s

Fig. 2.8 | Arithmetic operators.

x
y--

www.oracle.com/technetwork/java/javase/downloads/index.html

2.7 Decision Making: Equality and Relational Operators 35

1. Multiplication, division and remainder operations are applied first. If an expres-
sion contains several such operations, they’re applied from left to right. Multipli-
cation, division and remainder operators have the same level of precedence.

2. Addition and subtraction operations are applied next. If an expression contains
several such operations, the operators are applied from left to right. Addition and
subtraction operators have the same level of precedence.

These rules enable Java to apply operators in the correct order.1 When we say that
operators are applied from left to right, we’re referring to their associativity. Some opera-
tors associate from right to left. Figure 2.9 summarizes these rules of operator precedence.
A complete precedence chart is included in Appendix A.

2.7 Decision Making: Equality and Relational Operators
A condition is an expression that can be true or false. This section introduces Java’s if
selection statement, which allows a program to make a decision based on a condition’s
value. For example, the condition “grade is greater than or equal to 60” determines wheth-
er a student passed a test. If the condition in an if statement is true, the body of the if

statement executes. If the condition is false, the body does not execute. We’ll see an exam-
ple shortly.

Conditions in if statements can be formed by using the equality operators (== and
!=) and relational operators (>, <, >= and <=) summarized in Fig. 2.10. Both equality oper-
ators have the same level of precedence, which is lower than that of the relational operators.
The equality operators associate from left to right. The relational operators all have the
same level of precedence and also associate from left to right.

Figure 2.11 uses six if statements to compare two integers input by the user. If the
condition in any of these if statements is true, the statement associated with that if state-
ment executes; otherwise, the statement is skipped. We use a Scanner to input the integers
from the user and store them in variables number1 and number2. The program compares
the numbers and displays the results of the comparisons that are true.

1. We use simple examples to explain the order of evaluation of expressions. Subtle issues occur in the
more complex expressions you’ll encounter later in the book. For more information on order of eval-
uation, see Chapter 15 of The Java™ Language Specification (java.sun.com/docs/books/jls/).

Operator(s) Operation(s) Order of evaluation (precedence)

*
/
%

Multiplication
Division
Remainder

Evaluated first. If there are several operators of this
type, they’re evaluated from left to right.

+
-

Addition
Subtraction

Evaluated next. If there are several operators of this
type, they’re evaluated from left to right.

= Assignment Evaluated last.

Fig. 2.9 | Precedence of arithmetic operators.

36 Chapter 2 Introduction to Java Applications

Standard algebraic
equality or relational
operator

Java equality
or relational
operator

Sample
Java
condition

Meaning of
Java condition

Equality operators

= == x == y x is equal to y

≠ != x != y x is not equal to y

Relational operators

> > x > y x is greater than y

< < x < y x is less than y

≥ >= x >= y x is greater than or equal to y

≤ <= x <= y x is less than or equal to y

Fig. 2.10 | Equality and relational operators.

1 // Fig. 2.11: Comparison.java
2 // Compare integers using if statements, relational operators
3 // and equality operators.
4 import java.util.Scanner; // program uses class Scanner
5
6 public class Comparison
7 {
8 // main method begins execution of Java application
9 public static void main(String[] args)

10 {
11 // create Scanner to obtain input from command line
12 Scanner input = new Scanner(System.in);
13
14 int number1; // first number to compare
15 int number2; // second number to compare
16
17 System.out.print("Enter first integer: "); // prompt
18 number1 = input.nextInt(); // read first number from user
19
20 System.out.print("Enter second integer: "); // prompt
21 number2 = input.nextInt(); // read second number from user
22
23
24
25
26
27
28
29
30
31

Fig. 2.11 | Compare integers using if statements, relational operators and equality operators.
(Part 1 of 2.)

if (number1 == number2)
System.out.printf("%d == %d\n", number1, number2);

if (number1 != number2)
System.out.printf("%d != %d\n", number1, number2);

if (number1 < number2)
System.out.printf("%d < %d\n", number1, number2);

2.7 Decision Making: Equality and Relational Operators 37

The declaration of class Comparison begins at line 6. The class’s main method (lines
9–40) begins the execution of the program. Line 12 declares Scanner variable input and
assigns it a Scanner that inputs data from the standard input (i.e., the keyboard).

Lines 14–15 declare the int variables used to store the values input from the user.
Lines 17–18 prompt the user to enter the first integer and input the value, respectively.
The input value is stored in variable number1.

Lines 20–21 prompt the user to enter the second integer and input the value, respec-
tively. The input value is stored in variable number2.

Lines 23–24 compare the values of number1 and number2 to determine whether
they’re equal. An if statement always begins with keyword if, followed by a condition in
parentheses. An if statement expects one statement in its body, but may contain multiple
statements if they’re enclosed in a set of braces ({}). The indentation of the body statement
shown here is not required, but it improves the program’s readability by emphasizing that
the statement in line 24 is part of the if statement that begins at line 23. Line 24 executes
only if the numbers stored in variables number1 and number2 are equal (i.e., the condition
is true). The if statements in lines 26–27, 29–30, 32–33, 35–36 and 38–39 compare

32
33
34
35
36
37
38
39
40 } // end method main
41 } // end class Comparison

Enter first integer: 777
Enter second integer: 777
777 == 777
777 <= 777
777 >= 777

Enter first integer: 1000
Enter second integer: 2000
1000 != 2000
1000 < 2000
1000 <= 2000

Enter first integer: 2000
Enter second integer: 1000
2000 != 1000
2000 > 1000
2000 >= 1000

Fig. 2.11 | Compare integers using if statements, relational operators and equality operators.
(Part 2 of 2.)

if (number1 > number2)
System.out.printf("%d > %d\n", number1, number2);

if (number1 <= number2)
System.out.printf("%d <= %d\n", number1, number2);

if (number1 >= number2)
System.out.printf("%d >= %d\n", number1, number2);

38 Chapter 2 Introduction to Java Applications

number1 and number2 using the operators !=, <, >, <= and >=, respectively. If the condition
in one or more of the if statements is true, the corresponding body statement executes.

There’s no semicolon (;) at the end of the first line of each if statement. Such a semi-
colon would result in a logic error at execution time. For example,

would actually be interpreted by Java as

where the semicolon on the line by itself—called the empty statement—is the statement
to execute if the condition in the if statement is true. When the empty statement executes,
no task is performed. The program then continues with the output statement, which al-
ways executes, regardless of whether the condition is true or false, because the output state-
ment is not part of the if statement.

Figure 2.12 shows the operators discussed so far in decreasing order of precedence. All
but the assignment operator, =, associate from left to right. The assignment operator, =, asso-
ciates from right to left, so an expression like x = y = 0 is evaluated as if it had been written
as x = (y = 0), which first assigns the value 0 to variable y, then assigns the result of that
assignment, 0, to x.

2.8 Wrap-Up
In this chapter, you learned many important features of Java, including displaying data on
the screen in a Command Prompt, inputting data from the keyboard, performing calcula-
tions and making decisions. The applications presented here introduced you to basic pro-
gramming concepts. In Chapter 3, you’ll learn how to implement your own classes and
use objects of those classes in applications.

Common Programming Error 2.4
Confusing the equality operator, ==, with the assignment operator, =, can cause a logic er-
ror or a syntax error. The equality operator should be read as “is equal to” and the assign-
ment operator as “gets” or “gets the value of.” To avoid confusion, some people read the
equality operator as “double equals” or “equals equals.”

if (number1 == number2); // logic error
System.out.printf("%d == %d\n", number1, number2);

if (number1 == number2)
; // empty statement

System.out.printf("%d == %d\n", number1, number2);

Operators Associativity Type

* / % left to right multiplicative

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

= right to left assignment

Fig. 2.12 | Precedence and associativity of operators discussed.

3
Introduction to Classes,
Objects, Methods and
Strings

O b j e c t i v e s
In this chapter you’ll learn:

� How to declare a class and use it to create an object.

� How to implement a class’s behaviors as methods.

� How to implement a class’s attributes as instance variables
and properties.

� How to call an object’s methods to make them perform their
tasks.

� What instance variables of a class and local variables of a
method are.

� How to use a constructor to initialize an object’s data.

� The differences between primitive and reference types.

Nothing can have value
without being an object of
utility.
—Karl Marx

Your public servants serve
you right.
—Adlai E. Stevenson

You’ll see something new.
Two things. And I call them
Thing One and Thing Two.
—Dr. Theodor Seuss Geisel

40 Chapter 3 Introduction to Classes, Objects, Methods and Strings

3.1 Introduction
We introduced the basic terminology and concepts of object-oriented programming in
Section 1.2. In this chapter, we present a simple framework for organizing object-oriented
applications in Java. First, we motivate the notion of classes with a real-world example.
Then we present five applications to demonstrate creating and using your own classes.

3.2 Declaring a Class with a Method and Instantiating an
Object of a Class
In Sections 2.5 and 2.7, you created an object of the existing class Scanner, then used that
object to read data from the keyboard. In this section, you’ll create a new class, then use it
to create an object. We begin by delcaring classes GradeBook (Fig. 3.1) and GradeBook-

Test (Fig. 3.2). Class GradeBook (declared in the file GradeBook.java) will be used to
display a message on the screen (Fig. 3.2) welcoming the instructor to the grade book ap-
plication. Class GradeBookTest (declared in the file GradeBookTest.java) is an applica-
tion class in which the main method will create and use an object of class GradeBook. Each
class declaration that begins with keyword public must be stored in a file having the same name
as the class and ending with the .java file-name extension. Thus, classes GradeBook and
GradeBookTest must be declared in separate files, because each class is declared public.

Class GradeBook
The GradeBook class declaration (Fig. 3.1) contains a displayMessage method (lines 7–
10) that displays a message on the screen. We’ll need to make an object of this class and
call its method to execute line 9 and display the message.

3.1 Introduction
3.2 Declaring a Class with a Method and

Instantiating an Object of a Class
3.3 Declaring a Method with a Parameter
3.4 Instance Variables, set Methods and

get Methods
3.5 Primitive Types vs. Reference Types

3.6 Initializing Objects with
Constructors

3.7 Floating-Point Numbers and Type
double

3.8 Wrap-Up

1 // Fig. 3.1: GradeBook.java
2 // Class declaration with one method.
3
4 public class GradeBook
5 {
6 // display a welcome message to the GradeBook user
7 public void displayMessage()
8 {
9

10 } // end method displayMessage
11 } // end class GradeBook

Fig. 3.1 | Class declaration with one method.

System.out.println("Welcome to the Grade Book!");

3.2 Declaring a Class with a Method and Instantiating an Object of a Class 41

The class declaration begins in line 4. The keyword public is an access modifier. For
now, we’ll simply declare every class public. Every class declaration contains keyword
class followed immediately by the class’s name. Every class’s body is enclosed in a pair of
left and right braces, as in lines 5 and 11 of class GradeBook.

In Chapter 2, each class we declared had one method named main. Class GradeBook
also has one method—displayMessage (lines 7–10). Recall that main is a special method
that’s always called automatically by the Java Virtual Machine (JVM) when you execute
an application. Most methods do not get called automatically. As you’ll soon see, you must
call method displayMessage explicitly to tell it to perform its task.

The method declaration begins with keyword public to indicate that the method is
“available to the public”—it can be called from methods of other classes. Next is the
method’s return type, which specifies the type of data the method returns to its caller after
performing its task. The return type void indicates that this method will perform a task
but will not return (i.e., give back) any information to its calling method. You’ve used
methods that return information—for example, in Chapter 2 you used Scanner method
nextInt to input an integer typed by the user at the keyboard. When nextInt reads a value
from the user, it returns that value for use in the program.

The name of the method, displayMessage, follows the return type. By convention,
method names begin with a lowercase first letter and subsequent words in the name begin
with a capital letter. The parentheses after the method name indicate that this is a method.
Empty parentheses, as in line 7, indicate that this method does not require additional
information to perform its task. Line 7 is commonly referred to as the method header.
Every method’s body is delimited by left and right braces, as in lines 8 and 10.

The body of a method contains one or more statements that perform the method’s
task. In this case, the method contains one statement (line 9) that displays the message
"Welcome to the Grade Book!" followed by a newline (because of println) in the com-
mand window. After this statement executes, the method has completed its task.

Class GradeBookTest
Next, we’d like to use class GradeBook in an application. As you learned in Chapter 2,
method main begins the execution of every application. A class that contains method main

begins the execution of a Java application. Class GradeBook is not an application because
it does not contain main. Therefore, if you try to execute GradeBook by typing java Grade-

Book in the command window, an error will occur. This was not a problem in Chapter 2,
because every class you declared had a main method. To fix this problem, we must either
declare a separate class that contains a main method or place a main method in class Grade-
Book. To help you prepare for the larger programs you’ll encounter later in this book and
in industry, we use a separate class (GradeBookTest in this example) containing method
main to test each new class we create in this chapter. Some programmers refer to such a
class as a driver class.

The GradeBookTest class declaration (Fig. 3.2) contains the main method that will
control our application’s execution. The GradeBookTest class declaration begins in line 4
and ends in line 15. The class, like many that begin an application’s execution, contains
only a main method.

Lines 7–14 declare method main. A key part of enabling the JVM to locate and call
method main to begin the application’s execution is the static keyword (line 7), which
indicates that main is a static method. A static method is special, because you can call it

42 Chapter 3 Introduction to Classes, Objects, Methods and Strings

without first creating an object of the class in which the method is declared. We discuss static
methods in detail in Chapter 6, Methods: A Deeper Look.

In this application, we’d like to call class GradeBook’s displayMessage method to dis-
play the welcome message in the command window. Typically, you cannot call a method
that belongs to another class until you create an object of that class, as shown in line 10.
We begin by declaring variable myGradeBook. The variable’s type is GradeBook—the class
we declared in Fig. 3.1. Each new class you create becomes a new type that can be used to
declare variables and create objects. You can declare new class types as needed; this is one
reason why Java is known as an extensible language.

Variable myGradeBook is initialized (line 10) with the result of the class instance cre-
ation expression new GradeBook(). Keyword new creates a new object of the class specified
to the right of the keyword (i.e., GradeBook). The parentheses to the right of GradeBook
are required. As you’ll learn in Section 3.6, those parentheses in combination with a class
name represent a call to a constructor, which is similar to a method but is used only at the
time an object is created to initialize the object’s data. You’ll see that data can be placed in
the parentheses to specify initial values for the object’s data. For now, we simply leave the
parentheses empty.

Just as we can use object System.out to call its methods print, printf and println,
we can use object myGradeBook to call its method displayMessage. Line 13 calls the
method displayMessage (lines 7–10 of Fig. 3.1) using myGradeBook followed by a dot
separator (.), the method name displayMessage and an empty set of parentheses. This
call causes the displayMessage method to perform its task. This method call differs from
those in Chapter 2 that displayed information in a command window—each of those
method calls provided arguments that specified the data to display. At the beginning of
line 13, “myGradeBook.” indicates that main should use the myGradeBook object that was
created in line 10. Line 7 of Fig. 3.1 indicates that method displayMessage has an empty
parameter list—that is, displayMessage does not require additional information to per-

1 // Fig. 3.2: GradeBookTest.java
2 // Creating a GradeBook object and calling its displayMessage method.
3
4 public class GradeBookTest
5 {
6 // main method begins program execution
7 public static void main(String[] args)
8 {
9 // create a GradeBook object and assign it to myGradeBook

10
11
12 // call myGradeBook's displayMessage method
13
14 } // end main
15 } // end class GradeBookTest

Welcome to the Grade Book!

Fig. 3.2 | Creating a GradeBook object and calling its displayMessage method.

GradeBook myGradeBook = new GradeBook();

myGradeBook.displayMessage();

3.2 Declaring a Class with a Method and Instantiating an Object of a Class 43

form its task. For this reason, the method call (line 13 of Fig. 3.2) specifies an empty set
of parentheses after the method name to indicate that no arguments are being passed to
method displayMessage. When method displayMessage completes its task, method
main continues executing at line 14. This is the end of method main, so the program ter-
minates.

Any class can contain a main method. The JVM invokes the main method only in the
class used to execute the application. If an application has multiple classes that contain
main, the one that’s invoked is the one in the class named in the java command.

Compiling an Application with Multiple Classes
You must compile the classes in Fig. 3.1 and Fig. 3.2 before you can execute the applica-
tion. First, change to the directory that contains the application’s source-code files. Next,
type the command

to compile both classes at once. If the directory containing the application includes only
this application’s files, you can compile all the classes in the directory with the command

The asterisk (*) in *.java indicates that all files in the current directory that end with the
file-name extension “.java” should be compiled.

UML Class Diagram for Class GradeBook
Figure 3.3 presents a UML class diagram for class GradeBook of Fig. 3.1. In the UML,
each class is modeled in a class diagram as a rectangle with three compartments. The top
compartment contains the name of the class centered horizontally in boldface type. The
middle compartment contains the class’s attributes, which correspond to instance variables
(discussed in Section 3.4) in Java. In Fig. 3.3, the middle compartment is empty, because
this GradeBook class does not have any attributes. The bottom compartment contains the
class’s operations, which correspond to methods in Java. The UML models operations by
listing the operation name preceded by an access modifier (in this case +) and followed by
a set of parentheses. Class GradeBook has one method, displayMessage, so the bottom
compartment of Fig. 3.3 lists one operation with this name. Method displayMessage

does not require additional information to perform its tasks, so the parentheses following
the method name in the class diagram are empty, just as they were in the method’s decla-
ration in line 7 of Fig. 3.1. The plus sign (+) in front of the operation name indicates that
displayMessage is a public operation in the UML (i.e., a public method in Java). We’ll
often use UML class diagrams to summarize a class’s attributes and operations.

javac GradeBook.java GradeBookTest.java

javac *.java

Fig. 3.3 | UML class diagram indicating that class GradeBook has a public
displayMessage operation.

GradeBook

+ displayMessage()

44 Chapter 3 Introduction to Classes, Objects, Methods and Strings

3.3 Declaring a Method with a Parameter
In our car analogy from Section 1.2, we discussed the fact that pressing a car’s gas pedal
sends a message to the car to perform a task—to go faster. But how fast should the car accel-
erate? As you know, the farther down you press the pedal, the faster the car accelerates. So
the message to the car actually includes the task to perform and additional information that
helps the car perform the task. This additional information is known as a parameter—the
value of the parameter helps the car determine how fast to accelerate. Similarly, a method
can require one or more parameters that represent additional information it needs to per-
form its task. Parameters are defined in a comma-separated parameter list, which is located
inside the parentheses that follow the method name. Each parameter must specify a type
and a variable name. The parameter list may contain any number of parameters, including
none at all. Empty parentheses following the method name (as in Fig. 3.1, line 7) indicate
that a method does not require any parameters.

Arguments to a Method
A method call supplies values—called arguments—for each of the method’s parameters.
For example, the method System.out.println requires an argument that specifies the
data to output in a command window. Similarly, to make a deposit into a bank account,
a deposit method specifies a parameter that represents the deposit amount. When the de-
posit method is called, an argument value representing the deposit amount is assigned to
the method’s parameter. The method then makes a deposit of that amount.

Class Declaration with a Method That Has One Parameter
We now declare class GradeBook (Fig. 3.4) with a displayMessage method that displays
the course name as part of the welcome message. (See the sample execution in Fig. 3.5.)
The new method requires a parameter that represents the course name to output.

Before discussing the new features of class GradeBook, let’s see how the new class is
used from the main method of class GradeBookTest (Fig. 3.5). Line 12 creates a Scanner

named input for reading the course name from the user. Line 15 creates the GradeBook

object myGradeBook. Line 18 prompts the user to enter a course name. Line 19 reads the
name from the user and assigns it to the nameOfCourse variable, using Scanner method
nextLine to perform the input. The user types the course name and presses Enter to

1 // Fig. 3.4: GradeBook.java
2 // Class declaration with one method that has a parameter.
3
4 public class GradeBook
5 {
6 // display a welcome message to the GradeBook user
7 public void displayMessage()
8 {
9

10
11 } // end method displayMessage
12 } // end class GradeBook

Fig. 3.4 | Class declaration with one method that has a parameter.

String courseName

System.out.printf("Welcome to the grade book for\n%s!\n",
courseName);

3.3 Declaring a Method with a Parameter 45

submit the course name to the program. Pressing Enter inserts a newline character at the
end of the characters typed by the user. Method nextLine reads characters typed by the
user until it encounters the newline character, then returns a String containing the char-
acters up to, but not including, the newline. The newline character is discarded.

Class Scanner also provides a similar method—next—that reads individual words.
When the user presses Enter after typing input, method next reads characters until it
encounters a white-space character (such as a space, tab or newline), then returns a String

containing the characters up to, but not including, the white-space character (which is dis-
carded). All information after the first white-space character is not lost—it can be read by
other statements that call the Scanner’s methods later in the program. Line 20 outputs a
blank line.

Line 24 calls myGradeBooks’s displayMessage method. The variable nameOfCourse

in parentheses is the argument that’s passed to method displayMessage so that the method
can perform its task. The value of variable nameOfCourse in main becomes the value of
method displayMessage’s parameter courseName in line 7 of Fig. 3.4. When you execute

1 // Fig. 3.5: GradeBookTest.java
2 // Create GradeBook object and pass a String to
3 // its displayMessage method.
4 import java.util.Scanner; // program uses Scanner
5
6 public class GradeBookTest
7 {
8 // main method begins program execution
9 public static void main(String[] args)

10 {
11 // create Scanner to obtain input from command window
12 Scanner input = new Scanner(System.in);
13
14 // create a GradeBook object and assign it to myGradeBook
15 GradeBook myGradeBook = new GradeBook();
16
17 // prompt for and input course name
18 System.out.println("Please enter the course name:");
19
20 System.out.println(); // outputs a blank line
21
22 // call myGradeBook's displayMessage method
23 // and pass nameOfCourse as an argument
24
25 } // end main
26 } // end class GradeBookTest

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Fig. 3.5 | Create a GradeBook object and pass a String to its displayMessage method.

String nameOfCourse = input.nextLine(); // read a line of text

myGradeBook.displayMessage(nameOfCourse);

46 Chapter 3 Introduction to Classes, Objects, Methods and Strings

this application, notice that method displayMessage outputs the name you type as part
of the welcome message (Fig. 3.5).

More on Arguments and Parameters
In Fig. 3.4, displayMessage’s parameter list (line 7) declares one parameter indicating that
the method requires a String to perform its task. When the method is called, the argument
value in the call is assigned to the corresponding parameter (courseName) in the method
header. Then, the method body uses the value of the courseName parameter. Lines 9–10 of
Fig. 3.4 display parameter courseName’s value, using the %s format specifier in printf’s for-
mat string. The parameter variable’s name (courseName in Fig. 3.4, line 7) can be the same
or different from the argument variable’s name (nameOfCourse in Fig. 3.5, line 24).

The number of arguments in a method call must match the number of parameters in
the parameter list of the method’s declaration. Also, the argument types in the method call
must be “consistent with” the types of the corresponding parameters in the method’s dec-
laration—as you’ll see in Chapter 6, an argument’s type and its corresponding parameter’s
type are not always required to be identical. In our example, the method call passes one
argument of type String (nameOfCourse is declared as a String in line 19 of Fig. 3.5) and
the method declaration specifies one parameter of type String (courseName is declared as
a String in line 7 of Fig. 3.4). So in this example the type of the argument in the method
call exactly matches the type of the parameter in the method header.

Updated UML Class Diagram for Class GradeBook
The UML class diagram of Fig. 3.6 models class GradeBook of Fig. 3.4. Like Fig. 3.1, this
GradeBook class contains public operation displayMessage. However, this version of dis-
playMessage has a parameter. The UML models a parameter a bit differently from Java by
listing the parameter name, followed by a colon and the parameter type in the parentheses
following the operation name. The UML has its own data types similar to those of Java
(but, as you’ll see, not all the UML data types have the same names as the corresponding
Java types). The UML type String does correspond to the Java type String. GradeBook
method displayMessage (Fig. 3.4) has a String parameter named courseName, so Fig. 3.6
lists courseName : String between the parentheses following displayMessage.

Notes on import Declarations
Notice the import declaration in Fig. 3.5 (line 4). This indicates to the compiler that the
program uses class Scanner. Why do we need to import class Scanner, but not classes
System, String or GradeBook? Classes System and String are in package java.lang,
which is implicitly imported into every Java program, so all programs can use that pack-
age’s classes without explicitly importing them. Most other classes you’ll use in Java pro-
grams must be imported explicitly.

Fig. 3.6 | UML class diagram indicating that class GradeBook has a displayMessage
operation with a courseName parameter of UML type String.

GradeBook

+ displayMessage(courseName : String)

3.4 Instance Variables, set Methods and get Methods 47

There’s a special relationship between classes that are compiled in the same directory
on disk, like classes GradeBook and GradeBookTest. By default, such classes are considered
to be in the same package—known as the default package. Classes in the same package are
implicitly imported into the source-code files of other classes in the same package. Thus, an
import declaration is not required when one class in a package uses another in the same
package—such as when class GradeBookTest uses class GradeBook.

The import declaration in line 4 is not required if we always refer to class Scanner as
java.util.Scanner, which includes the full package name and class name. This is known
as the class’s fully qualified class name. For example, line 12 could be written as

3.4 Instance Variables, set Methods and get Methods
In Chapter 2, we declared all of an application’s variables in the application’s main meth-
od. Variables declared in the body of a particular method are local variables and can be
used only in that method. When that method terminates, the values of its local variables
are lost. Recall from Section 1.2 that an object has attributes that are carried with it as it’s
used in a program. Such attributes exist before a method is called on an object, while the
method is executing and after the method completes execution.

A class normally consists of one or more methods that manipulate the attributes that
belong to a particular object of the class. Attributes are represented as variables in a class
declaration. Such variables are called fields and are declared inside a class declaration but
outside the bodies of the class’s method declarations. When each object of a class maintains
its own copy of an attribute, the field that represents the attribute is also known as an
instance variable—each object (instance) of the class has a separate instance of the variable
in memory. The example in this section demonstrates a GradeBook class that contains a
courseName instance variable to represent a particular GradeBook object’s course name.

GradeBook Class with an Instance Variable, a set Method and a get Method
In our next application (Figs. 3.7–3.8), class GradeBook (Fig. 3.7) maintains the course
name as an instance variable so that it can be used or modified at any time during an ap-
plication’s execution. The class contains three methods—setCourseName, getCourseName
and displayMessage. Method setCourseName stores a course name in a GradeBook.
Method getCourseName obtains a GradeBook’s course name. Method displayMessage,
which now specifies no parameters, still displays a welcome message that includes the
course name; as you’ll see, the method now obtains the course name by calling a method
in the same class—getCourseName.

A typical instructor teaches more than one course, each with its own course name.
Line 7 declares courseName as a variable of type String. Because the variable is declared
in the body of the class but outside the bodies of the class’s methods (lines 10–13, 16–19
and 22–28), line 7 is a declaration for an instance variable. Every instance (i.e., object) of

java.util.Scanner input = new java.util.Scanner(System.in);

Software Engineering Observation 3.1
The Java compiler does not require import declarations in a Java source-code file if the
fully qualified class name is specified every time a class name is used in the source code.
Most Java programmers prefer to use import declarations.

48 Chapter 3 Introduction to Classes, Objects, Methods and Strings

class GradeBook contains one copy of each instance variable. For example, if there are two
GradeBook objects, each object has its own copy of courseName. A benefit of making
courseName an instance variable is that all the methods of the class (in this case, Grade-
Book) can manipulate any instance variables that appear in the class (in this case, course-
Name).

Access Modifiers public and private

Most instance-variable declarations are preceded with the keyword private (as in line 7).
Like public, keyword private is an access modifier. Variables or methods declared with ac-
cess modifier private are accessible only to methods of the class in which they’re declared. Thus,
variable courseName can be used only in methods setCourseName, getCourseName and
displayMessage of (every object of) class GradeBook.

Declaring instance variables with access modifier private is known as data hiding or
information hiding. When a program creates (instantiates) an object of class GradeBook,
variable courseName is encapsulated (hidden) in the object and can be accessed only by
methods of the object’s class. This prevents courseName from being modified accidentally
by a class in another part of the program. In class GradeBook, methods setCourseName and
getCourseName manipulate the instance variable courseName.

1 // Fig. 3.7: GradeBook.java
2 // GradeBook class that contains a courseName instance variable
3 // and methods to set and get its value.
4
5 public class GradeBook
6 {
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21 // display a welcome message to the GradeBook user
22 public void displayMessage
23 {
24 // calls getCourseName to get the name of
25 // the course this GradeBook represents
26 System.out.printf("Welcome to the grade book for\n%s!\n",
27);
28 } // end method displayMessage
29 } // end class GradeBook

Fig. 3.7 | GradeBook class that contains a courseName instance variable and methods to set
and get its value.

private String courseName; // course name for this GradeBook

// method to set the course name
public void setCourseName(String name)
{

courseName = name; // store the course name
} // end method setCourseName

// method to retrieve the course name
public String getCourseName()
{

return courseName;
} // end method getCourseName

()

getCourseName()

3.4 Instance Variables, set Methods and get Methods 49

Methods setCourseName and getCourseName

Method setCourseName (lines 10–13) does not return any data when it completes its task,
so its return type is void. The method receives one parameter—name—which represents
the course name that will be passed to the method as an argument. Line 12 assigns name
to instance variable courseName.

Method getCourseName (lines 16–19) returns a particular GradeBook object’s
courseName. The method has an empty parameter list, so it does not require additional
information to perform its task. The method specifies that it returns a String—this is the
method’s return type. When a method that specifies a return type other than void is called
and completes its task, the method returns a result to its calling method. For example,
when you go to an automated teller machine (ATM) and request your account balance,
you expect the ATM to give you back a value that represents your balance. Similarly, when
a statement calls method getCourseName on a GradeBook object, the statement expects to
receive the GradeBook’s course name (in this case, a String, as specified in the method dec-
laration’s return type).

The return statement in line 18 passes the value of instance variable courseName back
to the statement that calls method getCourseName. Consider, method displayMessage’s
line 27, which calls method getCourseName. When the value is returned, the statement in
lines 26–27 uses that value to output the course name. Similarly, if you have a method
square that returns the square of its argument, you’d expect the statement

to return 4 from method square and assign 4 to the variable result. If you have a method
maximum that returns the largest of three integer arguments, you’d expect the statement

to return 114 from method maximum and assign 114 to variable biggest.
The statements in lines 12 and 18 each use courseName even though it was not declared

in any of the methods. We can use courseName in GradeBook’s methods because course-

Name is an instance variable of the class.

Method displayMessage

Method displayMessage (lines 22–28) does not return any data when it completes its
task, so its return type is void. The method does not receive parameters, so the parameter
list is empty. Lines 26–27 output a welcome message that includes the value of instance
variable courseName, which is returned by the call to method getCourseName in line 27.

Software Engineering Observation 3.2
Precede each field and method declaration with an access modifier. Generally, instance
variables should be declared private and methods public. (It’s appropriate to declare
certain methods private, if they’ll be accessed only by other methods of the class.)

Good Programming Practice 3.1
We prefer to list a class’s fields first, so that, as you read the code, you see the names and
types of the variables before they’re used in the class’s methods. You can list the class’s fields
anywhere in the class outside its method declarations, but scattering them can lead to
hard-to-read code.

int result = square(2);

int biggest = maximum(27, 114, 51);

50 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Notice that one method of a class (displayMessage in this case) can call another method
of the same class by using just the method name (getCourseName in this case).

GradeBookTest Class That Demonstrates Class GradeBook
Class GradeBookTest (Fig. 3.8) creates one object of class GradeBook and demonstrates its
methods. Line 14 creates a GradeBook object and assigns it to local variable myGradeBook of
type GradeBook. Lines 17–18 display the initial course name calling the object’s getCourse-
Name method. The first line of the output shows the name “null.” Unlike local variables,
which are not automatically initialized, every field has a default initial value—a value provided
by Java when you do not specify the field’s initial value. Thus, fields are not required to be ex-
plicitly initialized before they’re used in a program—unless they must be initialized to values
other than their default values. The default value for a field of type String (like courseName
in this example) is null, which we say more about in Section 3.5.

1 // Fig. 3.8: GradeBookTest.java
2 // Creating and manipulating a GradeBook object.
3 import java.util.Scanner; // program uses Scanner
4
5 public class GradeBookTest
6 {
7 // main method begins program execution
8 public static void main(String[] args)
9 {

10 // create Scanner to obtain input from command window
11 Scanner input = new Scanner(System.in);
12
13 // create a GradeBook object and assign it to myGradeBook
14 GradeBook myGradeBook = new GradeBook();
15
16 // display initial value of courseName
17 System.out.printf("Initial course name is: %s\n\n",
18);
19
20 // prompt for and read course name
21 System.out.println("Please enter the course name:");
22 String theName = input.nextLine(); // read a line of text
23
24 System.out.println(); // outputs a blank line
25
26 // display welcome message after specifying course name
27
28 } // end main
29 } // end class GradeBookTest

Initial course name is: null

Please enter the course name:
CS101 Introduction to Java Programming

Welcome to the grade book for
CS101 Introduction to Java Programming!

Fig. 3.8 | Creating and manipulating a GradeBook object.

myGradeBook.getCourseName()

myGradeBook.setCourseName(theName); // set the course name

myGradeBook.displayMessage();

3.4 Instance Variables, set Methods and get Methods 51

Line 21 prompts the user to enter a course name. Local String variable theName

(declared in line 22) is initialized with the course name entered by the user, which is
returned by the call to the nextLine method of the Scanner object input. Line 23 calls
object myGradeBook’s setCourseName method and supplies theName as the method’s argu-
ment. When the method is called, the argument’s value is assigned to parameter name (line
10, Fig. 3.7) of method setCourseName (lines 10–13, Fig. 3.7). Then the parameter’s
value is assigned to instance variable courseName (line 12, Fig. 3.7). Line 24 (Fig. 3.8)
skips a line in the output, then line 27 calls object myGradeBook’s displayMessage method
to display the welcome message containing the course name.

set and get Methods
A class’s private fields can be manipulated only by the class’s methods. So a client of an
object—that is, any class that calls the object’s methods—calls the class’s public methods
to manipulate the private fields of an object of the class. This is why the statements in
method main (Fig. 3.8) call the setCourseName, getCourseName and displayMessage

methods on a GradeBook object. Classes often provide public methods to allow clients to
set (i.e., assign values to) or get (i.e., obtain the values of) private instance variables. The
names of these methods need not begin with set or get, but this naming convention is rec-
ommended and is the convention for special Java software components called JavaBeans,
which can simplify programming in many Java integrated development environments
(IDEs). The method that sets instance variable courseName in this example is called set-

CourseName, and the method that gets its value is called getCourseName.

GradeBook UML Class Diagram with an Instance Variable and set and get Methods
Figure 3.9 contains an updated UML class diagram for the version of class GradeBook in
Fig. 3.7. This diagram models class GradeBook’s instance variable courseName as an attri-
bute in the middle compartment of the class. The UML represents instance variables as
attributes by listing the attribute name, followed by a colon and the attribute type. The
UML type of attribute courseName is String. Instance variable courseName is private in
Java, so the class diagram lists a minus sign (–) access modifier in front of the correspond-
ing attribute’s name. Class GradeBook contains three public methods, so the class diagram
lists three operations in the third compartment. Recall that the plus sign (+) before each
operation name indicates that the operation is public. Operation setCourseName has a
String parameter called name. The UML indicates the return type of an operation by plac-
ing a colon and the return type after the parentheses following the operation name. Meth-

Fig. 3.9 | UML class diagram indicating that class GradeBook has a private courseName

attribute of UML type String and three public operations—setCourseName (with a name
parameter of UML type String), getCourseName (which returns UML type String) and
displayMessage.

GradeBook

– courseName : String

+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

52 Chapter 3 Introduction to Classes, Objects, Methods and Strings

od getCourseName of class GradeBook (Fig. 3.7) has a String return type in Java, so the
class diagram shows a String return type in the UML. Operations setCourseName and
displayMessage do not return values (i.e., they return void in Java), so the UML class di-
agram does not specify a return type after the parentheses of these operations.

3.5 Primitive Types vs. Reference Types
Java’s types are divided into primitive types and reference types. The primitive types are
boolean, byte, char, short, int, long, float and double. All nonprimitive types are ref-
erence types, so classes, which specify the types of objects, are reference types.

A primitive-type variable can store exactly one value of its declared type at a time. For
example, an int variable can store one whole number (such as 7) at a time. When another
value is assigned to that variable, its initial value is replaced. Primitive-type instance vari-
ables are initialized by default—variables of types byte, char, short, int, long, float and
double are initialized to 0, and variables of type boolean are initialized to false. You can
specify your own initial value for a primitive-type variable by assigning the variable a value
in its declaration, as in

Recall that local variables are not initialized by default.

Programs use variables of reference types (normally called references) to store the loca-
tions of objects in the computer’s memory. Such a variable is said to refer to an object in
the program. Objects that are referenced may each contain many instance variables. Line
14 of Fig. 3.8 creates an object of class GradeBook, and the variable myGradeBook contains
a reference to that GradeBook object. Reference-type instance variables are initialized by
default to the value null—a reserved word that represents a “reference to nothing.” This is
why the first call to getCourseName in line 18 of Fig. 3.8 returned null—the value of
courseName had not been set, so the default initial value null was returned. The complete
list of reserved words and keywords is listed in Appendix C.

When you use an object of another class, a reference to the object is required to invoke
(i.e., call) its methods. In the application of Fig. 3.8, the statements in method main use
the variable myGradeBook to send messages to the GradeBook object. These messages are
calls to methods (like setCourseName and getCourseName) that enable the program to
interact with the GradeBook object. For example, the statement in line 23 uses myGrade-
Book to send the setCourseName message to the GradeBook object. The message includes
the argument that setCourseName requires to perform its task. The GradeBook object uses
this information to set the courseName instance variable. Primitive-type variables do not
refer to objects, so such variables cannot be used to invoke methods.

private int numberOfStudents = 10;

Error-Prevention Tip 3.1
An attempt to use an uninitialized local variable causes a compilation error.

Software Engineering Observation 3.3
A variable’s declared type (e.g., int, double or GradeBook) indicates whether the variable
is of a primitive or a reference type. If a variable is not of one of the eight primitive types,
then it’s of a reference type.

3.6 Initializing Objects with Constructors 53

3.6 Initializing Objects with Constructors
As mentioned in Section 3.4, when an object of class GradeBook (Fig. 3.7) is created, its
instance variable courseName is initialized to null by default. What if you want to provide
a course name when you create a GradeBook object? Each class you declare can provide a
special method called a constructor that can be used to initialize an object of a class when
the object is created. In fact, Java requires a constructor call for every object that’s created.
Keyword new requests memory from the system to store an object, then calls the corre-
sponding class’s constructor to initialize the object. The call is indicated by the parentheses
after the class name. A constructor must have the same name as the class. For example, line
14 of Fig. 3.8 first uses new to create a GradeBook object. The empty parentheses after “new
GradeBook” indicate a call to the class’s constructor without arguments. By default, the
compiler provides a default constructor with no parameters in any class that does not ex-
plicitly include a constructor. When a class has only the default constructor, its instance
variables are initialized to their default values.

When you declare a class, you can provide your own constructor to specify custom
initialization for objects of your class. For example, you might want to specify a course
name for a GradeBook object when the object is created, as in

In this case, the argument "CS101 Introduction to Java Programming" is passed to the
GradeBook object’s constructor and used to initialize the courseName. The preceding state-
ment requires that the class provide a constructor with a String parameter. Figure 3.10
contains a modified GradeBook class with such a constructor.

GradeBook myGradeBook =
new GradeBook("CS101 Introduction to Java Programming");

1 // Fig. 3.10: GradeBook.java
2 // GradeBook class with a constructor to initialize the course name.
3
4 public class GradeBook
5 {
6 private String courseName; // course name for this GradeBook
7
8
9

10
11
12
13
14 // method to set the course name
15 public void setCourseName(String name)
16 {
17 courseName = name; // store the course name
18 } // end method setCourseName
19
20 // method to retrieve the course name
21 public String getCourseName()
22 {

Fig. 3.10 | GradeBook class with a constructor to initialize the course name. (Part 1 of 2.)

// constructor initializes courseName with String argument
public GradeBook(String name) // constructor name is class name
{

courseName = name; // initializes courseName
} // end constructor

54 Chapter 3 Introduction to Classes, Objects, Methods and Strings

Lines 9–12 declare GradeBook’s constructor. Like a method, a constructor’s parameter
list specifies the data it requires to perform its task. When you create a new object (as we’ll
do in Fig. 3.11), this data is placed in the parentheses that follow the class name. Line 9 of
Fig. 3.10 indicates that the constructor has a String parameter called name. The name

passed to the constructor is assigned to instance variable courseName in line 11.
Figure 3.11 initializes GradeBook objects using the constructor. Lines 11–12 create

and initialize the GradeBook object gradeBook1. The GradeBook constructor is called with
the argument "CS101 Introduction to Java Programming" to initialize the course name.
The class instance creation expression in lines 11–12 returns a reference to the new object,
which is assigned to the variable gradeBook1. Lines 13–14 repeat this process, this time
passing the argument "CS102 Data Structures in Java" to initialize the course name for
gradeBook2. Lines 17–20 use each object’s getCourseName method to obtain the course
names and show that they were initialized when the objects were created. The output con-
firms that each GradeBook maintains its own copy of instance variable courseName.

23 return courseName;
24 } // end method getCourseName
25
26 // display a welcome message to the GradeBook user
27 public void displayMessage()
28 {
29 // this statement calls getCourseName to get the
30 // name of the course this GradeBook represents
31 System.out.printf("Welcome to the grade book for\n%s!\n",
32 getCourseName());
33 } // end method displayMessage
34 } // end class GradeBook

Software Engineering Observation 3.4
Unless default initialization of your class’s instance variables is acceptable, provide a
constructor to ensure that they’re properly initialized with meaningful values when each
new object of your class is created.

1 // Fig. 3.11: GradeBookTest.java
2 // GradeBook constructor used to specify the course name at the
3 // time each GradeBook object is created.
4
5 public class GradeBookTest
6 {
7 // main method begins program execution
8 public static void main(String[] args)
9 {

10 // create GradeBook object
11
12

Fig. 3.11 | GradeBook constructor used to specify the course name at the time each
GradeBook object is created. (Part 1 of 2.)

Fig. 3.10 | GradeBook class with a constructor to initialize the course name. (Part 2 of 2.)

GradeBook gradeBook1 = new GradeBook(
"CS101 Introduction to Java Programming");

3.6 Initializing Objects with Constructors 55

An important difference between constructors and methods is that constructors
cannot return values, so they cannot specify a return type (not even void). Normally, con-
structors are declared public. If a class does not include a constructor, the class’s instance
variables are initialized to their default values. If you declare any constructors for a class, the
Java compiler will not create a default constructor for that class. Thus, we can no longer create
a GradeBook object with new GradeBook() as we did in the earlier examples.

Adding the Constructor to Class GradeBook’s UML Class Diagram
The UML class diagram of Fig. 3.12 models class GradeBook of Fig. 3.10, which has a
constructor that has a name parameter of type String. Like operations, the UML models
constructors in the third compartment of a class in a class diagram. To distinguish a
constructor from a class’s operations, the UML requires that the word “constructor” be
placed between guillemets (« and ») before the constructor’s name. It’s customary to list
constructors before other operations in the third compartment.

Constructors with Multiple Parameters
Sometimes you’ll want to initialize objects with multiple data items. For example, you
could store the course name and the instructor’s name in a GradeBook object. In this case,
the GradeBook’s constructor would be modified to receive two Strings, as in

13
14
15
16 // display initial value of courseName for each GradeBook
17 System.out.printf("gradeBook1 course name is: %s\n",
18 gradeBook1.getCourseName());
19 System.out.printf("gradeBook2 course name is: %s\n",
20 gradeBook2.getCourseName());
21 } // end main
22 } // end class GradeBookTest

gradeBook1 course name is: CS101 Introduction to Java Programming
gradeBook2 course name is: CS102 Data Structures in Java

Fig. 3.12 | UML class diagram indicating that class GradeBook has a constructor that has a
name parameter of UML type String.

public GradeBook(String courseName, String instructorName)

Fig. 3.11 | GradeBook constructor used to specify the course name at the time each
GradeBook object is created. (Part 2 of 2.)

GradeBook gradeBook2 = new GradeBook(
"CS102 Data Structures in Java");

GradeBook

– courseName : String

«constructor» GradeBook(name : String)
+ setCourseName(name : String)
+ getCourseName() : String
+ displayMessage()

56 Chapter 3 Introduction to Classes, Objects, Methods and Strings

and you’d call the GradeBook constructor as follows:

3.7 Floating-Point Numbers and Type double
We now depart temporarily from our GradeBook case study to declare an Account class
that maintains the balance of a bank account. Most account balances are not whole num-
bers (such as 0, –22 and 1024). For this reason, class Account represents the account bal-
ance as a floating-point number (i.e., a number with a decimal point, such as 7.33, 0.0975
or 1000.12345). Java provides two primitive types for storing floating-point numbers in
memory—float and double. They differ primarily in that double variables can store
numbers with larger magnitude and finer detail (i.e., more digits to the right of the decimal
point—also known as the number’s precision) than float variables.

Floating-Point Number Precision and Memory Requirements
Variables of type float represent single-precision floating-point numbers and can represent
up to seven significant digits. Variables of type double represent double-precision floating-
point numbers. These require twice as much memory as float variables and provide 15 sig-
nificant digits—approximately double the precision of float variables. For the range of val-
ues required by most programs, variables of type float should suffice, but you can use
double to “play it safe.” In some applications, even double variables will be inadequate. Most
programmers represent floating-point numbers with type double. In fact, Java treats all float-
ing-point numbers you type in a program’s source code (such as 7.33 and 0.0975) as double
values by default. Such values in the source code are known as floating-point literals. See
Appendix D, Primitive Types, for the ranges of values for floats and doubles.

Although floating-point numbers are not always 100% precise, they have numerous
applications. For example, when we speak of a “normal” body temperature of 98.6, we do
not need to be precise to a large number of digits. When we read the temperature on a
thermometer as 98.6, it may actually be 98.5999473210643. Calling this number simply
98.6 is fine for most applications involving body temperatures. Owing to the imprecise
nature of floating-point numbers, type double is preferred over type float, because
double variables can represent floating-point numbers more accurately. For this reason,
we primarily use type double throughout the book. For precise floating-point numbers,
Java provides class BigDecimal (package java.math).

Floating-point numbers also arise as a result of division. In conventional arithmetic,
when we divide 10 by 3, the result is 3.3333333…, with the sequence of 3s repeating infi-
nitely. The computer allocates only a fixed amount of space to hold such a value, so clearly
the stored floating-point value can be only an approximation.

Account Class with an Instance Variable of Type double
Our next application (Figs. 3.13–3.14) contains a class named Account (Fig. 3.13) that
maintains the balance of a bank account. A typical bank services many accounts, each with
its own balance, so line 7 declares an instance variable named balance of type double. It’s
an instance variable because it’s declared in the body of the class but outside the class’s
method declarations (lines 10–16, 19–22 and 25–28). Every instance (i.e., object) of class
Account contains its own copy of balance.

GradeBook gradeBook = new GradeBook(
"CS101 Introduction to Java Programming", "Sue Green");

3.7 Floating-Point Numbers and Type double 57

The class has a constructor and two methods. It’s common for someone opening an
account to deposit money immediately, so the constructor (lines 10–16) receives a param-
eter initialBalance of type double that represents the starting balance. Lines 14–15
ensure that initialBalance is greater than 0.0. If so, initialBalance’s value is assigned
to instance variable balance. Otherwise, balance remains at 0.0—its default initial value.

Method credit (lines 19–22) does not return any data when it completes its task, so
its return type is void. The method receives one parameter named amount—a double

value that will be added to the balance. Line 21 adds amount to the current value of bal-
ance, then assigns the result to balance (thus replacing the prior balance amount).

Method getBalance (lines 25–28) allows clients of the class (i.e., other classes that use
this class) to obtain the value of a particular Account object’s balance. The method specifies
return type double and an empty parameter list. Once again, the statements in lines 15, 21
and 27 use instance variable balance even though it was not declared in any of the methods.
We can use balance in these methods because it’s an instance variable of the class.

AccountTest Class to Use Class Account
Class AccountTest (Fig. 3.14) creates two Account objects (lines 10–11) and initializes
them with 50.00 and -7.53, respectively. Lines 14–17 output the balance in each Account

1 // Fig. 3.13: Account.java
2 // Account class with a constructor to validate and
3 // initialize instance variable balance of type double.
4
5 public class Account
6 {
7
8
9 // constructor

10 public Account()
11 {
12 // validate that initialBalance is greater than 0.0;
13 // if it is not, balance is initialized to the default value 0.0
14 if (initialBalance > 0.0)
15 balance = initialBalance;
16 } // end Account constructor
17
18 // credit (add) an amount to the account
19 public void credit()
20 {
21 balance = balance + amount; // add amount to balance
22 } // end method credit
23
24 // return the account balance
25 public getBalance()
26 {
27 return balance; // gives the value of balance to the calling method
28 } // end method getBalance
29 } // end class Account

Fig. 3.13 | Account class with a constructor to validate and initialize instance variable balance
of type double.

private double balance; // instance variable that stores the balance

double initialBalance

double amount

double

58 Chapter 3 Introduction to Classes, Objects, Methods and Strings

by calling the Account’s getBalance method. When method getBalance is called for
account1 from line 15, the value of account1’s balance is returned from line 27 of
Fig. 3.13 and displayed by the System.out.printf statement (Fig. 3.14, lines 14–15).
Similarly, when method getBalance is called for account2 from line 17, the value of
account2’s balance is returned from line 27 of Fig. 3.13 and displayed by the Sys-

tem.out.printf statement (Fig. 3.14, lines 16–17). The balance of account2 is 0.00, be-
cause the constructor ensured that the account could not begin with a negative balance.
The value is output by printf with the format specifier %.2f. The format specifier %f is
used to output values of type float or double. The .2 between % and f represents the
number of decimal places (2) that should be output to the right of the decimal point in
the floating-point number—also known as the number’s precision. Any floating-point
value output with %.2f will be rounded to the hundredths position—for example,
123.457 would be rounded to 123.46, 27.333 would be rounded to 27.33 and 123.455
would be rounded to 123.46.

1 // Fig. 3.14: AccountTest.java
2 // Inputting and outputting floating-point numbers with Account objects.
3 import java.util.Scanner;
4
5 public class AccountTest
6 {
7 // main method begins execution of Java application
8 public static void main(String[] args)
9 {

10 Account account1 = new Account(50.00); // create Account object
11 Account account2 = new Account(-7.53); // create Account object
12
13 // display initial balance of each object
14 System.out.printf("account1 balance: $ \n",
15 account1.getBalance());
16 System.out.printf("account2 balance: $ \n\n",
17 account2.getBalance());
18
19 // create Scanner to obtain input from command window
20 Scanner input = new Scanner(System.in);
21
22
23 System.out.print("Enter deposit amount for account1: "); // prompt
24
25 System.out.printf("\nadding to account1 balance\n\n",
26 depositAmount);
27 account1.credit(depositAmount); // add to account1 balance
28
29 // display balances
30 System.out.printf("account1 balance: $ \n",
31 account1.getBalance());
32 System.out.printf("account2 balance: $ \n\n",
33 account2.getBalance());
34
35 System.out.print("Enter deposit amount for account2: "); // prompt

Fig. 3.14 | Inputting and outputting floating-point numbers with Account objects. (Part 1 of 2.)

%.2f

%.2f

double depositAmount; // deposit amount read from user

depositAmount = input.nextDouble(); // obtain user input
%.2f

%.2f

%.2f

3.7 Floating-Point Numbers and Type double 59

Line 21 declares local variable depositAmount to store each deposit amount entered
by the user. Unlike the instance variable balance in class Account, local variable deposit-
Amount in main is not initialized to 0.0 by default. However, this variable does not need to
be initialized here, because its value will be determined by the user’s input.

Line 23 prompts the user to enter a deposit amount for account1. Line 24 obtains the
input from the user by calling Scanner object input’s nextDouble method, which returns
a double value entered by the user. Lines 25–26 display the deposit amount. Line 27 calls
object account1’s credit method and supplies depositAmount as the method’s argument.
When the method is called, the argument’s value is assigned to parameter amount (line 19
of Fig. 3.13) of method credit (lines 19–22 of Fig. 3.13); then method credit adds that
value to the balance (line 21 of Fig. 3.13). Lines 30–33 (Fig. 3.14) output the balances of
both Accounts again to show that only account1’s balance changed.

Line 35 prompts the user to enter a deposit amount for account2. Line 36 obtains the
input from the user by calling Scanner object input’s nextDouble method. Lines 37–38
display the deposit amount. Line 39 calls object account2’s credit method and supplies
depositAmount as the method’s argument; then method credit adds that value to the bal-
ance. Finally, lines 42–45 output the balances of both Accounts again to show that only
account2’s balance changed.

36
37 System.out.printf("\nadding to account2 balance\n\n",
38 depositAmount);
39 account2.credit(depositAmount); // add to account2 balance
40
41 // display balances
42 System.out.printf("account1 balance: $ \n",
43 account1.getBalance());
44 System.out.printf("account2 balance: $ \n",
45 account2.getBalance());
46 } // end main
47 } // end class AccountTest

account1 balance: $50.00
account2 balance: $0.00

Enter deposit amount for account1: 25.53

adding 25.53 to account1 balance

account1 balance: $75.53
account2 balance: $0.00

Enter deposit amount for account2: 123.45

adding 123.45 to account2 balance

account1 balance: $75.53
account2 balance: $123.45

Fig. 3.14 | Inputting and outputting floating-point numbers with Account objects. (Part 2 of 2.)

depositAmount = input.nextDouble(); // obtain user input
%.2f

%.2f

%.2f

60 Chapter 3 Introduction to Classes, Objects, Methods and Strings

UML Class Diagram for Class Account
The UML class diagram in Fig. 3.15 models class Account of Fig. 3.13. The diagram
models the private attribute balance with UML type Double to correspond to the class’s
instance variable balance of Java type double. The diagram models class Account’s con-
structor with a parameter initialBalance of UML type Double in the third compartment
of the class. The class’s two public methods are modeled as operations in the third com-
partment as well. The diagram models operation credit with an amount parameter of
UML type Double (because the corresponding method has an amount parameter of Java
type double), and operation getBalance with a return type of Double (because the corre-
sponding Java method returns a double value).

3.8 Wrap-Up
In this chapter, you learned how to declare instance variables of a class to maintain data
for each object of the class, and how to declare methods that operate on that data. You
learned how to call a method to tell it to perform its task and how to pass information to
methods as arguments. You learned the difference between a local variable of a method
and an instance variable of a class and that only instance variables are initialized automat-
ically. You also learned how to use a class’s constructor to specify the initial values for an
object’s instance variables. Throughout the chapter, you saw how the UML can be used
to create class diagrams that model the constructors, methods and attributes of classes. Fi-
nally, you learned about floating-point numbers—how to store them with variables of
primitive type double, how to input them with a Scanner object and how to format them
with printf and format specifier %f for display purposes. In the next chapter we begin our
introduction to control statements, which specify the order in which a program’s actions
are performed. You’ll use these in your methods to specify how they should perform their
tasks.

Fig. 3.15 | UML class diagram indicating that class Account has a private balance

attribute of UML type Double, a constructor (with a parameter of UML type Double) and two
public operations—credit (with an amount parameter of UML type Double) and
getBalance (returns UML type Double).

Account

– balance : Double

«constructor» Account(initialBalance : Double)
+ credit(amount : Double)
+ getBalance() : Double

4
Control Statements:
Part 1

O b j e c t i v e s
In this chapter you’ll learn:

� To use the if and if…else selection statements to
choose among alternative actions.

� To use the while repetition statement to execute
statements in a program repeatedly.

� To use counter-controlled repetition and sentinel-controlled
repetition.

� To use the compound assignment, increment and
decrement operators.

� The portability of primitive data types.

Let’s all move one place on.
—Lewis Carroll

The wheel is come full
circle.
—William Shakespeare

How many apples fell on
Newton’s head before he
took the hint!
—Robert Frost

62 Chapter 4 Control Statements: Part 1

4.1 Introduction
In this chapter, we introduce Java’s if, if…else and while statements, three of the build-
ing blocks that allow you to specify the logic required for methods to perform their tasks.
We devote a portion of this chapter (and Chapters 5 and 7) to further developing the
GradeBook class introduced in Chapter 3. In particular, we add a method to the GradeBook
class that uses control statements to calculate the average of a set of student grades. Anoth-
er example demonstrates additional ways to combine control statements to solve a similar
problem. We introduce Java’s compound assignment, increment and decrement opera-
tors. Finally, we discuss the portability of Java’s primitive types.

4.2 Control Structures
Normally, statements in a program are executed one after the other in the order in which
they’re written. This process is called sequential execution. Various Java statements,
which we’ll soon discuss, enable you to specify that the next statement to execute is not
necessarily the next one in sequence. This is called transfer of control.

During the 1960s, it became clear that the indiscriminate use of transfers of control
was the root of much difficulty experienced by software development groups. The blame
was pointed at the goto statement (used in most programming languages of the time),
which allows you to specify a transfer of control to one of a wide range of destinations in
a program. The term structured programming became almost synonymous with “goto
elimination.” [Note: Java does not have a goto statement; however, the word goto is
reserved by Java and should not be used as an identifier in programs.]

Bohm and Jacopini’s work demonstrated that all programs could be written in terms
of only three control structures—the sequence structure, the selection structure and the
repetition structure.1 When we introduce Java’s control structure implementations, we’ll
refer to them in the terminology of the Java Language Specification as “control statements.”

Sequence Structure in Java
The sequence structure is built into Java. Unless directed otherwise, the computer executes
Java statements one after the other in the order in which they’re written—that is, in se-
quence. The activity diagram in Fig. 4.1 illustrates a typical sequence structure in which
two calculations are performed in order. Java lets you have as many actions as you want in

4.1 Introduction
4.2 Control Structures
4.3 if Single-Selection Statement
4.4 if…else Double-Selection

Statement
4.5 while Repetition Statement
4.6 Counter-Controlled Repetition

4.7 Sentinel-Controlled Repetition
4.8 Nested Control Statements
4.9 Compound Assignment Operators

4.10 Increment and Decrement Operators
4.11 Primitive Types
4.12 Wrap-Up

1. Bohm, C., and G. Jacopini, “Flow Diagrams, Turing Machines, and Languages with Only Two For-
mation Rules,” Communications of the ACM, Vol. 9, No. 5, May 1966, pp. 336–371.

4.2 Control Structures 63

a sequence structure. As we’ll soon see, anywhere a single action may be placed, we may
place several actions in sequence.

A UML activity diagram models the workflow (also called the activity) of a portion
of a software system. Such workflows may include a portion of an algorithm, like the
sequence structure in Fig. 4.1. Activity diagrams are composed of symbols, such as action-
state symbols (rectangles with their left and right sides replaced with outward arcs), dia-
monds and small circles. These symbols are connected by transition arrows, which rep-
resent the flow of the activity—that is, the order in which the actions should occur.

Activity diagrams help you develop and represent algorithms. They also clearly show
how control structures operate. We use the UML in this chapter and Chapter 5 to show
control flow in control statements. In Chapters 12–13, we use the UML in a real-world
automated-teller machine case study.

Consider the sequence structure activity diagram in Fig. 4.1. It contains two action
states that represent actions to perform. Each action state contains an action expression—
for example, “add grade to total” or “add 1 to counter”—that specifies a particular action
to perform. Other actions might include calculations or input/output operations. The
arrows in the activity diagram represent transitions, which indicate the order in which the
actions represented by the action states occur. The program that implements the activities
illustrated by the diagram in Fig. 4.1 first adds grade to total, then adds 1 to counter.

The solid circle at the top of the activity diagram represents the initial state—the
beginning of the workflow before the program performs the modeled actions. The solid
circle surrounded by a hollow circle that appears at the bottom of the diagram represents
the final state—the end of the workflow after the program performs its actions.

Figure 4.1 also includes rectangles with the upper-right corners folded over. These are
UML notes (like comments in Java)—explanatory remarks that describe the purpose of
symbols in the diagram. Figure 4.1 uses UML notes to show the Java code associated with
each action state. A dotted line connects each note with the element it describes. Activity
diagrams normally do not show the Java code that implements the activity. We do this here
to illustrate how the diagram relates to Java code. For more information on the UML, see
our case study (Chapters 12–13) or visit www.uml.org.

Selection Statements in Java
Java has three types of selection statements (discussed in this chapter and Chapter 5). The
if statement either performs (selects) an action, if a condition is true, or skips it, if the con-

Fig. 4.1 | Sequence structure activity diagram.

add 1 to counter

add grade to total Corresponding Java statement:
total = total + grade;

Corresponding Java statement:
counter = counter + 1;

www.uml.org

64 Chapter 4 Control Statements: Part 1

dition is false. The if…else statement performs an action if a condition is true and per-
forms a different action if the condition is false. The switch statement (Chapter 5)
performs one of many different actions, depending on the value of an expression.

The if statement is a single-selection statement because it selects or ignores a single
action (or, as we’ll soon see, a single group of actions). The if…else statement is called a
double-selection statement because it selects between two different actions (or groups of
actions). The switch statement is called a multiple-selection statement because it selects
among many different actions (or groups of actions).

Repetition Statements in Java
Java provides three repetition statements (also called looping statements) that enable pro-
grams to perform statements repeatedly as long as a condition (called the loop-continua-
tion condition) remains true. The repetition statements are the while, do…while and for

statements. (Chapter 5 presents the do…while and for statements.) The while and for

statements perform the action (or group of actions) in their bodies zero or more times—
if the loop-continuation condition is initially false, the action (or group of actions) will not
execute. The do…while statement performs the action (or group of actions) in its body
one or more times. The words if, else, switch, while, do and for are Java keywords. A
complete list of Java keywords appears in Appendix C.

Summary of Control Statements in Java
Java has only three kinds of control structures, which from this point forward we refer to
as control statements: the sequence statement, selection statements (three types) and rep-
etition statements (three types). Every program is formed by combining as many of these
statements as is appropriate for the algorithm the program implements. We can model
each control statement as an activity diagram. Like Fig. 4.1, each diagram contains an ini-
tial state and a final state that represent a control statement’s entry point and exit point,
respectively. Single-entry/single-exit control statements make it easy to build programs—
we simply connect the exit point of one to the entry point of the next. We call this control-
statement stacking. We’ll learn that there’s only one other way in which control state-
ments may be connected—control-statement nesting—in which one control statement
appears inside another. Thus, algorithms in Java programs are constructed from only three
kinds of control statements, combined in only two ways. This is the essence of simplicity.

4.3 if Single-Selection Statement
Programs use selection statements to choose among alternative courses of action. For ex-
ample, suppose that the passing grade on an exam is 60. The statement

determines whether the condition studentGrade >= 60 is true. If so, "Passed" is printed,
and the next statement in order is performed. If the condition is false, the body statement
is ignored, and the next statement in order is performed.

Figure 4.2 illustrates the single-selection if statement. This figure contains the most
important symbol in an activity diagram—the diamond, or decision symbol, which indi-
cates that a decision is to be made. The workflow continues along a path determined by

if (studentGrade >= 60)
System.out.println("Passed");

4.4 if…else Double-Selection Statement 65

the symbol’s associated guard conditions, which can be true or false. Each transition arrow
emerging from a decision symbol has a guard condition (specified in square brackets next
to the arrow). If a guard condition is true, the workflow enters the action state to which
the transition arrow points. In Fig. 4.2, if the grade is greater than or equal to 60, the pro-
gram prints “Passed,” then transitions to the activity’s final state. If the grade is less than
60, the program immediately transitions to the final state without displaying a message.

The if statement is a single-entry/single-exit control statement. We’ll see that the
activity diagrams for the remaining control statements also contain initial states, transition
arrows, action states that indicate actions to perform, decision symbols (with associated
guard conditions) that indicate decisions to be made, and final states.

4.4 if…else Double-Selection Statement
The if single-selection statement performs an indicated action only when the condition
is true; otherwise, the action is skipped. The if…else double-selection statement allows
you to specify an action to perform when the condition is true and a different action when
the condition is false. For example, the statement

prints "Passed" if the student’s grade is greater than or equal to 60, but prints "Failed"
if it’s less than 60. In either case, after printing occurs, the next statement in sequence is
performed.

Figure 4.3 illustrates the flow of control in the if…else statement. Once again, the
symbols in the UML activity diagram (besides the initial state, transition arrows and final
state) represent action states and decisions.

Fig. 4.2 | if single-selection statement UML activity diagram.

if (grade >= 60)
System.out.println("Passed");

else

System.out.println("Failed");

Fig. 4.3 | if…else double-selection statement UML activity diagram.

print “Passed”
[grade >= 60]

[grade < 60]

print “Passed”print “Failed”
[grade >= 60][grade < 60]

66 Chapter 4 Control Statements: Part 1

Conditional Operator (?:)
Java provides the conditional operator (?:) that can be used in place of an if…else

statement. This is Java’s only ternary operator (operator that takes three operands). To-
gether, the operands and the ?: symbol form a conditional expression. The first operand
(to the left of the ?) is a boolean expression (i.e., a condition that evaluates to a boolean

value—true or false), the second operand (between the ? and :) is the value of the con-
ditional expression if the boolean expression is true and the third operand (to the right of
the :) is the value of the conditional expression if the boolean expression evaluates to
false. For example, the statement

prints the value of println’s conditional-expression argument. The conditional expres-
sion in this statement evaluates to the string "Passed" if the boolean expression student-

Grade >= 60 is true and to the string "Failed" if it’s false. Thus, this statement with the
conditional operator performs essentially the same function as the if…else statement
shown earlier in this section. The precedence of the conditional operator is low, so the en-
tire conditional expression is normally placed in parentheses. We’ll see that conditional ex-
pressions can be used in some situations where if…else statements cannot.

Nested if…else Statements
A program can test multiple cases by placing if…else statements inside other if…else

statements to create nested if…else statements. For example, the following nested
if…else statements print A for exam grades greater than or equal to 90, B for grades 80
to 89, C for grades 70 to 79, D for grades 60 to 69 and F for all other grades:

If variable studentGrade is greater than or equal to 90, the first four conditions in the nest-
ed if…else statement will be true, but only the statement in the if part of the first
if…else statement will execute. After that statement executes, the else part of the
“outermost” if…else statement is skipped. Many programmers prefer to write the pre-
ceding nested if…else statement as

System.out.println(studentGrade >= 60 ? "Passed" : "Failed");

if (studentGrade >= 90)
System.out.println("A");

else

if (studentGrade >= 80)
System.out.println("B");

else

if (studentGrade >= 70)
System.out.println("C");

else

if (studentGrade >= 60)
System.out.println("D");

else

System.out.println("F");

if (studentGrade >= 90)
System.out.println("A");

else if (studentGrade >= 80)
System.out.println("B");

else if (studentGrade >= 70)
System.out.println("C");

4.4 if…else Double-Selection Statement 67

The two forms are identical except for the spacing and indentation, which the compiler
ignores. The latter form avoids deep indentation of the code to the right. Such indentation
often leaves little room on a line of source code, forcing lines to be split.

Dangling-else Problem
The Java compiler always associates an else with the immediately preceding if unless told
to do otherwise by the placement of braces ({ and }). This behavior can lead to what is
referred to as the dangling-else problem. For example,

appears to indicate that if x is greater than 5, the nested if statement determines whether
y is also greater than 5. If so, the string "x and y are > 5" is output. Otherwise, it appears
that if x is not greater than 5, the else part of the if…else outputs the string "x is <= 5".
Beware! This nested if…else statement does not execute as it appears. The compiler ac-
tually interprets the statement as

in which the body of the first if is a nested if…else. The outer if statement tests wheth-
er x is greater than 5. If so, execution continues by testing whether y is also greater than 5.
If the second condition is true, the proper string—"x and y are > 5"—is displayed. How-
ever, if the second condition is false, the string "x is <= 5" is displayed, even though we
know that x is greater than 5. Equally bad, if the outer if statement’s condition is false,
the inner if…else is skipped and nothing is displayed.

To force the nested if…else statement to execute as it was intended, use:

The braces indicate that the second if is in the body of the first and that the else is
associated with the first if.

Blocks
The if statement normally expects only one statement in its body. To include several
statements in the body of an if (or the body of an else for an if…else statement), en-

else if (studentGrade >= 60)
System.out.println("D");

else

System.out.println("F");

if (x > 5)
if (y > 5)

System.out.println("x and y are > 5");
else

System.out.println("x is <= 5");

if (x > 5)
if (y > 5)

System.out.println("x and y are > 5");
else

System.out.println("x is <= 5");

if (x > 5)
{

if (y > 5)
System.out.println("x and y are > 5");

}
else

System.out.println("x is <= 5");

68 Chapter 4 Control Statements: Part 1

close the statements in braces. Statements contained in a pair of braces form a block. A
block can be placed anywhere in a program that a single statement can be placed.

The following example includes a block in the else part of an if…else statement:

In this case, if grade is less than 60, the program executes both statements in the body of
the else and prints

Note the braces surrounding the two statements in the else clause. These braces are im-
portant. Without the braces, the statement

would be outside the body of the else part of the if…else statement and would execute
regardless of whether the grade was less than 60.

Syntax errors (e.g., when one brace in a block is left out of the program) are caught
by the compiler. A logic error (e.g., when both braces in a block are left out of the pro-
gram) has its effect at execution time. A fatal logic error causes a program to fail and ter-
minate prematurely. A nonfatal logic error allows a program to continue executing but
causes it to produce incorrect results.

Just as a block can be placed anywhere a single statement can be placed, it’s also pos-
sible to have an empty statement. Recall from Section 2.7 that the empty statement is rep-
resented by placing a semicolon (;) where a statement would normally be.

4.5 while Repetition Statement
A repetition (or looping) statement allows you to specify that a program should repeat an
action while some condition remains true. As an example of Java’s while repetition state-
ment, consider a program segment that finds the first power of 3 larger than 100. Suppose
that the int variable product is initialized to 3. After the following while statement exe-
cutes, product contains the result:

When this while statement begins execution, the value of variable product is 3. Each it-
eration of the while statement multiplies product by 3, so product takes on the values 9,

if (grade >= 60)
System.out.println("Passed");

else

{
System.out.println("Failed");
System.out.println("You must take this course again.");

}

Failed
You must take this course again.

System.out.println("You must take this course again.");

Common Programming Error 4.1
Placing a semicolon after the condition in an if or if…else statement leads to a logic
error in single-selection if statements and a syntax error in double-selection if…else

statements (when the if part contains an actual body statement).

while (product <= 100)
product = 3 * product;

4.5 while Repetition Statement 69

27, 81 and 243 successively. When variable product becomes 243, the while-statement
condition—product <= 100—becomes false. This terminates the repetition, so the final
value of product is 243. At this point, program execution continues with the next state-
ment after the while statement.

The UML activity diagram in Fig. 4.4 illustrates the flow of control in the preceding
while statement. Once again, the symbols in the diagram (besides the initial state, transi-
tion arrows, a final state and three notes) represent an action state and a decision. This dia-
gram introduces the UML’s merge symbol. The UML represents both the merge symbol
and the decision symbol as diamonds. The merge symbol joins two flows of activity into
one. In this diagram, the merge symbol joins the transitions from the initial state and from
the action state, so they both flow into the decision that determines whether the loop
should begin (or continue) executing. The decision and merge symbols can be distin-
guished by the number of “incoming” and “outgoing” transition arrows. A decision
symbol has one transition arrow pointing to the diamond and two or more pointing out
from it to indicate possible transitions from that point. In addition, each transition arrow
pointing out of a decision symbol has a guard condition next to it. A merge symbol has
two or more transition arrows pointing to the diamond and only one pointing from the
diamond, to indicate multiple activity flows merging to continue the activity. None of the
transition arrows associated with a merge symbol has a guard condition.

Figure 4.4 clearly shows the repetition of the while statement discussed earlier in this
section. The transition arrow emerging from the action state points back to the merge,
from which program flow transitions back to the decision that’s tested at the beginning of
each iteration of the loop. The loop continues to execute until the guard condition
product > 100 becomes true. Then the while statement exits (reaches its final state), and
control passes to the next statement in sequence in the program.

Common Programming Error 4.2
Not providing in the body of a while statement an action that eventually causes the con-
dition in the while to become false normally results in an infinite loop.

Fig. 4.4 | while repetition statement UML activity diagram.

triple product value

Corresponding Java statement:
product = 3 * product;

decision
[product <= 100]

[product > 100]

merge

70 Chapter 4 Control Statements: Part 1

4.6 Counter-Controlled Repetition
Consider the following problem statement:

A class of ten students took a quiz. The grades (integers in the range 0 to 100) for this
quiz are available to you. Determine the class average on the quiz.

The class average is equal to the sum of the grades divided by the number of students. The
program for solving this problem must input each grade, keep track of the total of all
grades input, perform the averaging calculation and print the result.

Implementing Counter-Controlled Repetition in Class GradeBook
Class GradeBook (Fig. 4.5) contains a constructor (lines 11–14) that assigns a value to the
class’s instance variable courseName (declared in line 8), and methods setCourseName (lines
17–20), getCourseName (lines 23–26) and displayMessage (lines 29–34). Lines 37–66 de-
clare method determineClassAverage, which implements the class-averaging algorithm.

1 // Fig. 4.5: GradeBook.java
2 // GradeBook class that solves class-average problem using
3 // counter-controlled repetition.
4 import java.util.Scanner; // program uses class Scanner
5
6 public class GradeBook
7 {
8 private String courseName; // name of course this GradeBook represents
9

10 // constructor initializes courseName
11 public GradeBook(String name)
12 {
13 courseName = name; // initializes courseName
14 } // end constructor
15
16 // method to set the course name
17 public void setCourseName(String name)
18 {
19 courseName = name; // store the course name
20 } // end method setCourseName
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 } // end method getCourseName
27
28 // display a welcome message to the GradeBook user
29 public void displayMessage()
30 {
31 // getCourseName gets the name of the course
32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());
34 } // end method displayMessage

Fig. 4.5 | GradeBook class that solves class-average problem using counter-controlled
repetition. (Part 1 of 2.)

4.6 Counter-Controlled Repetition 71

Line 40 declares and initializes Scanner variable input, which is used to read values
entered by the user. Lines 42–45 declare local variables total, gradeCounter, grade and
average to be of type int. Variable grade stores the user input.

The declarations (in lines 42–45) appear in the body of method determine-

ClassAverage. Recall that variables declared in a method body are local variables and can
be used only from the line of their declaration to the closing right brace of the method
declaration. A local variable’s declaration must appear before the variable is used in that
method. A local variable cannot be accessed outside the method in which it’s declared.

In this chapter, class GradeBook simply reads and processes a set of grades. The aver-
aging calculation is performed in method determineClassAverage using local variables—
we do not preserve any information about student grades in instance variables of the class.

The assignments (in lines 48–49) initialize total to 0 and gradeCounter to 1. These
initializations occur before the variables are used in calculations. Variables grade and

35
36 // determine class average based on 10 grades entered by user
37
38 {
39 // create Scanner to obtain input from command window
40 Scanner input = new Scanner(System.in);
41
42 int total; // sum of grades entered by user
43
44 int grade; // grade value entered by user
45 int average; // average of grades
46
47 // initialization phase
48 total = 0; // initialize total
49
50
51 // processing phase uses counter-controlled repetition
52 while () // loop 10 times
53 {
54 System.out.print("Enter grade: "); // prompt
55 grade = input.nextInt(); // input next grade
56 total = total + grade; // add grade to total
57
58 } // end while
59
60 // termination phase
61
62
63 // display total and average of grades
64 System.out.printf("\nTotal of all 10 grades is %d\n", total);
65 System.out.printf("Class average is %d\n", average);
66 } // end method determineClassAverage
67 } // end class GradeBook

Fig. 4.5 | GradeBook class that solves class-average problem using counter-controlled
repetition. (Part 2 of 2.)

public void determineClassAverage()

int gradeCounter; // number of the grade to be entered next

gradeCounter = 1; // initialize loop counter

gradeCounter <= 10

gradeCounter = gradeCounter + 1; // increment counter by 1

average = total / 10; // integer division yields integer result

72 Chapter 4 Control Statements: Part 1

average (for the user input and calculated average, respectively) need not be initialized
here—their values will be assigned as they’re input or calculated later in the method.

Line 52 indicates that the while statement should continue looping (also called iter-
ating) as long as gradeCounter’s value is less than or equal to 10. While this condition
remains true, the while statement repeatedly executes the statements between the braces
that delimit its body (lines 54–57).

Line 54 displays the prompt "Enter grade: ". Line 55 reads the grade entered by the
user and assigns it to variable grade. Then line 56 adds the new grade entered by the user
to the total and assigns the result to total, which replaces its previous value.

Line 57 adds 1 to gradeCounter to indicate that the program has processed a grade and
is ready to input the next grade from the user. Incrementing gradeCounter eventually causes
it to exceed 10. Then the loop terminates, because its condition (line 52) becomes false.

When the loop terminates, line 61 performs the averaging calculation and assigns its
result to the variable average. Line 64 uses System.out’s printf method to display the
text "Total of all 10 grades is " followed by variable total’s value. Line 65 then uses
printf to display the text "Class average is " followed by variable average’s value.
After reaching line 66, method determineClassAverage returns control to the calling
method (i.e., main in GradeBookTest of Fig. 4.6).

Class GradeBookTest
Class GradeBookTest (Fig. 4.6) creates an object of class GradeBook (Fig. 4.5) and dem-
onstrates its capabilities. Lines 10–11 of Fig. 4.6 create a new GradeBook object and assign
it to variable myGradeBook. The String in line 11 is passed to the GradeBook constructor
(lines 11–14 of Fig. 4.5). Line 13 calls myGradeBook’s displayMessage method to display
a welcome message to the user. Line 14 then calls myGradeBook’s determineClassAverage
method to allow the user to enter 10 grades, for which the method then calculates and
prints the average.

Common Programming Error 4.3
Using the value of a local variable before it’s initialized results in a compilation error. All
local variables must be initialized before their values are used in expressions.

1 // Fig. 4.6: GradeBookTest.java
2 // Create GradeBook object and invoke its determineClassAverage method.
3
4 public class GradeBookTest
5 {
6 public static void main(String[] args)
7 {
8 // create GradeBook object myGradeBook and
9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(
11 "CS101 Introduction to Java Programming");
12
13 myGradeBook.displayMessage(); // display welcome message

Fig. 4.6 | GradeBookTest class creates an object of class GradeBook (Fig. 4.5) and invokes its
determineClassAverage method. (Part 1 of 2.)

4.7 Sentinel-Controlled Repetition 73

Notes on Integer Division and Truncation
The averaging calculation performed by method determineClassAverage in response to
the method call at line 14 in Fig. 4.6 produces an integer result. The program’s output
indicates that the sum of the grade values in the sample execution is 846, which, when di-
vided by 10, should yield the floating-point number 84.6. However, the result of the cal-
culation total / 10 (line 61 of Fig. 4.5) is the integer 84, because total and 10 are both
integers. Dividing two integers results in integer division—any fractional part of the cal-
culation is lost (i.e., truncated). In the next section we’ll see how to obtain a floating-point
result from the averaging calculation.

4.7 Sentinel-Controlled Repetition
Let’s generalize Section 4.6’s class-average problem. Consider the following problem:

Develop a class-averaging program that processes grades for an arbitrary number of
students each time it’s run.

In the previous class-average example, the problem statement specified the number of stu-
dents, so the number of grades (10) was known in advance. In this example, no indication
is given of how many grades the user will enter during the program’s execution. The pro-
gram must process an arbitrary number of grades. How can it determine when to stop the
input of grades? How will it know when to calculate and print the class average?

14
15 } // end main
16 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter grade: 67
Enter grade: 78
Enter grade: 89
Enter grade: 67
Enter grade: 87
Enter grade: 98
Enter grade: 93
Enter grade: 85
Enter grade: 82
Enter grade: 100

Total of all 10 grades is 846
Class average is 84

Common Programming Error 4.4
Assuming that integer division rounds (rather than truncates) can lead to incorrect results.
For example, 7 ÷ 4, which yields 1.75 in conventional arithmetic, truncates to 1 in inte-
ger arithmetic, rather than rounding to 2.

Fig. 4.6 | GradeBookTest class creates an object of class GradeBook (Fig. 4.5) and invokes its
determineClassAverage method. (Part 2 of 2.)

myGradeBook.determineClassAverage(); // find average of 10 grades

74 Chapter 4 Control Statements: Part 1

One way to solve this problem is to use a special value called a sentinel value (also
called a signal value, a dummy value or a flag value) to indicate “end of data entry.” The
user enters grades until all legitimate grades have been entered. The user then types the
sentinel value to indicate that no more grades will be entered. Sentinel-controlled repeti-
tion is often called indefinite repetition because the number of repetitions is not known
before the loop begins executing.

Clearly, a sentinel value must be chosen that cannot be confused with an acceptable
input value. Grades on a quiz are nonnegative integers, so –1 is an acceptable sentinel value
for this problem. Thus, a run of the class-average program might process a stream of inputs
such as 95, 96, 75, 74, 89 and –1. The program would then compute and print the class
average for the grades 95, 96, 75, 74 and 89; since –1 is the sentinel value, it should not
enter into the averaging calculation.

Implementing Sentinel-Controlled Repetition in Class GradeBook
Figure 4.7 shows the Java class GradeBook containing method determineClassAverage

that implements the sentinel-controlled repetition algorithm. Although each grade is an
integer, the averaging calculation is likely to produce a number with a decimal point—in
other words, a real (i.e., floating-point) number. The type int cannot represent such a
number, so this class uses type double to do so.

1 // Fig. 4.7: GradeBook.java
2 // GradeBook class that solves the class-average problem using
3 // sentinel-controlled repetition.
4 import java.util.Scanner; // program uses class Scanner
5
6 public class GradeBook
7 {
8 private String courseName; // name of course this GradeBook represents
9

10 // constructor initializes courseName
11 public GradeBook(String name)
12 {
13 courseName = name; // initializes courseName
14 } // end constructor
15
16 // method to set the course name
17 public void setCourseName(String name)
18 {
19 courseName = name; // store the course name
20 } // end method setCourseName
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 } // end method getCourseName
27

Fig. 4.7 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part 1 of 3.)

4.7 Sentinel-Controlled Repetition 75

28 // display a welcome message to the GradeBook user
29 public void displayMessage()
30 {
31 // getCourseName gets the name of the course
32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());
34 } // end method displayMessage
35
36 // determine the average of an arbitrary number of grades
37
38 {
39 // create Scanner to obtain input from command window
40 Scanner input = new Scanner(System.in);
41
42 int total; // sum of grades
43 int gradeCounter; // number of grades entered
44 int grade; // grade value
45
46
47 // initialization phase
48 total = 0; // initialize total
49
50
51 // processing phase
52
53
54
55
56
57 while (grade != -1)
58 {
59 total = total + grade; // add grade to total
60 gradeCounter = gradeCounter + 1; // increment counter
61
62
63
64
65 } // end while
66
67 // termination phase
68 // if user entered at least one grade...
69 if ()
70 {
71
72
73
74 // display total and average (with two digits of precision)
75 System.out.printf("\nTotal of the %d grades entered is %d\n",
76 gradeCounter, total);
77 System.out.printf("Class average is %.2f\n", average);
78 } // end if

Fig. 4.7 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part 2 of 3.)

public void determineClassAverage()

double average; // number with decimal point for average

gradeCounter = 0; // initialize loop counter

// prompt for input and read grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

// loop until sentinel value read from user

// prompt for input and read next grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

gradeCounter != 0

// calculate average of all grades entered
average = (double) total / gradeCounter;

76 Chapter 4 Control Statements: Part 1

In this example, we see that control statements may be stacked on top of one another
(in sequence). The while statement (lines 57–65) is followed in sequence by an if…else

statement (lines 69–80). Much of the code in this program is identical to that in Fig. 4.5,
so we concentrate on the new concepts.

Line 45 declares double variable average, which allows us to store the class average as
a floating-point number. Line 49 initializes gradeCounter to 0, because no grades have
been entered yet. Remember that this program uses sentinel-controlled repetition to input
the grades. To keep an accurate record of the number of grades entered, the program incre-
ments gradeCounter only when the user enters a valid grade.

Program Logic for Sentinel-Controlled Repetition vs. Counter-Controlled Repetition
Compare the program logic for sentinel-controlled repetition in this application with that
for counter-controlled repetition in Fig. 4.5. In counter-controlled repetition, each itera-
tion of the while statement (e.g., lines 52–58 of Fig. 4.5) reads a value from the user, for
the specified number of iterations. In sentinel-controlled repetition, the program reads the
first value (lines 53–54 of Fig. 4.7) before reaching the while. This value determines
whether the program’s flow of control should enter the body of the while. If the condition
of the while is false, the user entered the sentinel value, so the body of the while does not
execute (i.e., no grades were entered). If, on the other hand, the condition is true, the body
begins execution, and the loop adds the grade value to the total (line 59). Then lines 63–
64 in the loop body input the next value from the user. Next, program control reaches the
closing right brace of the loop body at line 65, so execution continues with the test of the
while’s condition (line 57). The condition uses the most recent grade input by the user
to determine whether the loop body should execute again. The value of variable grade is
always input from the user immediately before the program tests the while condition.
This allows the program to determine whether the value just input is the sentinel value
before the program processes that value (i.e., adds it to the total). If the sentinel value is
input, the loop terminates, and the program does not add –1 to the total.

After the loop terminates, the if…else statement at lines 69–80 executes. The con-
dition at line 69 determines whether any grades were input. If none were input, the else

part (lines 79–80) of the if…else statement executes and displays the message "No

grades were entered" and the method returns control to the calling method.
Notice the while statement’s block in Fig. 4.7 (lines 58–65). Without the braces, the

loop would consider its body to be only the first statement, which adds the grade to the

79 else // no grades were entered, so output appropriate message
80 System.out.println("No grades were entered");
81 } // end method determineClassAverage
82 } // end class GradeBook

Good Programming Practice 4.1
In a sentinel-controlled loop, prompts should remind the user of the sentinel.

Fig. 4.7 | GradeBook class that solves the class-average problem using sentinel-controlled
repetition. (Part 3 of 3.)

4.7 Sentinel-Controlled Repetition 77

total. The last three statements in the block would fall outside the loop body, causing the
computer to interpret the code incorrectly as follows:

The preceding code would cause an infinite loop in the program if the user did not input
the sentinel -1 at line 54 (before the while statement).

Explicitly and Implicitly Converting Between Primitive Types
If at least one grade was entered, line 72 of Fig. 4.7 calculates the average of the grades.
Recall from Fig. 4.5 that integer division yields an integer result. Even though variable av-
erage is declared as a double (line 45), the calculation

loses the fractional part of the quotient before the result of the division is assigned to av-

erage. This occurs because total and gradeCounter are both integers, and integer divi-
sion yields an integer result. To perform a floating-point calculation with integer values,
we must temporarily treat these values as floating-point numbers for use in the calculation.
Java provides the unary cast operator to accomplish this task. Line 72 uses the (double)
cast operator—a unary operator—to create a temporary floating-point copy of its operand
total (which appears to the right of the operator). Using a cast operator in this manner is
called explicit conversion or type casting. The value stored in total is still an integer.

The calculation now consists of a floating-point value (the temporary double version
of total) divided by the integer gradeCounter. Java knows how to evaluate only arith-
metic expressions in which the operands’ types are identical. To ensure that the operands
are of the same type, Java performs an operation called promotion (or implicit conver-
sion) on selected operands. For example, in an expression containing values of the types
int and double, the int values are promoted to double values for use in the expression.
In this example, the value of gradeCounter is promoted to type double, then the floating-
point division is performed and the result of the calculation is assigned to average. As long
as the (double) cast operator is applied to any variable in the calculation, the calculation
will yield a double result. Later in this chapter, we discuss all the primitive types. You’ll
learn more about the promotion rules in Section 6.6.

while (grade != -1)
total = total + grade; // add grade to total

gradeCounter = gradeCounter + 1; // increment counter

// prompt for input and read next grade from user
System.out.print("Enter grade or -1 to quit: ");
grade = input.nextInt();

Common Programming Error 4.5
Omitting the braces that delimit a block can lead to logic errors, such as infinite loops. To
prevent this problem, some programmers enclose the body of every control statement in
braces, even if the body contains only a single statement.

average = total / gradeCounter;

Common Programming Error 4.6
A cast operator can be used to convert between primitive numeric types, such as int and
double, and between related reference types (as we discuss in Chapter 10, Object-Orient-
ed Programming: Polymorphism). Casting to the wrong type may cause compilation errors
or runtime errors.

78 Chapter 4 Control Statements: Part 1

A cast operator is formed by placing parentheses around any type’s name. The operator
is a unary operator (i.e., an operator that takes only one operand). Java also supports unary
versions of the plus (+) and minus (–) operators, so you can write expressions like -7 or +5.
Cast operators associate from right to left and have the same precedence as other unary
operators, such as unary + and unary -. This precedence is one level higher than that of the
multiplicative operators *, / and %. (See the operator precedence chart in Appendix A.) We
indicate the cast operator with the notation (type) in our precedence charts, to indicate that
any type name can be used to form a cast operator.

Line 77 displays the class average. In this example, we display the class average
rounded to the nearest hundredth. The format specifier %.2f in printf’s format control
string indicates that variable average’s value should be displayed with two digits of preci-
sion to the right of the decimal point—indicated by.2 in the format specifier. The three
grades entered during the sample execution of class GradeBookTest (Fig. 4.8) total 257,
which yields the average 85.666666…. Method printf uses the precision in the format
specifier to round the value to the specified number of digits. In this program, the average
is rounded to the hundredths position and is displayed as 85.67.

4.8 Nested Control Statements
We’ve seen that control statements can be stacked on top of one another (in sequence). In
this case study, we examine the only other structured way control statements can be con-

1 // Fig. 4.8: GradeBookTest.java
2 // Create GradeBook object and invoke its determineClassAverage method.
3
4 public class GradeBookTest
5 {
6 public static void main(String[] args)
7 {
8 // create GradeBook object myGradeBook and
9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(
11 "CS101 Introduction to Java Programming");
12
13 myGradeBook.displayMessage(); // display welcome message
14 myGradeBook.determineClassAverage(); // find average of grades
15 } // end main
16 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter grade or -1 to quit: 97
Enter grade or -1 to quit: 88
Enter grade or -1 to quit: 72
Enter grade or -1 to quit: -1

Total of the 3 grades entered is 257
Class average is 85.67

Fig. 4.8 | GradeBookTest class creates an object of class GradeBook (Fig. 4.7) and invokes its
determineClassAverage method.

4.8 Nested Control Statements 79

nected—namely, by nesting one control statement within another. Consider the follow-
ing problem statement:

A college offers a course that prepares students for the state licensing exam for real
estate brokers. Last year, ten of the students who completed this course took the exam.
The college wants to know how well its students did on the exam. You’ve been asked to
write a program to summarize the results. You’ve been given a list of these 10 students.
Next to each name is written a 1 if the student passed the exam or a 2 if the student
failed.

Your program should analyze the results of the exam as follows:

1. Input each test result (i.e., a 1 or a 2). Display the message “Enter result” on the screen
each time the program requests another test result.

2. Count the number of test results of each type.

3. Display a summary of the test results, indicating the number of students who passed and
the number who failed.

4. If more than eight students passed the exam, print the message “Bonus to instructor!”

After reading the problem statement carefully, we make the following observations:

1. The program must process test results for 10 students. A counter-controlled loop
can be used, because the number of test results is known in advance.

2. Each test result has a numeric value—either a 1 or a 2. Each time it reads a test
result, the program must determine whether it’s a 1 or a 2. We test for a 1 in our
algorithm. If the number is not a 1, we assume that it’s a 2.

3. Two counters are used to keep track of the exam results—one to count the num-
ber of students who passed the exam and one to count the number who failed.

4. After the program has processed all the results, it must decide whether more than
eight students passed the exam.

The Java class that solves this problem and two sample executions are shown in
Fig. 4.9. Lines 13–16 of main declare the variables that method processExamResults of
class Analysis uses to process the examination results. Several of these declarations use
Java’s ability to incorporate variable initialization into declarations (passes is assigned 0,
failures 0 and studentCounter 1). Looping programs may require initialization at the
beginning of each repetition—normally performed by assignment statements rather than
in declarations.

Error-Prevention Tip 4.1
Initializing local variables when they’re declared helps you avoid any compilation errors
that might arise from attempts to use uninitialized variables. While Java does not require
that local-variable initializations be incorporated into declarations, it does require that
local variables be initialized before their values are used in an expression.

1 // Fig. 4.9: Analysis.java
2 // Analysis of examination results using nested control statements.
3 import java.util.Scanner; // class uses class Scanner

Fig. 4.9 | Analysis of examination results using nested control statements. (Part 1 of 3.)

80 Chapter 4 Control Statements: Part 1

4
5 public class Analysis
6 {
7 public static void main(String[] args)
8 {
9 // create Scanner to obtain input from command window

10 Scanner input = new Scanner(System.in);
11
12
13
14
15
16 int result; // one exam result (obtains value from user)
17
18 // process 10 students using counter-controlled loop
19 while (studentCounter <= 10)
20 {
21 // prompt user for input and obtain value from user
22 System.out.print("Enter result (1 = pass, 2 = fail): ");
23 result = input.nextInt();
24
25
26
27
28
29
30
31 // increment studentCounter so loop eventually terminates
32 studentCounter = studentCounter + 1;
33 } // end while
34
35 // termination phase; prepare and display results
36
37
38
39
40
41 } // end main
42 } // end class Analysis

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 9
Failed: 1
Bonus to instructor!

Fig. 4.9 | Analysis of examination results using nested control statements. (Part 2 of 3.)

// initializing variables in declarations
int passes = 0; // number of passes
int failures = 0; // number of failures
int studentCounter = 1; // student counter

// if...else is nested in the while statement
if (result == 1) // if result 1,

passes = passes + 1; // increment passes;
else // else result is not 1, so

failures = failures + 1; // increment failures

System.out.printf("Passed: %d\nFailed: %d\n", passes, failures);

// determine whether more than 8 students passed
if (passes > 8)

System.out.println("Bonus to instructor!");

4.9 Compound Assignment Operators 81

The while statement (lines 19–33) loops 10 times. During each iteration, the loop
inputs and processes one exam result. Notice that the if…else statement (lines 26–29)
for processing each result is nested in the while statement. If the result is 1, the if…else

statement increments passes; otherwise, it assumes the result is 2 and increments fail-
ures. Line 32 increments studentCounter before the loop condition is tested again at line
19. After 10 values have been input, the loop terminates and line 36 displays the number
of passes and failures. The if statement at lines 39–40 determines whether more than
eight students passed the exam and, if so, outputs the message "Bonus to instructor!".

Figure 4.9 shows the input and output from two sample excutions of the program.
During the first, the condition at line 39 of method main is true—more than eight stu-
dents passed the exam, so the program outputs a message to bonus the instructor.

This example contains only one class, with method main performing all the class’s
work. In this chapter and in Chapter 3, you’ve seen examples consisting of two classes—
one containing methods that perform useful tasks and one containing method main,
which creates an object of the other class and calls its methods. Occasionally, when it does
not make sense to try to create a reusable class to demonstrate a concept, we’ll place the
program’s statements entirely within the main method of a single class.

4.9 Compound Assignment Operators
The compound assignment operators abbreviate assignment expressions. Statements like

where operator is one of the binary operators +, -, *, / or % (or others we discuss later in
the text) can be written in the form

For example, you can abbreviate the statement

with the addition compound assignment operator, +=, as

Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 2
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Enter result (1 = pass, 2 = fail): 1
Passed: 6
Failed: 4

variable = variable operator expression;

variable operator= expression;

c = c + 3;

c += 3;

Fig. 4.9 | Analysis of examination results using nested control statements. (Part 3 of 3.)

82 Chapter 4 Control Statements: Part 1

The += operator adds the value of the expression on its right to the value of the variable on
its left and stores the result in the variable on the left of the operator. Thus, the assignment
expression c += 3 adds 3 to c. Figure 4.10 shows the arithmetic compound assignment op-
erators, sample expressions using the operators and explanations of what the operators do.

4.10 Increment and Decrement Operators
Java provides two unary operators (summarized in Fig. 4.11) for adding 1 to or subtracting
1 from the value of a numeric variable. These are the unary increment operator, ++, and
the unary decrement operator, --. A program can increment by 1 the value of a variable
called c using the increment operator, ++, rather than the expression c = c + 1 or c += 1.
An increment or decrement operator that’s prefixed to (placed before) a variable is referred
to as the prefix increment or prefix decrement operator, respectively. An increment or
decrement operator that’s postfixed to (placed after) a variable is referred to as the postfix
increment or postfix decrement operator, respectively.

Using the prefix increment (or decrement) operator to add 1 to (or subtract 1 from)
a variable is known as preincrementing (or predecrementing). This causes the variable to
be incremented (decremented) by 1; then the new value of the variable is used in the
expression in which it appears. Using the postfix increment (or decrement) operator to add

Assignment operator Sample expression Explanation Assigns

Assume: int c = 3, d = 5, e = 4, f = 6, g = 12;

+= c += 7 c = c + 7 10 to c

-= d -= 4 d = d - 4 1 to d

*= e *= 5 e = e * 5 20 to e

/= f /= 3 f = f / 3 2 to f

%= g %= 9 g = g % 9 3 to g

Fig. 4.10 | Arithmetic compound assignment operators.

Operator
Operator
name

Sample
expression Explanation

++ prefix
increment

++a Increment a by 1, then use the new value
of a in the expression in which a resides.

++ postfix
increment

a++ Use the current value of a in the expression
in which a resides, then increment a by 1.

-- prefix
decrement

--b Decrement b by 1, then use the new value
of b in the expression in which b resides.

-- postfix
decrement

b-- Use the current value of b in the expression
in which b resides, then decrement b by 1.

Fig. 4.11 | Increment and decrement operators.

4.10 Increment and Decrement Operators 83

1 to (or subtract 1 from) a variable is known as postincrementing (or postdecrementing).
This causes the current value of the variable to be used in the expression in which it
appears; then the variable’s value is incremented (decremented) by 1.

Figure 4.12 demonstrates the difference between the prefix increment and postfix incre-
ment versions of the ++ increment operator. The decrement operator (--) works similarly.

Line 11 initializes the variable c to 5, and line 12 outputs c’s initial value. Line 13 out-
puts the value of the expression c++. This expression postincrements the variable c, so c’s
original value (5) is output, then c’s value is incremented (to 6). Thus, line 13 outputs c’s
initial value (5) again. Line 14 outputs c’s new value (6) to prove that the variable’s value
was indeed incremented in line 13.

Good Programming Practice 4.2
Unlike binary operators, the unary increment and decrement operators should be placed
next to their operands, with no intervening spaces.

1 // Fig. 4.12: Increment.java
2 // Prefix increment and postfix increment operators.
3
4 public class Increment
5 {
6 public static void main(String[] args)
7 {
8 int c;
9

10 // demonstrate postfix increment operator
11 c = 5; // assign 5 to c
12 System.out.println(c); // prints 5
13
14
15
16 System.out.println(); // skip a line
17
18 // demonstrate prefix increment operator
19 c = 5; // assign 5 to c
20 System.out.println(c); // prints 5
21
22
23 } // end main
24 } // end class Increment

5
5
6

5
6
6

Fig. 4.12 | Preincrementing and postincrementing.

System.out.println(c++); // prints 5 then postincrements
System.out.println(c); // prints 6

System.out.println(++c); // preincrements then prints 6
System.out.println(c); // prints 6

84 Chapter 4 Control Statements: Part 1

Line 19 resets c’s value to 5, and line 20 outputs c’s value. Line 21 outputs the value
of the expression ++c. This expression preincrements c, so its value is incremented; then
the new value (6) is output. Line 22 outputs c’s value again to show that the value of c is
still 6 after line 21 executes.

The arithmetic compound assignment operators and the increment and decrement
operators can be used to simplify program statements. For example, the three assignment
statements in Fig. 4.9 (lines 27, 29 and 32)

can be written more concisely with compound assignment operators as

with prefix increment operators as

or with postfix increment operators as

When incrementing or decrementing a variable in a statement by itself, the prefix
increment and postfix increment forms have the same effect, and the prefix decrement and
postfix decrement forms have the same effect. It’s only when a variable appears in the con-
text of a larger expression that preincrementing and postincrementing the variable have
different effects (and similarly for predecrementing and postdecrementing).

Figure 4.13 shows the precedence and associativity of the operators we’ve introduced.
They’re shown from top to bottom in decreasing order of precedence. The second column
describes the associativity of the operators at each level of precedence.

passes = passes + 1;
failures = failures + 1;
studentCounter = studentCounter + 1;

passes += 1;
failures += 1;
studentCounter += 1;

++passes;
++failures;
++studentCounter;

passes++;
failures++;
studentCounter++;

Common Programming Error 4.7
Attempting to use the increment or decrement operator on an expression other than one to
which a value can be assigned is a syntax error. For example, writing ++(x + 1) is a syntax
error, because (x + 1) is not a variable.

Operators Associativity Type

++ -- right to left unary postfix

++ -- + - (type) right to left unary prefix

* / % left to right multiplicative

Fig. 4.13 | Precedence and associativity of the operators discussed so far. (Part 1 of 2.)

4.11 Primitive Types 85

4.11 Primitive Types
The table in Appendix D lists the eight primitive types in Java. Like its predecessor lan-
guages C and C++, Java requires all variables to have a type. For this reason, Java is referred
to as a strongly typed language. In C and C++, programmers frequently have to write sep-
arate versions of programs to support different computer platforms, because the primitive
types are not guaranteed to be identical from computer to computer. For example, an int

value on one machine might be represented by 16 bits (2 bytes) of memory, on a second
machine by 32 bits (4 bytes) of memory, and on another machine by 64 bits (8 bytes) of
memory. In Java, int values are always 32 bits (4 bytes).

Each type in Appendix D is listed with its size in bits and its value range. To ensure
portability, Java uses internationally recognized standards for character formats (Unicode;
for more information, visit www.unicode.org) and floating-point numbers (IEEE 754; for
more information, visit grouper.ieee.org/groups/754/).

Recall from Section 3.4 that variables of primitive types declared outside of a method
as fields of a class are automatically assigned default values unless explicitly initialized.
Instance variables of types char, byte, short, int, long, float and double are all given
the value 0 by default. Instance variables of type boolean are given the value false by
default. Reference-type instance variables are initialized by default to the value null.

4.12 Wrap-Up
Only three types of control structures—sequence, selection and repetition—are needed to
develop any problem-solving algorithm. Specifically, this chapter demonstrated the if sin-
gle-selection statement, the if…else double-selection statement and the while repetition
statement. These are some of the building blocks used to construct solutions to many
problems. We used control-statement stacking to total and compute the average of a set
of student grades with counter- and sentinel-controlled repetition, and we used control-
statement nesting to analyze and make decisions based on a set of exam results. We intro-
duced Java’s compound assignment operators and its increment and decrement operators.
Finally, we discussed Java’s primitive types. In Chapter 5, we continue our discussion of
control statements, introducing the for, do…while and switch statements.

+ - left to right additive

< <= > >= left to right relational

== != left to right equality

?: right to left conditional

= += -= *= /= %= right to left assignment

Portability Tip 4.1
The primitive types in Java are portable across all computer platforms that support Java.

Operators Associativity Type

Fig. 4.13 | Precedence and associativity of the operators discussed so far. (Part 2 of 2.)

www.unicode.org

5
Control Statements:
Part 2

O b j e c t i v e s
In this chapter you’ll learn:

� To use the for and do…while repetition statements to
execute statements in a program repeatedly.

� To understand multiple selection using the switch
selection statement.

� To use the break and continue program control
statements to alter the flow of control.

� To use the logical operators to form complex conditional
expressions in control statements.

The wheel is come full
circle.
—William Shakespeare

—Robert Frost

All the evolution we know
of proceeds from the vague
to the definite.
—Charles Sanders Peirce

5.1 Introduction 87

5.1 Introduction
This chapter introduces all but one of Java’s remaining control statements. We demon-
strate Java’s for, do…while and switch statements. Through a series of short examples
using while and for, we explore the essentials of counter-controlled repetition. We create
a version of class GradeBook that uses a switch statement to count the number of A, B, C,
D and F grade equivalents in a set of numeric grades entered by the user. We introduce
the break and continue program-control statements. We discuss Java’s logical operators,
which enable you to use more complex conditional expressions in control statements. Fi-
nally, we summarize Java’s control statements and the proven problem-solving techniques
presented in this chapter and Chapter 4.

5.2 Essentials of Counter-Controlled Repetition
This section uses the while repetition statement introduced in Chapter 4 to formalize the
elements required to perform counter-controlled repetition, which requires

1. a control variable (or loop counter)

2. the initial value of the control variable

3. the increment (or decrement) by which the control variable is modified each
time through the loop (also known as each iteration of the loop)

4. the loop-continuation condition that determines if looping should continue.

To see these elements of counter-controlled repetition, consider the application of
Fig. 5.1, which uses a loop to display the numbers from 1 through 10.

5.1 Introduction
5.2 Essentials of Counter-Controlled

Repetition
5.3 for Repetition Statement
5.4 Examples Using the for Statement
5.5 do…while Repetition Statement
5.6 switchMultiple-Selection Statement

5.7 break and continue Statements
5.8 Logical Operators
5.9 Wrap-Up

1 // Fig. 5.1: WhileCounter.java
2 // Counter-controlled repetition with the while repetition statement.
3
4 public class WhileCounter
5 {
6 public static void main(String[] args)
7 {
8
9

10 while () // loop-continuation condition
11 {

Fig. 5.1 | Counter-controlled repetition with the while repetition statement. (Part 1 of 2.)

int counter = 1; // declare and initialize control variable

counter <= 10

88 Chapter 5 Control Statements: Part 2

In Fig. 5.1, the elements of counter-controlled repetition are defined in lines 8, 10
and 13. Line 8 declares the control variable (counter) as an int, reserves space for it in
memory and sets its initial value to 1. Variable counter also could have been declared and
initialized with the following local-variable declaration and assignment statements:

Line 12 displays control variable counter’s value during each iteration of the loop. Line
13 increments the control variable by 1 for each iteration of the loop. The loop-continu-
ation condition in the while (line 10) tests whether the value of the control variable is less
than or equal to 10 (the final value for which the condition is true). The program per-
forms the body of this while even when the control variable is 10. The loop terminates
when the control variable exceeds 10 (i.e., counter becomes 11).

The program in Fig. 5.1 can be made more concise by initializing counter to 0 in line
8 and preincrementing counter in the while condition as follows:

This code saves a statement (and eliminates the need for braces around the loop’s body),
because the while condition performs the increment before testing the condition. (Recall
from Section 4.10 that the precedence of ++ is higher than that of <=.) Coding in such a
condensed fashion takes practice, might make code more difficult to read, debug, modify
and maintain, and typically should be avoided.

12 System.out.printf("%d ", counter);
13
14 } // end while
15
16 System.out.println(); // output a newline
17 } // end main
18 } // end class WhileCounter

1 2 3 4 5 6 7 8 9 10

int counter; // declare counter
counter = 1; // initialize counter to 1

Common Programming Error 5.1
Because floating-point values may be approximate, controlling loops with floating-point
variables may result in imprecise counter values and inaccurate termination tests.

Error-Prevention Tip 5.1
Use integers to control counting loops.

while (++counter <= 10) // loop-continuation condition
System.out.printf("%d ", counter);

Software Engineering Observation 5.1
“Keep it simple” is good advice for most of the code you’ll write.

Fig. 5.1 | Counter-controlled repetition with the while repetition statement. (Part 2 of 2.)

++counter; // increment control variable by 1

5.3 for Repetition Statement 89

5.3 for Repetition Statement
Section 5.2 presented the essentials of counter-controlled repetition. The while statement
can be used to implement any counter-controlled loop. Java also provides the for repeti-
tion statement, which specifies the counter-controlled-repetition details in a single line of
code. Figure 5.2 reimplements the application of Fig. 5.1 using for.

When the for statement (lines 10–11) begins executing, the control variable counter
is declared and initialized to 1. Next, the program checks the loop-continuation condition,
counter <= 10, which is between the two required semicolons. Because the initial value of
counter is 1, the condition initially is true. Therefore, the body statement (line 11) dis-
plays control variable counter’s value, namely 1. After executing the loop’s body, the pro-
gram increments counter in the expression counter++, which appears to the right of the
second semicolon. Then the loop-continuation test is performed again to determine
whether the program should continue with the next iteration of the loop. At this point,
the control variable’s value is 2, so the condition is still true (the final value is not
exceeded)—thus, the program performs the body statement again (i.e., the next iteration
of the loop). This process continues until the numbers 1 through 10 have been displayed
and the counter’s value becomes 11, causing the loop-continuation test to fail and repeti-
tion to terminate (after 10 repetitions of the loop body). Then the program performs the
first statement after the for—in this case, line 13.

Figure 5.2 uses (in line 10) the loop-continuation condition counter <= 10. If you
incorrectly specified counter < 10 as the condition, the loop would iterate only nine times.
This is a common logic error called an off-by-one error.

A Closer Look at the for Statement’s Header
Figure 5.3 takes a closer look at the for statement in Fig. 5.2. The for’s first line (includ-
ing the keyword for and everything in parentheses after for)—line 10 in Fig. 5.2—is
sometimes called the for statement header. The for header “does it all”—it specifies each

1 // Fig. 5.2: ForCounter.java
2 // Counter-controlled repetition with the for repetition statement.
3
4 public class ForCounter
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13 System.out.println(); // output a newline
14 } // end main
15 } // end class ForCounter

1 2 3 4 5 6 7 8 9 10

Fig. 5.2 | Counter-controlled repetition with the for repetition statement.

// for statement header includes initialization,
// loop-continuation condition and increment
for (int counter = 1; counter <= 10; counter++)

System.out.printf("%d ", counter);

90 Chapter 5 Control Statements: Part 2

item needed for counter-controlled repetition with a control variable. If there’s more than
one statement in the body of the for, braces are required to define the body of the loop.

General Format of a for Statement
The general format of the for statement is

where the initialization expression names the loop’s control variable and optionally pro-
vides its initial value, loopContinuationCondition determines whether the loop should con-
tinue executing and increment modifies the control variable’s value (possibly an increment
or decrement), so that the loop-continuation condition eventually becomes false. The two
semicolons in the for header are required. If the loop-continuation condition is initially
false, the program does not execute the for statement’s body. Instead, execution proceeds
with the statement following the for.

Representing a for Statement with an Equivalent while Statement
In most cases, the for statement can be represented with an equivalent while statement as:

Typically, for statements are used for counter-controlled repetition and while statements
for sentinel-controlled repetition, but they can each be used for either repetition type.

Scope of a for Statement’s Control Variable
If the initialization expression in the for header declares the control variable (i.e., the con-
trol variable’s type is specified before the variable name, as in Fig. 5.2), the control variable
can be used only in that for statement—it will not exist outside it. This restricted use is
known as the variable’s scope. The scope of a variable defines where it can be used in a
program. For example, a local variable can be used only in the method that declares it and
only from the point of declaration through the end of the method. Scope is discussed in
detail in Chapter 6, Methods: A Deeper Look.

Fig. 5.3 | for statement header components.

for (initialization; loopContinuationCondition; increment)
statement

initialization;

while (loopContinuationCondition)
{

statement
increment;

}

Initial value of
control variable Loop-continuation

condition

Increment of
control variable

for
keyword

Control
variable

Required
semicolon
separator

Required
semicolon
separator

for (int counter = 1; counter <= 10; counter++)

5.3 for Repetition Statement 91

Expressions in a for Statement’s Header Are Optional
All three expressions in a for header are optional. If the loopContinuationCondition is
omitted, Java assumes that the loop-continuation condition is always true, thus creating
an infinite loop. You might omit the initialization expression if the program initializes the
control variable before the loop. You might omit the increment expression if the program
calculates the increment with statements in the loop’s body or if no increment is needed.
The increment expression in a for acts as if it were a standalone statement at the end of
the for’s body. Therefore, the expressions

are equivalent increment expressions in a for statement. Many programmers prefer coun-
ter++ because it’s concise and because a for loop evaluates its increment expression after
its body executes, so the postfix increment form seems more natural. In this case, the vari-
able being incremented does not appear in a larger expression, so preincrementing and
postincrementing actually have the same effect.

Placing Arithmetic Expressions in a for Statement’s Header
The initialization, loop-continuation condition and increment portions of a for statement
can contain arithmetic expressions. For example, assume that x = 2 and y = 10. If x and y

are not modified in the body of the loop, the statement

is equivalent to the statement

The increment of a for statement may also be negative, in which case it’s really a decrement,
and the loop counts downward.

Using a for Statement’s Control Variable in the Statements’s Body
Programs frequently display the control-variable value or use it in calculations in the loop
body, but this use is not required. The control variable is commonly used to control rep-
etition without being mentioned in the body of the for.

UML Activity Diagram for the for Statement
The for statement’s UML activity diagram is similar to that of the while statement
(Fig. 4.4). Figure 5.4 shows the activity diagram of the for statement in Fig. 5.2. The
diagram makes it clear that initialization occurs once before the loop-continuation test is

Common Programming Error 5.2
When a for statement’s control variable is declared in the initialization section of the
for’s header, using the control variable after the for’s body is a compilation error.

counter = counter + 1

counter += 1

++counter
counter++

for (int j = x; j <= 4 * x * y; j += y / x)

for (int j = 2; j <= 80; j += 5)

Error-Prevention Tip 5.2
Although the value of the control variable can be changed in the body of a for loop, avoid
doing so, because this practice can lead to subtle errors.

92 Chapter 5 Control Statements: Part 2

evaluated the first time, and that incrementing occurs each time through the loop after the
body statement executes.

5.4 Examples Using the for Statement
The following examples show techniques for varying the control variable in a for state-
ment. In each case, we write the appropriate for header. Note the change in the relational
operator for loops that decrement the control variable.

a) Vary the control variable from 1 to 100 in increments of 1.

b) Vary the control variable from 100 to 1 in decrements of 1.

c) Vary the control variable from 7 to 77 in increments of 7.

d) Vary the control variable from 20 to 2 in decrements of 2.

e) Vary the control variable over the values 2, 5, 8, 11, 14, 17, 20.

f) Vary the control variable over the values 99, 88, 77, 66, 55, 44, 33, 22, 11, 0.

Application: Summing the Even Integers from 2 to 20
We now consider two sample applications that demonstrate simple uses of for. The ap-
plication in Fig. 5.5 uses a for statement to sum the even integers from 2 to 20 and store
the result in an int variable called total.

Fig. 5.4 | UML activity diagram for the for statement in Fig. 5.2.

for (int i = 1; i <= 100; i++)

for (int i = 100; i >= 1; i--)

for (int i = 7; i <= 77; i += 7)

for (int i = 20; i >= 2; i -= 2)

for (int i = 2; i <= 20; i += 3)

for (int i = 99; i >= 0; i -= 11)

Determine whether
looping should
continue

System.out.printf(“%d ”, counter);

[counter > 10]

[counter <= 10]

int counter = 1

counter++

Display the
counter value

Initialize
control variable

Increment the
control variable

5.4 Examples Using the for Statement 93

The initialization and increment expressions can be comma-separated lists that enable
you to use multiple initialization expressions or multiple increment expressions. For
example, although this is discouraged, you could merge the body of the for statement in
lines 11–12 of Fig. 5.5 into the increment portion of the for header by using a comma as
follows:

Application: Compound-Interest Calculations
Let’s use the for statement to compute compound interest. Consider the following prob-
lem:

A person invests $1000 in a savings account yielding 5% interest. Assuming that all
the interest is left on deposit, calculate and print the amount of money in the account
at the end of each year for 10 years. Use the following formula to determine the
amounts:

a = p (1 + r)n

where

p is the original amount invested (i.e., the principal)
r is the annual interest rate (e.g., use 0.05 for 5%)
n is the number of years
a is the amount on deposit at the end of the nth year.

The solution to this problem (Fig. 5.6) involves a loop that performs the indicated
calculation for each of the 10 years the money remains on deposit. Lines 8–10 in method
main declare double variables amount, principal and rate, and initialize principal to
1000.0 and rate to 0.05. Java treats floating-point constants like 1000.0 and 0.05 as type
double. Similarly, Java treats whole-number constants like 7 and -22 as type int.

1 // Fig. 5.5: Sum.java
2 // Summing integers with the for statement.
3
4 public class Sum
5 {
6 public static void main(String[] args)
7 {
8
9

10 // total even integers from 2 through 20
11
12
13
14 System.out.printf("Sum is %d\n", total); // display results
15 } // end main
16 } // end class Sum

Sum is 110

Fig. 5.5 | Summing integers with the for statement.

for (int number = 2; number <= 20; total += number, number += 2)
; // empty statement

int total = 0; // initialize total

for (int number = 2; number <= 20; number += 2)
total += number;

94 Chapter 5 Control Statements: Part 2

Formatting Strings with Field Widths and Justification
Line 13 outputs the headers for two columns of output. The first column displays the year
and the second column the amount on deposit at the end of that year. We use the format
specifier %20s to output the String "Amount on Deposit". The integer 20 between the %

and the conversion character s indicates that the value should be displayed with a field
width of 20—that is, printf displays the value with at least 20 character positions. If the
value to be output is less than 20 character positions wide (17 characters in this example),
the value is right justified in the field by default. If the year value to be output were more
than four character positions wide, the field width would be extended to the right to
accommodate the entire value—this would push the amount field to the right, upsetting
the neat columns of our tabular output. To output values left justified, simply precede
the field width with the minus sign (–) formatting flag (e.g., %-20s).

1 // Fig. 5.6: Interest.java
2 // Compound-interest calculations with for.
3
4 public class Interest
5 {
6 public static void main(String[] args)
7 {
8 double amount; // amount on deposit at end of each year
9 double principal = 1000.0; // initial amount before interest

10 double rate = 0.05; // interest rate
11
12 // display headers
13 System.out.printf("%s \n", "Year", "Amount on deposit");
14
15
16
17
18
19
20
21
22
23
24 } // end main
25 } // end class Interest

Year Amount on deposit
1 1,050.00
2 1,102.50
3 1,157.63
4 1,215.51
5 1,276.28
6 1,340.10
7 1,407.10
8 1,477.46
9 1,551.33
10 1,628.89

Fig. 5.6 | Compound-interest calculations with for.

%20s

// calculate amount on deposit for each of ten years
for (int year = 1; year <= 10; year++)
{

// calculate new amount for specified year
amount = principal * Math.pow(1.0 + rate, year);

// display the year and the amount
System.out.printf("%4d%,20.2f\n", year, amount);

} // end for

5.4 Examples Using the for Statement 95

Performing the Interest Calculations
The for statement (lines 16–23) executes its body 10 times, varying control variable year
from 1 to 10 in increments of 1. This loop terminates when year becomes 11. (Variable
year represents n in the problem statement.)

Classes provide methods that perform common tasks on objects. In fact, most
methods must be called on a specific object. For example, to output text in Fig. 5.6, line
13 calls method printf on the System.out object. Many classes also provide methods that
perform common tasks and do not require objects. These are called static methods. For
example, Java does not include an exponentiation operator, so the designers of Java’s Math
class defined static method pow for raising a value to a power. You can call a static

method by specifying the class name followed by a dot (.) and the method name, as in

In Chapter 6, you’ll learn how to implement static methods in your own classes.
We use static method pow of class Math to perform the compound-interest calcula-

tion in Fig. 5.6. Math.pow(x, y) calculates the value of x raised to the yth power. The
method receives two double arguments and returns a double value. Line 19 performs the
calculation a = p(1 + r)n, where a is amount, p is principal, r is rate and n is year. Class
Math is defined in package java.lang, so you do not need to import class Math to use it.

The body of the for statement contains the calculation 1.0 + rate, which appears as
an argument to the Math.pow method. In fact, this calculation produces the same result
each time through the loop, so repeating it every iteration of the loop is wasteful.

Formatting Floating-Point Numbers
After each calculation, line 22 outputs the year and the amount on deposit at the end of
that year. The year is output in a field width of four characters (as specified by %4d). The
amount is output as a floating-point number with the format specifier %,20.2f. The com-
ma (,) formatting flag indicates that the floating-point value should be output with a
grouping separator. The actual separator used is specific to the user’s locale (i.e., coun-
try). For example, in the United States, the number will be output using commas to sep-
arate every three digits and a decimal point to separate the fractional part of the number,
as in 1,234.45. The number 20 in the format specification indicates that the value should
be output right justified in a field width of 20 characters. The .2 specifies the formatted
number’s precision—in this case, the number is rounded to the nearest hundredth and
output with two digits to the right of the decimal point.

A Warning about Displaying Rounded Values
We declared variables amount, principal and rate to be of type double in this example.
We’re dealing with fractional parts of dollars and thus need a type that allows decimal
points in its values. Unfortunately, floating-point numbers can cause trouble. Here’s a
simple explanation of what can go wrong when using double (or float) to represent dollar
amounts (assuming that dollar amounts are displayed with two digits to the right of the

ClassName.methodName(arguments)

Performance Tip 5.1
In loops, avoid calculations for which the result never changes—such calculations should
typically be placed before the loop. Many of today’s sophisticated optimizing compilers will
place such calculations outside loops in the compiled code.

96 Chapter 5 Control Statements: Part 2

decimal point): Two double dollar amounts stored in the machine could be 14.234
(which would normally be rounded to 14.23 for display purposes) and 18.673 (which
would normally be rounded to 18.67 for display purposes). When these amounts are add-
ed, they produce the internal sum 32.907, which would normally be rounded to 32.91 for
display purposes. Thus, your output could appear as

but a person adding the individual numbers as displayed would expect the sum to be
32.90. You’ve been warned!

5.5 do…while Repetition Statement
The do…while repetition statement is similar to the while statement. In the while, the
program tests the loop-continuation condition at the beginning of the loop, before execut-
ing the loop’s body; if the condition is false, the body never executes. The do…while state-
ment tests the loop-continuation condition after executing the loop’s body; therefore, the
body always executes at least once. When a do…while statement terminates, execution con-
tinues with the next statement in sequence. Figure 5.7 uses a do…while (lines 10–14) to
output the numbers 1–10.

14.23
+ 18.67

32.91

Error-Prevention Tip 5.3
Do not use variables of type double (or float) to perform precise monetary calculations.
The imprecision of floating-point numbers can cause errors. Java provides class BigDec-
imal (package java.math) to perform precise monetary calculations. For more informa-
tion, see download.oracle.com/javase/6/docs/api/java/math//BigDecimal.html.

1 // Fig. 5.7: DoWhileTest.java
2 // do...while repetition statement.
3
4 public class DoWhileTest
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13
14
15
16 System.out.println(); // outputs a newline
17 } // end main
18 } // end class DoWhileTest

Fig. 5.7 | do…while repetition statement. (Part 1 of 2.)

int counter = 1; // initialize counter

do

{
System.out.printf("%d ", counter);
++counter;

} while (counter <= 10); // end do...while

5.5 do…while Repetition Statement 97

Line 8 declares and initializes control variable counter. Upon entering the do…while

statement, line 12 outputs counter’s value and line 13 increments counter. Then the pro-
gram evaluates the loop-continuation test at the bottom of the loop (line 14). If the condi-
tion is true, the loop continues from the first body statement (line 12). If the condition is
false, the loop terminates and the program continues with the next statement after the loop.

Figure 5.8 contains the UML activity diagram for the do…while statement. This dia-
gram makes it clear that the loop-continuation condition is not evaluated until after the
loop performs the action state at least once. Compare this activity diagram with that of the
while statement (Fig. 4.4).

It isn’t necessary to use braces in the do…while repetition statement if there’s only
one statement in the body. However, many programmers include the braces, to avoid con-
fusion between the while and do…while statements. For example,

is normally the first line of a while statement. A do…while statement with no braces
around a single-statement body appears as:

1 2 3 4 5 6 7 8 9 10

Fig. 5.8 | do…while repetition statement UML activity diagram.

while (condition)

do

statement
while (condition);

Fig. 5.7 | do…while repetition statement. (Part 2 of 2.)

Determine whether
looping should
continue [counter > 10]

[counter <= 10]

++counter

Display the
counter value

Increment the
control variable

System.out.printf(“%d ”, counter);

98 Chapter 5 Control Statements: Part 2

which can be confusing. A reader may misinterpret the last line—while(condition);—
as a while statement containing an empty statement (the semicolon by itself). Thus, the
do…while statement with one body statement is usually written as follows:

5.6 switch Multiple-Selection Statement
Chapter 4 discussed the if single-selection statement and the if…else double-selection
statement. The switch multiple-selection statement performs different actions based on
the possible values of a constant integral expression of type byte, short, int or char.

GradeBook Class with switch Statement to Count A, B, C, D and F Grades
Figure 5.9 enhances class GradeBook from Chapters 3–4. The new version we now present
not only calculates the average of a set of numeric grades entered by the user, but uses a
switch statement to determine whether each grade is the equivalent of an A, B, C, D or F
and to increment the appropriate grade counter. The class also displays a summary of the
number of students who received each grade. Refer to Fig. 5.10 for sample inputs and out-
puts of the GradeBookTest application that uses class GradeBook to process a set of grades.

do

{
statement

} while (condition);

1 // Fig. 5.9: GradeBook.java
2 // GradeBook class uses switch statement to count letter grades.
3 import java.util.Scanner; // program uses class Scanner
4
5 public class GradeBook
6 {
7 private String courseName; // name of course this GradeBook represents
8
9

10
11
12
13
14
15
16
17 // constructor initializes courseName;
18 public GradeBook(String name)
19 {
20 courseName = name; // initializes courseName
21 } // end constructor
22
23 // method to set the course name
24 public void setCourseName(String name)
25 {
26 courseName = name; // store the course name
27 } // end method setCourseName

Fig. 5.9 | GradeBook class uses switch statement to count letter grades. (Part 1 of 3.)

// int instance variables are initialized to 0 by default
private int total; // sum of grades
private int gradeCounter; // number of grades entered
private int aCount; // count of A grades
private int bCount; // count of B grades
private int cCount; // count of C grades
private int dCount; // count of D grades
private int fCount; // count of F grades

5.6 switch Multiple-Selection Statement 99

28
29 // method to retrieve the course name
30 public String getCourseName()
31 {
32 return courseName;
33 } // end method getCourseName
34
35 // display a welcome message to the GradeBook user
36 public void displayMessage()
37 {
38 // getCourseName gets the name of the course
39 System.out.printf("Welcome to the grade book for\n%s!\n\n",
40 getCourseName());
41 } // end method displayMessage
42
43 // input arbitrary number of grades from user
44 public void inputGrades()
45 {
46 Scanner input = new Scanner(System.in);
47
48 int grade; // grade entered by user
49
50 System.out.printf("%s\n%s\n %s\n %s\n",
51 "Enter the integer grades in the range 0-100.",
52 "Type the end-of-file indicator to terminate input:",
53 "On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter",
54 "On Windows type <Ctrl> z then press Enter");
55
56 // loop until user enters the end-of-file indicator
57 while ()
58 {
59 grade = input.nextInt(); // read grade
60 total += grade; // add grade to total
61 ++gradeCounter; // increment number of grades
62
63 // call method to increment appropriate counter
64 incrementLetterGradeCounter(grade);
65 } // end while
66 } // end method inputGrades
67
68 // add 1 to appropriate counter for specified grade
69 void incrementLetterGradeCounter(int grade)
70 {
71
72
73
74
75
76
77
78

Fig. 5.9 | GradeBook class uses switch statement to count letter grades. (Part 2 of 3.)

input.hasNext()

private

// determine which grade was entered
switch (grade / 10)
{

case 9: // grade was between 90
case 10: // and 100, inclusive

++aCount; // increment aCount
break; // necessary to exit switch

100 Chapter 5 Control Statements: Part 2

Like earlier versions of the class, class GradeBook (Fig. 5.9) declares instance variable
courseName (line 7) and contains methods setCourseName (lines 24–27), getCourseName
(lines 30–33) and displayMessage (lines 36–41), which set the course name, store the
course name and display a welcome message to the user, respectively. The class also con-
tains a constructor (lines 18–21) that initializes the course name.

79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95 } // end method incrementLetterGradeCounter
96
97 // display a report based on the grades entered by the user
98 public void displayGradeReport()
99 {
100 System.out.println("\nGrade Report:");
101
102 // if user entered at least one grade...
103 if (gradeCounter != 0)
104 {
105 // calculate average of all grades entered
106 double average = (double) total / gradeCounter;
107
108 // output summary of results
109 System.out.printf("Total of the %d grades entered is %d\n",
110 gradeCounter, total);
111 System.out.printf("Class average is %.2f\n", average);
112 System.out.printf("%s\n%s%d\n%s%d\n%s%d\n%s%d\n%s%d\n",
113 "Number of students who received each grade:",
114 "A: ", aCount, // display number of A grades
115 "B: ", bCount, // display number of B grades
116 "C: ", cCount, // display number of C grades
117 "D: ", dCount, // display number of D grades
118 "F: ", fCount); // display number of F grades
119 } // end if
120 else // no grades were entered, so output appropriate message
121 System.out.println("No grades were entered");
122 } // end method displayGradeReport
123 } // end class GradeBook

Fig. 5.9 | GradeBook class uses switch statement to count letter grades. (Part 3 of 3.)

case 8: // grade was between 80 and 89
++bCount; // increment bCount
break; // exit switch

case 7: // grade was between 70 and 79
++cCount; // increment cCount
break; // exit switch

case 6: // grade was between 60 and 69
++dCount; // increment dCount
break; // exit switch

default: // grade was less than 60
++fCount; // increment fCount
break; // optional; will exit switch anyway

} // end switch

5.6 switch Multiple-Selection Statement 101

Class GradeBook also declares instance variables total (line 9) and gradeCounter

(line 10), which keep track of the sum of the grades entered by the user and the number
of grades entered, respectively. Lines 11–15 declare counter variables for each grade cate-
gory. Class GradeBook maintains total, gradeCounter and the five letter-grade counters
as instance variables so that they can be used or modified in any of the class’s methods.
The class’s constructor (lines 18–21) sets only the course name, because the remaining
seven instance variables are ints and are initialized to 0 by default.

Class GradeBook (Fig. 5.9) contains three additional methods—inputGrades, incre-
mentLetterGradeCounter and displayGradeReport. Method inputGrades (lines 44–66)
reads an arbitrary number of integer grades from the user using sentinel-controlled repe-
tition and updates instance variables total and gradeCounter. This method calls method
incrementLetterGradeCounter (lines 69–95) to update the appropriate letter-grade
counter for each grade entered. Method displayGradeReport (lines 98–122) outputs a
report containing the total of all grades entered, the average of the grades and the number
of students who received each letter grade. Let’s examine these methods in more detail.

Method inputGrades

Line 48 in method inputGrades declares variable grade, which will store the user’s input.
Lines 50–54 prompt the user to enter integer grades and to type the end-of-file indicator
to terminate the input. The end-of-file indicator is a system-dependent keystroke com-
bination which the user enters to indicate that there’s no more data to input. In
Chapter 17, Files, Streams and Object Serialization, we’ll see how the end-of-file indicator
is used when a program reads its input from a file.

On UNIX/Linux/Mac OS X systems, end-of-file is entered by typing the sequence

on a line by itself. This notation means to simultaneously press both the Ctrl key and the
d key. On Windows systems, end-of-file can be entered by typing

[Note: On some systems, you must press Enter after typing the end-of-file key sequence.
Also, Windows typically displays the characters ^Z on the screen when the end-of-file in-
dicator is typed, as shown in the output of Fig. 5.10.]

The while statement (lines 57–65) obtains the user input. The condition at line 57
calls Scanner method hasNext to determine whether there’s more data to input. This
method returns the boolean value true if there’s more data; otherwise, it returns false.
The returned value is then used as the value of the condition in the while statement.
Method hasNext returns false once the user types the end-of-file indicator.

Line 59 inputs a grade value from the user. Line 60 adds grade to total. Line 61
increments gradeCounter. The class’s displayGradeReport method uses these variables
to compute the average of the grades. Line 64 calls the class’s incrementLetterGrade-

Counter method (declared in lines 69–95) to increment the appropriate letter-grade
counter based on the numeric grade entered.

<Ctrl> d

<Ctrl> z

Portability Tip 5.1
The keystroke combinations for entering end-of-file are system dependent.

102 Chapter 5 Control Statements: Part 2

Method incrementLetterGradeCounter

Method incrementLetterGradeCounter contains a switch statement (lines 72–94) that
determines which counter to increment. We assume that the user enters a valid grade in
the range 0–100. A grade in the range 90–100 represents A, 80–89 represents B, 70–79
represents C, 60–69 represents D and 0–59 represents F. The switch statement consists
of a block that contains a sequence of case labels and an optional default case. These are
used in this example to determine which counter to increment based on the grade.

When the flow of control reaches the switch, the program evaluates the expression in
the parentheses (grade / 10) following keyword switch. This is the switch’s controlling
expression. The program compares this expression’s value (which must evaluate to an
integral value of type byte, char, short or int) with each case label. The controlling
expression in line 72 performs integer division, which truncates the fractional part of the
result. Thus, when we divide a value from 0 to 100 by 10, the result is always a value from
0 to 10. We use several of these values in our case labels. For example, if the user enters
the integer 85, the controlling expression evaluates to 8. The switch compares 8 with each
case label. If a match occurs (case 8: at line 79), the program executes that case’s state-
ments. For the integer 8, line 80 increments bCount, because a grade in the 80s is a B. The
break statement (line 81) causes program control to proceed with the first statement after
the switch—in this program, we reach the end of method incrementLetterGrade-

Counter’s body, so the method terminates and control returns to line 65 in method
inputGrades (the first line after the call to incrementLetterGradeCounter). Line 65 is the
end of a while loop’s body, so control flows to the while’s condition (line 57) to deter-
mine whether the loop should continue executing.

The cases in our switch explicitly test for the values 10, 9, 8, 7 and 6. Note the cases at
lines 74–75 that test for the values 9 and 10 (both of which represent the grade A). Listing
cases consecutively in this manner with no statements between them enables the cases to per-
form the same set of statements—when the controlling expression evaluates to 9 or 10, the
statements in lines 76–77 will execute. The switch statement does not provide a mechanism
for testing ranges of values, so every value you need to test must be listed in a separate case

label. Each case can have multiple statements. The switch statement differs from other con-
trol statements in that it does not require braces around multiple statements in a case.

Without break statements, each time a match occurs in the switch, the statements
for that case and subsequent cases execute until a break statement or the end of the switch
is encountered.

If no match occurs between the controlling expression’s value and a case label, the
default case (lines 91–93) executes. We use the default case in this example to process
all controlling-expression values that are less than 6—that is, all failing grades. If no match
occurs and the switch does not contain a default case, program control simply continues
with the first statement after the switch.

GradeBookTest Class That Demonstrates Class GradeBook
Class GradeBookTest (Fig. 5.10) creates a GradeBook object (lines 10–11). Line 13 invokes
the object’s displayMessage method to output a welcome message to the user. Line 14 in-
vokes the object’s inputGrades method to read a set of grades from the user and keep track
of the sum of all the grades entered and the number of grades. Recall that method input-

Grades also calls method incrementLetterGradeCounter to keep track of the number of
students who received each letter grade. Line 15 invokes method displayGradeReport of

5.6 switch Multiple-Selection Statement 103

class GradeBook, which outputs a report based on the grades entered (as in the input/output
window in Fig. 5.10). Line 103 of class GradeBook (Fig. 5.9) determines whether the user
entered at least one grade—this helps us avoid dividing by zero. If so, line 106 calculates
the average of the grades. Lines 109–118 then output the total of all the grades, the class
average and the number of students who received each letter grade. If no grades were en-

1 // Fig. 5.10: GradeBookTest.java
2 // Create GradeBook object, input grades and display grade report.
3
4 public class GradeBookTest
5 {
6 public static void main(String[] args)
7 {
8 // create GradeBook object myGradeBook and
9 // pass course name to constructor

10 GradeBook myGradeBook = new GradeBook(
11 "CS101 Introduction to Java Programming");
12
13 myGradeBook.displayMessage(); // display welcome message
14
15
16 } // end main
17 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

Enter the integer grades in the range 0-100.
Type the end-of-file indicator to terminate input:

On UNIX/Linux/Mac OS X type <Ctrl> d then press Enter
On Windows type <Ctrl> z then press Enter

99
92
45
57
63
71
76
85
90
100
^Z

Grade Report:
Total of the 10 grades entered is 778
Class average is 77.80

Number of students who received each grade:
A: 4
B: 1
C: 2
D: 1
F: 2

Fig. 5.10 | Create GradeBook object, input grades and display grade report.

myGradeBook.inputGrades(); // read grades from user
myGradeBook.displayGradeReport(); // display report based on grades

104 Chapter 5 Control Statements: Part 2

tered, line 121 outputs an appropriate message. The output in Fig. 5.10 shows a sample
grade report based on 10 grades.

Class GradeBookTest (Fig. 5.10) does not directly call GradeBook method incre-

mentLetterGradeCounter (lines 69–95 of Fig. 5.9). This method is used exclusively by
method inputGrades of class GradeBook to update the appropriate letter-grade counter as
each new grade is entered by the user. Method incrementLetterGradeCounter exists
solely to support the operations of GradeBook’s other methods, so it’s declared private.

switch Statement UML Activity Diagram
Figure 5.11 shows the UML activity diagram for the general switch statement. Most
switch statements use a break in each case to terminate the switch statement after pro-
cessing the case. Figure 5.11 emphasizes this by including break statements in the activity
diagram. The diagram makes it clear that the break statement at the end of a case causes
control to exit the switch statement immediately.

The break statement is not required for the switch’s last case (or the optional
default case, when it appears last), because execution continues with the next statement
after the switch.

Software Engineering Observation 5.2
Recall from Chapter 3 that methods declared with access modifier private can be called
only by other methods of the class in which the private methods are declared. Such
methods are commonly referred to as utility methods or helper methods because they’re
typically used to support the operation of the class’s other methods.

Fig. 5.11 | switch multiple-selection statement UML activity diagram with break

statements.

.
.
.

default actions(s)

case a actions(s)

case b actions(s)

case z actions(s) break

break

break

case b

case z

case a

[false]

[true]

[true]

[true]

[false]

[false]

5.7 break and continue Statements 105

Notes on the Expression in Each case of a switch

When using the switch statement, remember that each case must contain a constant in-
tegral expression—that is, any combination of integer constants that evaluates to a con-
stant integer value (e.g., –7, 0 or 221). An integer constant is simply an integer value. In
addition, you can use character constants—specific characters in single quotes, such as
'A', '7' or '$'—which represent the integer values of characters and enum constants (in-
troduced in Section 6.9). (Appendix B shows the integer values of the characters in the
ASCII character set, which is a subset of the Unicode character set used by Java.)

The expression in each case can also be a constant variable—a variable containing a
value which does not change for the entire program. Such a variable is declared with keyword
final (discussed in Chapter 6). Java has a feature called enumerations, which we also present
in Chapter 6. Enumeration constants can also be used in case labels. In Chapter 10, Object-
Oriented Programming: Polymorphism, we present a more elegant way to implement
switch logic—we use a technique called polymorphism to create programs that are often
clearer, easier to maintain and easier to extend than programs using switch logic.

Using Strings in switch Statements (New in Java SE 7)
As of Java SE 7, you can use Strings in a switch statement’s controlling expression and
in case labels. For example, you might want to use a city’s name to obtain the correspond-
ing ZIP code. Assuming that city and zipCode are String variables, the following switch

statement performs this task for three cities:

5.7 break and continue Statements
In addition to selection and repetition statements, Java provides statements break and
continue to alter the flow of control. The preceding section showed how break can be
used to terminate a switch statement’s execution. This section discusses how to use break
in repetition statements.

Software Engineering Observation 5.3
Provide a default case in switch statements. Including a default case focuses you on the
need to process exceptional conditions.

Good Programming Practice 5.1
Although each case and the default case in a switch can occur in any order, place the de-
fault case last. When the default case is listed last, the break for that case is not required.

switch(city)
{

case "Maynard":
zipCode = "01754";
break;

case "Marlborough":
zipCode = "01752";
break;

case "Framingham":
zipCode = "01701";
break;

} // end switch

106 Chapter 5 Control Statements: Part 2

break Statement
The break statement, when executed in a while, for, do…while or switch, causes imme-
diate exit from that statement. Execution continues with the first statement after the con-
trol statement. Common uses of the break statement are to escape early from a loop or to
skip the remainder of a switch (as in Fig. 5.9). Figure 5.12 demonstrates a break state-
ment exiting a for.

When the if statement nested at lines 11–12 in the for statement (lines 9–15) detects
that count is 5, the break statement at line 12 executes. This terminates the for statement,
and the program proceeds to line 17 (immediately after the for statement), which displays
a message indicating the value of the control variable when the loop terminated. The loop
fully executes its body only four times instead of 10.

continue Statement
The continue statement, when executed in a while, for or do…while, skips the remain-
ing statements in the loop body and proceeds with the next iteration of the loop. In while

and do…while statements, the program evaluates the loop-continuation test immediately
after the continue statement executes. In a for statement, the increment expression exe-
cutes, then the program evaluates the loop-continuation test.

1 // Fig. 5.12: BreakTest.java
2 // break statement exiting a for statement.
3 public class BreakTest
4 {
5 public static void main(String[] args)
6 {
7 int count; // control variable also used after loop terminates
8
9 for (count = 1; count <= 10; count++) // loop 10 times

10 {
11 if (count == 5) // if count is 5,
12
13
14 System.out.printf("%d ", count);
15 } // end for
16
17 System.out.printf("\nBroke out of loop at count = %d\n", count);
18 } // end main
19 } // end class BreakTest

1 2 3 4
Broke out of loop at count = 5

Fig. 5.12 | break statement exiting a for statement.

1 // Fig. 5.13: ContinueTest.java
2 // continue statement terminating an iteration of a for statement.
3 public class ContinueTest
4 {

Fig. 5.13 | continue statement terminating an iteration of a for statement. (Part 1 of 2.)

break; // terminate loop

5.8 Logical Operators 107

Figure 5.13 uses continue to skip the statement at line 12 when the nested if (line
9) determines that count’s value is 5. When the continue statement executes, program
control continues with the increment of the control variable in the for statement (line 7).

In Section 5.3, we stated that while could be used in most cases in place of for. This
is not true when the increment expression in the while follows a continue statement. In
this case, the increment does not execute before the program evaluates the repetition-con-
tinuation condition, so the while does not execute in the same manner as the for.

5.8 Logical Operators
The if, if…else, while, do…while and for statements each require a condition to de-
termine how to continue a program’s flow of control. So far, we’ve studied only simple
conditions, such as count <= 10, number != sentinelValue and total > 1000. Simple con-
ditions are expressed in terms of the relational operators >, <, >= and <= and the equality
operators == and !=, and each expression tests only one condition. To test multiple con-
ditions in the process of making a decision, we performed these tests in separate statements
or in nested if or if…else statements. Sometimes control statements require more com-
plex conditions to determine a program’s flow of control.

Java’s logical operators enable you to form more complex conditions by combining
simple conditions. The logical operators are && (conditional AND), || (conditional OR),
& (boolean logical AND), | (boolean logical inclusive OR), ^ (boolean logical exclusive
OR) and ! (logical NOT). [Note: The &, | and ^ operators are also bitwise operators when
they’re applied to integral operands.]

5 public static void main(String[] args)
6 {
7 for (int count = 1; count <= 10; count++) // loop 10 times
8 {
9 if (count == 5) // if count is 5,

10
11
12 System.out.printf("%d ", count);
13 } // end for
14
15 System.out.println("\nUsed continue to skip printing 5");
16 } // end main
17 } // end class ContinueTest

1 2 3 4 6 7 8 9 10
Used continue to skip printing 5

Software Engineering Observation 5.4
There’s a tension between achieving quality software engineering and achieving the best-
performing software. Sometimes one of these goals is achieved at the expense of the other.
For all but the most performance-intensive situations, apply the following rule of thumb:
First, make your code simple and correct; then make it fast and small, but only if necessary.

Fig. 5.13 | continue statement terminating an iteration of a for statement. (Part 2 of 2.)

continue; // skip remaining code in loop

108 Chapter 5 Control Statements: Part 2

Conditional AND (&&) Operator
Suppose we wish to ensure at some point in a program that two conditions are both true
before we choose a certain path of execution. In this case, we can use the && (conditional
AND) operator, as follows:

This if statement contains two simple conditions. The condition gender == FEMALE com-
pares variable gender to the constant FEMALE to determine whether a person is female. The
condition age >= 65 might be evaluated to determine whether a person is a senior citizen.
The if statement considers the combined condition

which is true if and only if both simple conditions are true. In this case, the if statement’s
body increments seniorFemales by 1. If either or both of the simple conditions are false,
the program skips the increment. Some programmers find that the preceding combined
condition is more readable when redundant parentheses are added, as in:

The table in Fig. 5.14 summarizes the && operator. The table shows all four possible
combinations of false and true values for expression1 and expression2. Such tables are
called truth tables. Java evaluates to false or true all expressions that include relational
operators, equality operators or logical operators.

Conditional OR (||) Operator
Now suppose we wish to ensure that either or both of two conditions are true before we
choose a certain path of execution. In this case, we use the || (conditional OR) operator,
as in the following program segment:

This statement also contains two simple conditions. The condition semesterAverage >=

90 evaluates to determine whether the student deserves an A in the course because of a sol-
id performance throughout the semester. The condition finalExam >= 90 evaluates to de-
termine whether the student deserves an A in the course because of an outstanding
performance on the final exam. The if statement then considers the combined condition

if (gender == FEMALE && age >= 65)
++seniorFemales;

gender == FEMALE && age >= 65

(gender == FEMALE) && (age >= 65)

expression1 expression2 expression1 && expression2

false false false

false true false

true false false

true true true

Fig. 5.14 | && (conditional AND) operator truth table.

if ((semesterAverage >= 90) || (finalExam >= 90))
System.out.println ("Student grade is A");

5.8 Logical Operators 109

and awards the student an A if either or both of the simple conditions are true. The only
time the message "Student grade is A" is not printed is when both of the simple condi-
tions are false. Figure 5.15 is a truth table for operator conditional OR (||). Operator &&
has a higher precedence than operator ||. Both operators associate from left to right.

Short-Circuit Evaluation of Complex Conditions
The parts of an expression containing && or || operators are evaluated only until it’s known
whether the condition is true or false. Thus, evaluation of the expression

stops immediately if gender is not equal to FEMALE (i.e., the entire expression is false) and
continues if gender is equal to FEMALE (i.e., the entire expression could still be true if the
condition age >= 65 is true). This feature of conditional AND and conditional OR ex-
pressions is called short-circuit evaluation.

Boolean Logical AND (&) and Boolean Logical Inclusive OR (|) Operators
The boolean logical AND (&) and boolean logical inclusive OR (|) operators are iden-
tical to the && and || operators, except that the & and | operators always evaluate both of
their operands (i.e., they do not perform short-circuit evaluation). So, the expression

evaluates age >= 65 regardless of whether gender is equal to 1. This is useful if the right
operand of the boolean logical AND or boolean logical inclusive OR operator has a re-
quired side effect—a modification of a variable’s value. For example, the expression

guarantees that the condition ++age >= 65 will be evaluated. Thus, the variable age is in-
cremented, regardless of whether the overall expression is true or false.

(semesterAverage >= 90) || (finalExam >= 90)

expression1 expression2 expression1 || expression2

false false false

false true true

true false true

true true true

Fig. 5.15 | || (conditional OR) operator truth table.

(gender == FEMALE) && (age >= 65)

Common Programming Error 5.3
In expressions using operator &&, a condition—we’ll call this the dependent condition—may
require another condition to be true for the evaluation of the dependent condition to be
meaningful. In this case, the dependent condition should be placed after the other condition,
or an error might occur. For example, in the expression (i != 0) && (10 /i == 2), the second
condition must appear after the first condition, or a divide-by-zero error might occur.

(gender == 1) & (age >= 65)

(birthday == true) | (++age >= 65)

110 Chapter 5 Control Statements: Part 2

Boolean Logical Exclusive OR (^)
A simple condition containing the boolean logical exclusive OR (^) operator is true if
and only if one of its operands is true and the other is false. If both are true or both are
false, the entire condition is false. Figure 5.16 is a truth table for the boolean logical
exclusive OR operator (^). This operator is guaranteed to evaluate both of its operands.

Logical Negation (!) Operator
The ! (logical NOT) operator “reverses” the meaning of a condition. Unlike the logical
operators &&, ||, &, | and ^, which are binary operators that combine two conditions, the
logical negation operator is a unary operator that has only a single condition as an operand.
The operator is placed before a condition to choose a path of execution if the original con-
dition (without the logical negation operator) is false, as in the program segment

which executes the printf call only if grade is not equal to sentinelValue. The paren-
theses around the condition grade == sentinelValue are needed because the logical ne-
gation operator has a higher precedence than the equality operator. You can typically avoid
using logical negation by expressing the condition differently with an appropriate relation-
al or equality operator. For example, the previous statement may also be written as follows:

This flexibility can help you express a condition in a more convenient manner. Figure 5.17
is a truth table for the logical negation operator.

Error-Prevention Tip 5.4
For clarity, avoid expressions with side effects in conditions. The side effects may seem clev-
er, but they can make it harder to understand code and can lead to subtle logic errors.

expression1 expression2 expression1 ^ expression2

false false false

false true true

true false true

true true false

Fig. 5.16 | ^ (boolean logical exclusive OR) operator truth table.

if (! (grade == sentinelValue))
System.out.printf("The next grade is %d\n", grade);

if (grade != sentinelValue)
System.out.printf("The next grade is %d\n", grade);

expression !expression

false true

true false

Fig. 5.17 | ! (logical negation,
or logical NOT) operator truth table.

5.8 Logical Operators 111

Logical Operators Example
Figure 5.18 uses logical operators to produce the truth tables discussed in this section. The
output shows the boolean expression that was evaluated and its result. We used the %b for-
mat specifier to display the word “true” or the word “false” based on a boolean expression’s
value. Lines 9–13 produce the truth table for &&. Lines 16–20 produce the truth table for
||. Lines 23–27 produce the truth table for &. Lines 30–35 produce the truth table for |.
Lines 38–43 produce the truth table for ^. Lines 46–47 produce the truth table for !.

1 // Fig. 5.18: LogicalOperators.java
2 // Logical operators.
3
4 public class LogicalOperators
5 {
6 public static void main(String[] args)
7 {
8 // create truth table for && (conditional AND) operator
9 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",

10 "Conditional AND (&&)", "false && false", ,
11 "false && true", ,
12 "true && false", ,
13 "true && true",);
14
15 // create truth table for || (conditional OR) operator
16 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
17 "Conditional OR (||)", "false || false", ,
18 "false || true", ,
19 "true || false", ,
20 "true || true",);
21
22 // create truth table for & (boolean logical AND) operator
23 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
24 "Boolean logical AND (&)", "false & false", ,
25 "false & true", ,
26 "true & false", ,
27 "true & true",);
28
29 // create truth table for | (boolean logical inclusive OR) operator
30 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
31 "Boolean logical inclusive OR (|)",
32 "false | false", ,
33 "false | true", ,
34 "true | false", ,
35 "true | true",);
36
37 // create truth table for ^ (boolean logical exclusive OR) operator
38 System.out.printf("%s\n%s: %b\n%s: %b\n%s: %b\n%s: %b\n\n",
39 "Boolean logical exclusive OR (^)",
40 "false ^ false", ,
41 "false ^ true", ,
42 "true ^ false", ,
43 "true ^ true",);

Fig. 5.18 | Logical operators. (Part 1 of 2.)

(false && false)
(false && true)
(true && false)
(true && true)

(false || false)
(false || true)
(true || false)
(true || true)

(false & false)
(false & true)
(true & false)

(true & true)

(false | false)
(false | true)
(true | false)

(true | true)

(false ^ false)
(false ^ true)
(true ^ false)

(true ^ true)

112 Chapter 5 Control Statements: Part 2

Figure 5.19 shows the precedence and associativity of the Java operators introduced
so far. The operators are shown from top to bottom in decreasing order of precedence.

44
45 // create truth table for ! (logical negation) operator
46 System.out.printf("%s\n%s: %b\n%s: %b\n", "Logical NOT (!)",
47 "!false", , "!true",);
48 } // end main
49 } // end class LogicalOperators

Conditional AND (&&)
false && false: false
false && true: false
true && false: false
true && true: true

Conditional OR (||)
false || false: false
false || true: true
true || false: true
true || true: true

Boolean logical AND (&)
false & false: false
false & true: false
true & false: false
true & true: true

Boolean logical inclusive OR (|)
false | false: false
false | true: true
true | false: true
true | true: true

Boolean logical exclusive OR (^)
false ^ false: false
false ^ true: true
true ^ false: true
true ^ true: false

Logical NOT (!)
!false: true
!true: false

Operators Associativity Type

++ -- right to left unary postfix

++ -- + - ! (type) right to left unary prefix

* / % left to right multiplicative

+ - left to right additive

Fig. 5.19 | Precedence/associativity of the operators discussed so far. (Part 1 of 2.)

Fig. 5.18 | Logical operators. (Part 2 of 2.)

(!false) (!true)

5.9 Wrap-Up 113

5.9 Wrap-Up
In this chapter, we completed our introduction to Java’s control statements, which enable
you to control the flow of execution in methods. Chapter 4 discussed Java’s if, if…else

and while statements. The current chapter demonstrated the for, do…while and switch

statements. We also introduced Java’s logical operators, which enable you to use more
complex conditional expressions in control statements. In Chapter 6, we examine meth-
ods in greater depth.

< <= > >= left to right relational

== != left to right equality

& left to right boolean logical AND

^ left to right boolean logical exclusive OR

| left to right boolean logical inclusive OR

&& left to right conditional AND

|| left to right conditional OR

?: right to left conditional

= += -= *= /= %= right to left assignment

Operators Associativity Type

Fig. 5.19 | Precedence/associativity of the operators discussed so far. (Part 2 of 2.)

6
Methods:
A Deeper Look

O b j e c t i v e s
In this chapter you’ll learn:

� How static methods and fields are associated with
classes rather than objects.

� How the method call/return mechanism is supported by the
method-call stack.

� How packages group related classes.

� How to use random-number generation to implement
game-playing applications.

� How the visibility of declarations is limited to specific
regions of programs.

� What method overloading is and how to create overloaded
methods.

E pluribus unum.
(One composed of many.)
—Virgil

O! call back yesterday, bid
time return.
—William Shakespeare

Call me Ishmael.
—Herman Melville

Answer me in one word.
—William Shakespeare

There is a point at which
methods devour themselves.
—Frantz Fanon

6.1 Introduction 115

6.1 Introduction
In this chapter, we study methods in more depth. You’ll see that it’s possible to call certain
methods, called static methods, without the need for an object of the class to exist.

We’ll take a brief diversion into simulation techniques with random-number generation
and develop a version of the casino dice game called craps that uses most of the programming
techniques you’ve used to this point in the book. You’ll learn how to declare constants.

Many of the classes you’ll use or create while developing applications will have more
than one method of the same name. This technique, called overloading, is used to imple-
ment methods that perform similar tasks for arguments of different types or for different
numbers of arguments.

6.2 Program Modules in Java
Your programs will combine methods and classes with predefined ones available in the Java
Application Programming Interface (also referred to as the Java API or Java class library)
and in various other class libraries. Related classes are typically grouped into packages so
that they can be imported into programs and reused. You’ll learn how to group your own
classes into packages in Chapter 8. The Java API provides a rich collection of predefined
classes that contain methods for performing common mathematical calculations, string ma-
nipulations, character manipulations, input/output operations, database operations, net-
working operations, file processing, error checking and many other useful tasks.

6.3 static Methods, static Fields and Class Math
Although most methods execute in response to method calls on specific objects, this is not
always the case. Sometimes a method performs a task that does not depend on the contents
of any object. Such a method applies to the class in which it’s declared as a whole and is

6.1 Introduction
6.2 Program Modules in Java
6.3 static Methods, static Fields

and Class Math
6.4 Declaring Methods with Multiple

Parameters
6.5 Notes on Declaring and Using

Methods
6.6 Argument Promotion and Casting
6.7 Java API Packages

6.8 Case Study: Random-Number
Generation

6.8.1 Generalized Scaling and Shifting of
Random Numbers

6.8.2 Random-Number Repeatability for
Testing and Debugging

6.9 Case Study: A Game of Chance;
Introducing Enumerations

6.10 Scope of Declarations
6.11 Method Overloading
6.12 Wrap-Up

Software Engineering Observation 6.1
Familiarize yourself with the rich collection of classes and methods provided by the Java
API (download.oracle.com/javase/6/docs/api/). Section 6.7 presents an overview of
several common packages. Appendix E explains how to navigate the API documentation.
Don’t reinvent the wheel. When possible, reuse Java API classes and methods. This reduces
program development time and avoids introducing programming errors.

116 Chapter 6 Methods: A Deeper Look

known as a static method or a class method. It’s common for classes to contain convenient
static methods to perform common tasks. For example, recall that we used static method
pow of class Math to raise a value to a power in Fig. 5.6. To declare a method as static, place
the keyword static before the return type in the method’s declaration. For any class import-
ed into your program, you can call the class’s static methods by specifying the name of the
class in which the method is declared, followed by a dot (.) and the method name, as in

We use various Math class methods here to present the concept of static methods.
Class Math provides a collection of methods that enable you to perform common mathe-
matical calculations. For example, you can calculate the square root of 900.0 with the
static method call

The preceding expression evaluates to 30.0. Method sqrt takes an argument of type dou-
ble and returns a result of type double. To output the value of the preceding method call
in the command window, you might write the statement

In this statement, the value that sqrt returns becomes the argument to method println.
There was no need to create a Math object before calling method sqrt. Also all Math class
methods are static—therefore, each is called by preceding its name with the class name
Math and the dot (.) separator.

Method arguments may be constants, variables or expressions. If c = 13.0, d = 3.0 and
f = 4.0, then the statement

calculates and prints the square root of 13.0 + 3.0 * 4.0 = 25.0—namely, 5.0. Figure 6.1
summarizes several Math class methods. In the figure, x and y are of type double.

ClassName.methodName(arguments)

Math.sqrt(900.0)

System.out.println(Math.sqrt(900.0));

Software Engineering Observation 6.2
Class Math is part of the java.lang package, which is implicitly imported by the compiler,
so it’s not necessary to import class Math to use its methods.

System.out.println(Math.sqrt(c + d * f));

Method Description Example

abs(x) absolute value of x abs(23.7) is 23.7
abs(0.0) is 0.0
abs(-23.7) is 23.7

ceil(x) rounds x to the smallest integer not
less than x

ceil(9.2) is 10.0
ceil(-9.8) is -9.0

cos(x) trigonometric cosine of x (x in radians) cos(0.0) is 1.0

exp(x) exponential method ex exp(1.0) is 2.71828
exp(2.0) is 7.38906

Fig. 6.1 | Math class methods. (Part 1 of 2.)

6.3 static Methods, static Fields and Class Math 117

Math Class Constants PI and E

Class Math declares two fields that represent commonly used mathematical constants—
Math.PI and Math.E. Math.PI (3.141592653589793) is the ratio of a circle’s circumfer-
ence to its diameter. Math.E (2.718281828459045) is the base value for natural logarithms
(calculated with static Math method log). These fields are declared in class Math with the
modifiers public, final and static. Making them public allows you to use these fields
in your own classes. Any field declared with keyword final is constant—its value cannot
change after the field is initialized. PI and E are declared final because their values never
change. Making these fields static allows them to be accessed via the class name Math and
a dot (.) separator, just like class Math’s methods. Recall from Section 3.4 that when each
object of a class maintains its own copy of an attribute, the field that represents the attri-
bute is also known as an instance variable—each object (instance) of the class has a separate
instance of the variable in memory. There are fields for which each object of a class does
not have a separate instance of the field. That’s the case with static fields, which are also
known as class variables. When objects of a class containing static fields are created, all
the objects of that class share one copy of the class’s static fields. Together the class vari-
ables (i.e., static variables) and instance variables represent the fields of a class. You’ll
learn more about static fields in Section 8.11.

Why Is Method main Declared static?
When you execute the Java Virtual Machine (JVM) with the java command, the JVM
attempts to invoke the main method of the class you specify—when no objects of the class
have been created. Declaring main as static allows the JVM to invoke main without cre-
ating an instance of the class. When you execute your application, you specify its class
name as an argument to the command java, as in

floor(x) rounds x to the largest integer not
greater than x

floor(9.2) is 9.0
floor(-9.8) is -10.0

log(x) natural logarithm of x (base e) log(Math.E) is 1.0
log(Math.E * Math.E) is 2.0

max(x, y) larger value of x and y max(2.3, 12.7) is 12.7
max(-2.3, -12.7) is -2.3

min(x, y) smaller value of x and y min(2.3, 12.7) is 2.3
min(-2.3, -12.7) is -12.7

pow(x, y) x raised to the power y (i.e., xy) pow(2.0, 7.0) is 128.0
pow(9.0, 0.5) is 3.0

sin(x) trigonometric sine of x (x in radians) sin(0.0) is 0.0

sqrt(x) square root of x sqrt(900.0) is 30.0

tan(x) trigonometric tangent of x (x in radians) tan(0.0) is 0.0

java ClassName argument1 argument2 …

Method Description Example

Fig. 6.1 | Math class methods. (Part 2 of 2.)

118 Chapter 6 Methods: A Deeper Look

The JVM loads the class specified by ClassName and uses that class name to invoke method
main. In the preceding command, ClassName is a command-line argument to the JVM
that tells it which class to execute. Following the ClassName, you can also specify a list of
Strings (separated by spaces) as command-line arguments that the JVM will pass to your
application. Such arguments might be used to specify options (e.g., a file name) to run the
application. As you’ll learn in Chapter 7, Arrays and ArrayLists, your application can ac-
cess those command-line arguments and use them to customize the application.

6.4 Declaring Methods with Multiple Parameters
We now consider how to write your own methods with multiple parameters. Figure 6.2
uses a method called maximum to determine and return the largest of three double values. In
main, lines 14–18 prompt the user to enter three double values, then read them from the
user. Line 21 calls method maximum (declared in lines 28–41) to determine the largest of the
three values it receives as arguments. When method maximum returns the result to line 21,
the program assigns maximum’s return value to local variable result. Then line 24 outputs
the maximum value. At the end of this section, we’ll discuss the use of operator + in line 24.

1 // Fig. 6.2: MaximumFinder.java
2 // Programmer-declared method maximum with three double parameters.
3 import java.util.Scanner;
4
5 public class MaximumFinder
6 {
7 // obtain three floating-point values and locate the maximum value
8 public static void main(String[] args)
9 {

10 // create Scanner for input from command window
11 Scanner input = new Scanner(System.in);
12
13 // prompt for and input three floating-point values
14 System.out.print(
15 "Enter three floating-point values separated by spaces: ");
16 double number1 = input.nextDouble(); // read first double
17 double number2 = input.nextDouble(); // read second double
18 double number3 = input.nextDouble(); // read third double
19
20 // determine the maximum value
21
22
23 // display maximum value
24 System.out.println();
25 } // end main
26
27
28
29
30
31

Fig. 6.2 | Programmer-declared method maximum with three double parameters. (Part 1 of 2.)

double result = maximum(number1, number2, number3);

"Maximum is: " + result

// returns the maximum of its three double parameters
public static double maximum(double x, double y, double z)
{

double maximumValue = x; // assume x is the largest to start

6.4 Declaring Methods with Multiple Parameters 119

The public and static Keywords
Method maximum’s declaration begins with keyword public to indicate that the method is
“available to the public”—it can be called from methods of other classes. The keyword
static enables the main method (another static method) to call maximum as shown in
line 21 without qualifying the method name with the class name MaximumFinder—static

methods in the same class can call each other directly. Any other class that uses maximum
must fully qualify the method name with the class name.

Method maximum

Consider maximum’s declaration (lines 28–41). Line 28 indicates that it returns a double

value, that the method’s name is maximum and that the method requires three double pa-
rameters (x, y and z) to accomplish its task. Multiple parameters are specified as a comma-
separated list. When maximum is called from line 21, the parameters x, y and z are initial-
ized with the values of arguments number1, number2 and number3, respectively. There
must be one argument in the method call for each parameter in the method declaration.
Also, each argument must be consistent with the type of the corresponding parameter. For
example, a parameter of type double can receive values like 7.35, 22 or –0.03456, but not
Strings like "hello" nor the boolean values true or false. Section 6.6 discusses the ar-
gument types that can be provided in a method call for each parameter of a primitive type.

To determine the maximum value, we begin with the assumption that parameter x

contains the largest value, so line 30 declares local variable maximumValue and initializes it
with the value of parameter x. Of course, it’s possible that parameter y or z contains the
actual largest value, so we must compare each of these values with maximumValue. The if

32
33
34
35
36
37
38
39
40
41
42 } // end class MaximumFinder

Enter three floating-point values separated by spaces: 9.35 2.74 5.1
Maximum is: 9.35

Enter three floating-point values separated by spaces: 5.8 12.45 8.32
Maximum is: 12.45

Enter three floating-point values separated by spaces: 6.46 4.12 10.54
Maximum is: 10.54

Fig. 6.2 | Programmer-declared method maximum with three double parameters. (Part 2 of 2.)

// determine whether y is greater than maximumValue
if (y > maximumValue)

maximumValue = y;

// determine whether z is greater than maximumValue
if (z > maximumValue)

maximumValue = z;

return maximumValue;
} // end method maximum

120 Chapter 6 Methods: A Deeper Look

statement at lines 33–34 determines whether y is greater than maximumValue. If so, line 34
assigns y to maximumValue. The if statement at lines 37–38 determines whether z is
greater than maximumValue. If so, line 38 assigns z to maximumValue. At this point the
largest of the three values resides in maximumValue, so line 40 returns that value to line 21.
When program control returns to the point in the program where maximum was called,
maximum’s parameters x, y and z no longer exist in memory.

Implementing Method maximum by Reusing Method Math.max

The entire body of our maximum method could also be implemented with two calls to
Math.max, as follows:

The first call to Math.max specifies arguments x and Math.max(y, z). Before any method
can be called, its arguments must be evaluated to determine their values. If an argument is
a method call, the method call must be performed to determine its return value. So, in the
preceding statement, Math.max(y, z) is evaluated to determine the maximum of y and
z. Then the result is passed as the second argument to the other call to Math.max, which
returns the larger of its two arguments. This is a good example of software reuse—we find
the largest of three values by reusing Math.max, which finds the larger of two values. Note
how concise this code is compared to lines 30–38 of Fig. 6.2.

Assembling Strings with String Concatenation
Java allows you to assemble String objects into larger strings by using operators + or +=.
This is known as string concatenation. When both operands of operator + are String ob-
jects, operator + creates a new String object in which the characters of the right operand
are placed at the end of those in the left operand—e.g., the expression "hello " + "there"

creates the String "hello there".
In line 24 of Fig. 6.2, the expression "Maximum is: " + result uses operator + with

operands of types String and double. Every primitive value and object in Java has a String

representation. When one of the + operator’s operands is a String, the other is converted
to a String, then the two are concatenated. In line 24, the double value is converted to its
String representation and placed at the end of the String "Maximum is: ". If there are any
trailing zeros in a double value, these will be discarded when the number is converted to a
String—for example 9.3500 would be represented as 9.35.

Primitive values used in String concatenation are converted to Strings. A boolean

concatenated with a String is converted to the String "true" or "false". All objects
have a toString method that returns a String representation of the object. (We discuss
toString in more detail in subsequent chapters.) When an object is concatenated with a

Software Engineering Observation 6.3
Methods can return at most one value, but the returned value could be a reference to an
object that contains many values.

Software Engineering Observation 6.4
Variables should be declared as fields only if they’re required for use in more than one
method of the class or if the program should save their values between calls to the class’s
methods.

return Math.max(x, Math.max(y, z));

6.5 Notes on Declaring and Using Methods 121

String, the object’s toString method is implicitly called to obtain the String represen-
tation of the object. ToString can be called explicitly.

You can break large String literals into several smaller Strings and place them on
multiple lines of code for readability. In this case, the Strings can be reassembled using
concatenation. We discuss the details of Strings in Chapter 16.

6.5 Notes on Declaring and Using Methods
There are three ways to call a method:

1. Using a method name by itself to call another method of the same class—such as
maximum(number1, number2, number3) in line 21 of Fig. 6.2.

2. Using a variable that contains a reference to an object, followed by a dot (.) and
the method name to call a non-static method of the referenced object—such as
the method call in line 13 of Fig. 5.10, myGradeBook.displayMessage(), which
calls a method of class GradeBook from the main method of GradeBookTest.

3. Using the class name and a dot (.) to call a static method of a class—such as
Math.sqrt(900.0) in Section 6.3.

A static method can call only other static methods of the same class directly (i.e.,
using the method name by itself) and can manipulate only static variables in the same
class directly. To access the class’s non-static members, a static method must use a ref-
erence to an object of the class. Recall that static methods relate to a class as a whole,
whereas non-static methods are associated with a specific instance (object) of the class
and may manipulate the instance variables of that object. Many objects of a class, each
with its own copies of the instance variables, may exist at the same time. Suppose a static
method were to invoke a non-static method directly. How would the method know
which object’s instance variables to manipulate? What would happen if no objects of the
class existed at the time the non-static method was invoked? Thus, Java does not allow
a static method to access non-static members of the same class directly.

There are three ways to return control to the statement that calls a method. If the
method does not return a result, control returns when the program flow reaches the
method-ending right brace or when the statement

is executed. If the method returns a result, the statement

Common Programming Error 6.1
It’s a syntax error to break a String literal across lines. If necessary, you can split a String

into several smaller Strings and use concatenation to form the desired String.

Common Programming Error 6.2
Confusing the + operator used for string concatenation with the + operator used for addi-
tion can lead to strange results. Java evaluates the operands of an operator from left to
right. For example, if integer variable y has the value 5, the expression "y + 2 = " + y + 2

results in the string "y + 2 = 52", not "y + 2 = 7", because first the value of y (5) is con-
catenated to the string "y + 2 = ", then the value 2 is concatenated to the new larger string
"y + 2 = 5". The expression "y + 2 = " + (y + 2) produces the desired result "y + 2 = 7".

return;

122 Chapter 6 Methods: A Deeper Look

evaluates the expression, then returns the result to the caller.

6.6 Argument Promotion and Casting
Another important feature of method calls is argument promotion—converting an argu-
ment’s value, if possible, to the type that the method expects to receive in its corresponding
parameter. For example, a program can call Math method sqrt with an int argument even
though a double argument is expected. The statement

correctly evaluates Math.sqrt(4) and prints the value 2.0. The method declaration’s param-
eter list causes Java to convert the int value 4 to the double value 4.0 before passing the value
to method sqrt. Such conversions may lead to compilation errors if Java’s promotion rules
are not satisfied. These rules specify which conversions are allowed—that is, which ones can
be performed without losing data. In the sqrt example above, an int is converted to a dou-
ble without changing its value. However, converting a double to an int truncates the frac-
tional part of the double value—thus, part of the value is lost. Converting large integer types
to small integer types (e.g., long to int, or int to short) may also result in changed values.

The promotion rules apply to expressions containing values of two or more primitive
types and to primitive-type values passed as arguments to methods. Each value is pro-
moted to the “highest” type in the expression. Actually, the expression uses a temporary
copy of each value—the types of the original values remain unchanged. Figure 6.3 lists the
primitive types and the types to which each can be promoted. The valid promotions for a
given type are always to a type higher in the table. For example, an int can be promoted
to the higher types long, float and double.

Converting values to types lower in the table of Fig. 6.3 will result in different values
if the lower type cannot represent the value of the higher type (e.g., the int value 2000000
cannot be represented as a short, and any floating-point number with digits after its
decimal point cannot be represented in an integer type such as long, int or short). There-
fore, in cases where information may be lost due to conversion, the Java compiler requires
you to use a cast operator (introduced in Section 4.7) to explicitly force the conversion to
occur—otherwise a compilation error occurs. This enables you to “take control” from the

return expression;

Common Programming Error 6.3
Declaring a method outside the body of a class declaration or inside the body of another
method is a syntax error.

Common Programming Error 6.4
Redeclaring a parameter as a local variable in the method’s body is a compilation error.

Common Programming Error 6.5
Forgetting to return a value from a method that should return a value is a compilation
error. If a return type other than void is specified, the method must contain a return

statement that returns a value consistent with the method’s return type. Returning a value
from a method whose return type has been declared void is a compilation error.

System.out.println(Math.sqrt(4));

6.7 Java API Packages 123

compiler. You essentially say, “I know this conversion might cause loss of information, but
for my purposes here, that’s fine.” Suppose method square calculates the square of an
integer and thus requires an int argument. To call square with a double argument named
doubleValue, we would be required to write the method call as

This method call explicitly casts (converts) a copy of variable doubleValue’s value to an in-
teger for use in method square. Thus, if doubleValue’s value is 4.5, the method receives
the value 4 and returns 16, not 20.25.

6.7 Java API Packages
As you’ve seen, Java contains many predefined classes that are grouped into categories of
related classes called packages. Together, these are known as the Java Application Pro-
gramming Interface (Java API), or the Java class library. A great strength of Java is the Java
API’s thousands of classes. Some key Java API packages are described in Fig. 6.4, which
represents only a small portion of the reusable components in the Java API.

The set of packages available in Java SE is quite large. In addition to those summarized
in Fig. 6.4, Java SE includes packages for complex graphics, advanced graphical user inter-
faces, printing, advanced networking, security, database processing, multimedia, accessi-
bility (for people with disabilities), concurrent programming, cryptography, XML
processing and many other capabilities. For an overview of the packages in Java SE, visit

Many other packages are also available for download at java.sun.com.
You can locate additional information about a predefined Java class’s methods in the

Java API documentation at download.oracle.com/javase/6/docs/api/. When you visit
this site, click the Index link to see an alphabetical listing of all the classes and methods in

Type Valid promotions

double None

float double

long float or double

int long, float or double

char int, long, float or double

short int, long, float or double (but not char)

byte short, int, long, float or double (but not char)

boolean None (boolean values are not considered to be numbers in Java)

Fig. 6.3 | Promotions allowed for primitive types.

square((int) doubleValue)

Common Programming Error 6.6
Converting a primitive-type value to another primitive type may change the value if the
new type is not a valid promotion. For example, converting a floating-point value to an
integer value may introduce truncation errors (loss of the fractional part) into the result.

download.oracle.com/javase/6/docs/api/overview-summary.html

124 Chapter 6 Methods: A Deeper Look

the Java API. Locate the class name and click its link to see the online description of the
class. Click the METHOD link to see a table of the class’s methods. Each static method
will be listed with the word “static” preceding its return type.

Package Description

java.applet The Java Applet Package contains a class and several interfaces required
to create Java applets—programs that execute in web browsers. Applets
are discussed in Chapter 20, Applets and Java Web Start; interfaces are
discussed in Chapter 10, Object-Oriented Programming: Polymor-
phism.)

java.awt The Java Abstract Window Toolkit Package contains the classes and
interfaces required to create and manipulate GUIs in early versions of
Java. In current versions, the Swing GUI components of the javax.swing
packages are typically used instead. (Some elements of the java.awt pack-
age are discussed in Chapter 14, GUI Components: Part 1; Chapter 15,
Graphics and Java 2D; and Chapter 22, GUI Components: Part 2.)

java.awt.event The Java Abstract Window Toolkit Event Package contains classes and
interfaces that enable event handling for GUI components in both the
java.awt and javax.swing packages. (See Chapter 14, GUI Compo-
nents: Part 1, and Chapter 22, GUI Components: Part 2.)

java.awt.geom The Java 2D Shapes Package contains classes and interfaces for work-
ing with Java’s advanced two-dimensional graphics capabilities. (See
Chapter 15, Graphics and Java 2D.)

java.io The Java Input/Output Package contains classes and interfaces that
enable programs to input and output data. (See Chapter 17, Files,
Streams and Object Serialization.)

java.lang The Java Language Package contains classes and interfaces (discussed
bookwide) that are required by many Java programs. This package is
imported by the compiler into all programs.

java.net The Java Networking Package contains classes and interfaces that
enable programs to communicate via computer networks like the Inter-
net. (See Chapter 24, Networking.)

java.sql The JDBC Package contains classes and interfaces for working with
databases. (See Chapter 25, Accessing Databases with JDBC.)

java.util The Java Utilities Package contains utility classes and interfaces that
enable such actions as date and time manipulations, random-number
processing (class Random) and the storing and processing of large
amounts of data. (See Chapter 18, Generic Collections.)

java.util.

concurrent

The Java Concurrency Package contains utility classes and interfaces
for implementing programs that can perform multiple tasks in parallel.
(See Chapter 23, Multithreading.)

javax.media The Java Media Framework Package contains classes and interfaces for
working with Java’s multimedia capabilities. (See Chapter 21, Multime-
dia: Applets and Applications.)

Fig. 6.4 | Java API packages (a subset). (Part 1 of 2.)

6.8 Case Study: Random-Number Generation 125

6.8 Case Study: Random-Number Generation
We now take a brief diversion into a popular type of programming application—simula-
tion and game playing. In this and the next section, we develop a nicely structured game-
playing program with multiple methods. The program uses most of the control statements
presented thus far in the book and introduces several new programming concepts.

There’s something in the air of a casino that invigorates people—from the high rollers
at the plush mahogany-and-felt craps tables to the quarter poppers at the one-armed ban-
dits. It’s the element of chance, the possibility that luck will convert a pocketful of money
into a mountain of wealth. The element of chance can be introduced in a program via an
object of class Random (package java.util) or via the static method random of class Math.
Objects of class Random can produce random boolean, byte, float, double, int, long and
Gaussian values, whereas Math method random can produce only double values in the
range 0.0 ≤x < 1.0, where x is the value returned by method random. In the next several
examples, we use objects of class Random to produce random values.

A new random-number generator object can be created as follows:

It can then be used to generate random boolean, byte, float, double, int, long and
Gaussian values—we discuss only random int values here. For more information on the
Random class, see download.oracle.com/javase/6/docs/api/java/util/Random.html.

Consider the following statement:

Random method nextInt generates a random int value in the range –2,147,483,648 to
+2,147,483,647, inclusive. If it truly produces values at random, then every value in the
range should have an equal chance (or probability) of being chosen each time nextInt is
called. The numbers are actually pseudorandom numbers—a sequence of values pro-
duced by a complex mathematical calculation. The calculation uses the current time of day
(which, of course, changes constantly) to seed the random-number generator such that
each execution of a program yields a different sequence of random values.

javax.swing The Java Swing GUI Components Package contains classes and inter-
faces for Java’s Swing GUI components that provide support for porta-
ble GUIs. (See Chapter 14, GUI Components: Part 1, and Chapter 22,
GUI Components: Part 2.)

javax.swing.event The Java Swing Event Package contains classes and interfaces that
enable event handling (e.g., responding to button clicks) for GUI com-
ponents in package javax.swing. (See Chapter 14, GUI Components:
Part 1, and Chapter 22, GUI Components: Part 2.)

javax.xml.ws The JAX-WS Package contains classes and interfaces for working with
web services in Java. (See Chapter 28, Web Services.)

Random randomNumbers = new Random();

int randomValue = randomNumbers.nextInt();

Package Description

Fig. 6.4 | Java API packages (a subset). (Part 2 of 2.)

126 Chapter 6 Methods: A Deeper Look

The range of values produced directly by method nextInt generally differs from the
range of values required in a particular Java application. For example, a program that sim-
ulates coin tossing might require only 0 for “heads” and 1 for “tails.” A program that sim-
ulates the rolling of a six-sided die might require random integers in the range 1–6. A
program that randomly predicts the next type of spaceship (out of four possibilities) that
will fly across the horizon in a video game might require random integers in the range 1–
4. For cases like these, class Random provides another version of method nextInt that
receives an int argument and returns a value from 0 up to, but not including, the argu-
ment’s value. For example, for coin tossing, the following statement returns 0 or 1.

Rolling a Six-Sided Die
To demonstrate random numbers, let’s develop a program that simulates 20 rolls of a six-
sided die and displays the value of each roll. We begin by using nextInt to produce ran-
dom values in the range 0–5, as follows:

The argument 6—called the scaling factor—represents the number of unique values that
nextInt should produce (in this case six—0, 1, 2, 3, 4 and 5). This manipulation is called
scaling the range of values produced by Random method nextInt.

A six-sided die has the numbers 1–6 on its faces, not 0–5. So we shift the range of
numbers produced by adding a shifting value—in this case 1—to our previous result, as in

The shifting value (1) specifies the first value in the desired range of random integers. The
preceding statement assigns face a random integer in the range 1–6.

Figure 6.5 shows two sample outputs which confirm that the results of the preceding
calculation are integers in the range 1–6, and that each run of the program can produce a
different sequence of random numbers. Line 3 imports class Random from the java.util

package. Line 9 creates the Random object randomNumbers to produce random values. Line
16 executes 20 times in a loop to roll the die. The if statement (lines 21–22) in the loop
starts a new line of output after every five numbers.

int randomValue = randomNumbers.nextInt(2);

face = randomNumbers.nextInt(6);

face = 1 + randomNumbers.nextInt(6);

1 // Fig. 6.5: RandomIntegers.java
2 // Shifted and scaled random integers.
3
4
5 public class RandomIntegers
6 {
7 public static void main(String[] args)
8 {
9

10 int face; // stores each random integer generated
11
12 // loop 20 times
13 for (int counter = 1; counter <= 20; counter++)
14 {

Fig. 6.5 | Shifted and scaled random integers. (Part 1 of 2.)

import java.util.Random; // program uses class Random

Random randomNumbers = new Random(); // random number generator

6.8 Case Study: Random-Number Generation 127

Rolling a Six-Sided Die 6,000,000 Times
To show that the numbers produced by nextInt occur with approximately equal likeli-
hood, let’s simulate 6,000,000 rolls of a die with the application in Fig. 6.6. Each integer
from 1 to 6 should appear approximately 1,000,000 times.

15
16
17
18 System.out.printf("%d ", face); // display generated value
19
20 // if counter is divisible by 5, start a new line of output
21 if (counter % 5 == 0)
22 System.out.println();
23 } // end for
24 } // end main
25 } // end class RandomIntegers

1 5 3 6 2
5 2 6 5 2
4 4 4 2 6
3 1 6 2 2

6 5 4 2 6
1 2 5 1 3
6 3 2 2 1
6 4 2 6 4

1 // Fig. 6.6: RollDie.java
2 // Roll a six-sided die 6,000,000 times.
3 import java.util.Random;
4
5 public class RollDie
6 {
7 public static void main(String[] args)
8 {
9 Random randomNumbers = new Random(); // random number generator

10
11 int frequency1 = 0; // maintains count of 1s rolled
12 int frequency2 = 0; // count of 2s rolled
13 int frequency3 = 0; // count of 3s rolled
14 int frequency4 = 0; // count of 4s rolled
15 int frequency5 = 0; // count of 5s rolled
16 int frequency6 = 0; // count of 6s rolled
17
18 int face; // most recently rolled value
19

Fig. 6.6 | Roll a six-sided die 6,000,000 times. (Part 1 of 2.)

Fig. 6.5 | Shifted and scaled random integers. (Part 2 of 2.)

// pick random integer from 1 to 6
face = 1 + randomNumbers.nextInt(6);

128 Chapter 6 Methods: A Deeper Look

20 // tally counts for 6,000,000 rolls of a die
21 for (int roll = 1; roll <= 6000000; roll++)
22 {
23
24
25 // determine roll value 1-6 and increment appropriate counter
26 switch ()
27 {
28 case 1:
29 ++frequency1; // increment the 1s counter
30 break;
31 case 2:
32 ++frequency2; // increment the 2s counter
33 break;
34 case 3:
35 ++frequency3; // increment the 3s counter
36 break;
37 case 4:
38 ++frequency4; // increment the 4s counter
39 break;
40 case 5:
41 ++frequency5; // increment the 5s counter
42 break;
43 case 6:
44 ++frequency6; // increment the 6s counter
45 break; // optional at end of switch
46 } // end switch
47 } // end for
48
49 System.out.println("Face\tFrequency"); // output headers
50 System.out.printf("1\t%d\n2\t%d\n3\t%d\n4\t%d\n5\t%d\n6\t%d\n",
51 frequency1, frequency2, frequency3, frequency4,
52 frequency5, frequency6);
53 } // end main
54 } // end class RollDie

Face Frequency
1 999501
2 1000412
3 998262
4 1000820
5 1002245
6 998760

Face Frequency
1 999647
2 999557
3 999571
4 1000376
5 1000701
6 1000148

Fig. 6.6 | Roll a six-sided die 6,000,000 times. (Part 2 of 2.)

face = 1 + randomNumbers.nextInt(6); // number from 1 to 6

face

6.8 Case Study: Random-Number Generation 129

As the sample outputs show, scaling and shifting the values produced by nextInt

enables the program to simulate rolling a six-sided die. The application uses nested control
statements (the switch is nested inside the for) to determine the number of times each
side of the die appears. The for statement (lines 21–47) iterates 6,000,000 times. During
each iteration, line 23 produces a random value from 1 to 6. That value is then used as the
controlling expression (line 26) of the switch statement (lines 26–46). Based on the face
value, the switch statement increments one of the six counter variables during each itera-
tion of the loop. When we study arrays in Chapter 7, we’ll show an elegant way to replace
the entire switch statement in this program with a single statement! This switch state-
ment has no default case, because we have a case for every possible die value that the
expression in line 23 could produce. Run the program, and observe the results. As you’ll
see, every time you run this program, it produces different results.

6.8.1 Generalized Scaling and Shifting of Random Numbers
Previously, we simulated the rolling of a six-sided die with the statement

This statement always assigns to variable face an integer in the range 1 ≤ face ≤ 6. The
width of this range (i.e., the number of consecutive integers in the range) is 6, and the start-
ing number in the range is 1. In the preceding statement, the width of the range is deter-
mined by the number 6 that’s passed as an argument to Random method nextInt, and the
starting number of the range is the number 1 that’s added to randomNumberGenera-

tor.nextInt(6). We can generalize this result as

where shiftingValue specifies the first number in the desired range of consecutive integers
and scalingFactor specifies how many numbers are in the range.

It’s also possible to choose integers at random from sets of values other than ranges of
consecutive integers. For example, to obtain a random value from the sequence 2, 5, 8, 11
and 14, you could use the statement

In this case, randomNumberGenerator.nextInt(5) produces values in the range 0–4. Each
value produced is multiplied by 3 to produce a number in the sequence 0, 3, 6, 9 and 12.
We add 2 to that value to shift the range of values and obtain a value from the sequence
2, 5, 8, 11 and 14. We can generalize this result as

where shiftingValue specifies the first number in the desired range of values, difference-
BetweenValues represents the constant difference between consecutive numbers in the se-
quence and scalingFactor specifies how many numbers are in the range.

6.8.2 Random-Number Repeatability for Testing and Debugging
Class Random’s methods actually generate pseudorandom numbers based on complex
mathematical calculations—the sequence of numbers appears to be random. The calcula-
tion that produces the numbers uses the time of day as a seed value to change the se-

face = 1 + randomNumbers.nextInt(6);

number = shiftingValue + randomNumbers.nextInt(scalingFactor);

number = 2 + 3 * randomNumbers.nextInt(5);

number = shiftingValue +
differenceBetweenValues * randomNumbers.nextInt(scalingFactor);

130 Chapter 6 Methods: A Deeper Look

quence’s starting point. Each new Random object seeds itself with a value based on the
computer system’s clock at the time the object is created, enabling each execution of a pro-
gram to produce a different sequence of random numbers.

When debugging an application, it’s often useful to repeat the exact same sequence of
pseudorandom numbers during each execution of the program. This repeatability enables
you to prove that your application is working for a specific sequence of random numbers
before you test it with different sequences of random numbers. When repeatability is
important, you can create a Random object as follows:

The seedValue argument (of type long) seeds the random-number calculation. If the
same seedValue is used every time, the Random object produces the same sequence of num-
bers. You can set a Random object’s seed at any time during program execution by calling
the object’s set method, as in

6.9 Case Study: A Game of Chance; Introducing
Enumerations
A popular game of chance is a dice game known as craps, which is played in casinos and
back alleys throughout the world. The rules of the game are straightforward:

You roll two dice. Each die has six faces, which contain one, two, three, four, five and
six spots, respectively. After the dice have come to rest, the sum of the spots on the two
upward faces is calculated. If the sum is 7 or 11 on the first throw, you win. If the sum
is 2, 3 or 12 on the first throw (called “craps”), you lose (i.e., the “house” wins). If the
sum is 4, 5, 6, 8, 9 or 10 on the first throw, that sum becomes your “point.” To win,
you must continue rolling the dice until you “make your point” (i.e., roll that same
point value). You lose by rolling a 7 before making your point.

Figure 6.7 simulates the game of craps, using methods to implement the game’s logic. The
main method (lines 21–65) calls the rollDice method (lines 68–81) as necessary to roll
the dice and compute their sum. The sample outputs show winning and losing on the first
roll, and winning and losing on a subsequent roll.

Random randomNumbers = new Random(seedValue);

randomNumbers.set(seedValue);

Error-Prevention Tip 6.1
While developing a program, create the Random object with a specific seed value to produce
a repeatable sequence of numbers each time the program executes. If a logic error occurs,
fix the error and test the program again with the same seed value—this allows you to re-
construct the same sequence of numbers that caused the error. Once the logic errors have
been removed, create the Random object without using a seed value, causing the Random

object to generate a new sequence of random numbers each time the program executes.

1 // Fig. 6.7: Craps.java
2 // Craps class simulates the dice game craps.
3 import java.util.Random;

Fig. 6.7 | Craps class simulates the dice game craps. (Part 1 of 3.)

6.9 Case Study: A Game of Chance; Introducing Enumerations 131

4
5 public class Craps
6 {
7 // create random number generator for use in method rollDice
8 private static final Random randomNumbers = new Random();
9

10
11
12
13 // constants that represent common rolls of the dice
14
15
16
17
18
19
20 // plays one game of craps
21 public static void main(String[] args)
22 {
23 int myPoint = 0; // point if no win or loss on first roll
24
25
26
27
28 // determine game status and point based on first roll
29 switch (sumOfDice)
30 {
31
32
33
34 break;
35
36
37
38
39 break;
40
41
42
43 System.out.printf("Point is %d\n", myPoint);
44 break; // optional at end of switch
45 } // end switch
46
47 // while game is not complete
48 while () // not WON or LOST
49 {
50
51
52 // determine game status
53 if (sumOfDice == myPoint) // win by making point
54 ;

Fig. 6.7 | Craps class simulates the dice game craps. (Part 2 of 3.)

// enumeration with constants that represent the game status
private enum Status { CONTINUE, WON, LOST };

private static final int SNAKE_EYES = 2;
private static final int TREY = 3;
private static final int SEVEN = 7;
private static final int YO_LEVEN = 11;
private static final int BOX_CARS = 12;

Status gameStatus; // can contain CONTINUE, WON or LOST

int sumOfDice = rollDice(); // first roll of the dice

case SEVEN: // win with 7 on first roll
case YO_LEVEN: // win with 11 on first roll

gameStatus = Status.WON;

case SNAKE_EYES: // lose with 2 on first roll
case TREY: // lose with 3 on first roll
case BOX_CARS: // lose with 12 on first roll

gameStatus = Status.LOST;

default: // did not win or lose, so remember point
gameStatus = Status.CONTINUE; // game is not over
myPoint = sumOfDice; // remember the point

gameStatus == Status.CONTINUE

sumOfDice = rollDice(); // roll dice again

gameStatus = Status.WON

132 Chapter 6 Methods: A Deeper Look

55 else

56 if (sumOfDice == SEVEN) // lose by rolling 7 before point
57
58 } // end while
59
60 // display won or lost message
61 if ()
62 System.out.println("Player wins");
63 else

64 System.out.println("Player loses");
65 } // end main
66
67 // roll dice, calculate sum and display results
68
69 {
70 // pick random die values
71 int die1 = 1 + randomNumbers.nextInt(6); // first die roll
72 int die2 = 1 + randomNumbers.nextInt(6); // second die roll
73
74 int sum = die1 + die2; // sum of die values
75
76 // display results of this roll
77 System.out.printf("Player rolled %d + %d = %d\n",
78 die1, die2, sum);
79
80
81 } // end method rollDice
82 } // end class Craps

Player rolled 5 + 6 = 11
Player wins

Player rolled 5 + 4 = 9
Point is 9
Player rolled 4 + 2 = 6
Player rolled 3 + 6 = 9
Player wins

Player rolled 1 + 2 = 3
Player loses

Player rolled 2 + 6 = 8
Point is 8
Player rolled 5 + 1 = 6
Player rolled 2 + 1 = 3
Player rolled 1 + 6 = 7
Player loses

Fig. 6.7 | Craps class simulates the dice game craps. (Part 3 of 3.)

gameStatus = Status.LOST;

gameStatus == Status.WON

public static int rollDice()

return sum; // return sum of dice

6.9 Case Study: A Game of Chance; Introducing Enumerations 133

Method rollDice

In the rules of the game, the player must roll two dice on the first roll and must do the
same on all subsequent rolls. We declare method rollDice (Fig. 6.7, lines 68–81) to roll
the dice and compute and print their sum. Method rollDice is declared once, but it’s
called from two places (lines 26 and 50) in main, which contains the logic for one complete
game of craps. Method rollDice takes no arguments, so it has an empty parameter list.
Each time it’s called, rollDice returns the sum of the dice, so the return type int is indi-
cated in the method header (line 68). Although lines 71 and 72 look the same (except for
the die names), they do not necessarily produce the same result. Each of these statements
produces a random value in the range 1–6. Variable randomNumbers (used in lines 71–72)
is not declared in the method. Instead it’s declared as a private static final variable of
the class and initialized in line 8. This enables us to create one Random object that’s reused
in each call to rollDice. If there were a program that contained multiple instances of class
Craps, they’d all share this one Random object.

Method main’s Local Variables
The game is reasonably involved. The player may win or lose on the first roll, or may win
or lose on any subsequent roll. Method main (lines 21–65) uses local variable myPoint (line
23) to store the “point” if the player does not win or lose on the first roll, local variable
gameStatus (line 24) to keep track of the overall game status and local variable sumOfDice
(line 26) to hold the sum of the dice for the most recent roll. Variable myPoint is initialized
to 0 to ensure that the application will compile. If you do not initialize myPoint, the com-
piler issues an error, because myPoint is not assigned a value in every case of the switch

statement, and thus the program could try to use myPoint before it’s assigned a value. By
contrast, gameStatus is assigned a value in every case of the switch statement—thus, it’s
guaranteed to be initialized before it’s used and does not need to be initialized.

enum Type Status
Local variable gameStatus (line 24) is declared to be of a new type called Status (declared
at line 11). Type Status is a private member of class Craps, because Status will be used
only in that class. Status is a type called an enumeration, which, in its simplest form, de-
clares a set of constants represented by identifiers. An enumeration is a special kind of class
that’s introduced by the keyword enum and a type name (in this case, Status). As with
classes, braces delimit an enum declaration’s body. Inside the braces is a comma-separated
list of enumeration constants, each representing a unique value. The identifiers in an enum

must be unique. You’ll learn more about enumerations in Chapter 8.

Variables of type Status can be assigned only the three constants declared in the enu-
meration (line 11) or a compilation error will occur. When the game is won, the program
sets local variable gameStatus to Status.WON (lines 33 and 54). When the game is lost, the
program sets local variable gameStatus to Status.LOST (lines 38 and 57). Otherwise, the
program sets local variable gameStatus to Status.CONTINUE (line 41) to indicate that the
game is not over and the dice must be rolled again.

Good Programming Practice 6.1
By convention, we use only uppercase letters in the names of enumeration constants. This
makes them stand out and reminds you that they’re not variables.

134 Chapter 6 Methods: A Deeper Look

Logic of the main Method
Line 26 in main calls rollDice, which picks two random values from 1 to 6, displays the
values of the first die, the second die and their sum, and returns the sum. Method main

next enters the switch statement (lines 29–45), which uses the sumOfDice value from line
26 to determine whether the game has been won or lost, or should continue with another
roll. The values that result in a win or loss on the first roll are declared as public static

final int constants in lines 14–18. The identifier names use casino parlance for these
sums. These constants, like enum constants, are declared by convention with all capital let-
ters, to make them stand out in the program. Lines 31–34 determine whether the player
won on the first roll with SEVEN (7) or YO_LEVEN (11). Lines 35–39 determine whether the
player lost on the first roll with SNAKE_EYES (2), TREY (3), or BOX_CARS (12). After the first
roll, if the game is not over, the default case (lines 40–44) sets gameStatus to Sta-

tus.CONTINUE, saves sumOfDice in myPoint and displays the point.
If we’re still trying to “make our point” (i.e., the game is continuing from a prior roll),

lines 48–58 execute. Line 50 rolls the dice again. If sumOfDice matches myPoint (line 53),
line 54 sets gameStatus to Status.WON, then the loop terminates because the game is com-
plete. If sumOfDice is SEVEN (line 56), line 57 sets gameStatus to Status.LOST, and the
loop terminates because the game is complete. When the game completes, lines 61–64 dis-
play a message indicating whether the player won or lost, and the program terminates.

The program uses the various program-control mechanisms we’ve discussed. The
Craps class uses two methods—main and rollDice (called twice from main)—and the
switch, while, if…else and nested if control statements. Note also the use of multiple
case labels in the switch statement to execute the same statements for sums of SEVEN and
YO_LEVEN (lines 31–32) and for sums of SNAKE_EYES, TREY and BOX_CARS (lines 35–37).

Why Some Constants Are Not Defined as enum Constants
You might be wondering why we declared the sums of the dice as public final static

int constants rather than as enum constants. The reason is that the program must compare
the int variable sumOfDice (line 26) to these constants to determine the outcome of each
roll. Suppose we declared enum Sum containing constants (e.g., Sum.SNAKE_EYES) repre-
senting the five sums used in the game, then used these constants in the switch statement
(lines 29–45). Doing so would prevent us from using sumOfDice as the switch statement’s
controlling expression, because Java does not allow an int to be compared to an enumeration
constant. To achieve the same functionality as the current program, we would have to use
a variable currentSum of type Sum as the switch’s controlling expression. Unfortunately,
Java does not provide an easy way to convert an int value to a particular enum constant.
This could be done with a separate switch statement. Clearly this would be cumbersome
and not improve the program’s readability (thus defeating the purpose of using an enum).

6.10 Scope of Declarations
You’ve seen declarations of various Java entities, such as classes, methods, variables and pa-
rameters. Declarations introduce names that can be used to refer to such Java entities. The

Good Programming Practice 6.2
Using enumeration constants (like Status.WON, Status.LOST and Status.CONTINUE)
rather than literal values (such as 0, 1 and 2) makes programs easier to read and maintain.

6.10 Scope of Declarations 135

scope of a declaration is the portion of the program that can refer to the declared entity by
its name. Such an entity is said to be “in scope” for that portion of the program. This sec-
tion introduces several important scope issues.

The basic scope rules are as follows:

1. The scope of a parameter declaration is the body of the method in which the dec-
laration appears.

2. The scope of a local-variable declaration is from the point at which the declara-
tion appears to the end of that block.

3. The scope of a local-variable declaration that appears in the initialization section
of a for statement’s header is the body of the for statement and the other expres-
sions in the header.

4. A method or field’s scope is the entire body of the class. This enables non-static
methods of a class to use the fields and other methods of the class.

Any block may contain variable declarations. If a local variable or parameter in a
method has the same name as a field of the class, the field is “hidden” until the block ter-
minates execution—this is called shadowing. In Chapter 8, we discuss how to access shad-
owed fields.

Figure 6.8 demonstrates scoping issues with fields and local variables. Line 7 declares
and initializes the field x to 1. This field is shadowed (hidden) in any block (or method)
that declares a local variable named x. Method main (lines 11–23) declares a local variable
x (line 13) and initializes it to 5. This local variable’s value is output to show that the field
x (whose value is 1) is shadowed in main. The program declares two other methods—use-

LocalVariable (lines 26–35) and useField (lines 38–45)—that each take no arguments
and return no results. Method main calls each method twice (lines 17–20). Method use-

LocalVariable declares local variable x (line 28). When useLocalVariable is first called
(line 17), it creates local variable x and initializes it to 25 (line 28), outputs the value of x
(lines 30–31), increments x (line 32) and outputs the value of x again (lines 33–34). When
uselLocalVariable is called a second time (line 19), it recreates local variable x and re-
initializes it to 25, so the output of each useLocalVariable call is identical.

Error-Prevention Tip 6.2
Use different names for fields and local variables to help prevent subtle logic errors that
occur when a method is called and a local variable of the method shadows a field in the
class.

1 // Fig. 6.8: Scope.java
2 // Scope class demonstrates field and local variable scopes.
3
4 public class Scope
5 {
6
7
8

Fig. 6.8 | Scope class demonstrates field and local variable scopes. (Part 1 of 2.)

// field that is accessible to all methods of this class
private static int x = 1;

136 Chapter 6 Methods: A Deeper Look

9 // method main creates and initializes local variable x
10 // and calls methods useLocalVariable and useField
11 public static void main(String[] args)
12 {
13
14
15 System.out.printf("local x in main is %d\n", x);
16
17 useLocalVariable(); // useLocalVariable has local x
18 useField(); // useField uses class Scope's field x
19 useLocalVariable(); // useLocalVariable reinitializes local x
20 useField(); // class Scope's field x retains its value
21
22 System.out.printf("\nlocal x in main is %d\n", x);
23 } // end main
24
25 // create and initialize local variable x during each call
26 public static void useLocalVariable()
27 {
28
29
30 System.out.printf(
31 "\nlocal x on entering method useLocalVariable is %d\n", x);
32
33 System.out.printf(
34 "local x before exiting method useLocalVariable is %d\n", x);
35 } // end method useLocalVariable
36
37 // modify class Scope's field x during each call
38 public static void useField()
39 {
40 System.out.printf(
41 "\nfield x on entering method useField is %d\n", x);
42
43 System.out.printf(
44 "field x before exiting method useField is %d\n", x);
45 } // end method useField
46 } // end class Scope

local x in main is 5

local x on entering method useLocalVariable is 25
local x before exiting method useLocalVariable is 26

field x on entering method useField is 1
field x before exiting method useField is 10

local x on entering method useLocalVariable is 25
local x before exiting method useLocalVariable is 26

field x on entering method useField is 10
field x before exiting method useField is 100

local x in main is 5

Fig. 6.8 | Scope class demonstrates field and local variable scopes. (Part 2 of 2.)

int x = 5; // method's local variable x shadows field x

int x = 25; // initialized each time useLocalVariable is called

++x; // modifies this method's local variable x

x *= 10; // modifies class Scope's field x

6.11 Method Overloading 137

Method useField does not declare any local variables. Therefore, when it refers to x,
field x (line 7) of the class is used. When method useField is first called (line 18), it out-
puts the value (1) of field x (lines 40–41), multiplies the field x by 10 (line 42) and outputs
the value (10) of field x again (lines 43–44) before returning. The next time method use-

Field is called (line 20), the field has its modified value (10), so the method outputs 10,
then 100. Finally, in method main, the program outputs the value of local variable x again
(line 22) to show that none of the method calls modified main’s local variable x, because
the methods all referred to variables named x in other scopes.

6.11 Method Overloading
Methods of the same name can be declared in the same class, as long as they have different
sets of parameters (determined by the number, types and order of the parameters)—this
is called method overloading. When an overloaded method is called, the compiler selects
the appropriate method by examining the number, types and order of the arguments in
the call. Method overloading is commonly used to create several methods with the same
name that perform the same or similar tasks, but on different types or different numbers
of arguments. For example, Math methods abs, min and max (summarized in Section 6.3)
are overloaded with four versions each:

1. One with two double parameters.

2. One with two float parameters.

3. One with two int parameters.

4. One with two long parameters.

Our next example demonstrates declaring and invoking overloaded methods. We demon-
strate overloaded constructors in Chapter 8.

Declaring Overloaded Methods
Class MethodOverload (Fig. 6.9) includes two overloaded versions of method square—one
that calculates the square of an int (and returns an int) and one that calculates the square
of a double (and returns a double). Although these methods have the same name and sim-
ilar parameter lists and bodies, think of them simply as different methods. It may help to
think of the method names as “square of int” and “square of double,” respectively.

1 // Fig. 6.9: MethodOverload.java
2 // Overloaded method declarations.
3
4 public class MethodOverload
5 {
6 // test overloaded square methods
7 public static void main(String[] args)
8 {
9 System.out.printf("Square of integer 7 is %d\n",);

10 System.out.printf("Square of double 7.5 is %f\n",);
11 } // end main
12

Fig. 6.9 | Overloaded method declarations. (Part 1 of 2.)

square(7)
square(7.5)

138 Chapter 6 Methods: A Deeper Look

Line 9 invokes method square with the argument 7. Literal integer values are treated
as type int, so the method call in line 9 invokes the version of square at lines 14–19 that
specifies an int parameter. Similarly, line 10 invokes method square with the argument
7.5. Literal floating-point values are treated as type double, so the method call in line 10
invokes the version of square at lines 22–27 that specifies a double parameter. Each
method first outputs a line of text to prove that the proper method was called in each case.
The values in lines 10 and 24 are displayed with the format specifier %f. We did not specify
a precision in either case. By default, floating-point values are displayed with six digits of
precision if the precision is not specified in the format specifier.

Distinguishing Between Overloaded Methods
The compiler distinguishes overloaded methods by their signature—a combination of the
method’s name and the number, types and order of its parameters. If the compiler looked
only at method names during compilation, the code in Fig. 6.9 would be ambiguous—the
compiler would not know how to distinguish between the two square methods (lines 14–
19 and 22–27). Internally, the compiler uses longer method names that include the orig-
inal method name, the types of each parameter and the exact order of the parameters to
determine whether the methods in a class are unique in that class.

For example, in Fig. 6.9, the compiler might use the logical name “square of int” for
the square method that specifies an int parameter and “square of double” for the square
method that specifies a double parameter (the actual names the compiler uses are messier).
If method1’s declaration begins as

13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28 } // end class MethodOverload

Called square with int argument: 7
Square of integer 7 is 49

Called square with double argument: 7.500000
Square of double 7.5 is 56.250000

void method1(int a, float b)

Fig. 6.9 | Overloaded method declarations. (Part 2 of 2.)

// square method with int argument
public static int square(int intValue)
{

System.out.printf("\nCalled square with int argument: %d\n",
intValue);

return intValue * intValue;
} // end method square with int argument

// square method with double argument
public static double square(double doubleValue)
{

System.out.printf("\nCalled square with double argument: %f\n",
doubleValue);

return doubleValue * doubleValue;
} // end method square with double argument

6.12 Wrap-Up 139

then the compiler might use the logical name “method1 of int and float.” If the param-
eters are specified as

then the compiler might use the logical name “method1 of float and int.” The order of
the parameter types is important—the compiler considers the preceding two method1

headers to be distinct.

Return Types of Overloaded Methods
In discussing the logical names of methods used by the compiler, we did not mention the
return types of the methods. Method calls cannot be distinguished by return type. If you had
overloaded methods that differed only by their return types and you called one of the
methods in a standalone statement as in:

the compiler would not be able to determine the version of the method to call, because the
return value is ignored. When two methods have the same signature and different return
types, the compiler issues an error message indicating that the method is already defined in
the class. Overloaded methods can have different return types if the methods have different
parameter lists. Also, overloaded methods need not have the same number of parameters.

6.12 Wrap-Up
In this chapter, you learned more about method declarations. You also learned the differ-
ence between non-static and static methods and how to call static methods by pre-
ceding the method name with the name of the class in which it appears and the dot (.)
separator. You learned how to use operators + and += to perform string concatenations.
We also discussed Java’s promotion rules for converting implicitly between primitive types
and how to perform explicit conversions with cast operators. Next, you learned about
some of the commonly used packages in the Java API.

You saw how to declare named constants using both enum types and public static

final variables. You used class Random to generate random numbers for simulations. You
learned about the scope of fields and local variables in a class. Finally, you learned that
multiple methods in one class can be overloaded by providing methods with the same
name and different signatures. Such methods can be used to perform the same or similar
tasks using different types or different numbers of parameters.

In Chapter 7, we discuss how to maintain lists and tables of data in arrays. You’ll see
a more elegant implementation of the die-rolling application and two enhanced versions
of our GradeBook case study that you studied in Chapters 3–5. You’ll also learn how to
access an application’s command-line arguments that are passed to method main when an
application begins execution.

void method1(float a, int b)

square(2);

Common Programming Error 6.7
Declaring overloaded methods with identical parameter lists is a compilation error re-
gardless of whether the return types are different.

7
Arrays and ArrayLists

O b j e c t i v e s
In this chapter you’ll learn:

� To use arrays to store data in and retrieve data from lists and
tables of values.

� To declare arrays, initialize arrays and refer to individual
elements of arrays.

� To iterate through arrays with the enhanced for statement.

� To pass arrays to methods.

� To declare and manipulate multidimensional arrays.

� To use variable-length argument lists.

� To read command-line arguments into a program.

� To perform common array manipulations with the methods
of class Arrays.

� To use class ArrayList to manipulate a dynamically
resizable array-like data structure.

Begin at the beginning, …
and go on till you come to
the end: then stop.
—Lewis Carroll

Now go, write it before
them in a table, and note it
in a book.
—Isaiah 30:8

To go beyond is as wrong as
to fall short.
—Confucius

7.1 Introduction 141

7.1 Introduction
Arrays are data structures consisting of related data items of the same type. Arrays make it
convenient to process related groups of values. Arrays remain the same length once they’re
created, although an array variable may be reassigned such that it refers to a new array of
a different length.

After discussing how arrays are declared, created and initialized, we present practical
examples that demonstrate common array manipulations. We introduce Java’s exception-
handling mechanism and use it to allow a program to continue executing when the pro-
gram attempts to access an array element that does not exist. We also present a case study
that examines how arrays can help simulate the shuffling and dealing of playing cards in a
card-game application. We introduce Java’s enhanced for statement, which allows a pro-
gram to access the data in an array more easily than does the counter-controlled for state-
ment presented in Section 5.3. We enhance the GradeBook case study from Chapters 3–
5. In particular, we use arrays to enable the class to maintain a set of grades in memory and
analyze student grades from multiple exams. We show how to use variable-length argu-
ment lists to create methods that can be called with varying numbers of arguments, and
we demonstrate how to process command-line arguments in method main. Next, we
present some common array manipulations with static methods of class Arrays from the
java.util package.

Although commonly used, arrays have limited capabilities. For instance, you must
specify an array’s size, and if at execution time you wish to modify that size, you must do
so manually by creating a new array. At the end of this chapter, we introduce one of Java’s
prebuilt data structures from the Java API’s collection classes. These offer greater capabil-
ities than traditional arrays. They’re reusable, reliable, powerful and efficient. We focus on
the ArrayList collection. ArrayLists are similar to arrays but provide additional func-
tionality, such as dynamic resizing—they automatically increase their size at execution
time to accommodate additional elements.

7.2 Arrays
An array is a group of variables (called elements or components) containing values that all
have the same type. Arrays are objects, so they’re considered reference types. As you’ll soon

7.1 Introduction
7.2 Arrays
7.3 Declaring and Creating Arrays
7.4 Examples Using Arrays
7.5 Case Study: Card Shuffling and

Dealing Simulation
7.6 Enhanced for Statement
7.7 Passing Arrays to Methods
7.8 Case Study: Class GradeBookUsing

an Array to Store Grades
7.9 Multidimensional Arrays

7.10 Case Study: Class GradeBookUsing
a Two-Dimensional Array

7.11 Variable-Length Argument Lists
7.12 Using Command-Line Arguments
7.13 Class Arrays
7.14 Introduction to Collections and Class

ArrayList

7.15 Wrap-Up

142 Chapter 7 Arrays and ArrayLists

see, what we typically think of as an array is actually a reference to an array object in mem-
ory. The elements of an array can be either primitive types or reference types (including
arrays, as we’ll see in Section 7.9). To refer to a particular element in an array, we specify
the name of the reference to the array and the position number of the element in the array.
The position number of the element is called the element’s index or subscript.

Figure 7.1 shows a logical representation of an integer array called c. This array con-
tains 12 elements. A program refers to any one of these elements with an array-access
expression that includes the name of the array followed by the index of the particular ele-
ment in square brackets ([]). The first element in every array has index zero and is some-
times called the zeroth element. Thus, the elements of array c are c[0], c[1], c[2] and so
on. The highest index in array c is 11, which is 1 less than 12—the number of elements
in the array. Array names follow the same conventions as other variable names.

An index must be a nonnegative integer. A program can use an expression as an index.
For example, if we assume that variable a is 5 and variable b is 6, then the statement

adds 2 to array element c[11]. An indexed array name is an array-access expression, which
can be used on the left side of an assignment to place a new value into an array element.

Let’s examine array c in Fig. 7.1 more closely. The name of the array is c. Every array
object knows its own length and stores it in a length instance variable. The expression
c.length accesses array c’s length field to determine the length of the array. Even though
the length instance variable of an array is public, it cannot be changed because it’s a
final variable. This array’s 12 elements are referred to as c[0], c[1], c[2], …, c[11]. The
value of c[0] is -45, the value of c[1] is 6, the value of c[2] is 0, the value of c[7] is 62

Fig. 7.1 | A 12-element array.

c[a + b] += 2;

Common Programming Error 7.1
An index must be an int value or a value of a type that can be promoted to int—namely,
byte, short or char, but not long; otherwise, a compilation error occurs.

-45

62

-3

1

6453

78

0

-89

1543

72

0

6

c[0]
Name of array (c)

Index (or subscript) of the

c[7]

c[8]

c[9]

c[10]

c[11]

c[6]

c[5]

c[4]

c[3]

c[2]

c[1]

element in array c

7.3 Declaring and Creating Arrays 143

and the value of c[11] is 78. To calculate the sum of the values contained in the first three
elements of array c and store the result in variable sum, we would write

To divide the value of c[6] by 2 and assign the result to the variable x, we would write

7.3 Declaring and Creating Arrays
Array objects occupy space in memory. Like other objects, arrays are created with keyword
new. To create an array object, you specify the type of the array elements and the number
of elements as part of an array-creation expression that uses keyword new. Such an expres-
sion returns a reference that can be stored in an array variable. The following declaration
and array-creation expression create an array object containing 12 int elements and store
the array’s reference in array variable c:

This expression can be used to create the array shown in Fig. 7.1. When an array is created,
each element of the array receives a default value—zero for the numeric primitive-type el-
ements, false for boolean elements and null for references. As you’ll soon see, you can
provide nondefault initial element values when you create an array.

Creating the array in Fig. 7.1 can also be performed in two steps as follows:

In the declaration, the square brackets following the type indicate that c is a variable that
will refer to an array (i.e., the variable will store an array reference). In the assignment state-
ment, the array variable c receives the reference to a new array of 12 int elements.

A program can create several arrays in a single declaration. The following declaration
reserves 100 elements for b and 27 elements for x:

When the type of the array and the square brackets are combined at the beginning of the
declaration, all the identifiers in the declaration are array variables. In this case, variables b
and x refer to String arrays. For readability, we prefer to declare only one variable per dec-
laration. The preceding declaration is equivalent to:

When only one variable is declared in each declaration, the square brackets can be
placed either after the type or after the array variable name, as in:

sum = c[0] + c[1] + c[2];

x = c[6] / 2;

int[] c = new int[12];

int[] c; // declare the array variable
c = new int[12]; // create the array; assign to array variable

Common Programming Error 7.2
In an array declaration, specifying the number of elements in the square brackets of the
declaration (e.g., int[12] c;) is a syntax error.

String[] b = new String[100], x = new String[27];

String[] b = new String[100]; // create array b
String[] x = new String[27]; // create array x

String b[] = new String[100]; // create array b
String x[] = new String[27]; // create array x

144 Chapter 7 Arrays and ArrayLists

A program can declare arrays of any type. Every element of a primitive-type array con-
tains a value of the array’s declared element type. Similarly, in an array of a reference type,
every element is a reference to an object of the array’s declared element type. For example,
every element of an int array is an int value, and every element of a String array is a ref-
erence to a String object.

7.4 Examples Using Arrays
This section presents several examples that demonstrate declaring arrays, creating arrays,
initializing arrays and manipulating array elements.

Creating and Initializing an Array
The application of Fig. 7.2 uses keyword new to create an array of 10 int elements, which
are initially zero (the default for int variables). Line 8 declares array—a reference capable
of referring to an array of int elements. Line 10 creates the array object and assigns its ref-
erence to variable array. Line 12 outputs the column headings. The first column contains
the index (0–9) of each array element, and the second column contains the default value
(0) of each array element.

The for statement in lines 15–16 outputs the index number (represented by counter)
and the value of each array element (represented by array[counter]). The loop-control
variable counter is initially 0—index values start at 0, so using zero-based counting allows

Common Programming Error 7.3
Declaring multiple array variables in a single declaration can lead to subtle errors. Consider
the declaration int[] a, b, c;. If a, b and c should be declared as array variables, then this
declaration is correct—placing square brackets directly following the type indicates that all
the identifiers in the declaration are array variables. However, if only a is intended to be an
array variable, and b and c are intended to be individual int variables, then this declara-
tion is incorrect—the declaration int a[], b, c; would achieve the desired result.

1 // Fig. 7.2: InitArray.java
2 // Initializing the elements of an array to default values of zero.
3
4 public class InitArray
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12 System.out.printf("%s%8s\n", "Index", "Value"); // column headings
13
14
15
16
17 } // end main
18 } // end class InitArray

Fig. 7.2 | Initializing the elements of an array to default values of zero. (Part 1 of 2.)

int[] array; // declare array named array

array = new int[10]; // create the array object

// output each array element's value
for (int counter = 0; counter < array.length; counter++)

System.out.printf("%5d%8d\n", counter, array[counter]);

7.4 Examples Using Arrays 145

the loop to access every element of the array. The for’s loop-continuation condition uses
the expression array.length (line 15) to determine the length of the array. In this
example, the length of the array is 10, so the loop continues executing as long as the value
of control variable counter is less than 10. The highest index value of a 10-element array
is 9, so using the less-than operator in the loop-continuation condition guarantees that the
loop does not attempt to access an element beyond the end of the array (i.e., during the
final iteration of the loop, counter is 9). We’ll soon see what Java does when it encounters
such an out-of-range index at execution time.

Using an Array Initializer
You can create an array and initialize its elements with an array initializer—a comma-sep-
arated list of expressions (called an initializer list) enclosed in braces. In this case, the array
length is determined by the number of elements in the initializer list. For example,

creates a five-element array with index values 0–4. Element n[0] is initialized to 10, n[1]
is initialized to 20, and so on. When the compiler encounters an array declaration that in-
cludes an initializer list, it counts the number of initializers in the list to determine the size
of the array, then sets up the appropriate new operation “behind the scenes.”

The application in Fig. 7.3 initializes an integer array with 10 values (line 9) and dis-
plays the array in tabular format. The code for displaying the array elements (lines 14–15)
is identical to that in Fig. 7.2 (lines 15–16).

Index Value
0 0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0

int[] n = { 10, 20, 30, 40, 50 };

1 // Fig. 7.3: InitArray.java
2 // Initializing the elements of an array with an array initializer.
3
4 public class InitArray
5 {
6 public static void main(String[] args)
7 {
8
9

10
11 System.out.printf("%s%8s\n", "Index", "Value"); // column headings

Fig. 7.3 | Initializing the elements of an array with an array initializer. (Part 1 of 2.)

Fig. 7.2 | Initializing the elements of an array to default values of zero. (Part 2 of 2.)

// initializer list specifies the value for each element
int[] array = { 32, 27, 64, 18, 95, 14, 90, 70, 60, 37 };

146 Chapter 7 Arrays and ArrayLists

Calculating the Values to Store in an Array
The application in Fig. 7.4 creates a 10-element array and assigns to each element one of
the even integers from 2 to 20 (2, 4, 6, …, 20). Then the application displays the array in
tabular format. The for statement at lines 12–13 calculates an array element’s value by
multiplying the current value of the control variable counter by 2, then adding 2.

Line 8 uses the modifier final to declare the constant variable ARRAY_LENGTH with the
value 10. Constant variables must be initialized before they’re used and cannot be modi-
fied thereafter. If you attempt to modify a final variable after it’s initialized in its declara-
tion, the compiler issues an error message like

If an attempt is made to access the value of a final variable before it’s initialized, the
compiler issues an error message like

12
13 // output each array element's value
14 for (int counter = 0; counter < array.length; counter++)
15 System.out.printf("%5d%8d\n", counter, array[counter]);
16 } // end main
17 } // end class InitArray

Index Value
0 32
1 27
2 64
3 18
4 95
5 14
6 90
7 70
8 60
9 37

cannot assign a value to final variable variableName

variable variableName might not have been initialized

Good Programming Practice 7.1
Constant variables also are called named constants. They often make programs more
readable than programs that use literal values (e.g., 10)—a named constant such as
ARRAY_LENGTH clearly indicates its purpose, whereas a literal value could have different
meanings based on its context.

1 // Fig. 7.4: InitArray.java
2 // Calculating the values to be placed into the elements of an array.
3
4 public class InitArray
5 {

Fig. 7.4 | Calculating the values to be placed into the elements of an array. (Part 1 of 2.)

Fig. 7.3 | Initializing the elements of an array with an array initializer. (Part 2 of 2.)

7.4 Examples Using Arrays 147

Summing the Elements of an Array
Often, an array’s elements represent a series of values to be used in a calculation. Figure 7.5
sums the values contained in a 10-element integer array. The program declares, creates and
initializes the array at line 8. The for statement performs the calculations.

6 public static void main(String[] args)
7 {
8
9

10
11 // calculate value for each array element
12 for (int counter = 0; counter < array.length; counter++)
13
14
15 System.out.printf("%s%8s\n", "Index", "Value"); // column headings
16
17 // output each array element's value
18 for (int counter = 0; counter < array.length; counter++)
19 System.out.printf("%5d%8d\n", counter, array[counter]);
20 } // end main
21 } // end class InitArray

Index Value
0 2
1 4
2 6
3 8
4 10
5 12
6 14
7 16
8 18
9 20

1 // Fig. 7.5: SumArray.java
2 // Computing the sum of the elements of an array.
3
4 public class SumArray
5 {
6 public static void main(String[] args)
7 {
8 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
9 int total = 0;

10
11
12
13
14

Fig. 7.5 | Computing the sum of the elements of an array. (Part 1 of 2.)

Fig. 7.4 | Calculating the values to be placed into the elements of an array. (Part 2 of 2.)

final int ARRAY_LENGTH = 10; // declare constant
int[] array = new int[ARRAY_LENGTH]; // create array

array[counter] = 2 + 2 * counter;

// add each element's value to total
for (int counter = 0; counter < array.length; counter++)

total += array[counter];

148 Chapter 7 Arrays and ArrayLists

Using Bar Charts to Display Array Data Graphically
Many programs present data to users in a graphical manner. For example, numeric values
are often displayed as bars in a bar chart. In such a chart, longer bars represent proportion-
ally larger numeric values. One simple way to display numeric data graphically is with a
bar chart that shows each numeric value as a bar of asterisks (*).

Professors often like to examine the distribution of grades on an exam. A professor
might graph the number of grades in each of several categories to visualize the grade dis-
tribution. Suppose the grades on an exam were 87, 68, 94, 100, 83, 78, 85, 91, 76 and 87.
They include one grade of 100, two grades in the 90s, four grades in the 80s, two grades
in the 70s, one grade in the 60s and no grades below 60. Our next application (Fig. 7.6)
stores this grade distribution data in an array of 11 elements, each corresponding to a cat-
egory of grades. For example, array[0] indicates the number of grades in the range 0–9,
array[7] the number of grades in the range 70–79 and array[10] the number of 100
grades. The GradeBook classes later in the chapter (Figs. 7.14 and 7.18) contain code that
calculates these grade frequencies based on a set of grades. For now, we manually create
the array with the given grade frequencies.

15 System.out.printf("Total of array elements: %d\n", total);
16 } // end main
17 } // end class SumArray

Total of array elements: 849

1 // Fig. 7.6: BarChart.java
2 // Bar chart printing program.
3
4 public class BarChart
5 {
6 public static void main(String[] args)
7 {
8 int[] array = { 0, 0, 0, 0, 0, 0, 1, 2, 4, 2, 1 };
9

10 System.out.println("Grade distribution:");
11
12 // for each array element, output a bar of the chart
13 for (int counter = 0; counter < array.length; counter++)
14 {
15 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
16 if (counter == 10)
17 System.out.printf("%5d: ", 100);
18 else

19 System.out.printf("%02d-%02d: ",
20 counter * 10, counter * 10 + 9);
21

Fig. 7.6 | Bar chart printing program. (Part 1 of 2.)

Fig. 7.5 | Computing the sum of the elements of an array. (Part 2 of 2.)

7.4 Examples Using Arrays 149

The application reads the numbers from the array and graphs the information as a bar
chart. It displays each grade range followed by a bar of asterisks indicating the number of
grades in that range. To label each bar, lines 16–20 output a grade range (e.g., "70-79: ")
based on the current value of counter. When counter is 10, line 17 outputs 100 with a
field width of 5, followed by a colon and a space, to align the label "100: " with the other
bar labels. The nested for statement (lines 23–24) outputs the bars. Note the loop-con-
tinuation condition at line 23 (stars < array[counter]). Each time the program reaches
the inner for, the loop counts from 0 up to array[counter], thus using a value in array

to determine the number of asterisks to display. In this example, no students received a
grade below 60, so array[0]–array[5] contain zeroes, and no asterisks are displayed next
to the first six grade ranges. In line 19, the format specifier %02d indicates that an int value
should be formatted as a field of two digits. The 0 flag in the format specifier displays a
leading 0 for values with fewer digits than the field width (2).

Using the Elements of an Array as Counters
Sometimes, programs use counter variables to summarize data, such as the results of a sur-
vey. In Fig. 6.6, we used separate counters in our die-rolling program to track the number
of occurrences of each side of a six-sided die as the program rolled the die 6,000,000 times.
An array version of this application is shown in Fig. 7.7.

22
23
24
25
26 System.out.println(); // start a new line of output
27 } // end outer for
28 } // end main
29 } // end class BarChart

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **

100: *

1 // Fig. 7.7: RollDie.java
2 // Die-rolling program using arrays instead of switch.
3 import java.util.Random;
4

Fig. 7.7 | Die-rolling program using arrays instead of switch. (Part 1 of 2.)

Fig. 7.6 | Bar chart printing program. (Part 2 of 2.)

// print bar of asterisks
for (int stars = 0; stars < array[counter]; stars++)

System.out.print("*");

150 Chapter 7 Arrays and ArrayLists

Figure 7.7 uses the array frequency (line 10) to count the occurrences of each side of
the die. The single statement in line 14 of this program replaces lines 23–46 of Fig. 6.6. Line
14 uses the random value to determine which frequency element to increment during
each iteration of the loop. The calculation in line 14 produces random numbers from 1 to
6, so the array frequency must be large enough to store six counters. However, we use a
seven-element array in which we ignore frequency[0]—it’s more logical to have the face
value 1 increment frequency[1] than frequency[0]. Thus, each face value is used as an
index for array frequency. In line 14, the calculation inside the square brackets evaluates
first to determine which element of the array to increment, then the ++ operator adds one
to that element. We also replaced lines 50–52 from Fig. 6.6 by looping through array fre-

quency to output the results (lines 19–20).

Using Arrays to Analyze Survey Results
Our next example uses arrays to summarize data collected in a survey. Consider the fol-
lowing problem statement:

Twenty students were asked to rate on a scale of 1 to 5 the quality of the food in the
student cafeteria, with 1 being “awful” and 5 being “excellent.” Place the 20 responses
in an integer array and determine the frequency of each rating.

This is a typical array-processing application (Fig. 7.8). We wish to summarize the number
of responses of each type (that is, 1–5). Array responses (lines 9–10) is a 20-element integer
array containing the students’ survey responses. The last value in the array is intentionally an

5 public class RollDie
6 {
7 public static void main(String[] args)
8 {
9 Random randomNumbers = new Random(); // random number generator

10 int[] frequency = new int[7]; // array of frequency counters
11
12 // roll die 6,000,000 times; use die value as frequency index
13 for (int roll = 1; roll <= 6000000; roll++)
14
15
16 System.out.printf("%s%10s\n", "Face", "Frequency");
17
18 // output each array element's value
19 for (int face = 1; face < frequency.length; face++)
20 System.out.printf("%4d%10d\n", face, frequency[face]);
21 } // end main
22 } // end class RollDie

Face Frequency
1 999690
2 999512
3 1000575
4 999815
5 999781
6 1000627

Fig. 7.7 | Die-rolling program using arrays instead of switch. (Part 2 of 2.)

++frequency[1 + randomNumbers.nextInt(6)];

7.4 Examples Using Arrays 151

incorrect response (14). When a Java program executes, array element indices are checked for
validity—all indices must be greater than or equal to 0 and less than the array’s length. Any
attempt to access an element outside that range results in a runtime error that’s known as an
ArrayIndexOutOfBoundsException. At the end of this section, we’ll discuss the invalid re-
sponse value, demonstrate array bounds checking and introduce Java’s exception-handling
mechanism, which can be used to detect and handle an ArrayIndexOutOfBoundsException.

1 // Fig. 7.8: StudentPoll.java
2 // Poll analysis program.
3
4 public class StudentPoll
5 {
6 public static void main(String[] args)
7 {
8 // student response array (more typically, input at runtime)
9 int[] responses = { 1, 2, 5, 4, 3, 5, 2, 1, 3, 3, 1, 4, 3, 3, 3,

10 2, 3, 3, 2, 14 };
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29 System.out.printf("%s%10s\n", "Rating", "Frequency");
30
31 // output each array element's value
32 for (int rating = 1; rating < frequency.length; rating++)
33 System.out.printf("%6d%10d\n", rating, frequency[rating]);
34 } // end main
35 } // end class StudentPoll

java.lang.ArrayIndexOutOfBoundsException: 14
responses[19] = 14

Rating Frequency
1 3
2 4
3 8
4 2
5 2

Fig. 7.8 | Poll analysis program.

int[] frequency = new int[6]; // array of frequency counters

// for each answer, select responses element and use that value
// as frequency index to determine element to increment
for (int answer = 0; answer < responses.length; answer++)
{

try

{
++frequency[responses[answer]];

} // end try
catch (ArrayIndexOutOfBoundsException e)
{

System.out.println(e);
System.out.printf(" responses[%d] = %d\n\n",

answer, responses[answer]);
} // end catch

} // end for

152 Chapter 7 Arrays and ArrayLists

The frequency Array
We use the six-element array frequency (line 11) to count the number of occurrences of
each response. Each element is used as a counter for one of the possible types of survey
responses—frequency[1] counts the number of students who rated the food as 1, fre-
quency[2] counts the number of students who rated the food as 2, and so on.

Summarizing the Results
The for statement (lines 15–27) reads the responses from the array responses one at a
time and increments one of the counters frequency[1] to frequency[5]; we ignore fre-
quency[0] because the survey responses are limited to the range 1–5. The key statement
in the loop appears in line 19. This statement increments the appropriate frequency coun-
ter as determined by the value of responses[answer].

Let’s step through the first few iterations of the for statement:

• When the counter answer is 0, responses[answer] is the value of responses[0]
(that is, 1—see line 9). In this case, frequency[responses[answer]] is interpret-
ed as frequency[1], and the counter frequency[1] is incremented by one. To
evaluate the expression, we begin with the value in the innermost set of brackets
(answer, currently 0). The value of answer is plugged into the expression, and the
next set of brackets (responses[answer]) is evaluated. That value is used as the
index for the frequency array to determine which counter to increment (in this
case, frequency[1]).

• The next time through the loop answer is 1, responses[answer] is the value of
responses[1] (that is, 2—see line 9), so frequency[responses[answer]] is in-
terpreted as frequency[2], causing frequency[2] to be incremented.

• When answer is 2, responses[answer] is the value of responses[2] (that is, 5—
see line 9), so frequency[responses[answer]] is interpreted as frequency[5],
causing frequency[5] to be incremented, and so on.

Regardless of the number of responses processed in the survey, only a six-element array (in
which we ignore element zero) is required to summarize the results, because all the correct
response values are between 1 and 5, and the index values for a six-element array are 0–5.
In the program’s output, the Frequency column summarizes only 19 of the 20 values in
the responses array—the last element of the array responses contains an incorrect re-
sponse that was not counted.

Exception Handling: Processing the Incorrect Response
An exception indicates a problem that occurs while a program executes. The name “excep-
tion” suggests that the problem occurs infrequently—if the “rule” is that a statement nor-
mally executes correctly, then the problem represents the “exception to the rule.” Exception
handling (introduced here and explained in detail in Chapter 11) enables you to create
fault-tolerant programs that can resolve (or handle) exceptions. In many cases, this allows
a program to continue executing as if no problems were encountered. For example, the Stu-
dentPoll application still displays results (Fig. 7.8), even though one of the responses was
out of range. More severe problems might prevent a program from continuing normal ex-
ecution, instead requiring the program to notify the user of the problem, then terminate.
When the JVM or a method detects a problem, such as an invalid array index or an invalid
method argument, it throws an exception—that is, an exception occurs.

7.5 Case Study: Card Shuffling and Dealing Simulation 153

The try Statement
To handle an exception, place any code that might throw an exception in a try statement
(lines 17–26). The try block (lines 17–20) contains the code that might throw an excep-
tion, and the catch block (lines 21–26) contains the code that handles the exception if one
occurs. You can have many catch blocks to handle different types of exceptions that might
be thrown in the corresponding try block. When line 19 correctly increments an element
of the frequency array, lines 21–26 are ignored. The braces that delimit the bodies of the
try and catch blocks are required.

Executing the catch Block
When the program encounters the responses array value 14, it attempts to add 1 to fre-

quency[14], which is outside the array’s bounds—it has only six elements. Because array
bounds checking is performed at execution time, the JVM generates an exception—specifi-
cally line 19 throws an ArrayIndexOutOfBoundsException to notify the program of this
problem. At this point the try block terminates and the catch block begins executing—if
you declared any variables in the try block, they’re now out of scope and are not accessible
in the catch block. The catch block declares a type (ArrayIndexOutOfBoundsException)
and an exception parameter (e) and can handle exceptions of the specified type. In the catch
block, you can use the parameter’s identifier to interact with a caught exception object.

toString Method of the Exception Parameter
When lines 21–26 catch the exception, the program displays a message indicating the
problem that occurred. Line 23 implicitly calls the exception object’s toString method to
get the error message that is stored in the exception object and display it. Once the message
is displayed in this example, the exception is considered handled and the program contin-
ues with the next statement after the catch block’s closing brace. In this example, the end
of the for statement is reached (line 27), so the program continues with the increment of
the control variable in line 15.

7.5 Case Study: Card Shuffling and Dealing Simulation
So far we’ve focused on primitive-type arrays. Recall from Section 7.2 that the elements of
an array can be either primitive types or reference types. This section uses random-number
generation and an array of reference-type elements, namely objects representing playing
cards, to develop a class that simulates card shuffling and dealing. This class can then be
used to implement applications that play specific card games.

We first develop class Card (Fig. 7.9), which represents a playing card that has a face
(e.g., "Ace", "Deuce", "Three", …, "Jack", "Queen", "King") and a suit (e.g., "Hearts",
"Diamonds", "Clubs", "Spades"). Next, we develop class DeckOfCards (Fig. 7.10), which
creates a deck of 52 Cards. We then build a test application (Fig. 7.11) that demonstrates
class DeckOfCards’s card shuffling and dealing capabilities.

Error-Prevention Tip 7.1
When writing code to access an array element, ensure that the array index remains greater
than or equal to 0 and less than the length of the array. This helps prevent ArrayIndex-
OutOfBoundsException in your program.

154 Chapter 7 Arrays and ArrayLists

Class Card
Class Card (Fig. 7.9) contains two String instance variables—face and suit—that are
used to store references to the face name and suit name for a specific Card. The constructor
for the class (lines 10–14) receives two Strings that it uses to initialize face and suit.
Method toString (lines 17–20) creates a String consisting of the face of the card, the
String " of " and the suit of the card. Card’s toString method can be invoked explicitly
to obtain a string representation of a Card object (e.g., "Ace of Spades"). The toString

method of an object is called implicitly when the object is used where a String is expected
(e.g., when printf outputs the object as a String using the %s format specifier or when
the object is concatenated to a String using the + operator). For this behavior to occur,
toString must be declared with the header shown in Fig. 7.9.

Class DeckOfCards
Class DeckOfCards (Fig. 7.10) declares as an instance variable a Card array named deck

(line 7). An array of a reference type is declared like any other array. Class DeckOfCards
also declares an integer instance variable currentCard (line 8) representing the next Card
to be dealt from the deck array and a named constant NUMBER_OF_CARDS (line 9) indicating
the number of Cards in the deck (52).

1 // Fig. 7.9: Card.java
2 // Card class represents a playing card.
3
4 public class Card
5 {
6 private String face; // face of card ("Ace", "Deuce", ...)
7 private String suit; // suit of card ("Hearts", "Diamonds", ...)
8
9 // two-argument constructor initializes card's face and suit

10 public Card(String cardFace, String cardSuit)
11 {
12 face = cardFace; // initialize face of card
13 suit = cardSuit; // initialize suit of card
14 } // end two-argument Card constructor
15
16
17
18
19
20
21 } // end class Card

Fig. 7.9 | Card class represents a playing card.

1 // Fig. 7.10: DeckOfCards.java
2 // DeckOfCards class represents a deck of playing cards.
3 import java.util.Random;
4

Fig. 7.10 | DeckOfCards class represents a deck of playing cards. (Part 1 of 2.)

// return String representation of Card
public String toString()
{

return face + " of " + suit;
} // end method toString

7.5 Case Study: Card Shuffling and Dealing Simulation 155

5 public class DeckOfCards
6 {
7
8 private int currentCard; // index of next Card to be dealt (0-51)
9 private static final int NUMBER_OF_CARDS = 52; // constant # of Cards

10 // random number generator
11 private static final Random randomNumbers = new Random();
12
13 // constructor fills deck of Cards
14 public DeckOfCards()
15 {
16
17
18
19
20
21 currentCard = 0; // set currentCard so first Card dealt is deck[0]
22
23
24
25
26
27 } // end DeckOfCards constructor
28
29 // shuffle deck of Cards with one-pass algorithm
30 public void shuffle()
31 {
32 // after shuffling, dealing should start at deck[0] again
33 currentCard = 0; // reinitialize currentCard
34
35 // for each Card, pick another random Card (0-51) and swap them
36 for (int first = 0; first < deck.length; first++)
37 {
38 // select a random number between 0 and 51
39 int second = randomNumbers.nextInt(NUMBER_OF_CARDS);
40
41 // swap current Card with randomly selected Card
42
43
44
45 } // end for
46 } // end method shuffle
47
48 // deal one Card
49 public Card dealCard()
50 {
51 // determine whether Cards remain to be dealt
52 if ()
53 return deck[currentCard++]; // return current Card in array
54 else

55 return null; // return null to indicate that all Cards were dealt
56 } // end method dealCard
57 } // end class DeckOfCards

Fig. 7.10 | DeckOfCards class represents a deck of playing cards. (Part 2 of 2.)

private Card[] deck; // array of Card objects

String[] faces = { "Ace", "Deuce", "Three", "Four", "Five", "Six",
"Seven", "Eight", "Nine", "Ten", "Jack", "Queen", "King" };

String[] suits = { "Hearts", "Diamonds", "Clubs", "Spades" };

deck = new Card[NUMBER_OF_CARDS]; // create array of Card objects

// populate deck with Card objects
for (int count = 0; count < deck.length; count++)

deck[count] =
new Card(faces[count % 13], suits[count / 13]);

Card temp = deck[first];
deck[first] = deck[second];
deck[second] = temp;

currentCard < deck.length

156 Chapter 7 Arrays and ArrayLists

DeckOfCards Constructor
The class’s constructor instantiates the deck array (line 20) with NUMBER_OF_CARDS (52) el-
ements. The elements of deck are null by default, so the constructor uses a for statement
(lines 24–26) to fill the deck with Cards. The loop initializes control variable count to 0

and loops while count is less than deck.length, causing count to take on each integer val-
ue from 0 to 51 (the indices of the deck array). Each Card is instantiated and initialized
with two Strings—one from the faces array (which contains the Strings "Ace" through
"King") and one from the suits array (which contains the Strings "Hearts", "Dia-

monds", "Clubs" and "Spades"). The calculation count % 13 always results in a value from
0 to 12 (the 13 indices of the faces array in lines 16–17), and the calculation count / 13

always results in a value from 0 to 3 (the four indices of the suits array in line 18). When
the deck array is initialized, it contains the Cards with faces "Ace" through "King" in order
for each suit ("Hearts" then "Diamonds" then "Clubs" then "Spades"). We use arrays of
Strings to represent the faces and suits in this example.

DeckOfCards Method shuffle

Method shuffle (lines 30–46) shuffles the Cards in the deck. The method loops through
all 52 Cards (array indices 0 to 51). For each Card, a number between 0 and 51 is picked
randomly to select another Card. Next, the current Card object and the randomly selected
Card object are swapped in the array. This exchange is performed by the three assignments
in lines 42–44. The extra variable temp temporarily stores one of the two Card objects be-
ing swapped. The swap cannot be performed with only the two statements

If deck[first] is the "Ace" of "Spades" and deck[second] is the "Queen" of "Hearts",
after the first assignment, both array elements contain the "Queen" of "Hearts" and the
"Ace" of "Spades" is lost—hence, the extra variable temp is needed. After the for loop ter-
minates, the Card objects are randomly ordered. A total of only 52 swaps are made in a
single pass of the entire array, and the array of Card objects is shuffled!

[Note: It’s recommended that you use a so-called unbiased shuffling algorithm for real
card games. Such an algorithm ensures that all possible shuffled card sequences are equally
likely to occur. A popular unbiased shuffling algorithm is the Fisher-Yates algorithm.]

DeckOfCards Method dealCard

Method dealCard (lines 49–56) deals one Card in the array. Recall that currentCard in-
dicates the index of the next Card to be dealt (i.e., the Card at the top of the deck). Thus,
line 52 compares currentCard to the length of the deck array. If the deck is not empty
(i.e., currentCard is less than 52), line 53 returns the “top” Card and postincrements cur-
rentCard to prepare for the next call to dealCard—otherwise, null is returned. Recall
from Chapter 3 that null represents a “reference to nothing.”

Shuffling and Dealing Cards
Figure 7.11 demonstrates class DeckOfCards (Fig. 7.10). Line 9 creates a DeckOfCards ob-
ject named myDeckOfCards. The DeckOfCards constructor creates the deck with the 52
Card objects in order by suit and face. Line 10 invokes myDeckOfCards’s shuffle method
to rearrange the Card objects. Lines 13–20 deal all 52 Cards and print them in four col-

deck[first] = deck[second];
deck[second] = deck[first];

7.6 Enhanced for Statement 157

umns of 13 Cards each. Line 16 deals one Card object by invoking myDeckOfCards’s deal-
Card method, then displays the Card left justified in a field of 19 characters. When a Card
is output as a String, the Card’s toString method (lines 17–20 of Fig. 7.9) is implicitly
invoked. Lines 18–19 start a new line after every four Cards.

7.6 Enhanced for Statement
The enhanced for statement iterates through the elements of an array without using a
counter, thus avoiding the possibility of “stepping outside” the array. We show how to use
the enhanced for statement with the Java API’s prebuilt data structures (called collections)
in Section 7.14. The syntax of an enhanced for statement is:

1 // Fig. 7.11: DeckOfCardsTest.java
2 // Card shuffling and dealing.
3
4 public class DeckOfCardsTest
5 {
6 // execute application
7 public static void main(String[] args)
8 {
9 DeckOfCards myDeckOfCards = new DeckOfCards();

10 myDeckOfCards.shuffle(); // place Cards in random order
11
12 // print all 52 Cards in the order in which they are dealt
13 for (int i = 1; i <= 52; i++)
14 {
15 // deal and display a Card
16 System.out.printf("%-19s", myDeckOfCards.dealCard());
17
18 if (i % 4 == 0) // output a newline after every fourth card
19 System.out.println();
20 } // end for
21 } // end main
22 } // end class DeckOfCardsTest

Six of Spades Eight of Spades Six of Clubs Nine of Hearts
Queen of Hearts Seven of Clubs Nine of Spades King of Hearts
Three of Diamonds Deuce of Clubs Ace of Hearts Ten of Spades
Four of Spades Ace of Clubs Seven of Diamonds Four of Hearts
Three of Clubs Deuce of Hearts Five of Spades Jack of Diamonds
King of Clubs Ten of Hearts Three of Hearts Six of Diamonds
Queen of Clubs Eight of Diamonds Deuce of Diamonds Ten of Diamonds
Three of Spades King of Diamonds Nine of Clubs Six of Hearts
Ace of Spades Four of Diamonds Seven of Hearts Eight of Clubs
Deuce of Spades Eight of Hearts Five of Hearts Queen of Spades
Jack of Hearts Seven of Spades Four of Clubs Nine of Diamonds
Ace of Diamonds Queen of Diamonds Five of Clubs King of Spades
Five of Diamonds Ten of Clubs Jack of Spades Jack of Clubs

Fig. 7.11 | Card shuffling and dealing.

for (parameter : arrayName)
statement

158 Chapter 7 Arrays and ArrayLists

where parameter has a type and an identifier (e.g., int number), and arrayName is the array
through which to iterate. The type of the parameter must be consistent with the type of
the elements in the array. As the next example illustrates, the identifier represents succes-
sive element values in the array on successive iterations of the loop.

Figure 7.12 uses the enhanced for statement (lines 12–13) to sum the integers in an
array of student grades. The enhanced for’s parameter is of type int, because array con-
tains int values—the loop selects one int value from the array during each iteration. The
enhanced for statement iterates through successive values in the array one by one. The
statement’s header can be read as “for each iteration, assign the next element of array to
int variable number, then execute the following statement.” Thus, for each iteration, iden-
tifier number represents an int value in array. Lines 12–13 are equivalent to the following
counter-controlled repetition used in lines 12–13 of Fig. 7.5 to total the integers in array,
except that counter cannot be accessed in the enhanced for statement:

The enhanced for statement simplifies the code for iterating through an array. Note,
however, that the enhanced for statement can be used only to obtain array elements—it cannot
be used to modify elements. If your program needs to modify elements, use the traditional
counter-controlled for statement.

The enhanced for statement can be used in place of the counter-controlled for state-
ment whenever code looping through an array does not require access to the counter indi-
cating the index of the current array element. For example, totaling the integers in an array
requires access only to the element values—the index of each element is irrelevant. How-
ever, if a program must use a counter for some reason other than simply to loop through
an array (e.g., to print an index number next to each array element value, as in the exam-
ples earlier in this chapter), use the counter-controlled for statement.

for (int counter = 0; counter < array.length; counter++)
total += array[counter];

1 // Fig. 7.12: EnhancedForTest.java
2 // Using the enhanced for statement to total integers in an array.
3
4 public class EnhancedForTest
5 {
6 public static void main(String[] args)
7 {
8 int[] array = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };
9 int total = 0;

10
11
12
13
14
15 System.out.printf("Total of array elements: %d\n", total);
16 } // end main
17 } // end class EnhancedForTest

Total of array elements: 849

Fig. 7.12 | Using the enhanced for statement to total integers in an array.

// add each element's value to total
for (int number : array)

total += number;

7.7 Passing Arrays to Methods 159

7.7 Passing Arrays to Methods
This section demonstrates how to pass arrays and individual array elements as arguments
to methods. To pass an array argument to a method, specify the name of the array without
any brackets. For example, if array hourlyTemperatures is declared as

then the method call

passes the reference of array hourlyTemperatures to method modifyArray. Every array
object “knows” its own length (via its length field). Thus, when we pass an array object’s
reference into a method, we need not pass the array length as an additional argument.

For a method to receive an array reference through a method call, the method’s
parameter list must specify an array parameter. For example, the method header for
method modifyArray might be written as

indicating that modifyArray receives the reference of a double array in parameter b. The
method call passes array hourlyTemperature’s reference, so when the called method uses
the array variable b, it refers to the same array object as hourlyTemperatures in the caller.

When an argument to a method is an entire array or an individual array element of a
reference type, the called method receives a copy of the reference. However, when an argu-
ment to a method is an individual array element of a primitive type, the called method
receives a copy of the element’s value. Such primitive values are called scalars or scalar
quantities. To pass an individual array element to a method, use the indexed name of the
array element as an argument in the method call.

Figure 7.13 demonstrates the difference between passing an entire array and passing
a primitive-type array element to a method. Notice that main invokes static methods
modifyArray (line 19) and modifyElement (line 30) directly. Recall from Section 6.4 that
a static method of a class can invoke other static methods of the same class directly.

double[] hourlyTemperatures = new double[24];

modifyArray(hourlyTemperatures);

void modifyArray(double[] b)

1 // Fig. 7.13: PassArray.java
2 // Passing arrays and individual array elements to methods.
3
4 public class PassArray
5 {
6 // main creates array and calls modifyArray and modifyElement
7 public static void main(String[] args)
8 {
9 int[] array = { 1, 2, 3, 4, 5 };

10
11 System.out.println(
12 "Effects of passing reference to entire array:\n" +
13 "The values of the original array are:");
14

Fig. 7.13 | Passing arrays and individual array elements to methods. (Part 1 of 2.)

160 Chapter 7 Arrays and ArrayLists

The enhanced for statement at lines 16–17 outputs the five int elements of array.
Line 19 invokes method modifyArray, passing array as an argument. Method modify-

Array (lines 36–40) receives a copy of array’s reference and uses the reference to multiply
each of array’s elements by 2. To prove that array’s elements were modified, lines 23–24

15 // output original array elements
16 for (int value : array)
17 System.out.printf(" %d", value);
18
19
20 System.out.println("\n\nThe values of the modified array are:");
21
22 // output modified array elements
23 for (int value : array)
24 System.out.printf(" %d", value);
25
26 System.out.printf(
27 "\n\nEffects of passing array element value:\n" +
28 "array[3] before modifyElement: %d\n", array[3]);
29
30
31 System.out.printf(
32 "array[3] after modifyElement: %d\n", array[3]);
33 } // end main
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49 } // end class PassArray

Effects of passing reference to entire array:
The values of the original array are:

1 2 3 4 5

The values of the modified array are:
2 4 6 8 10

Effects of passing array element value:
array[3] before modifyElement: 8
Value of element in modifyElement: 16
array[3] after modifyElement: 8

Fig. 7.13 | Passing arrays and individual array elements to methods. (Part 2 of 2.)

modifyArray(array); // pass array reference

modifyElement(array[3]); // attempt to modify array[3]

// multiply each element of an array by 2
public static void modifyArray(int[] array2)
{

for (int counter = 0; counter < array2.length; counter++)
array2[counter] *= 2;

} // end method modifyArray

// multiply argument by 2
public static void modifyElement(int element)
{

element *= 2;
System.out.printf(

"Value of element in modifyElement: %d\n", element);
} // end method modifyElement

7.7 Passing Arrays to Methods 161

output the five elements of array again. As the output shows, method modifyArray dou-
bled the value of each element. We could not use the enhanced for statement in lines 38–
39 because we’re modifying the array’s elements.

Figure 7.13 next demonstrates that when a copy of an individual primitive-type array
element is passed to a method, modifying the copy in the called method does not affect the
original value of that element in the calling method’s array. Lines 26–28 output the value
of array[3] before invoking method modifyElement. Remember that the value of this ele-
ment is now 8 after it was modified in the call to modifyArray. Line 30 calls method mod-

ifyElement and passes array[3] as an argument. Remember that array[3] is actually one
int value (8) in array. Therefore, the program passes a copy of the value of array[3].
Method modifyElement (lines 43–48) multiplies the value received as an argument by 2,
stores the result in its parameter element, then outputs the value of element (16). Since
method parameters, like local variables, cease to exist when the method in which they’re
declared completes execution, the method parameter element is destroyed when method
modifyElement terminates. When the program returns control to main, lines 31–32
output the unmodified value of array[3] (i.e., 8).

Notes on Passing Arguments to Methods
The preceding example demonstrated how arrays and primitive-type array elements are
passed as arguments to methods. We now take a closer look at how arguments in general
are passed to methods. Two ways to pass arguments in method calls in many programming
languages are pass-by-value and pass-by-reference (also called call-by-value and call-by-
reference). When an argument is passed by value, a copy of the argument’s value is passed
to the called method. The called method works exclusively with the copy. Changes to the
called method’s copy do not affect the original variable’s value in the caller.

When an argument is passed by reference, the called method can access the argu-
ment’s value in the caller directly and modify that data, if necessary. Pass-by-reference
improves performance by eliminating the need to copy possibly large amounts of data.

Unlike some other languages, Java does not allow you to choose pass-by-value or pass-
by-reference—all arguments are passed by value. A method call can pass two types of values
to a method—copies of primitive values (e.g., values of type int and double) and copies
of references to objects. Objects themselves cannot be passed to methods. When a method
modifies a primitive-type parameter, changes to the parameter have no effect on the orig-
inal argument value in the calling method. For example, when line 30 in main of Fig. 7.13
passes array[3] to method modifyElement, the statement in line 45 that doubles the value
of parameter element has no effect on the value of array[3] in main. This is also true for
reference-type parameters. If you modify a reference-type parameter so that it refers to
another object, only the parameter refers to the new object—the reference stored in the
caller’s variable still refers to the original object.

Although an object’s reference is passed by value, a method can still interact with the
referenced object by calling its public methods using the copy of the object’s reference.
Since the reference stored in the parameter is a copy of the reference that was passed as an
argument, the parameter in the called method and the argument in the calling method
refer to the same object in memory. For example, in Fig. 7.13, both parameter array2 in
method modifyArray and variable array in main refer to the same array object in memory.
Any changes made using the parameter array2 are carried out on the object that array
references in the calling method. In Fig. 7.13, the changes made in modifyArray using

162 Chapter 7 Arrays and ArrayLists

array2 affect the contents of the array object referenced by array in main. Thus, with a
reference to an object, the called method can manipulate the caller’s object directly.

7.8 Case Study: Class GradeBook Using an Array to
Store Grades
Previous versions of class GradeBook process a set of grades entered by the user, but do not
maintain the individual grade values in instance variables of the class. Thus, repeat calcu-
lations require the user to reenter the same grades. One way to solve this problem would
be to store each grade entered in an individual instance of the class. For example, we could
create instance variables grade1, grade2, …, grade10 in class GradeBook to store 10 stu-
dent grades. But this would make the code to total the grades and determine the class av-
erage cumbersome, and the class would not be able to process any more than 10 grades at
a time. We solve this problem by storing grades in an array.

Storing Student Grades in an Array in Class GradeBook
Class GradeBook (Fig. 7.14) uses an array of ints to store several students’ grades on a sin-
gle exam. This eliminates the need to repeatedly input the same set of grades. Array grades
is declared as an instance variable (line 7), so each GradeBook object maintains its own set
of grades. The constructor (lines 10–14) has two parameters—the name of the course and
an array of grades. When an application (e.g., class GradeBookTest in Fig. 7.15) creates a
GradeBook object, the application passes an existing int array to the constructor, which
assigns the array’s reference to instance variable grades (line 13). The grades array’s size
is determined by the length of the array that’s passed to the constructor. Thus, a Grade-

Book object can process a variable number of grades. The grade values in the passed array
could have been input from a user or read from a file on disk (as discussed in Chapter 17).
In our test application, we initialize an array with grade values (Fig. 7.15, line 10). Once
the grades are stored in instance variable grades of class GradeBook, all the class’s methods
can access the elements of grades as often as needed to perform various calculations.

Performance Tip 7.1
Passing arrays by reference makes sense for performance reasons. If arrays were passed by
value, a copy of each element would be passed. For large, frequently passed arrays, this
would waste time and consume considerable storage for the copies of the arrays.

1 // Fig. 7.14: GradeBook.java
2 // GradeBook class using an array to store test grades.
3
4 public class GradeBook
5 {
6 private String courseName; // name of course this GradeBook represents
7
8
9 // two-argument constructor initializes courseName and grades array

10 public GradeBook(String name,)
11 {

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 1 of 4.)

private int[] grades; // array of student grades

int[] gradesArray

7.8 Case Study: Class GradeBook Using an Array to Store Grades 163

12 courseName = name; // initialize courseName
13
14 } // end two-argument GradeBook constructor
15
16 // method to set the course name
17 public void setCourseName(String name)
18 {
19 courseName = name; // store the course name
20 } // end method setCourseName
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 } // end method getCourseName
27
28 // display a welcome message to the GradeBook user
29 public void displayMessage()
30 {
31 // getCourseName gets the name of the course
32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());
34 } // end method displayMessage
35
36 // perform various operations on the data
37 public void processGrades()
38 {
39 // output grades array
40
41
42 // call method getAverage to calculate the average grade
43 System.out.printf("\nClass average is %.2f\n",);
44
45 // call methods getMinimum and getMaximum
46 System.out.printf("Lowest grade is %d\nHighest grade is %d\n\n",
47 ,);
48
49 // call outputBarChart to print grade distribution chart
50
51 } // end method processGrades
52
53 // find minimum grade
54 public int getMinimum()
55 {
56 int lowGrade = grades[0]; // assume grades[0] is smallest
57
58
59
60
61
62
63
64

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 2 of 4.)

grades = gradesArray; // store grades

outputGrades();

getAverage()

getMinimum() getMaximum()

outputBarChart();

// loop through grades array
for (int grade : grades)
{

// if grade lower than lowGrade, assign it to lowGrade
if (grade < lowGrade)

lowGrade = grade; // new lowest grade
} // end for

164 Chapter 7 Arrays and ArrayLists

65
66 return lowGrade; // return lowest grade
67 } // end method getMinimum
68
69 // find maximum grade
70 public int getMaximum()
71 {
72 int highGrade = grades[0]; // assume grades[0] is largest
73
74 // loop through grades array
75 for (int grade : grades)
76 {
77 // if grade greater than highGrade, assign it to highGrade
78 if (grade > highGrade)
79 highGrade = grade; // new highest grade
80 } // end for
81
82 return highGrade; // return highest grade
83 } // end method getMaximum
84
85 // determine average grade for test
86 public double getAverage()
87 {
88 int total = 0; // initialize total
89
90
91
92
93
94 // return average of grades
95 return (double) total / ;
96 } // end method getAverage
97
98 // output bar chart displaying grade distribution
99 public void outputBarChart()
100 {
101 System.out.println("Grade distribution:");
102
103 // stores frequency of grades in each range of 10 grades
104 int[] frequency = new int[11];
105
106
107
108
109
110 // for each grade frequency, print bar in chart
111 for (int count = 0; count < frequency.length; count++)
112 {
113 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
114 if (count == 10)
115 System.out.printf("%5d: ", 100);

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 3 of 4.)

// sum grades for one student
for (int grade : grades)

total += grade;

grades.length

// for each grade, increment the appropriate frequency
for (int grade : grades)

++frequency[grade / 10];

7.8 Case Study: Class GradeBook Using an Array to Store Grades 165

Method processGrades (lines 37–51) contains a series of method calls that output a
report summarizing the grades. Line 40 calls method outputGrades to print the contents
of the array grades. Lines 134–136 in method outputGrades use a for statement to
output the students’ grades. A counter-controlled for must be used in this case, because
lines 135–136 use counter variable student’s value to output each grade next to a partic-
ular student number (see output in Fig. 7.15). Although array indices start at 0, a professor
would typically number students starting at 1. Thus, lines 135–136 output student + 1 as
the student number to produce grade labels "Student 1: ", "Student 2: ", and so on.

Method processGrades next calls method getAverage (line 43) to obtain the average
of the grades in the array. Method getAverage (lines 86–96) uses an enhanced for state-
ment to total the values in array grades before calculating the average. The parameter in
the enhanced for’s header (e.g., int grade) indicates that for each iteration, the int vari-
able grade takes on a value in the array grades. The averaging calculation in line 95 uses
grades.length to determine the number of grades being averaged.

Lines 46–47 in method processGrades call methods getMinimum and getMaximum to
determine the lowest and highest grades of any student on the exam, respectively. Each of
these methods uses an enhanced for statement to loop through array grades. Lines 59–
64 in method getMinimum loop through the array. Lines 62–63 compare each grade to
lowGrade; if a grade is less than lowGrade, lowGrade is set to that grade. When line 66 exe-
cutes, lowGrade contains the lowest grade in the array. Method getMaximum (lines 70–83)
works similarly to method getMinimum.

Finally, line 50 in method processGrades calls method outputBarChart to print a
distribution chart of the grade data using a technique similar to that in Fig. 7.6. In that
example, we manually calculated the number of grades in each category (i.e., 0–9, 10–19,

116 else

117 System.out.printf("%02d-%02d: ",
118 count * 10, count * 10 + 9);
119
120 // print bar of asterisks
121 for (int stars = 0; stars < frequency[count]; stars++)
122 System.out.print("*");
123
124 System.out.println(); // start a new line of output
125 } // end outer for
126 } // end method outputBarChart
127
128 // output the contents of the grades array
129 public void outputGrades()
130 {
131 System.out.println("The grades are:\n");
132
133
134
135
136
137 } // end method outputGrades
138 } // end class GradeBook

Fig. 7.14 | GradeBook class using an array to store test grades. (Part 4 of 4.)

// output each student's grade
for (int student = 0; student < grades.length; student++)

System.out.printf("Student %2d: %3d\n",
student + 1, grades[student]);

166 Chapter 7 Arrays and ArrayLists

…, 90–99 and 100) by simply looking at a set of grades. In this example, lines 107–108
use a technique similar to that in Figs. 7.7 and 7.8 to calculate the frequency of grades in
each category. Line 104 declares and creates array frequency of 11 ints to store the fre-
quency of grades in each grade category. For each grade in array grades, lines 107–108
increment the appropriate element of the frequency array. To determine which element
to increment, line 108 divides the current grade by 10 using integer division. For example,
if grade is 85, line 108 increments frequency[8] to update the count of grades in the
range 80–89. Lines 111–125 next print the bar chart (see Fig. 7.15) based on the values
in array frequency. Like lines 23–24 of Fig. 7.6, lines 121–122 of Fig. 7.14 use a value in
array frequency to determine the number of asterisks to display in each bar.

Class GradeBookTest That Demonstrates Class GradeBook
The application of Fig. 7.15 creates an object of class GradeBook (Fig. 7.14) using the int
array gradesArray (declared and initialized in line 10). Lines 12–13 pass a course name
and gradesArray to the GradeBook constructor. Line 14 displays a welcome message, and
line 15 invokes the GradeBook object’s processGrades method. The output summarizes
the 10 grades in myGradeBook.

Software Engineering Observation 7.1
A test harness (or test application) is responsible for creating an object of the class being
tested and providing it with data. This data could come from any of several sources. Test
data can be placed directly into an array with an array initializer, it can come from the
user at the keyboard, it can come from a file (as you’ll see in Chapter 17), or it can come
from a network (as you’ll see in Chapter 24). After passing this data to the class’s
constructor to instantiate the object, the test harness should call upon the object to test its
methods and manipulate its data. Gathering data in the test harness like this allows the
class to manipulate data from several sources.

1 // Fig. 7.15: GradeBookTest.java
2 // GradeBookTest creates a GradeBook object using an array of grades,
3 // then invokes method processGrades to analyze them.
4 public class GradeBookTest
5 {
6 // main method begins program execution
7 public static void main(String[] args)
8 {
9

10
11
12 GradeBook myGradeBook = new GradeBook(
13 "CS101 Introduction to Java Programming",);
14 myGradeBook.displayMessage();
15 myGradeBook.processGrades();
16 } // end main
17 } // end class GradeBookTest

Fig. 7.15 | GradeBookTest creates a GradeBook object using an array of grades, then invokes
method processGrades to analyze them. (Part 1 of 2.)

// array of student grades
int[] gradesArray = { 87, 68, 94, 100, 83, 78, 85, 91, 76, 87 };

gradesArray

7.9 Multidimensional Arrays 167

7.9 Multidimensional Arrays
Multidimensional arrays with two dimensions are often used to represent tables of values
consisting of information arranged in rows and columns. To identify a particular table ele-
ment, we must specify two indices. By convention, the first identifies the element’s row and
the second its column. Arrays that require two indices to identify a particular element are
called two-dimensional arrays. (Multidimensional arrays can have more than two dimen-
sions.) Java does not support multidimensional arrays directly, but it does allow you to
specify one-dimensional arrays whose elements are also one-dimensional arrays, thus
achieving the same effect. Figure 7.16 illustrates a two-dimensional array named a that
contains three rows and four columns (i.e., a three-by-four array). In general, an array with
m rows and n columns is called an m-by-n array.

Every element in array a is identified in Fig. 7.16 by an array-access expression of the
form a[row][column]; a is the name of the array, and row and column are the indices that
uniquely identify each element in array a by row and column number. The names of the
elements in row 0 all have a first index of 0, and the names of the elements in column 3 all
have a second index of 3.

Welcome to the grade book for
CS101 Introduction to Java Programming!

The grades are:

Student 1: 87
Student 2: 68
Student 3: 94
Student 4: 100
Student 5: 83
Student 6: 78
Student 7: 85
Student 8: 91
Student 9: 76
Student 10: 87

Class average is 84.90
Lowest grade is 68
Highest grade is 100

Grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: *
70-79: **
80-89: ****
90-99: **

100: *

Fig. 7.15 | GradeBookTest creates a GradeBook object using an array of grades, then invokes
method processGrades to analyze them. (Part 2 of 2.)

168 Chapter 7 Arrays and ArrayLists

Arrays of One-Dimensional Arrays
Like one-dimensional arrays, multidimensional arrays can be initialized with array initial-
izers in declarations. A two-dimensional array b with two rows and two columns could be
declared and initialized with nested array initializers as follows:

The initial values are grouped by row in braces. So 1 and 2 initialize b[0][0] and b[0][1],
respectively, and 3 and 4 initialize b[1][0] and b[1][1], respectively. The compiler
counts the number of nested array initializers (represented by sets of braces within the out-
er braces) to determine the number of rows in array b. The compiler counts the initializer
values in the nested array initializer for a row to determine the number of columns in that
row. As we’ll see momentarily, this means that rows can have different lengths.

Multidimensional arrays are maintained as arrays of one-dimensional arrays. There-
fore array b in the preceding declaration is actually composed of two separate one-dimen-
sional arrays—one containing the values in the first nested initializer list { 1, 2 } and one
containing the values in the second nested initializer list { 3, 4 }. Thus, array b itself is an
array of two elements, each a one-dimensional array of int values.

Two-Dimensional Arrays with Rows of Different Lengths
The manner in which multidimensional arrays are represented makes them quite flexible.
In fact, the lengths of the rows in array b are not required to be the same. For example,

creates integer array b with two elements (determined by the number of nested array ini-
tializers) that represent the rows of the two-dimensional array. Each element of b is a ref-
erence to a one-dimensional array of int variables. The int array for row 0 is a one-
dimensional array with two elements (1 and 2), and the int array for row 1 is a one-di-
mensional array with three elements (3, 4 and 5).

Creating Two-Dimensional Arrays with Array-Creation Expressions
A multidimensional array with the same number of columns in every row can be created
with an array-creation expression. For example, the following lines declare array b and as-
sign it a reference to a three-by-four array:

Fig. 7.16 | Two-dimensional array with three rows and four columns.

int[][] b = { { 1, 2 }, { 3, 4 } };

int[][] b = { { 1, 2 }, { 3, 4, 5 } };

int[][] b = new int[3][4];

Row 0

Row 1

Row 2

Column index
Row index
Array name

a[0][0]

a[1][0]

a[2][0]

a[0][1]

a[1][1]

a[2][1]

a[0][2]

a[1][2]

a[2][2]

a[0][3]

Column 0 Column 1 Column 2 Column 3

a[1][3]

a[2][3]

7.9 Multidimensional Arrays 169

In this case, we use the literal values 3 and 4 to specify the number of rows and number of
columns, respectively, but this is not required. Programs can also use variables to specify
array dimensions, because new creates arrays at execution time—not at compile time. As with
one-dimensional arrays, the elements of a multidimensional array are initialized when the
array object is created.

A multidimensional array in which each row has a different number of columns can
be created as follows:

The preceding statements create a two-dimensional array with two rows. Row 0 has five
columns, and row 1 has three columns.

Two-Dimensional Array Example: Displaying Element Values
Figure 7.17 demonstrates initializing two-dimensional arrays with array initializers and us-
ing nested for loops to traverse the arrays (i.e., manipulate every element of each array).
Class InitArray’s main declares two arrays. The declaration of array1 (line 9) uses nested
array initializers of the same length to initialize the first row to the values 1, 2 and 3, and
the second row to the values 4, 5 and 6. The declaration of array2 (line 10) uses nested
initializers of different lengths. In this case, the first row is initialized to two elements with
the values 1 and 2, respectively. The second row is initialized to one element with the value
3. The third row is initialized to three elements with the values 4, 5 and 6, respectively.

int[][] b = new int[2][]; // create 2 rows
b[0] = new int[5]; // create 5 columns for row 0
b[1] = new int[3]; // create 3 columns for row 1

1 // Fig. 7.17: InitArray.java
2 // Initializing two-dimensional arrays.
3
4 public class InitArray
5 {
6 // create and output two-dimensional arrays
7 public static void main(String[] args)
8 {
9

10
11
12 System.out.println("Values in array1 by row are");
13 outputArray(array1); // displays array1 by row
14
15 System.out.println("\nValues in array2 by row are");
16 outputArray(array2); // displays array2 by row
17 } // end main
18
19 // output rows and columns of a two-dimensional array
20 public static void outputArray()
21 {
22
23
24

Fig. 7.17 | Initializing two-dimensional arrays. (Part 1 of 2.)

int[][] array1 = { { 1, 2, 3 }, { 4, 5, 6 } };
int[][] array2 = { { 1, 2 }, { 3 }, { 4, 5, 6 } };

int[][] array

// loop through array's rows
for (int row = 0; row < array.length; row++)
{

170 Chapter 7 Arrays and ArrayLists

Lines 13 and 16 call method outputArray (lines 20–31) to output the elements of
array1 and array2, respectively. Method outputArray’s parameter—int[][] array—
indicates that the method receives a two-dimensional array. The for statement (lines 23–
30) outputs the rows of a two-dimensional array. In the loop-continuation condition of
the outer for statement, the expression array.length determines the number of rows in
the array. In the inner for statement, the expression array[row].length determines the
number of columns in the current row of the array. The inner for statement’s condition
enables the loop to determine the exact number of columns in each row.

Common Multidimensional-Array Manipulations Performed with for Statements
Many common array manipulations use for statements. As an example, the following for

statement sets all the elements in row 2 of array a in Fig. 7.16 to zero:

We specified row 2; therefore, we know that the first index is always 2 (0 is the first row,
and 1 is the second row). This for loop varies only the second index (i.e., the column in-
dex). If row 2 of array a contains four elements, then the preceding for statement is equiv-
alent to the assignment statements

The following nested for statement totals the values of all the elements in array a:

25
26
27
28
29
30
31 } // end method outputArray
32 } // end class InitArray

Values in array1 by row are
1 2 3
4 5 6

Values in array2 by row are
1 2
3
4 5 6

for (int column = 0; column < a[2].length; column++)
a[2][column] = 0;

a[2][0] = 0;
a[2][1] = 0;
a[2][2] = 0;
a[2][3] = 0;

int total = 0;

for (int row = 0; row < a.length; row++)
{

for (int column = 0; column < a[row].length; column++)
total += a[row][column];

} // end outer for

Fig. 7.17 | Initializing two-dimensional arrays. (Part 2 of 2.)

// loop through columns of current row
for (int column = 0; column < array[row].length; column++)

System.out.printf("%d ", array[row][column]);

System.out.println(); // start new line of output
} // end outer for

7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 171

These nested for statements total the array elements one row at a time. The outer for

statement begins by setting the row index to 0 so that the first row’s elements can be totaled
by the inner for statement. The outer for then increments row to 1 so that the second row
can be totaled. Then, the outer for increments row to 2 so that the third row can be to-
taled. The variable total can be displayed when the outer for statement terminates. In
the next example, we show how to process a two-dimensional array in a similar manner
using nested enhanced for statements.

7.10 Case Study: Class GradeBook Using a Two-
Dimensional Array
In Section 7.8, we presented class GradeBook (Fig. 7.14), which used a one-dimensional
array to store student grades on a single exam. In most semesters, students take several ex-
ams. Professors are likely to want to analyze grades across the entire semester, both for a
single student and for the class as a whole.

Storing Student Grades in a Two-Dimensional Array in Class GradeBook
Figure 7.18 contains a GradeBook class that uses a two-dimensional array grades to store
the grades of a number of students on multiple exams. Each row of the array represents a
single student’s grades for the entire course, and each column represents the grades of all
the students who took a particular exam. Class GradeBookTest (Fig. 7.19) passes the array
as an argument to the GradeBook constructor. In this example, we use a ten-by-three array
for ten students’ grades on three exams. Five methods perform array manipulations to pro-
cess the grades. Each method is similar to its counterpart in the earlier one-dimensional
array version of GradeBook (Fig. 7.14). Method getMinimum (lines 52–70) determines the
lowest grade of any student for the semester. Method getMaximum (lines 73–91) deter-
mines the highest grade of any student for the semester. Method getAverage (lines 94–
104) determines a particular student’s semester average. Method outputBarChart (lines
107–137) outputs a grade bar chart for the entire semester’s student grades. Method out-

putGrades (lines 140–164) outputs the array in a tabular format, along with each student’s
semester average.

1 // Fig. 7.18: GradeBook.java
2 // GradeBook class using a two-dimensional array to store grades.
3
4 public class GradeBook
5 {
6 private String courseName; // name of course this grade book represents
7
8
9 // two-argument constructor initializes courseName and grades array

10 public GradeBook(String name,)
11 {
12 courseName = name; // initialize courseName
13
14 } // end two-argument GradeBook constructor
15

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 1 of 4.)

private int[][] grades; // two-dimensional array of student grades

int[][] gradesArray

grades = gradesArray; // store grades

172 Chapter 7 Arrays and ArrayLists

16 // method to set the course name
17 public void setCourseName(String name)
18 {
19 courseName = name; // store the course name
20 } // end method setCourseName
21
22 // method to retrieve the course name
23 public String getCourseName()
24 {
25 return courseName;
26 } // end method getCourseName
27
28 // display a welcome message to the GradeBook user
29 public void displayMessage()
30 {
31 // getCourseName gets the name of the course
32 System.out.printf("Welcome to the grade book for\n%s!\n\n",
33 getCourseName());
34 } // end method displayMessage
35
36 // perform various operations on the data
37 public void processGrades()
38 {
39 // output grades array
40 outputGrades();
41
42 // call methods getMinimum and getMaximum
43 System.out.printf("\n%s %d\n%s %d\n\n",
44 "Lowest grade in the grade book is", getMinimum(),
45 "Highest grade in the grade book is", getMaximum());
46
47 // output grade distribution chart of all grades on all tests
48 outputBarChart();
49 } // end method processGrades
50
51 // find minimum grade
52 public int getMinimum()
53 {
54 // assume first element of grades array is smallest
55 int lowGrade = grades[0][0];
56
57
58
59
60
61
62
63
64
65
66
67
68

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 2 of 4.)

// loop through rows of grades array
for (int[] studentGrades : grades)
{

// loop through columns of current row
for (int grade : studentGrades)
{

// if grade less than lowGrade, assign it to lowGrade
if (grade < lowGrade)

lowGrade = grade;
} // end inner for

} // end outer for

7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 173

69 return lowGrade; // return lowest grade
70 } // end method getMinimum
71
72 // find maximum grade
73 public int getMaximum()
74 {
75 // assume first element of grades array is largest
76 int highGrade = grades[0][0];
77
78 // loop through rows of grades array
79 for (int[] studentGrades : grades)
80 {
81 // loop through columns of current row
82 for (int grade : studentGrades)
83 {
84 // if grade greater than highGrade, assign it to highGrade
85 if (grade > highGrade)
86 highGrade = grade;
87 } // end inner for
88 } // end outer for
89
90 return highGrade; // return highest grade
91 } // end method getMaximum
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106 // output bar chart displaying overall grade distribution
107 public void outputBarChart()
108 {
109 System.out.println("Overall grade distribution:");
110
111 // stores frequency of grades in each range of 10 grades
112 int[] frequency = new int[11];
113
114
115
116
117
118
119
120

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 3 of 4.)

// determine average grade for particular set of grades
public double getAverage(int[] setOfGrades)
{

int total = 0; // initialize total

// sum grades for one student
for (int grade : setOfGrades)

total += grade;

// return average of grades
return (double) total / setOfGrades.length;

} // end method getAverage

// for each grade in GradeBook, increment the appropriate frequency
for (int[] studentGrades : grades)
{

for (int grade : studentGrades)
++frequency[grade / 10];

} // end outer for

174 Chapter 7 Arrays and ArrayLists

Methods getMinimum and getMaximum

Methods getMinimum, getMaximum, outputBarChart and outputGrades each loop
through array grades by using nested for statements—for example, the nested enhanced
for statement from the declaration of method getMinimum (lines 58–67). The outer en-
hanced for statement iterates through the two-dimensional array grades, assigning suc-

121 // for each grade frequency, print bar in chart
122 for (int count = 0; count < frequency.length; count++)
123 {
124 // output bar label ("00-09: ", ..., "90-99: ", "100: ")
125 if (count == 10)
126 System.out.printf("%5d: ", 100);
127 else

128 System.out.printf("%02d-%02d: ",
129 count * 10, count * 10 + 9);
130
131 // print bar of asterisks
132 for (int stars = 0; stars < frequency[count]; stars++)
133 System.out.print("*");
134
135 System.out.println(); // start a new line of output
136 } // end outer for
137 } // end method outputBarChart
138
139 // output the contents of the grades array
140 public void outputGrades()
141 {
142 System.out.println("The grades are:\n");
143 System.out.print(" "); // align column heads
144
145 // create a column heading for each of the tests
146 for (int test = 0; test < grades[0].length; test++)
147 System.out.printf("Test %d ", test + 1);
148
149 System.out.println("Average"); // student average column heading
150
151 // create rows/columns of text representing array grades
152 for (int student = 0; student < grades.length; student++)
153 {
154 System.out.printf("Student %2d", student + 1);
155
156 for (int test : grades[student]) // output student's grades
157 System.out.printf("%8d", test);
158
159 // call method getAverage to calculate student's average grade;
160 // pass row of grades as the argument to getAverage
161
162 System.out.printf("%9.2f\n", average);
163 } // end outer for
164 } // end method outputGrades
165 } // end class GradeBook

Fig. 7.18 | GradeBook class using a two-dimensional array to store grades. (Part 4 of 4.)

double average = getAverage(grades[student]);

7.10 Case Study: Class GradeBook Using a Two-Dimensional Array 175

cessive rows to parameter studentGrades on successive iterations. The square brackets
following the parameter name indicate that studentGrades refers to a one-dimensional
int array—namely, a row in array grades containing one student’s grades. To find the
lowest overall grade, the inner for statement compares the elements of the current one-
dimensional array studentGrades to variable lowGrade. For example, on the first iteration
of the outer for, row 0 of grades is assigned to parameter studentGrades. The inner en-
hanced for statement then loops through studentGrades and compares each grade value
with lowGrade. If a grade is less than lowGrade, lowGrade is set to that grade. On the sec-
ond iteration of the outer enhanced for statement, row 1 of grades is assigned to stu-

dentGrades, and the elements of this row are compared with variable lowGrade. This
repeats until all rows of grades have been traversed. When execution of the nested state-
ment is complete, lowGrade contains the lowest grade in the two-dimensional array.
Method getMaximum works similarly to method getMinimum.

Method outputBarChart

Method outputBarChart in Fig. 7.18 is nearly identical to the one in Fig. 7.14. However,
to output the overall grade distribution for a whole semester, the method here uses nested
enhanced for statements (lines 115–119) to create the one-dimensional array frequency

based on all the grades in the two-dimensional array. The rest of the code in each of the
two outputBarChart methods that displays the chart is identical.

Method outputGrades

Method outputGrades (lines 140–164) uses nested for statements to output values of the
array grades and each student’s semester average. The output (Fig. 7.19) shows the result,
which resembles the tabular format of a professor’s physical grade book. Lines 146–147
print the column headings for each test. We use a counter-controlled for statement here
so that we can identify each test with a number. Similarly, the for statement in lines 152–
163 first outputs a row label using a counter variable to identify each student (line 154).
Although array indices start at 0, lines 147 and 154 output test + 1 and student + 1, re-
spectively, to produce test and student numbers starting at 1 (see Fig. 7.19). The inner for
statement (lines 156–157) uses the outer for statement’s counter variable student to loop
through a specific row of array grades and output each student’s test grade. An enhanced
for statement can be nested in a counter-controlled for statement, and vice versa. Finally,
line 161 obtains each student’s semester average by passing the current row of grades (i.e.,
grades[student]) to method getAverage.

Method getAverage

Method getAverage (lines 94–104) takes one argument—a one-dimensional array of test
results for a particular student. When line 161 calls getAverage, the argument is
grades[student], which specifies that a particular row of the two-dimensional array
grades should be passed to getAverage. For example, based on the array created in
Fig. 7.19, the argument grades[1] represents the three values (a one-dimensional array of
grades) stored in row 1 of the two-dimensional array grades. Recall that a two-dimension-
al array is one whose elements are one-dimensional arrays. Method getAverage calculates
the sum of the array elements, divides the total by the number of test results and returns
the floating-point result as a double value (line 103).

176 Chapter 7 Arrays and ArrayLists

Class GradeBookTest That Demonstrates Class GradeBook
Figure 7.19 creates an object of class GradeBook (Fig. 7.18) using the two-dimensional ar-
ray of ints named gradesArray (declared and initialized in lines 10–19). Lines 21–22 pass
a course name and gradesArray to the GradeBook constructor. Lines 23–24 then invoke
myGradeBook’s displayMessage and processGrades methods to display a welcome mes-
sage and obtain a report summarizing the students’ grades for the semester, respectively.

1 // Fig. 7.19: GradeBookTest.java
2 // GradeBookTest creates GradeBook object using a two-dimensional array
3 // of grades, then invokes method processGrades to analyze them.
4 public class GradeBookTest
5 {
6 // main method begins program execution
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15
16
17
18
19
20
21 GradeBook myGradeBook = new GradeBook(
22 "CS101 Introduction to Java Programming",);
23 myGradeBook.displayMessage();
24 myGradeBook.processGrades();
25 } // end main
26 } // end class GradeBookTest

Welcome to the grade book for
CS101 Introduction to Java Programming!

The grades are:

Test 1 Test 2 Test 3 Average
Student 1 87 96 70 84.33
Student 2 68 87 90 81.67
Student 3 94 100 90 94.67
Student 4 100 81 82 87.67
Student 5 83 65 85 77.67
Student 6 78 87 65 76.67
Student 7 85 75 83 81.00
Student 8 91 94 100 95.00
Student 9 76 72 84 77.33
Student 10 87 93 73 84.33

Fig. 7.19 | GradeBookTest creates GradeBook object using a two-dimensional array of grades,
then invokes method processGrades to analyze them. (Part 1 of 2.)

// two-dimensional array of student grades
int[][] gradesArray = { { 87, 96, 70 },

{ 68, 87, 90 },
{ 94, 100, 90 },
{ 100, 81, 82 },
{ 83, 65, 85 },
{ 78, 87, 65 },
{ 85, 75, 83 },
{ 91, 94, 100 },
{ 76, 72, 84 },
{ 87, 93, 73 } };

gradesArray

7.11 Variable-Length Argument Lists 177

7.11 Variable-Length Argument Lists
With variable-length argument lists, you can create methods that receive an unspecified
number of arguments. A type followed by an ellipsis (...) in a method’s parameter list
indicates that the method receives a variable number of arguments of that particular type.
This use of the ellipsis can occur only once in a parameter list, and the ellipsis, together
with its type, must be placed at the end of the parameter list. While you can use method
overloading and array passing to accomplish much of what is accomplished with variable-
length argument lists, using an ellipsis in a method’s parameter list is more concise.

Figure 7.20 demonstrates method average (lines 7–16), which receives a variable-
length sequence of doubles. Java treats the variable-length argument list as an array whose
elements are all of the same type. Hence, the method body can manipulate the parameter
numbers as an array of doubles. Lines 12–13 use the enhanced for loop to walk through
the array and calculate the total of the doubles in the array. Line 15 accesses num-

bers.length to obtain the size of the numbers array for use in the averaging calculation.
Lines 29, 31 and 33 in main call method average with two, three and four arguments,
respectively. Method average has a variable-length argument list (line 7), so it can average
as many double arguments as the caller passes. The output shows that each call to method
average returns the correct value.

Overall grade distribution:
00-09:
10-19:
20-29:
30-39:
40-49:
50-59:
60-69: ***
70-79: ******
80-89: ***********
90-99: *******

100: ***

1 // Fig. 7.20: VarargsTest.java
2 // Using variable-length argument lists.
3
4 public class VarargsTest
5 {
6 // calculate average
7 public static double average()
8 {
9 double total = 0.0; // initialize total

10

Fig. 7.20 | Using variable-length argument lists. (Part 1 of 2.)

Fig. 7.19 | GradeBookTest creates GradeBook object using a two-dimensional array of grades,
then invokes method processGrades to analyze them. (Part 2 of 2.)

double... numbers

178 Chapter 7 Arrays and ArrayLists

7.12 Using Command-Line Arguments
It’s possible to pass arguments from the command line (these are known as command-line
arguments) to an application by including a parameter of type String[] (i.e., an array of
Strings) in the parameter list of main, exactly as we’ve done in every application in the
book. By convention, this parameter is named args. When an application is executed us-
ing the java command, Java passes the command-line arguments that appear after the
class name in the java command to the application’s main method as Strings in the array
args. The number of command-line arguments is obtained by accessing the array’s length

11 // calculate total using the enhanced for statement
12
13
14
15 return total / ;
16 } // end method average
17
18 public static void main(String[] args)
19 {
20 double d1 = 10.0;
21 double d2 = 20.0;
22 double d3 = 30.0;
23 double d4 = 40.0;
24
25 System.out.printf("d1 = %.1f\nd2 = %.1f\nd3 = %.1f\nd4 = %.1f\n\n",
26 d1, d2, d3, d4);
27
28 System.out.printf("Average of d1 and d2 is %.1f\n",
29);
30 System.out.printf("Average of d1, d2 and d3 is %.1f\n",
31);
32 System.out.printf("Average of d1, d2, d3 and d4 is %.1f\n",
33);
34 } // end main
35 } // end class VarargsTest

d1 = 10.0
d2 = 20.0
d3 = 30.0
d4 = 40.0

Average of d1 and d2 is 15.0
Average of d1, d2 and d3 is 20.0
Average of d1, d2, d3 and d4 is 25.0

Common Programming Error 7.4
Placing an ellipsis indicating a variable-length argument list in the middle of a parameter
list is a syntax error. An ellipsis may be placed only at the end of the parameter list.

Fig. 7.20 | Using variable-length argument lists. (Part 2 of 2.)

for (double d : numbers)
total += d;

numbers.length

average(d1, d2)

average(d1, d2, d3)

average(d1, d2, d3, d4)

7.12 Using Command-Line Arguments 179

attribute. Common uses of command-line arguments include passing options and file
names to applications.

Our next example uses command-line arguments to determine the size of an array, the
value of its first element and the increment used to calculate the values of the array’s
remaining elements. The command

passes three arguments, 5, 0 and 4, to the application InitArray. Command-line argu-
ments are separated by white space. When this command executes, InitArray’s main

method receives the three-element array args in which args[0] contains the String "5",
args[1] contains the String "0" and args[2] contains the String "4". The program de-
termines how to use these arguments—in Fig. 7.21 we convert them to int values and use
them to initialize an array. When the program executes, if args.length is not 3, the pro-
gram prints an error message and terminates (lines 9–12). Otherwise, lines 14–32 initialize
and display the array based on the values of the command-line arguments.

java InitArray 5 0 4

1 // Fig. 7.21: InitArray.java
2 // Initializing an array using command-line arguments.
3
4 public class InitArray
5 {
6 public static void main()
7 {
8 // check number of command-line arguments
9 if ()

10 System.out.println(
11 "Error: Please re-enter the entire command, including\n" +
12 "an array size, initial value and increment.");
13 else

14 {
15 // get array size from first command-line argument
16
17 int[] array = new int[arrayLength]; // create array
18
19 // get initial value and increment from command-line arguments
20
21
22
23
24
25
26
27 System.out.printf("%s%8s\n", "Index", "Value");
28
29 // display array index and value
30 for (int counter = 0; counter < array.length; counter++)
31 System.out.printf("%5d%8d\n", counter, array[counter]);
32 } // end else
33 } // end main
34 } // end class InitArray

Fig. 7.21 | Initializing an array using command-line arguments. (Part 1 of 2.)

String[] args

args.length != 3

int arrayLength = Integer.parseInt(args[0]);

int initialValue = Integer.parseInt(args[1]);
int increment = Integer.parseInt(args[2]);

// calculate value for each array element
for (int counter = 0; counter < array.length; counter++)

array[counter] = initialValue + increment * counter;

180 Chapter 7 Arrays and ArrayLists

Line 16 gets args[0]—a String that specifies the array size—and converts it to an
int value that the program uses to create the array in line 17. The static method
parseInt of class Integer converts its String argument to an int.

Lines 20–21 convert the args[1] and args[2] command-line arguments to int

values and store them in initialValue and increment, respectively. Lines 24–25 calcu-
late the value for each array element.

The output of the first execution shows that the application received an insufficient
number of command-line arguments. The second execution uses command-line argu-
ments 5, 0 and 4 to specify the size of the array (5), the value of the first element (0) and
the increment of each value in the array (4), respectively. The corresponding output shows
that these values create an array containing the integers 0, 4, 8, 12 and 16. The output
from the third execution shows that the command-line arguments 8, 1 and 2 produce an
array whose 8 elements are the nonnegative odd integers from 1 to 15.

7.13 Class Arrays
Class Arrays helps you avoid reinventing the wheel by providing static methods for
common array manipulations. These methods include sort for sorting an array (i.e., ar-
ranging elements into increasing order), binarySearch for searching an array (i.e., deter-
mining whether an array contains a specific value and, if so, where the value is located),
equals for comparing arrays and fill for placing values into an array. These methods are
overloaded for primitive-type arrays and for arrays of objects. Our focus in this section is
on using the built-in capabilities provided by the Java API.

java InitArray
Error: Please re-enter the entire command, including
an array size, initial value and increment.

java InitArray 5 0 4
Index Value

0 0
1 4
2 8
3 12
4 16

java InitArray 8 1 2
Index Value

0 1
1 3
2 5
3 7
4 9
5 11
6 13
7 15

Fig. 7.21 | Initializing an array using command-line arguments. (Part 2 of 2.)

7.13 Class Arrays 181

Figure 7.22 uses Arrays methods sort, binarySearch, equals and fill, and shows
how to copy arrays with class System’s static arraycopy method. In main, line 11 sorts
the elements of array doubleArray. The static method sort of class Arrays orders the
array’s elements in ascending order by default. We discuss how to sort in descending order
later in the chapter. Overloaded versions of sort allow you to sort a specific range of ele-
ments. Lines 12–15 output the sorted array.

1 // Fig. 7.22: ArrayManipulations.java
2 // Arrays class methods and System.arraycopy.
3 import java.util.Arrays;
4
5 public class ArrayManipulations
6 {
7 public static void main(String[] args)
8 {
9 // sort doubleArray into ascending order

10 double[] doubleArray = { 8.4, 9.3, 0.2, 7.9, 3.4 };
11
12 System.out.printf("\ndoubleArray: ");
13
14 for (double value : doubleArray)
15 System.out.printf("%.1f ", value);
16
17 // fill 10-element array with 7s
18 int[] filledIntArray = new int[10];
19
20 displayArray(filledIntArray, "filledIntArray");
21
22 // copy array intArray into array intArrayCopy
23 int[] intArray = { 1, 2, 3, 4, 5, 6 };
24 int[] intArrayCopy = new int[intArray.length];
25
26 displayArray(intArray, "intArray");
27 displayArray(intArrayCopy, "intArrayCopy");
28
29 // compare intArray and intArrayCopy for equality
30
31 System.out.printf("\n\nintArray %s intArrayCopy\n",
32 (b ? "==" : "!="));
33
34 // compare intArray and filledIntArray for equality
35
36 System.out.printf("intArray %s filledIntArray\n",
37 (b ? "==" : "!="));
38
39 // search intArray for the value 5
40
41
42 if (location >= 0)
43 System.out.printf(
44 "Found 5 at element %d in intArray\n", location);

Fig. 7.22 | Arrays class methods. (Part 1 of 2.)

Arrays.sort(doubleArray);

Arrays.fill(filledIntArray, 7);

System.arraycopy(intArray, 0, intArrayCopy, 0, intArray.length);

boolean b = Arrays.equals(intArray, intArrayCopy);

b = Arrays.equals(intArray, filledIntArray);

int location = Arrays.binarySearch(intArray, 5);

182 Chapter 7 Arrays and ArrayLists

Line 19 calls static method fill of class Arrays to populate all 10 elements of
filledIntArray with 7s. Overloaded versions of fill allow you to populate a specific
range of elements with the same value. Line 20 calls our class’s displayArray method
(declared at lines 59–65) to output the contents of filledIntArray.

Line 25 copies the elements of intArray into intArrayCopy. The first argument
(intArray) passed to System method arraycopy is the array from which elements are to
be copied. The second argument (0) is the index that specifies the starting point in the
range of elements to copy from the array. This value can be any valid array index. The
third argument (intArrayCopy) specifies the destination array that will store the copy. The
fourth argument (0) specifies the index in the destination array where the first copied ele-
ment should be stored. The last argument specifies the number of elements to copy from
the array in the first argument. In this case, we copy all the elements in the array.

Lines 30 and 35 call static method equals of class Arrays to determine whether all
the elements of two arrays are equivalent. If the arrays contain the same elements in the
same order, the method returns true; otherwise, it returns false.

Lines 40 and 49 call static method binarySearch of class Arrays to perform a
binary search on intArray, using the second argument (5 and 8763, respectively) as the

45 else

46 System.out.println("5 not found in intArray");
47
48 // search intArray for the value 8763
49
50
51 if (location >= 0)
52 System.out.printf(
53 "Found 8763 at element %d in intArray\n", location);
54 else

55 System.out.println("8763 not found in intArray");
56 } // end main
57
58 // output values in each array
59 public static void displayArray(int[] array, String description)
60 {
61 System.out.printf("\n%s: ", description);
62
63 for (int value : array)
64 System.out.printf("%d ", value);
65 } // end method displayArray
66 } // end class ArrayManipulations

doubleArray: 0.2 3.4 7.9 8.4 9.3
filledIntArray: 7 7 7 7 7 7 7 7 7 7
intArray: 1 2 3 4 5 6
intArrayCopy: 1 2 3 4 5 6

intArray == intArrayCopy
intArray != filledIntArray
Found 5 at element 4 in intArray
8763 not found in intArray

Fig. 7.22 | Arrays class methods. (Part 2 of 2.)

location = Arrays.binarySearch(intArray, 8763);

7.14 Introduction to Collections and Class ArrayList 183

key. If value is found, binarySearch returns the index of the element; otherwise, bina-
rySearch returns a negative value. The negative value returned is based on the search key’s
insertion point—the index where the key would be inserted in the array if we were per-
forming an insert operation. After binarySearch determines the insertion point, it
changes its sign to negative and subtracts 1 to obtain the return value. For example, in
Fig. 7.22, the insertion point for the value 8763 is the element with index 6 in the array.
Method binarySearch changes the insertion point to –6, subtracts 1 from it and returns
the value –7. Subtracting 1 from the insertion point guarantees that method binarySearch

returns positive values (>= 0) if and only if the key is found. This return value is useful for
inserting elements in a sorted array.

7.14 Introduction to Collections and Class ArrayList
The Java API provides several predefined data structures, called collections, used to store
groups of related objects. These classes provide efficient methods that organize, store and
retrieve your data without requiring knowledge of how the data is being stored. This re-
duces application-development time.

You’ve used arrays to store sequences of objects. Arrays do not automatically change
their size at execution time to accommodate additional elements. The collection class Array-
List<T> (from package java.util) provides a convenient solution to this problem—it can
dynamically change its size to accommodate more elements. The T (by convention) is a place-
holder—when declaring a new ArrayList, replace it with the type of elements that you want
the ArrayList to hold. This is similar to specifying the type when declaring an array, except
that only nonprimitive types can be used with these collection classes. For example,

declares list as an ArrayList collection that can store only Strings. Classes with this
kind of placeholder that can be used with any type are called generic classes. Additional
generic collection classes and generics are discussed in Chapters 18 and 19, respectively.
Figure 7.23 shows some common methods of class ArrayList<T>.

Common Programming Error 7.5
Passing an unsorted array to binarySearch is a logic error—the value returned is unde-
fined.

ArrayList< String > list;

Method Description

add Adds an element to the end of the ArrayList.

clear Removes all the elements from the ArrayList.

contains Returns true if the ArrayList contains the specified element; otherwise,
returns false.

get Returns the element at the specified index.

indexOf Returns the index of the first occurrence of the specified element in the Array-

List.

Fig. 7.23 | Some methods and properties of class ArrayList<T>. (Part 1 of 2.)

184 Chapter 7 Arrays and ArrayLists

Figure 7.24 demonstrates some common ArrayList capabilities. Line 10 creates a
new empty ArrayList of Strings with a default initial capacity of 10 elements. The
capacity indicates how many items the ArrayList can hold without growing. ArrayList
is implemented using an array behind the scenes. When the ArrayList grows, it must
create a larger internal array and copy each element to the new array. This is a time-con-
suming operation. It would be inefficient for the ArrayList to grow each time an element
is added. Instead, it grows only when an element is added and the number of elements is
equal to the capacity—i.e., there’s no space for the new element.

remove Overloaded. Removes the first occurrence of the specified value or the element
at the specified index.

size Returns the number of elements stored in the ArrayList.

trimToSize Trims the capacity of the ArrayList to current number of elements.

1 // Fig. 7.24: ArrayListCollection.java
2 // Generic ArrayList<T> collection demonstration.
3 import java.util.ArrayList;
4
5 public class ArrayListCollection
6 {
7 public static void main(String[] args)
8 {
9 // create a new ArrayList of Strings with an initial capacity of 10

10 ArrayList< String > items = new ArrayList< String >();
11
12 items.add("red"); // append an item to the list
13 items.add(0, "yellow"); // insert the value at index 0
14
15 // header
16 System.out.print(
17 "Display list contents with counter-controlled loop:");
18
19 // display the colors in the list
20 for (int i = 0; i < items.size(); i++)
21 System.out.printf(" %s", items.get(i));
22
23 // display colors using foreach in the display method
24 display(items,
25 "\nDisplay list contents with enhanced for statement:");
26
27 items.add("green"); // add "green" to the end of the list
28 items.add("yellow"); // add "yellow" to the end of the list
29 display(items, "List with two new elements:");
30

Fig. 7.24 | Generic ArrayList<T> collection demonstration. (Part 1 of 2.)

Method Description

Fig. 7.23 | Some methods and properties of class ArrayList<T>. (Part 2 of 2.)

7.14 Introduction to Collections and Class ArrayList 185

The add method adds elements to the ArrayList (lines 12–13). The add method with
one argument appends its argument to the end of the ArrayList. The add method with
two arguments inserts a new element at the specified position. The first argument is an
index. As with arrays, collection indices start at zero. The second argument is the value to
insert at that index. The indices of all subsequent elements are incremented by one.
Inserting an element is usually slower than adding an element to the end of the ArrayList

Lines 20–21 display the items in the ArrayList. The size method returns the
number of elements currently in the ArrayList. ArrayLists method get (line 21) obtains
the element at a specified index. Lines 24–25 display the elements again by invoking
method display (defined at lines 46–55). Lines 27–28 add two more elements to the
ArrayList, then line 29 displays the elements again to confirm that the two elements were
added to the end of the collection.

The remove method is used to remove an element with a specific value (line 31). It
removes only the first such element. If no such element is in the ArrayList, remove does

31 items.remove("yellow"); // remove the first "yellow"
32 display(items, "Remove first instance of yellow:");
33
34 items.remove(1); // remove item at index 1
35 display(items, "Remove second list element (green):");
36
37 // check if a value is in the List
38 System.out.printf("\"red\" is %sin the list\n",
39 items.contains("red") ? "": "not ");
40
41 // display number of elements in the List
42 System.out.printf("Size: %s\n", items.size());
43 } // end main
44
45 // display the ArrayList's elements on the console
46 public static void display(ArrayList< String > items, String header)
47 {
48 System.out.print(header); // display header
49
50 // display each element in items
51 for (String item : items)
52 System.out.printf(" %s", item);
53
54 System.out.println(); // display end of line
55 } // end method display
56 } // end class ArrayListCollection

Display list contents with counter-controlled loop: yellow red
Display list contents with enhanced for statement: yellow red
List with two new elements: yellow red green yellow
Remove first instance of yellow: red green yellow
Remove second list element (green): red yellow
"red" is in the list
Size: 2

Fig. 7.24 | Generic ArrayList<T> collection demonstration. (Part 2 of 2.)

186 Chapter 7 Arrays and ArrayLists

nothing. An overloaded version of the method removes the element at the specified index
(line 34). When an element is removed, the indices of all elements after the removed ele-
ment decrease by one.

Line 39 uses the contains method to check if an item is in the ArrayList. The con-
tains method returns true if the element is found in the ArrayList, and false otherwise.
The method compares its argument to each element of the ArrayList in order, so using
contains on a large ArrayList can be inefficient. Line 42 displays the ArrayList’s size.

7.15 Wrap-Up
This chapter demonstrated how to declare an array, initialize an array and refer to individ-
ual elements of an array. We introduced the enhanced for statement to iterate through
arrays. We used exception handling to test for ArrayIndexOutOfBoundsExceptions that
occur when a program attempts to access an array element outside the bounds of an array
(we’ll take a deeper look at exception handling in Chapter 11). We also illustrated how to
pass arrays to methods and how to declare and manipulate multidimensional arrays. Final-
ly, the chapter showed how to write methods that use variable-length argument lists and
how to read arguments passed to a program from the command line.

We introduced the ArrayList<T> generic collection, which provides all the function-
ality and performance of arrays, along with other useful capabilities such as dynamic
resizing. We used the add methods to add new items to the end of an ArrayList and to
insert items in an ArrayList. The remove method was used to remove the first occurrence
of a specified item, and an overloaded version of remove was used to remove an item at a
specified index. We used the size method to obtain number of items in the ArrayList.

We continue our coverage of data structures in Chapter 18, Generic Collections.
Chapter 18 introduces the Java Collections Framework, which uses generics to allow you
to specify the exact types of objects that a particular data structure will store. The Collec-
tions API provides class Arrays, which contains utility methods for array manipulation.
Chapter 18 uses several static methods of class Arrays to perform such manipulations as
sorting and searching the data in an array. You’ll be able to use some of the Arrays

methods discussed in Chapter 18 after reading the current chapter, but some of the Arrays
methods require knowledge of concepts presented later in the book. Chapter 19 presents
the topic of generics, which provide the means to create general models of methods and
classes that can be declared once, but used with many different data types.

We’ve now introduced the basic concepts of classes, objects, control statements,
methods, arrays and collections. In Chapter 8, we take a deeper look at classes and objects.

8
Classes and Objects:
A Deeper Look

O b j e c t i v e s
In this chapter you’ll learn:

� Encapsulation and data hiding.

� To use keyword this.

� To use static variables and methods.

� To import static members of a class.

� To use the enum type to create sets of constants with
unique identifiers.

� To declare enum constants with parameters.

� To organize classes in packages to promote reuse.

Instead of this absurd
division into sexes, they
ought to class people as
static and dynamic.
—Evelyn Waugh

Is it a world to hide virtues
in?
—William Shakespeare

But what, to serve
our private ends,
Forbids the cheating
of our friends?
—Charles Churchill

This above all: to thine own
self be true.
—William Shakespeare

Don’t be “consistent,” but
be simply true.
—Oliver Wendell Holmes, Jr.

188 Chapter 8 Classes and Objects: A Deeper Look

8.1 Introduction
We now take a deeper look at building classes, controlling access to members of a class and
creating constructors. We discuss composition—a capability that allows a class to have ref-
erences to objects of other classes as members. We reexamine the use of set and get methods.
Recall that Section 6.9 introduced the basic enum type to declare a set of constants. In this
chapter, we discuss the relationship between enum types and classes, demonstrating that an
enum, like a class, can be declared in its own file with constructors, methods and fields. The
chapter also discusses static class members and final instance variables in detail. Finally,
we explain how to organize classes in packages to help manage large applications and pro-
mote reuse, then show a special relationship between classes in the same package.

8.2 Time Class Case Study
Our first example consists of two classes—Time1 (Fig. 8.1) and Time1Test (Fig. 8.2).
Class Time1 represents the time of day. Class Time1Test is an application class in which
the main method creates one object of class Time1 and invokes its methods. These classes
must be declared in separate files because they’re both public classes. The output of this
program appears in Fig. 8.2.

Time1 Class Declaration
Class Time1’s private int instance variables hour, minute and second (Fig. 8.1, lines 6–
8) represent the time in universal-time format (24-hour clock format in which hours are
in the range 0–23). Class Time1 contains public methods setTime (lines 12–25), toUni-
versalString (lines 28–31) and toString (lines 34–39). These methods are also called
the public services or the public interface that the class provides to its clients.

8.1 Introduction
8.2 Time Class Case Study
8.3 Controlling Access to Members
8.4 Referring to the Current Object’s

Members with the this Reference
8.5 Time Class Case Study: Overloaded

Constructors
8.6 Default and No-Argument

Constructors
8.7 Notes on Set and Get Methods
8.8 Composition

8.9 Enumerations
8.10 Garbage Collection and Method

finalize

8.11 static Class Members
8.12 static Import
8.13 final Instance Variables
8.14 Time Class Case Study: Creating

Packages
8.15 Package Access
8.16 Wrap-Up

1 // Fig. 8.1: Time1.java
2 // Time1 class declaration maintains the time in 24-hour format.
3
4 public class Time1
5 {

Fig. 8.1 | Time1 class declaration maintains the time in 24-hour format. (Part 1 of 2.)

8.2 Time Class Case Study 189

Default Constructor
In this example, class Time1 does not declare a constructor, so the class has a default con-
structor that’s supplied by the compiler. Each instance variable implicitly receives the
default value 0 for an int. Instance variables also can be initialized when they’re declared
in the class body, using the same initialization syntax as with a local variable.

Method setTime and Throwing Exceptions
The public method setTime (lines 12–25) declares three int parameters and uses them to
set the time. Lines 15–16 test each argument to determine whether the value is in range, and,
if so, lines 18–20 assign the values to instance variables hour, minute and second. The hour
value must be greater than or equal to 0 and less than 24, because universal-time format rep-
resents hours as integers from 0 to 23 (e.g., 1 PM is hour 13 and 11 PM is hour 23; midnight
is hour 0 and noon is hour 12). Similarly, minute and second values must be greater than or
equal to 0 and less than 60. For values outside these ranges, SetTime throws an exception of

6
7
8
9

10 // set a new time value using universal time; throw an
11 // exception if the hour, minute or second is invalid
12 public void setTime(int h, int m, int s)
13 {
14 // validate hour, minute and second
15 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
16 (s >= 0 && s < 60))
17 {
18 = h;
19 = m;
20 = s;
21 } // end if
22 else

23
24
25 } // end method setTime
26
27 // convert to String in universal-time format (HH:MM:SS)
28 public String toUniversalString()
29 {
30
31 } // end method toUniversalString
32
33 // convert to String in standard-time format (H:MM:SS AM or PM)
34 public String toString()
35 {
36
37
38
39 } // end method toString
40 } // end class Time1

Fig. 8.1 | Time1 class declaration maintains the time in 24-hour format. (Part 2 of 2.)

private int hour; // 0 - 23
private int minute; // 0 - 59
private int second; // 0 - 59

hour
minute
second

throw new IllegalArgumentException(
"hour, minute and/or second was out of range");

return String.format("%02d:%02d:%02d", hour, minute, second);

return String.format("%d:%02d:%02d %s",
((hour == 0 || hour == 12) ? 12 : hour % 12),
minute, second, (hour < 12 ? "AM" : "PM"));

190 Chapter 8 Classes and Objects: A Deeper Look

type IllegalArgumentException (lines 23–24), which notifies the client code that an inval-
id argument was passed to the method. As you learned in Chapter 7, you can use try...catch
to catch exceptions and attempt to recover from them, which we’ll do in Fig. 8.2. The throw
statement (line 23) creates a new object of type IllegalArgumentException. The parenthe-
ses following the class name indicate a call to the IllegalArgumentException constructor.
In this case, we call the constructor that allows us to specify a custom error message. After
the exception object is created, the throw statement immediately terminates method set-

Time and the exception is returned to the code that attempted to set the time.

Method toUniversalString

Method toUniversalString (lines 28–31) takes no arguments and returns a String in
universal-time format, consisting of two digits each for the hour, minute and second. For
example, if the time were 1:30:07 PM, the method would return 13:30:07. Line 22 uses
static method format of class String to return a String containing the formatted hour,
minute and second values, each with two digits and possibly a leading 0 (specified with
the 0 flag). Method format is similar to method System.out.printf except that format
returns a formatted String rather than displaying it in a command window. The format-
ted String is returned by method toUniversalString.

Method toString

Method toString (lines 34–39) takes no arguments and returns a String in standard-
time format, consisting of the hour, minute and second values separated by colons and fol-
lowed by AM or PM (e.g., 1:27:06 PM). Like method toUniversalString, method to-

String uses static String method format to format the minute and second as two-digit
values, with leading zeros if necessary. Line 29 uses a conditional operator (?:) to deter-
mine the value for hour in the String—if the hour is 0 or 12 (AM or PM), it appears as
12; otherwise, it appears as a value from 1 to 11. The conditional operator in line 30 de-
termines whether AM or PM will be returned as part of the String.

Recall from Section 6.4 that all objects in Java have a toString method that returns
a String representation of the object. We chose to return a String containing the time in
standard-time format. Method toString is called implicitly whenever a Time1 object
appears in the code where a String is needed, such as the value to output with a %s format
specifier in a call to System.out.printf.

Using Class Time1
As you learned in Chapter 3, each class you declare represents a new type in Java. There-
fore, after declaring class Time1, we can use it as a type in declarations such as

The Time1Test application class (Fig. 8.2) uses class Time1. Line 9 declares and creates a
Time1 object and assigns it to local variable time. Operator new implicitly invokes class
Time1’s default constructor, since Time1 does not declare any constructors. Lines 12–16
output the time first in universal-time format (by invoking time’s toUniversalString

method in line 13), then in standard-time format (by explicitly invoking time’s toString
method in line 15) to confirm that the Time1 object was initialized properly. Next, line 19
invokes method setTime of the time object to change the time. Then lines 20–24 output
the time again in both formats to confirm that it was set correctly.

Time1 sunset; // sunset can hold a reference to a Time1 object

8.2 Time Class Case Study 191

1 // Fig. 8.2: Time1Test.java
2 // Time1 object used in an application.
3
4 public class Time1Test
5 {
6 public static void main(String[] args)
7 {
8 // create and initialize a Time1 object
9

10
11 // output string representations of the time
12 System.out.print("The initial universal time is: ");
13 System.out.println();
14 System.out.print("The initial standard time is: ");
15 System.out.println();
16 System.out.println(); // output a blank line
17
18 // change time and output updated time
19
20 System.out.print("Universal time after setTime is: ");
21 System.out.println();
22 System.out.print("Standard time after setTime is: ");
23 System.out.println();
24 System.out.println(); // output a blank line
25
26 // attempt to set time with invalid values
27 try

28 {
29
30 } // end try
31 catch (IllegalArgumentException e)
32 {
33 System.out.printf("Exception: %s\n\n", e.getMessage());
34 } // end catch
35
36 // display time after attempt to set invalid values
37 System.out.println("After attempting invalid settings:");
38 System.out.print("Universal time: ");
39 System.out.println();
40 System.out.print("Standard time: ");
41 System.out.println();
42 } // end main
43 } // end class Time1Test

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

Universal time after setTime is: 13:27:06
Standard time after setTime is: 1:27:06 PM

Exception: hour, minute and/or second was out of range

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

Fig. 8.2 | Time1 object used in an application.

Time1 time = new Time1(); // invokes Time1 constructor

time.toUniversalString()

time.toString()

time.setTime(13, 27, 6);

time.toUniversalString()

time.toString()

time.setTime(99, 99, 99); // all values out of range

time.toUniversalString()

time.toString()

192 Chapter 8 Classes and Objects: A Deeper Look

Calling Time1 Method setTime with Invalid Values
To illustrate that method setTime validates its arguments, line 29 calls method setTime

with invalid arguments of 99 for the hour, minute and second. This statement is placed in
a try block (lines 27–30) in case setTime throws an IllegalArgumentException, which
it will do since the arguments are all invalid. When this occurs, the exception is caught at
lines 31–34, and line 33 displays the exception’s error message by calling its getMessage
method. Lines 37–41 output the time again in both formats to confirm that setTime did
not change the time when invalid arguments were supplied.

Notes on the Time1 Class Declaration
Consider several issues of class design with respect to class Time1. The instance variables
hour, minute and second are each declared private. The actual data representation used
within the class is of no concern to the class’s clients. For example, it would be perfectly
reasonable for Time1 to represent the time internally as the number of seconds since mid-
night or the number of minutes and seconds since midnight. Clients could use the same
public methods and get the same results without being aware of this.

8.3 Controlling Access to Members
The access modifiers public and private control access to a class’s variables and methods.
In Chapter 9, we’ll introduce the additional access modifier protected. As we stated in
Section 8.2, the primary purpose of public methods is to present to the class’s clients a
view of the services the class provides (the class’s public interface). Clients need not be
concerned with how the class accomplishes its tasks. For this reason, the class’s private
variables and private methods (i.e., its implementation details) are not accessible to its cli-
ents.

Figure 8.3 demonstrates that private class members are not accessible outside the
class. Lines 9–11 attempt to access directly the private instance variables hour, minute
and second of the Time1 object time. When this program is compiled, the compiler gen-
erates error messages that these private members are not accessible. This program
assumes that the Time1 class from Fig. 8.1 is used.

Software Engineering Observation 8.1
Classes simplify programming, because the client can use only the public methods exposed
by the class. Such methods are usually client oriented rather than implementation
oriented. Clients are neither aware of, nor involved in, a class’s implementation. Clients
generally care about what the class does but not how the class does it.

Software Engineering Observation 8.2
Interfaces change less frequently than implementations. When an implementation
changes, implementation-dependent code must change accordingly. Hiding the
implementation reduces the possibility that other program parts will become dependent on
class implementation details.

Common Programming Error 8.1
An attempt by a method that’s not a member of a class to access a private member of that
class is a compilation error.

8.4 Referring to the Current Object’s Members with the this Reference 193

8.4 Referring to the Current Object’s Members with the
this Reference
Every object can access a reference to itself with keyword this (sometimes called the this
reference). When a non-static method is called for a particular object, the method’s body
implicitly uses keyword this to refer to the object’s instance variables and other methods.
This enables the class’s code to know which object should be manipulated. As you’ll see in
Fig. 8.4, you can also use keyword this explicitly in a non-static method’s body.
Section 8.5 shows another interesting use of keyword this. Section 8.11 explains why
keyword this cannot be used in a static method.

1 // Fig. 8.3: MemberAccessTest.java
2 // Private members of class Time1 are not accessible.
3 public class MemberAccessTest
4 {
5 public static void main(String[] args)
6 {
7 Time1 time = new Time1(); // create and initialize Time1 object
8
9

10
11
12 } // end main
13 } // end class MemberAccessTest

MemberAccessTest.java:9: hour has private access in Time1
time.hour = 7; // error: hour has private access in Time1

^
MemberAccessTest.java:10: minute has private access in Time1

time.minute = 15; // error: minute has private access in Time1
^

MemberAccessTest.java:11: second has private access in Time1
time.second = 30; // error: second has private access in Time1

^
3 errors

Fig. 8.3 | Private members of class Time1 are not accessible.

1 // Fig. 8.4: ThisTest.java
2 // this used implicitly and explicitly to refer to members of an object.
3
4 public class ThisTest
5 {
6 public static void main(String[] args)
7 {
8 SimpleTime time = new SimpleTime(15, 30, 19);
9 System.out.println(time.buildString());

10 } // end main
11 } // end class ThisTest

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part 1 of 2.)

time.hour = 7; // error: hour has private access in Time1
time.minute = 15; // error: minute has private access in Time1
time.second = 30; // error: second has private access in Time1

194 Chapter 8 Classes and Objects: A Deeper Look

We now demonstrate implicit and explicit use of the this reference (Fig. 8.4). This
example is the first in which we declare two classes in one file—class ThisTest is declared
in lines 4–11, and class SimpleTime in lines 14–47. We do this to demonstrate that when
you compile a .java file containing more than one class, the compiler produces a separate
class file with the .class extension for every compiled class. In this case, two separate files
are produced—SimpleTime.class and ThisTest.class. When one source-code (.java)
file contains multiple class declarations, the compiler places both class files for those classes
in the same directory. Note also in Fig. 8.4 that only class ThisTest is declared public. A
source-code file can contain only one public class—otherwise, a compilation error occurs.

12
13 // class SimpleTime demonstrates the "this" reference
14 class SimpleTime
15 {
16 private int hour; // 0-23
17 private int minute; // 0-59
18 private int second; // 0-59
19
20 // if the constructor uses parameter names identical to
21 // instance variable names the "this" reference is
22 // required to distinguish between the names
23 public SimpleTime(int hour, int minute, int second)
24 {
25
26
27
28 } // end SimpleTime constructor
29
30 // use explicit and implicit "this" to call toUniversalString
31 public String buildString()
32 {
33 return String.format("%24s: %s\n%24s: %s",
34 "this.toUniversalString()", ,
35 "toUniversalString()",);
36 } // end method buildString
37
38 // convert to String in universal-time format (HH:MM:SS)
39 public String toUniversalString()
40 {
41 // "this" is not required here to access instance variables,
42 // because method does not have local variables with same
43 // names as instance variables
44 return String.format("%02d:%02d:%02d",
45 , ,);
46 } // end method toUniversalString
47 } // end class SimpleTime

this.toUniversalString(): 15:30:19
toUniversalString(): 15:30:19

Fig. 8.4 | this used implicitly and explicitly to refer to members of an object. (Part 2 of 2.)

this.hour = hour; // set "this" object's hour
this.minute = minute; // set "this" object's minute
this.second = second; // set "this" object's second

this.toUniversalString()
toUniversalString()

this.hour this.minute this.second

8.5 Time Class Case Study: Overloaded Constructors 195

Non-public classes can be used only by other classes in the same package. So, in this
example, class SimpleTime can be used only by class ThisTest.

Class SimpleTime (lines 14–47) declares three private instance variables—hour,
minute and second (lines 16–18). The constructor (lines 23–28) receives three int argu-
ments to initialize a SimpleTime object. We used parameter names for the constructor
(line 23) that are identical to the class’s instance-variable names (lines 16–18). We don’t
recommend this practice, but we did it here to shadow (hide) the corresponding instance
variables so that we could illustrate a case in which explicit use of the this reference is
required. If a method contains a local variable with the same name as a field, that method
will refer to the local variable rather than the field. In this case, the local variable shadows
the field in the method’s scope. However, the method can use the this reference to refer
to the shadowed field explicitly, as shown on the left sides of the assignments in lines 25–
27 for SimpleTime’s shadowed instance variables.

Method buildString (lines 31–36) returns a String created by a statement that uses
the this reference explicitly and implicitly. Line 34 uses it explicitly to call method toUni-

versalString. Line 35 uses it implicitly to call the same method. Both lines perform the
same task. You typically will not use this explicitly to reference other methods within the
current object. Also, line 45 in method toUniversalString explicitly uses the this refer-
ence to access each instance variable. This is not necessary here, because the method does
not have any local variables that shadow the instance variables of the class.

Application class ThisTest (lines 4–11) demonstrates class SimpleTime. Line 8 creates
an instance of class SimpleTime and invokes its constructor. Line 9 invokes the object’s
buildString method, then displays the results.

8.5 Time Class Case Study: Overloaded Constructors
As you know, you can declare your own constructor to specify how objects of a class should
be initialized. Next, we demonstrate a class with several overloaded constructors that en-
able objects of that class to be initialized in different ways. To overload constructors, sim-
ply provide multiple constructor declarations with different signatures.

Common Programming Error 8.2
It’s often a logic error when a method contains a parameter or local variable that has the
same name as a field of the class. In this case, use reference this if you wish to access the
field of the class—otherwise, the method parameter or local variable will be referenced.

Error-Prevention Tip 8.1
Avoid method-parameter names or local-variable names that conflict with field names.
This helps prevent subtle, hard-to-locate bugs.

Performance Tip 8.1
Java conserves storage by maintaining only one copy of each method per class—this method
is invoked by every object of the class. Each object, on the other hand, has its own copy of
the class’s instance variables (i.e., non-static fields). Each method of the class implicitly
uses this to determine the specific object of the class to manipulate.

196 Chapter 8 Classes and Objects: A Deeper Look

Class Time2 with Overloaded Constructors
The default constructor for class Time1 (Fig. 8.1) initialized hour, minute and second to
their default 0 values (which is midnight in universal time). The default constructor does
not enable the class’s clients to initialize the time with specific nonzero values. Class Time2
(Fig. 8.5) contains five overloaded constructors that provide convenient ways to initialize
objects of the new class Time2. Each constructor initializes the object to begin in a consis-
tent state. In this program, four of the constructors invoke a fifth, which in turn calls
method setTime to ensure that the value supplied for hour is in the range 0 to 23, and the
values for minute and second are each in the range 0 to 59. The compiler invokes the ap-
propriate constructor by matching the number, types and order of the types of the argu-
ments specified in the constructor call with the number, types and order of the types of
the parameters specified in each constructor declaration. Class Time2 also provides set and
get methods for each instance variable.

1 // Fig. 8.5: Time2.java
2 // Time2 class declaration with overloaded constructors.
3
4 public class Time2
5 {
6 private int hour; // 0 - 23
7 private int minute; // 0 - 59
8 private int second; // 0 - 59
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Fig. 8.5 | Time2 class with overloaded constructors. (Part 1 of 3.)

// Time2 no-argument constructor:
// initializes each instance variable to zero
public Time2()
{

this(0, 0, 0); // invoke Time2 constructor with three arguments
} // end Time2 no-argument constructor

// Time2 constructor: hour supplied, minute and second defaulted to 0
public Time2(int h)
{

this(h, 0, 0); // invoke Time2 constructor with three arguments
} // end Time2 one-argument constructor

// Time2 constructor: hour and minute supplied, second defaulted to 0
public Time2(int h, int m)
{

this(h, m, 0); // invoke Time2 constructor with three arguments
} // end Time2 two-argument constructor

// Time2 constructor: hour, minute and second supplied
public Time2(int h, int m, int s)
{

setTime(h, m, s); // invoke setTime to validate time
} // end Time2 three-argument constructor

8.5 Time Class Case Study: Overloaded Constructors 197

35
36
37
38
39
40
41
42 // Set Methods
43 // set a new time value using universal time;
44 // validate the data
45 public void setTime(int h, int m, int s)
46 {
47 setHour(h); // set the hour
48 setMinute(m); // set the minute
49 setSecond(s); // set the second
50 } // end method setTime
51
52 // validate and set hour
53 public void setHour(int h)
54 {
55 if (h >= 0 && h < 24)
56 hour = h;
57 else

58 throw new IllegalArgumentException("hour must be 0-23");
59 } // end method setHour
60
61 // validate and set minute
62 public void setMinute(int m)
63 {
64 if (m >= 0 && m < 60)
65 minute = m;
66 else

67 throw new IllegalArgumentException("minute must be 0-59");
68 } // end method setMinute
69
70 // validate and set second
71 public void setSecond(int s)
72 {
73 if (s >= 0 && s < 60)
74 second = ((s >= 0 && s < 60) ? s : 0);
75 else

76 throw new IllegalArgumentException("second must be 0-59");
77 } // end method setSecond
78
79 // Get Methods
80 // get hour value
81 public int getHour()
82 {
83 return hour;
84 } // end method getHour
85

Fig. 8.5 | Time2 class with overloaded constructors. (Part 2 of 3.)

// Time2 constructor: another Time2 object supplied
public Time2(Time2 time)
{

// invoke Time2 three-argument constructor
this(time.getHour(), time.getMinute(), time.getSecond());

} // end Time2 constructor with a Time2 object argument

198 Chapter 8 Classes and Objects: A Deeper Look

Class Time2’s Constructors
Lines 12–15 declare a so-called no-argument constructor that’s invoked without argu-
ments. Once you declare any constructors in a class, the compiler will not provide a default
constructor. This no-argument constructor ensures that class Time2’s clients can create
Time2 objects with default values. Such a constructor simply initializes the object as spec-
ified in the constructor’s body. In the body, we introduce a use of the this reference that’s
allowed only as the first statement in a constructor’s body. Line 14 uses this in method-
call syntax to invoke the Time2 constructor that takes three parameters (lines 30–33) with
values of 0 for the hour, minute and second. Using the this reference as shown here is a
popular way to reuse initialization code provided by another of the class’s constructors
rather than defining similar code in the no-argument constructor’s body. We use this syn-
tax in four of the five Time2 constructors to make the class easier to maintain and modify.
If we need to change how objects of class Time2 are initialized, only the constructor that
the class’s other constructors call will need to be modified. In fact, even that constructor
might not need modification in this example. That constructor simply calls the setTime

method to perform the actual initialization, so it’s possible that the changes the class might
require would be localized to the set methods.

86 // get minute value
87 public int getMinute()
88 {
89 return minute;
90 } // end method getMinute
91
92 // get second value
93 public int getSecond()
94 {
95 return second;
96 } // end method getSecond
97
98 // convert to String in universal-time format (HH:MM:SS)
99 public String toUniversalString()
100 {
101 return String.format(
102 "%02d:%02d:%02d", getHour(), getMinute(), getSecond());
103 } // end method toUniversalString
104
105 // convert to String in standard-time format (H:MM:SS AM or PM)
106 public String toString()
107 {
108 return String.format("%d:%02d:%02d %s",
109 ((getHour() == 0 || getHour() == 12) ? 12 : getHour() % 12),
110 getMinute(), getSecond(), (getHour() < 12 ? "AM" : "PM"));
111 } // end method toString
112 } // end class Time2

Common Programming Error 8.3
A constructor can call methods of the class. Instance variables might not yet be initialized,
because the constructor is initializing the object. This can lead to logic errors.

Fig. 8.5 | Time2 class with overloaded constructors. (Part 3 of 3.)

8.5 Time Class Case Study: Overloaded Constructors 199

Lines 18–21 declare a Time2 constructor with a single int parameter representing the
hour, which is passed with 0 for the minute and second to the constructor at lines 30–33.
Lines 24–27 declare a Time2 constructor that receives two int parameters representing the
hour and minute, which are passed with 0 for the second to the constructor at lines 30–
33. Like the no-argument constructor, each of these constructors invokes the constructor
at lines 30–33 to minimize code duplication. Lines 30–33 declare the Time2 constructor
that receives three int parameters representing the hour, minute and second. This con-
structor calls setTime to initialize the instance variables.

Lines 36–40 declare a Time2 constructor that receives a reference to another Time2

object. In this case, the values from the Time2 argument are passed to the three-argument
constructor at lines 30–33 to initialize the hour, minute and second. Line 39 could have
directly accessed the hour, minute and second values of the constructor’s argument time
with the expressions time.hour, time.minute and time.second—even though hour,
minute and second are declared as private variables of class Time2. This is due to a special
relationship between objects of the same class. We’ll see in a moment why it’s preferable
to use the get methods.

Class Time2’s setTime Method
Method setTime (lines 45–50) invokes the setHour (lines 53–59), setMinute (lines 62–
68) and setSecond (lines 71–77) methods, which ensure that the value supplied for hour
is in the range 0 to 23 and the values for minute and second are each in the range 0 to 59.
If a value is out of range, each of these methods throws an IllegalArgumentException

(lines 58, 67 and 76) indicating which value was out of range.

Notes Regarding Class Time2’s set and get Methods and Constructors
Time2’s set and get methods are called throughout the class. In particular, method setTime

calls methods setHour, setMinute and setSecond in lines 47–49, and methods toUni-

versalString and toString call methods getHour, getMinute and getSecond in line 93
and lines 100–101, respectively. In each case, these methods could have accessed the class’s
private data directly without calling the set and get methods. However, consider changing
the representation of the time from three int values (requiring 12 bytes of memory) to a
single int value representing the total number of seconds that have elapsed since midnight
(requiring only 4 bytes of memory). If we made such a change, only the bodies of the
methods that access the private data directly would need to change—in particular, the
individual set and get methods for the hour, minute and second. There would be no need
to modify the bodies of methods setTime, toUniversalString or toString because they
do not access the data directly. Designing the class in this manner reduces the likelihood
of programming errors when altering the class’s implementation.

Similarly, each Time2 constructor could include a copy of the appropriate statements
from methods setHour, setMinute and setSecond. Doing so may be slightly more efficient,
because the extra calls to the constructor and setTime are eliminated. However, duplicating
statements in multiple methods or constructors makes changing the class’s internal data rep-
resentation more difficult. Having the Time2 constructors call the constructor with three

Software Engineering Observation 8.3
When one object of a class has a reference to another object of the same class, the first object
can access all the second object’s data and methods (including those that are private).

200 Chapter 8 Classes and Objects: A Deeper Look

arguments (or even call setTime directly) requires that any changes to the implementation
of setTime be made only once. Also, the compiler can optimize programs by removing calls
to simple methods and replacing them with the expanded code of their declarations—a tech-
nique known as inlining the code, which improves program performance.

Using Class Time2’s Overloaded Constructors
Class Time2Test (Fig. 8.6) invokes the overloaded Time2 constructors (lines 8–12 and 40).
Line 8 invokes the no-argument constructor (Fig. 8.5, lines 12–15). Lines 9–13 of the pro-
gram demonstrate passing arguments to the other Time2 constructors. Line 9 invokes the
single-argument constructor that receives an int at lines 18–21 of Fig. 8.5. Line 10 invokes
the two-argument constructor at lines 24–27 of Fig. 8.5. Line 11 invokes the three-argu-
ment constructor at lines 30–33 of Fig. 8.5. Line 12 invokes the single-argument construc-
tor that takes a Time2 at lines 36–40 of Fig. 8.5. Next, the application displays the String

representations of each Time2 object to confirm that it was initialized properly. Line 40 at-
tempts to intialize t6 by creating a new Time2 object and passing three invalid values to the
constructor. When the constructor attempts to use the invalid hour value to initialize the
object’s hour, an IllegalArgumentException occurs. We catch this exception at line 42
and display its error message, which results in the last line of the output.

Software Engineering Observation 8.4
When implementing a method of a class, use the class’s set and get methods to access the
class’s private data. This simplifies code maintenance and reduces the likelihood of errors.

1 // Fig. 8.6: Time2Test.java
2 // Overloaded constructors used to initialize Time2 objects.
3
4 public class Time2Test
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13
14 System.out.println("Constructed with:");
15 System.out.println("t1: all arguments defaulted");
16 System.out.printf(" %s\n", t1.toUniversalString());
17 System.out.printf(" %s\n", t1.toString());
18
19 System.out.println(
20 "t2: hour specified; minute and second defaulted");
21 System.out.printf(" %s\n", t2.toUniversalString());
22 System.out.printf(" %s\n", t2.toString());
23
24 System.out.println(
25 "t3: hour and minute specified; second defaulted");
26 System.out.printf(" %s\n", t3.toUniversalString());

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 1 of 2.)

Time2 t1 = new Time2(); // 00:00:00
Time2 t2 = new Time2(2); // 02:00:00
Time2 t3 = new Time2(21, 34); // 21:34:00
Time2 t4 = new Time2(12, 25, 42); // 12:25:42
Time2 t5 = new Time2(t4); // 12:25:42

8.6 Default and No-Argument Constructors 201

8.6 Default and No-Argument Constructors
Every class must have at least one constructor. If you do not provide any in a class’s dec-
laration, the compiler creates a default constructor that takes no arguments when it’s in-
voked. The default constructor initializes the instance variables to the initial values
specified in their declarations or to their default values (zero for primitive numeric types,
false for boolean values and null for references). In Section 9.4.1, you’ll learn that the
default constructor performs another task also.

27 System.out.printf(" %s\n", t3.toString());
28
29 System.out.println("t4: hour, minute and second specified");
30 System.out.printf(" %s\n", t4.toUniversalString());
31 System.out.printf(" %s\n", t4.toString());
32
33 System.out.println("t5: Time2 object t4 specified");
34 System.out.printf(" %s\n", t5.toUniversalString());
35 System.out.printf(" %s\n", t5.toString());
36
37 // attempt to initialize t6 with invalid values
38 try

39 {
40
41 } // end try
42 catch (IllegalArgumentException e)
43 {
44 System.out.printf("\nException while initializing t6: %s\n",
45 e.getMessage());
46 } // end catch
47 } // end main
48 } // end class Time2Test

Constructed with:
t1: all arguments defaulted

00:00:00
12:00:00 AM

t2: hour specified; minute and second defaulted
02:00:00
2:00:00 AM

t3: hour and minute specified; second defaulted
21:34:00
9:34:00 PM

t4: hour, minute and second specified
12:25:42
12:25:42 PM

t5: Time2 object t4 specified
12:25:42
12:25:42 PM

Exception while initializing t6: hour must be 0-23

Fig. 8.6 | Overloaded constructors used to initialize Time2 objects. (Part 2 of 2.)

Time2 t6 = new Time2(27, 74, 99); // invalid values

202 Chapter 8 Classes and Objects: A Deeper Look

If your class declares constructors, the compiler will not create a default constructor.
In this case, you must declare a no-argument constructor if default initialization is
required. Like a default constructor, a no-argument constructor is invoked with empty
parentheses. The Time2 no-argument constructor (lines 12–15 of Fig. 8.5) explicitly ini-
tializes a Time2 object by passing to the three-argument constructor 0 for each parameter.
Since 0 is the default value for int instance variables, the no-argument constructor in this
example could actually be declared with an empty body. In this case, each instance variable
would receive its default value when the no-argument constructor was called. If we omit
the no-argument constructor, clients of this class would not be able to create a Time2

object with the expression new Time2().

8.7 Notes on Set and Get Methods
As you know, a class’s private fields can be manipulated only by its methods. A typical
manipulation might be the adjustment of a customer’s bank balance (e.g., a private in-
stance variable of a class BankAccount) by a method computeInterest. Classes often pro-
vide public methods to allow clients of the class to set (i.e., assign values to) or get (i.e.,
obtain the values of) private instance variables.

As a naming example, a method that sets instance variable interestRate would typ-
ically be named setInterestRate and a method that gets the interestRate would typi-
cally be called getInterestRate. Set methods are also commonly called mutator methods,
because they typically change an object’s state—i.e., modify the values of instance vari-
ables. Get methods are also commonly called accessor methods or query methods.

Set and Get Methods vs. public Data
It would seem that providing set and get capabilities is essentially the same as making the in-
stance variables public. This is one of the subtleties that makes Java so desirable for software
engineering. A public instance variable can be read or written by any method that has a ref-
erence to an object containing that variable. If an instance variable is declared private, a
public get method certainly allows other methods to access it, but the get method can control
how the client can access it. For example, a get method might control the format of the data
it returns and thus shield the client code from the actual data representation. A public set
method can—and should—carefully scrutinize attempts to modify the variable’s value and
throw an exception if necessary. For example, an attempt to set the day of the month to 37
would be rejected, an attempt to set a person’s weight to a negative value would be rejected,
and so on. Although set and get methods provide access to private data, the access is restrict-
ed by the implementation of the methods. This helps promote good software engineering.

Common Programming Error 8.4
A compilation error occurs if a program attempts to initialize an object of a class by passing
the wrong number or types of arguments to the class’s constructor.

Error-Prevention Tip 8.2
Ensure that you do not include a return type in a constructor definition. Java allows other
methods of the class besides its constructors to have the same name as the class and to specify
return types. Such methods are not constructors and will not be called when an object of
the class is instantiated.

8.8 Composition 203

Validity Checking in Set Methods
The benefits of data integrity do not follow automatically simply because instance vari-
ables are declared private—you must provide validity checking. Java enables you to de-
sign better programs in a convenient manner. A class’s set methods could return values
indicating that attempts were made to assign invalid data to objects of the class. A client
of the class could test the return value of a set method to determine whether the client’s
attempt to modify the object was successful and to take appropriate action. Typically,
however, set methods have void return type and use exception handling to indicate at-
tempts to assign invalid data. We discuss exception handling in detail in Chapter 11.

Predicate Methods
Another common use for accessor methods is to test whether a condition is true or false—
such methods are often called predicate methods. An example would be class ArrayList’s
isEmpty method, which returns true if the ArrayList is empty. A program might test
isEmpty before attempting to read another item from an ArrayList.

8.8 Composition
A class can have references to objects of other classes as members. This is called composi-
tion and is sometimes referred to as a has-a relationship. For example, an AlarmClock ob-
ject needs to know the current time and the time when it’s supposed to sound its alarm,
so it’s reasonable to include two references to Time objects in an AlarmClock object.

Class Date
This composition example contains classes Date (Fig. 8.7), Employee (Fig. 8.8) and Em-

ployeeTest (Fig. 8.9). Class Date (Fig. 8.7) declares instance variables month, day and
year (lines 6–8) to represent a date. The constructor receives three int parameters. Line
17 invokes utility method checkMonth (lines 26–32) to validate the month—if the value
is out-of-range the method throws an exception. Line 15 assumes that the value for year
is correct and doesn’t validate it. Line 19 invokes utility method checkDay (lines 35–48)
to validate the day based on the current month and year. Line 38 determines whether the
day is correct based on the number of days in the particular month. If the day is not correct,
lines 42–43 determine whether the month is February, the day is 29 and the year is a leap
year. If the day is still invalid, the method throws an exception. Lines 21–22 in the con-
structor output the this reference as a String. Since this is a reference to the current Date

Software Engineering Observation 8.5
When appropriate, provide public methods to change and retrieve the values of private
instance variables. This architecture helps hide the implementation of a class from its
clients, which improves program modifiability.

Error-Prevention Tip 8.3
Using set and get methods helps you create classes that are easier to debug and maintain.
If only one method performs a particular task, such as setting the hour in a Time2 object,
it’s easier to debug and maintain the class. If the hour is not being set properly, the code
that actually modifies instance variable hour is localized to one method’s body—setHour.
Thus, your debugging efforts can be focused on method setHour.

204 Chapter 8 Classes and Objects: A Deeper Look

object, the object’s toString method (lines 51–54) is called implicitly to obtain the ob-
ject’s String representation.

1 // Fig. 8.7: Date.java
2 // Date class declaration.
3
4 public class Date
5 {
6 private int month; // 1-12
7 private int day; // 1-31 based on month
8 private int year; // any year
9

10 private static final int[] daysPerMonth = // days in each month
11 { 0, 31, 28, 31, 30, 31, 30, 31, 31, 30, 31, 30, 31 };
12
13 // constructor: call checkMonth to confirm proper value for month;
14 // call checkDay to confirm proper value for day
15 public Date(int theMonth, int theDay, int theYear)
16 {
17 month = checkMonth(theMonth); // validate month
18 year = theYear; // could validate year
19 day = checkDay(theDay); // validate day
20
21 System.out.printf(
22 "Date object constructor for date %s\n", this);
23 } // end Date constructor
24
25 // utility method to confirm proper month value
26 private int checkMonth(int testMonth)
27 {
28 if (testMonth > 0 && testMonth <= 12) // validate month
29 return testMonth;
30 else // month is invalid
31 throw new IllegalArgumentException("month must be 1-12");
32 } // end method checkMonth
33
34 // utility method to confirm proper day value based on month and year
35 private int checkDay(int testDay)
36 {
37 // check if day in range for month
38 if (testDay > 0 && testDay <= daysPerMonth[month])
39 return testDay;
40
41 // check for leap year
42 if (month == 2 && testDay == 29 && (year % 400 == 0 ||
43 (year % 4 == 0 && year % 100 != 0)))
44 return testDay;
45
46 throw new IllegalArgumentException(
47 "day out-of-range for the specified month and year");
48 } // end method checkDay
49

Fig. 8.7 | Date class declaration. (Part 1 of 2.)

8.8 Composition 205

Class Employee
Class Employee (Fig. 8.8) has instance variables firstName, lastName, birthDate and
hireDate. Members firstName and lastName (lines 6–7) are references to String objects.
Members birthDate and hireDate (lines 8–9) are references to Date objects. This dem-
onstrates that a class can have as instance variables references to objects of other classes.
The Employee constructor (lines 12–19) takes four parameters—first, last, dateOf-
Birth and dateOfHire. The objects referenced by the parameters are assigned to the Em-

ployee object’s instance variables. When class Employee’s toString method is called, it
returns a String containing the employee’s name and the String representations of the
two Date objects. Each of these Strings is obtained with an implicit call to the Date class’s
toString method.

50 // return a String of the form month/day/year
51 public String toString()
52 {
53 return String.format("%d/%d/%d", month, day, year);
54 } // end method toString
55 } // end class Date

1 // Fig. 8.8: Employee.java
2 // Employee class with references to other objects.
3
4 public class Employee
5 {
6 private String firstName;
7 private String lastName;
8
9

10
11 // constructor to initialize name, birth date and hire date
12 public Employee(String first, String last, Date dateOfBirth,
13 Date dateOfHire)
14 {
15 firstName = first;
16 lastName = last;
17 birthDate = dateOfBirth;
18 hireDate = dateOfHire;
19 } // end Employee constructor
20
21 // convert Employee to String format
22 public String toString()
23 {
24 return String.format("%s, %s Hired: %s Birthday: %s",
25 lastName, firstName, hireDate, birthDate);
26 } // end method toString
27 } // end class Employee

Fig. 8.8 | Employee class with references to other objects.

Fig. 8.7 | Date class declaration. (Part 2 of 2.)

private Date birthDate;
private Date hireDate;

206 Chapter 8 Classes and Objects: A Deeper Look

Class EmployeeTest
Class EmployeeTest (Fig. 8.9) creates two Date objects (lines 8–9) to represent an Employ-

ee’s birthday and hire date, respectively. Line 10 creates an Employee and initializes its in-
stance variables by passing to the constructor two Strings (representing the Employee’s
first and last names) and two Date objects (representing the birthday and hire date). Line
12 implicitly invokes the Employee’s toString method to display the values of its instance
variables and demonstrate that the object was initialized properly.

8.9 Enumerations
In Fig. 6.7, we introduced the basic enum type, which defines a set of constants represented
as unique identifiers. In that program the enum constants represented the game’s status. In
this section we discuss the relationship between enum types and classes. Like classes, all
enum types are reference types. An enum type is declared with an enum declaration, which
is a comma-separated list of enum constants—the declaration may optionally include other
components of traditional classes, such as constructors, fields and methods. Each enum

declaration declares an enum class with the following restrictions:

1. enum constants are implicitly final, because they declare constants that shouldn’t
be modified.

2. enum constants are implicitly static.

3. Any attempt to create an object of an enum type with operator new results in a
compilation error.

The enum constants can be used anywhere constants can be used, such as in the case labels
of switch statements and to control enhanced for statements.

Figure 8.10 illustrates how to declare instance variables, a constructor and methods in
an enum type. The enum declaration (lines 5–37) contains two parts—the enum constants and

1 // Fig. 8.9: EmployeeTest.java
2 // Composition demonstration.
3
4 public class EmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 Date birth = new Date(7, 24, 1949);
9 Date hire = new Date(3, 12, 1988);

10
11
12
13 } // end main
14 } // end class EmployeeTest

Date object constructor for date 7/24/1949
Date object constructor for date 3/12/1988
Blue, Bob Hired: 3/12/1988 Birthday: 7/24/1949

Fig. 8.9 | Composition demonstration.

Employee employee = new Employee("Bob", "Blue", birth, hire);

System.out.println(employee);

8.9 Enumerations 207

the other members of the enum type. The first part (lines 8–13) declares six enum constants.
Each is optionally followed by arguments which are passed to the enum constructor (lines
20–24). Like the constructors you’ve seen in classes, an enum constructor can specify any
number of parameters and can be overloaded. In this example, the enum constructor requires
two String parameters. To properly initialize each enum constant, we follow it with paren-
theses containing two String arguments, which are passed to the enum’s constructor. The
second part (lines 16–36) declares the other members of the enum type—two instance vari-
ables (lines 16–17), a constructor (lines 20–24) and two methods (lines 27–30 and 33–36).

Lines 16–17 declare the instance variables title and copyrightYear. Each enum con-
stant in Book is actually an object of type Book that has its own copy of instance variables

1 // Fig. 8.10: Book.java
2 // Declaring an enum type with constructor and explicit instance fields
3 // and accessors for these fields
4
5 public enum Book
6 {
7
8
9

10
11
12
13
14
15 // instance fields
16 private final String title; // book title
17 private final String copyrightYear; // copyright year
18
19 // enum constructor
20 Book(String bookTitle, String year)
21 {
22 title = bookTitle;
23 copyrightYear = year;
24 } // end enum Book constructor
25
26 // accessor for field title
27 public String getTitle()
28 {
29 return title;
30 } // end method getTitle
31
32 // accessor for field copyrightYear
33 public String getCopyrightYear()
34 {
35 return copyrightYear;
36 } // end method getCopyrightYear
37 } // end enum Book

Fig. 8.10 | Declaring an enum type with constructor and explicit instance fields and accessors
for these fields.

// declare constants of enum type
JHTP("Java How to Program", "2012"),
CHTP("C How to Program", "2007"),
IW3HTP("Internet & World Wide Web How to Program", "2008"),
CPPHTP("C++ How to Program", "2012"),
VBHTP("Visual Basic 2010 How to Program", "2011"),
CSHARPHTP("Visual C# 2010 How to Program", "2011");

208 Chapter 8 Classes and Objects: A Deeper Look

title and copyrightYear. The constructor (lines 20–24) takes two String parameters,
one that specifies the book’s title and one that specifies its copyright year. Lines 22–23
assign these parameters to the instance variables. Lines 27–36 declare two methods, which
return the book title and copyright year, respectively.

Figure 8.11 tests the enum type Book and illustrates how to iterate through a range of
enum constants. For every enum, the compiler generates the static method values (called
in line 12) that returns an array of the enum’s constants in the order they were declared.
Lines 12–14 use the enhanced for statement to display all the constants declared in the
enum Book. Line 14 invokes the enum Book’s getTitle and getCopyrightYear methods to
get the title and copyright year associated with the constant. When an enum constant is
converted to a String (e.g., book in line 13), the constant’s identifier is used as the String
representation (e.g., JHTP for the first enum constant).

1 // Fig. 8.11: EnumTest.java
2 // Testing enum type Book.
3 import java.util.EnumSet;
4
5 public class EnumTest
6 {
7 public static void main(String[] args)
8 {
9 System.out.println("All books:\n");

10
11 // print all books in enum Book
12 for ()
13 System.out.printf("%-10s%-45s%s\n", book,
14 ,);
15
16 System.out.println("\nDisplay a range of enum constants:\n");
17
18 // print first four books
19 for (Book book :)
20 System.out.printf("%-10s%-45s%s\n", book,
21 ,);
22 } // end main
23 } // end class EnumTest

All books:

JHTP Java How to Program 2012
CHTP C How to Program 2007
IW3HTP Internet & World Wide Web How to Program 2008
CPPHTP C++ How to Program 2012
VBHTP Visual Basic 2010 How to Program 2011
CSHARPHTP Visual C# 2010 How to Program 2011

Display a range of enum constants:

JHTP Java How to Program 2012
CHTP C How to Program 2007
IW3HTP Internet & World Wide Web How to Program 2008
CPPHTP C++ How to Program 2012

Fig. 8.11 | Testing an enum type.

Book book : Book.values()

book.getTitle() book.getCopyrightYear()

EnumSet.range(Book.JHTP, Book.CPPHTP)

book.getTitle() book.getCopyrightYear()

8.10 Garbage Collection and Method finalize 209

Lines 19–21 use the static method range of class EnumSet (declared in package
java.util) to display a range of the enum Book’s constants. Method range takes two
parameters—the first and the last enum constants in the range—and returns an EnumSet

that contains all the constants between these two constants, inclusive. For example, the
expression EnumSet.range(Book.JHTP, Book.CPPHTP) returns an EnumSet containing
Book.JHTP, Book.CHTP, Book.IW3HTP and Book.CPPHTP. The enhanced for statement can
be used with an EnumSet just as it can with an array, so lines 12–14 use it to display the
title and copyright year of every book in the EnumSet. Class EnumSet provides several other
static methods for creating sets of enum constants from the same enum type.

8.10 Garbage Collection and Method finalize
Every class in Java has the methods of class Object (package java.lang), one of which is
the finalize method. This method is rarely used because it can cause performance prob-
lems and there’s some uncertainty as to whether it will get called. Nevertheless, because
finalize is part of every class, we discuss it here to help you understand its intended pur-
pose. The complete details of the finalize method are beyond the scope of this book, and
most programmers should not use it—you’ll soon see why. You’ll learn more about class
Object in Chapter 9.

Every object uses system resources, such as memory. We need a disciplined way to
give resources back to the system when they’re no longer needed; otherwise, “resource
leaks” might occur that would prevent them from being reused by your program or pos-
sibly by other programs. The JVM performs automatic garbage collection to reclaim the
memory occupied by objects that are no longer used. When there are no more references
to an object, the object is eligible to be collected. This typically occurs when the JVM exe-
cutes its garbage collector. So, memory leaks that are common in other languages like C
and C++ (because memory is not automatically reclaimed in those languages) are less likely
in Java, but some can still happen in subtle ways. Other types of resource leaks can occur.
For example, an application may open a file on disk to modify its contents. If it does not
close the file, the application must terminate before any other application can use it.

The finalize method is called by the garbage collector to perform termination
housekeeping on an object just before the garbage collector reclaims the object’s memory.
Method finalize does not take parameters and has return type void. A problem with
method finalize is that the garbage collector is not guaranteed to execute at a specified
time. In fact, the garbage collector may never execute before a program terminates. Thus,
it’s unclear whether, or when, method finalize will be called. For this reason, most pro-
grammers should avoid method finalize.

Common Programming Error 8.5
In an enum declaration, it’s a syntax error to declare enum constants after the enum type’s
constructors, fields and methods.

Software Engineering Observation 8.6
A class that uses system resources, such as files on disk, should provide a method that
programmers can call to release resources when they’re no longer needed in a program.
Many Java API classes provide close or dispose methods for this purpose. We discuss
new Java SE 7 features related to this in Section 11.13.

210 Chapter 8 Classes and Objects: A Deeper Look

8.11 static Class Members
Every object has its own copy of all the instance variables of the class. In certain cases, only
one copy of a particular variable should be shared by all objects of a class. A static field—
called a class variable—is used in such cases. A static variable represents classwide infor-
mation—all objects of the class share the same piece of data. The declaration of a static

variable begins with the keyword static.
Let’s motivate static data with an example. Suppose that we have a video game with

Martians and other space creatures. Each Martian tends to be brave and willing to attack
other space creatures when the Martian is aware that at least four other Martians are
present. If fewer than five Martians are present, each of them becomes cowardly. Thus,
each Martian needs to know the martianCount. We could endow class Martian with mar-

tianCount as an instance variable. If we do this, then every Martian will have a separate
copy of the instance variable, and every time we create a new Martian, we’ll have to update
the instance variable martianCount in every Martian object. This wastes space with the
redundant copies, wastes time in updating the separate copies and is error prone. Instead,
we declare martianCount to be static, making martianCount classwide data. Every Mar-

tian can see the martianCount as if it were an instance variable of class Martian, but only
one copy of the static martianCount is maintained. This saves space. We save time by
having the Martian constructor increment the static martianCount—there’s only one
copy, so we do not have to increment separate copies for each Martian object.

Static variables have class scope. We can access a class’s public static members
through a reference to any object of the class, or by qualifying the member name with the
class name and a dot (.), as in Math.random(). A class’s private static class members can
be accessed by client code only through methods of the class. Actually, static class members
exist even when no objects of the class exist—they’re available as soon as the class is loaded into
memory at execution time. To access a public static member when no objects of the class
exist (and even when they do), prefix the class name and a dot (.) to the static member, as
in Math.PI. To access a private static member when no objects of the class exist, provide
a public static method and call it by qualifying its name with the class name and a dot.

A static method cannot access non-static class members, because a static method
can be called even when no objects of the class have been instantiated. For the same reason,
the this reference cannot be used in a static method. The this reference must refer to
a specific object of the class, and when a static method is called, there might not be any
objects of its class in memory.

Software Engineering Observation 8.7
Use a static variable when all objects of a class must use the same copy of the variable.

Software Engineering Observation 8.8
Static class variables and methods exist, and can be used, even if no objects of that class
have been instantiated.

Common Programming Error 8.6
Referring to this in a static method is a compilation error.

8.11 static Class Members 211

Tracking the Number of Employee Objects That Have Been Created
Our next program declares two classes—Employee (Fig. 8.12) and EmployeeTest

(Fig. 8.13). Class Employee declares private static variable count (Fig. 8.12, line 9) and
public static method getCount (lines 36–39). The static variable count is initialized
to zero in line 9. If a static variable is not initialized, the compiler assigns it a default val-
ue—in this case 0, the default value for type int. Variable count maintains a count of the
number of objects of class Employee that have been created so far.

Common Programming Error 8.7
A compilation error occurs if a static method calls an instance (non-static) method in
the same class by using only the method name. Similarly, a compilation error occurs if a
static method attempts to access an instance variable in the same class by using only the
variable name.

1 // Fig. 8.12: Employee.java
2 // Static variable used to maintain a count of the number of
3 // Employee objects in memory.
4
5 public class Employee
6 {
7 private String firstName;
8 private String lastName;
9

10
11 // initialize Employee, add 1 to static count and
12 // output String indicating that constructor was called
13 public Employee(String first, String last)
14 {
15 firstName = first;
16 lastName = last;
17
18
19 System.out.printf("Employee constructor: %s %s; count = %d\n",
20 firstName, lastName, count);
21 } // end Employee constructor
22
23 // get first name
24 public String getFirstName()
25 {
26 return firstName;
27 } // end method getFirstName
28
29 // get last name
30 public String getLastName()
31 {
32 return lastName;
33 } // end method getLastName
34

Fig. 8.12 | static variable used to maintain a count of the number of Employee objects in
memory. (Part 1 of 2.)

private static int count = 0; // number of Employees created

++count; // increment static count of employees

212 Chapter 8 Classes and Objects: A Deeper Look

When Employee objects exist, variable count can be used in any method of an
Employee object—this example increments count in the constructor (line 18). The public
static method getCount (lines 36–39) returns the number of Employee objects that have
been created so far. When no objects of class Employee exist, client code can access variable
count by calling method getCount via the class name, as in Employee.getCount(). When
objects exist, method getCount can also be called via any reference to an Employee object.

EmployeeTest method main (Fig. 8.13) instantiates two Employee objects (lines 13–
14). When each Employee object’s constructor is invoked, lines 15–16 of Fig. 8.12 assign
the Employee’s first name and last name to instance variables firstName and lastName.
These two statements do not make copies of the original String arguments. Actually,
String objects in Java are immutable—they cannot be modified after they’re created.
Therefore, it’s safe to have many references to one String object. This is not normally the
case for objects of most other classes in Java. If String objects are immutable, you might
wonder why we’re able to use operators + and += to concatenate String objects. String-
concatenation operations actually result in a new Strings object containing the concate-
nated values. The original String objects are not modified.

35
36
37
38
39
40 } // end class Employee

Good Programming Practice 8.1
Invoke every static method by using the class name and a dot (.) to emphasize that the
method being called is a static method.

1 // Fig. 8.13: EmployeeTest.java
2 // static member demonstration.
3
4 public class EmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // show that count is 0 before creating Employees
9 System.out.printf("Employees before instantiation: %d\n",

10);
11
12 // create two Employees; count should be 2
13
14
15

Fig. 8.13 | static member demonstration. (Part 1 of 2.)

Fig. 8.12 | static variable used to maintain a count of the number of Employee objects in
memory. (Part 2 of 2.)

// static method to get static count value
public static int getCount()
{

return count;
} // end method getCount

Employee.getCount()

Employee e1 = new Employee("Susan", "Baker");
Employee e2 = new Employee("Bob", "Blue");

8.12 static Import 213

When main has finished using the two Employee objects, the references e1 and e2 are
set to null at lines 31–32. At this point, references e1 and e2 no longer refer to the objects
that were instantiated in lines 13–14. The objects become “eligible for garbage collection”
because there are no more references to them in the program.

Eventually, the garbage collector might reclaim the memory for these objects (or the
operating system will reclaim the memory when the program terminates). The JVM does
not guarantee when, or even whether, the garbage collector will execute. When it does, it’s
possible that no objects or only a subset of the eligible objects will be collected.

8.12 static Import
In Section 6.3, you learned about the static fields and methods of class Math. We in-
voked class Math’s static fields and methods by preceding each with the class name Math

and a dot (.). A static import declaration enables you to import the static members of
a class or interface so you can access them via their unqualified names in your class—the
class name and a dot (.) are not required to use an imported static member.

A static import declaration has two forms—one that imports a particular static

member (which is known as single static import) and one that imports all static mem-

16 // show that count is 2 after creating two Employees
17 System.out.println("\nEmployees after instantiation: ");
18 System.out.printf("via e1.getCount(): %d\n",);
19 System.out.printf("via e2.getCount(): %d\n",);
20 System.out.printf("via Employee.getCount(): %d\n",
21);
22
23 // get names of Employees
24 System.out.printf("\nEmployee 1: %s %s\nEmployee 2: %s %s\n",
25 e1.getFirstName(), e1.getLastName(),
26 e2.getFirstName(), e2.getLastName());
27
28
29
30
31
32
33 } // end main
34 } // end class EmployeeTest

Employees before instantiation: 0
Employee constructor: Susan Baker; count = 1
Employee constructor: Bob Blue; count = 2

Employees after instantiation:
via e1.getCount(): 2
via e2.getCount(): 2
via Employee.getCount(): 2

Employee 1: Susan Baker
Employee 2: Bob Blue

Fig. 8.13 | static member demonstration. (Part 2 of 2.)

e1.getCount()
e2.getCount()

Employee.getCount()

// in this example, there is only one reference to each Employee,
// so the following two statements indicate that these objects
// are eligible for garbage collection
e1 = null;
e2 = null;

214 Chapter 8 Classes and Objects: A Deeper Look

bers of a class (known as static import on demand). The following syntax imports a par-
ticular static member:

where packageName is the package of the class (e.g., java.lang), ClassName is the name of
the class (e.g., Math) and staticMemberName is the name of the static field or method
(e.g., PI or abs). The following syntax imports all static members of a class:

The asterisk (*) indicates that all static members of the specified class should be available
for use in the file. static import declarations import only static class members. Regular
import statements should be used to specify the classes used in a program.

Figure 8.14 demonstrates a static import. Line 3 is a static import declaration,
which imports all static fields and methods of class Math from package java.lang. Lines
9–12 access the Math class’s static fields E (line 11) and PI (line 12) and the static

methods sqrt (line 9) and ceil (line 10) without preceding the field names or method
names with class name Math and a dot.

8.13 final Instance Variables
The principle of least privilege is fundamental to good software engineering. In the con-
text of an application, it states that code should be granted only the amount of privilege
and access that it needs to accomplish its designated task, but no more. This makes your

import static packageName.ClassName.staticMemberName;

import static packageName.ClassName.*;

Common Programming Error 8.8
A compilation error occurs if a program attempts to import two or more classes’ static
methods that have the same signature or static fields that have the same name.

1 // Fig. 8.14: StaticImportTest.java
2 // Static import of Math class methods.
3
4
5 public class StaticImportTest
6 {
7 public static void main(String[] args)
8 {
9 System.out.printf("sqrt(900.0) = %.1f\n",);

10 System.out.printf("ceil(-9.8) = %.1f\n",);
11 System.out.printf("E = %f\n", E);
12 System.out.printf("PI = %f\n", PI);
13 } // end main
14 } // end class StaticImportTest

sqrt(900.0) = 30.0
ceil(-9.8) = -9.0
log(E) = 1.0
cos(0.0) = 1.0

Fig. 8.14 | Static import of Math class methods.

import static java.lang.Math.*;

sqrt(900.0)
ceil(-9.8)

8.14 Time Class Case Study: Creating Packages 215

programs more robust by preventing code from accidentally (or maliciously) modifying
variable values and calling methods that should not be accessible.

Let’s see how this principle applies to instance variables. Some of them need to be
modifiable and some do not. You can use the keyword final to specify that a variable is
not modifiable (i.e., it’s a constant) and that any attempt to modify it is an error. For
example,

declares a final (constant) instance variable INCREMENT of type int. Such variables can be
initialized when they’re declared. If they are not, they must be initialized in every construc-
tor of the class. Initializing constants in constructors enables each object of the class to have
a different value for the constant. If a final variable is not initialized in its declaration or
in every constructor, a compilation error occurs.

8.14 Time Class Case Study: Creating Packages
We’ve seen in almost every example in the text that classes from preexisting libraries, such
as the Java API, can be imported into a Java program. Each class in the Java API belongs
to a package that contains a group of related classes. These packages are defined once, but
can be imported into many programs. As applications become more complex, packages
help you manage the complexity of application components. Packages also facilitate soft-
ware reuse by enabling programs to import classes from other packages (as we’ve done in
most examples), rather than copying the classes into each program that uses them. Another
benefit of packages is that they provide a convention for unique class names, which helps
prevent class-name conflicts (discussed later in this section). This section introduces how
to create your own packages.

private final int INCREMENT;

Software Engineering Observation 8.9
Declaring an instance variable as final helps enforce the principle of least privilege. If an
instance variable should not be modified, declare it to be final to prevent modification.

Common Programming Error 8.9
Attempting to modify a final instance variable after it’s initialized is a compilation
error.

Error-Prevention Tip 8.4
Attempts to modify a final instance variable are caught at compilation time rather than
causing execution-time errors. It’s always preferable to get bugs out at compilation time,
if possible, rather than allow them to slip through to execution time (where experience has
found that repair is often many times more expensive).

Software Engineering Observation 8.10
A final field should also be declared static if it’s initialized in its declaration to a value
that’s the same for all objects of the class. After this initialization, its value can never
change. Therefore, we don’t need a separate copy of the field for every object of the class.
Making the field static enables all objects of the class to share the final field.

216 Chapter 8 Classes and Objects: A Deeper Look

Steps for Declaring a Reusable Class
Before a class can be imported into multiple applications, it must be placed in a package
to make it reusable. Figure 8.15 shows how to specify the package in which a class should
be placed. Figure 8.16 shows how to import our packaged class so that it can be used in
an application. The steps for creating a reusable class are:

1. Declare a public class. If the class is not public, it can be used only by other
classes in the same package.

2. Choose a unique package name and add a package declaration to the source-code
file for the reusable class declaration. In each Java source-code file there can be
only one package declaration, and it must precede all other declarations and
statements. Comments are not statements, so comments can be placed before a
package statement in a file. [Note: If no package statement is provided, the class
is placed in the so-called default package and is accessible only to other classes in
the default package that are located in the same directory. All prior programs in
this book having two or more classes have used this default package.]

3. Compile the class so that it’s placed in the appropriate package directory.

4. Import the reusable class into a program and use the class.

We’ll now discuss each of these steps in detail.

Steps 1 and 2: Creating a public Class and Adding the package Statement
For Step 1, we modify the public class Time1 declared in Fig. 8.1. The new version is
shown in Fig. 8.15. No modifications have been made to the implementation of the class,
so we’ll not discuss its implementation details again here.

1 // Fig. 8.15: Time1.java
2 // Time1 class declaration maintains the time in 24-hour format.
3
4
5 public class Time1
6 {
7 private int hour; // 0 - 23
8 private int minute; // 0 - 59
9 private int second; // 0 - 59

10
11 // set a new time value using universal time; throw an
12 // exception if the hour, minute or second is invalid
13 public void setTime(int h, int m, int s)
14 {
15 // validate hour, minute and second
16 if ((h >= 0 && h < 24) && (m >= 0 && m < 60) &&
17 (s >= 0 && s < 60))
18 {
19 hour = h;
20 minute = m;
21 second = s;
22 } // end if

Fig. 8.15 | Packaging class Time1 for reuse. (Part 1 of 2.)

package com.deitel.javafp.ch08;

8.14 Time Class Case Study: Creating Packages 217

For Step 2, we add a package declaration (line 3) that declares a package named
com.deitel.javafp.ch08. Placing a package declaration at the beginning of a Java source
file indicates that the class declared in the file is part of the specified package. Only
package declarations, import declarations and comments can appear outside the braces of
a class declaration. A Java source-code file must have the following order:

1. a package declaration (if any),

2. import declarations (if any), then

3. class declarations.

Only one of the class declarations in a particular file can be public. Other classes in the
file are placed in the package and can be used only by the other classes in the package.
Non-public classes are in a package to support the reusable classes in the package.

To provide unique package names, start each one with your Internet domain name in
reverse order. For example, our domain name is deitel.com, so our package names begin
with com.deitel. For the domain name yourcollege.edu, the package name should begin
with edu.yourcollege. After the domain name is reversed, you can choose any other names
you want for your package. If you’re part of a company with many divisions or a university
with many schools, you may want to use the name of your division or school as the next
name in the package. We chose to use javafp as the next name in our package name to
indicate that this class is from Java for Programmer. The last name in our package name
specifies that this package is for Chapter 8 (ch08).

Step 3: Compiling the Packaged Class
Step 3 is to compile the class so that it’s stored in the appropriate package. When a Java
file containing a package declaration is compiled, the resulting class file is placed in the
directory specified by the declaration. The package declaration in Fig. 8.15 indicates that
class Time1 should be placed in the directory

23 else

24 throw new IllegalArgumentException(
25 "hour, minute and/or second was out of range");
26 } // end method setTime
27
28 // convert to String in universal-time format (HH:MM:SS)
29 public String toUniversalString()
30 {
31 return String.format("%02d:%02d:%02d", hour, minute, second);
32 } // end method toUniversalString
33
34 // convert to String in standard-time format (H:MM:SS AM or PM)
35 public String toString()
36 {
37 return String.format("%d:%02d:%02d %s",
38 ((hour == 0 || hour == 12) ? 12 : hour % 12),
39 minute, second, (hour < 12 ? "AM" : "PM"));
40 } // end method toString
41 } // end class Time1

Fig. 8.15 | Packaging class Time1 for reuse. (Part 2 of 2.)

218 Chapter 8 Classes and Objects: A Deeper Look

The names in the package declaration specify the exact location of the package’s classes.
When compiling a class in a package, the javac command-line option -d causes the

javac compiler to create appropriate directories based on the class’s package declaration.
The option also specifies where the directories should be stored. For example, in a com-
mand window, we used the compilation command

to specify that the first directory in our package name should be placed in the current di-
rectory. The period (.) after -d in the preceding command represents the current directory
on the Windows, UNIX, Linux and Mac OS X operating systems (and several others as
well). After execution of the compilation command, the current directory contains a di-
rectory called com, com contains a directory called deitel, deitel contains a directory
called javafp and javafp contains a directory called ch08. In the ch08 directory, you can
find the file Time1.class. [Note: If you do not use the -d option, then you must copy or
move the class file to the appropriate package directory after compiling it.]

The package name is part of the fully qualified class name, so the name of class Time1
is actually com.deitel.javafp.ch08.Time1. You can use this fully qualified name in your
programs, or you can import the class and use its simple name (the class name by itself—
Time1) in the program. If another package also contains a Time1 class, the fully qualified
class names can be used to distinguish between the classes in the program and prevent a
name conflict (also called a name collision).

Step 4: Importing the Reusable Class
Once it’s compiled and stored in its package, the class can be imported into programs (Step
4). In the Time1PackageTest application of Fig. 8.16, line 3 specifies that class Time1 should
be imported for use in class Time1PackageTest. This class is in the default package because
its .java file does not contain a package declaration. Since the two classes are in different
packages, the import at line 3 is required so that class Time1PackageTest can use class Time1.

com
deitel

javafp
ch08

javac -d . Time1.java

1 // Fig. 8.16: Time1PackageTest.java
2 // Time1 object used in an application.
3
4
5 public class Time1PackageTest
6 {
7 public static void main(String[] args)
8 {
9 // create and initialize a Time1 object

10 Time1 time = new Time1(); // invokes Time1 constructor
11
12 // output string representations of the time
13 System.out.print("The initial universal time is: ");
14 System.out.println(time.toUniversalString());

Fig. 8.16 | Time1 object used in an application. (Part 1 of 2.)

import com.deitel.javafp.ch08.Time1; // import class Time1

8.14 Time Class Case Study: Creating Packages 219

Line 3 is known as a single-type-import declaration—that is, the import declaration
specifies one class to import. When your program uses multiple classes from the same
package, you can import those classes with a single import declaration. For example, the
import declaration

uses an asterisk (*) at its end to inform the compiler that all public classes from the ja-

va.util package are available for use in the program. This is known as a type-import-on-

15 System.out.print("The initial standard time is: ");
16 System.out.println(time.toString());
17 System.out.println(); // output a blank line
18
19 // change time and output updated time
20 time.setTime(13, 27, 6);
21 System.out.print("Universal time after setTime is: ");
22 System.out.println(time.toUniversalString());
23 System.out.print("Standard time after setTime is: ");
24 System.out.println(time.toString());
25 System.out.println(); // output a blank line
26
27 // attempt to set time with invalid values
28 try

29 {
30 time.setTime(99, 99, 99); // all values out of range
31 } // end try
32 catch (IllegalArgumentException e)
33 {
34 System.out.printf("Exception: %s\n\n", e.getMessage());
35 } // end catch
36
37 // display time after attempt to set invalid values
38 System.out.println("After attempting invalid settings:");
39 System.out.print("Universal time: ");
40 System.out.println(time.toUniversalString());
41 System.out.print("Standard time: ");
42 System.out.println(time.toString());
43 } // end main
44 } // end class Time1PackageTest

The initial universal time is: 00:00:00
The initial standard time is: 12:00:00 AM

Universal time after setTime is: 13:27:06
Standard time after setTime is: 1:27:06 PM

Exception: hour, minute and/or second was out of range

After attempting invalid settings:
Universal time: 13:27:06
Standard time: 1:27:06 PM

import java.util.*; // import classes from package java.util

Fig. 8.16 | Time1 object used in an application. (Part 2 of 2.)

220 Chapter 8 Classes and Objects: A Deeper Look

demand declaration. Only the classes from package java.util that are used in the pro-
gram are loaded by the JVM. The preceding import allows you to use the simple name of
any class from the java.util package in the program. Throughout this book, we use sin-
gle-type-import declarations for clarity.

Specifying the Classpath During Compilation
When compiling Time1PackageTest, javac must locate the .class file for Time1 to en-
sure that class Time1PackageTest uses class Time1 correctly. The compiler uses a special
object called a class loader to locate the classes it needs. The class loader begins by search-
ing the standard Java classes that are bundled with the JDK. Then it searches for optional
packages. Java provides an extension mechanism that enables new (optional) packages to
be added to Java for development and execution purposes. If the class is not found in the
standard Java classes or in the extension classes, the class loader searches the classpath,
which contains a list of locations in which classes are stored. The classpath consists of a list
of directories or archive files, each separated by a directory separator—a semicolon (;) on
Windows or a colon (:) on UNIX/Linux/Mac OS X. Archive files are individual files that
contain directories of other files, typically in a compressed format. For example, the stan-
dard classes used by your programs are contained in the archive file rt.jar, which is in-
stalled with the JDK. Archive files normally end with the .jar or .zip file-name
extensions. The directories and archive files specified in the classpath contain the classes
you wish to make available to the Java compiler and the JVM.

By default, the classpath consists only of the current directory. However, the classpath
can be modified by

1. providing the -classpath option to the javac compiler or

2. setting the CLASSPATH environment variable (a special variable that you define
and the operating system maintains so that applications can search for classes in
the specified locations).

For more information on the classpath, visit download.oracle.com/javase/6/docs/

technotes/tools/index.html#general. The section entitled “General Information”
contains information on setting the classpath for UNIX/Linux and Windows.

Common Programming Error 8.10
Using the import declaration import java.*; causes a compilation error. You must spec-
ify the exact name of the package from which you want to import classes.

Common Programming Error 8.11
Specifying an explicit classpath eliminates the current directory from the classpath. This
prevents classes in the current directory (including packages in the current directory) from
loading properly. If classes must be loaded from the current directory, include a dot (.) in
the classpath to specify the current directory.

Software Engineering Observation 8.11
In general, it’s a better practice to use the -classpath option of the compiler, rather than
the CLASSPATH environment variable, to specify the classpath for a program. This enables
each application to have its own classpath.

8.15 Package Access 221

Figures 8.15–8.16 didn’t specify an explicit classpath. Thus, to locate the classes in the
com.deitel.javafp.ch08 package from this example, the class loader looks in the current
directory for the first name in the package—com—then navigates the directory structure.
Directory com contains the subdirectory deitel, deitel contains the subdirectory javafp,
and javafp contains subdirectory ch08. In the ch08 directory is the file Time1.class, which
is loaded by the class loader to ensure that the class is used properly in our program.

Specifying the Classpath When Executing an Application
When you execute an application, the JVM must be able to locate the .class files of the
classes used in that application. Like the compiler, the java command uses a class loader
that searches the standard classes and extension classes first, then searches the classpath (the
current directory by default). The classpath can be specified explicitly by using either of
the techniques discussed for the compiler. As with the compiler, it’s better to specify an
individual program’s classpath via command-line JVM options. You can specify the class-
path in the java command via the -classpath or -cp command-line options, followed by
a list of directories or archive files separated by semicolons (;) on Microsoft Windows or
by colons (:) on UNIX/Linux/Mac OS X. Again, if classes must be loaded from the cur-
rent directory, be sure to include a dot (.) in the classpath to specify the current directory.

8.15 Package Access
If no access modifier (public, protected or private—we discuss protected in
Chapter 9) is specified for a method or variable when it’s declared in a class, the method
or variable is considered to have package access. In a program that consists of one class
declaration, this has no specific effect. However, if a program uses multiple classes from
the same package (i.e., a group of related classes), these classes can access each other’s pack-
age-access members directly through references to objects of the appropriate classes, or in
the case of static members through the class name. Package access is rarely used.

The application in Fig. 8.17 demonstrates package access. The application contains
two classes in one source-code file—the PackageDataTest application class (lines 5–21)
and the PackageData class (lines 24–41). When you compile this program, the compiler
produces two separate .class files—PackageDataTest.class and PackageData.class.
The compiler places the two .class files in the same directory, so the classes are consid-
ered to be part of the same package. Consequently, class PackageDataTest is allowed to
modify the package-access data of PackageData objects. You can also place class Package-
Data (lines 24–41) in a separate source-code file. As long as both classes are compiled in
the same directory on disk, the package-access relationship will still work.

In the PackageData class declaration, lines 26–27 declare the instance variables
number and string with no access modifiers—therefore, these are package-access instance
variables. The PackageDataTest application’s main method creates an instance of the
PackageData class (line 9) to demonstrate the ability to modify the PackageData instance
variables directly (as shown in lines 15–16). The results of the modification can be seen in
the output window.

Error-Prevention Tip 8.5
Specifying the classpath with the CLASSPATH environment variable can cause subtle and
difficult-to-locate errors in programs that use different versions of the same package.

222 Chapter 8 Classes and Objects: A Deeper Look

8.16 Wrap-Up
In this chapter, we presented additional class concepts. The Time class case study presented
a complete class declaration consisting of private data, overloaded public constructors

1 // Fig. 8.17: PackageDataTest.java
2 // Package-access members of a class are accessible by other classes
3 // in the same package.
4
5 public class PackageDataTest
6 {
7 public static void main(String[] args)
8 {
9

10
11 // output String representation of packageData
12 System.out.printf("After instantiation:\n%s\n", packageData);
13
14
15
16
17
18 // output String representation of packageData
19 System.out.printf("\nAfter changing values:\n%s\n", packageData);
20 } // end main
21 } // end class PackageDataTest
22
23 // class with package access instance variables
24 class PackageData
25 {
26
27
28
29 // constructor
30 public PackageData()
31 {
32 number = 0;
33 string = "Hello";
34 } // end PackageData constructor
35
36 // return PackageData object String representation
37 public String toString()
38 {
39 return String.format("number: %d; string: %s", number, string);
40 } // end method toString
41 } // end class PackageData

After instantiation:
number: 0; string: Hello

After changing values:
number: 77; string: Goodbye

Fig. 8.17 | Package-access members of a class are accessible by other classes in the same package.

PackageData packageData = new PackageData();

// change package access data in packageData object
packageData.number = 77;
packageData.string = "Goodbye";

int number; // package-access instance variable
String string; // package-access instance variable

8.16 Wrap-Up 223

for initialization flexibility, set and get methods for manipulating the class’s data, and
methods that returned String representations of a Time object in two different formats.
You also learned that every class can declare a toString method that returns a String rep-
resentation of an object of the class and that method toString can be called implicitly
whenever an object of a class appears in the code where a String is expected.

You learned that the this reference is used implicitly in a class’s non-static methods
to access the class’s instance variables and other non-static methods. You also saw explicit
uses of the this reference to access the class’s members (including shadowed fields) and
how to use keyword this in a constructor to call another constructor of the class.

We discussed the differences between default constructors provided by the compiler
and no-argument constructors provided by the programmer. You learned that a class can
have references to objects of other classes as members—a concept known as composition.
You saw the enum class type and learned how it can be used to create a set of constants for
use in a program. You learned about Java’s garbage-collection capability and how it
(unpredictably) reclaims the memory of objects that are no longer used. The chapter
explained the motivation for static fields in a class and demonstrated how to declare and
use static fields and methods in your own classes. You also learned how to declare and
initialize final variables.

You learned how to package your own classes for reuse and how to import those
classes into an application. Finally, you learned that fields declared without an access mod-
ifier are given package access by default. You saw the relationship between classes in the
same package that allows each class in a package to access the package-access members of
other classes in the package.

In the next chapter, you’ll learn about an important aspect of object-oriented pro-
gramming in Java—inheritance. You’ll see that all classes in Java are related directly or
indirectly to the class called Object. You’ll also begin to understand how the relationships
between classes enable you to build more powerful applications.

9
Object-Oriented
Programming:
Inheritance

O b j e c t i v e s
In this chapter you’ll learn:

� How inheritance promotes software reusability.

� The notions of superclasses and subclasses and the
relationship between them.

� To use keyword extends to create a class that inherits
attributes and behaviors from another class.

� To use access modifier protected to give subclass
methods access to superclass members.

� To access superclass members with super.

� How constructors are used in inheritance hierarchies.

� The methods of class Object, the direct or indirect
superclass of all classes.

Say not you know another
entirely,
till you have divided an
inheritance with him.
—Johann Kasper Lavater

This method is to define as
the number of a class the
class of all classes similar to
the given class.
—Bertrand Russell

9.1 Introduction 225

9.1 Introduction
This chapter continues our discussion of object-oriented programming (OOP) by intro-
ducing one of its primary capabilities—inheritance, which is a form of software reuse in
which a new class is created by absorbing an existing class’s members and embellishing
them with new or modified capabilities. With inheritance, you can save time during pro-
gram development by basing new classes on existing proven and debugged high-quality
software. This also increases the likelihood that a system will be implemented and main-
tained effectively.

When creating a class, rather than declaring completely new members, you can des-
ignate that the new class should inherit the members of an existing class. The existing class
is called the superclass, and the new class is the subclass. (The C++ programming language
refers to the superclass as the base class and the subclass as the derived class.) Each subclass
can become a superclass for future subclasses.

A subclass can add its own fields and methods. Therefore, a subclass is more specific
than its superclass and represents a more specialized group of objects. The subclass exhibits
the behaviors of its superclass and can modify those behaviors so that they operate appro-
priately for the subclass. This is why inheritance is sometimes referred to as specialization.

The direct superclass is the superclass from which the subclass explicitly inherits. An
indirect superclass is any class above the direct superclass in the class hierarchy, which
defines the inheritance relationships between classes. In Java, the class hierarchy begins with
class Object (in package java.lang), which every class in Java directly or indirectly extends
(or “inherits from”). Section 9.7 lists the methods of class Object that are inherited by all
other Java classes. Java supports only single inheritance, in which each class is derived from
exactly one direct superclass. Unlike C++, Java does not support multiple inheritance (which
occurs when a class is derived from more than one direct superclass). Chapter 10, Object-
Oriented Programming: Polymorphism, explains how to use Java interfaces to realize many
of the benefits of multiple inheritance while avoiding the associated problems.

We distinguish between the is-a relationship and the has-a relationship. Is-a repre-
sents inheritance. In an is-a relationship, an object of a subclass can also be treated as an object
of its superclass—e.g., a car is a vehicle. By contrast, has-a represents composition (see
Chapter 8). In a has-a relationship, an object contains as members references to other objects—
e.g., a car has a steering wheel (and a car object has a reference to a steering-wheel object).

9.1 Introduction
9.2 Superclasses and Subclasses
9.3 protected Members
9.4 Relationship between Superclasses

and Subclasses
9.4.1 Creating and Using a

CommissionEmployee Class
9.4.2 Creating and Using a

BasePlusCommissionEmployee
Class

9.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy

9.4.4 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using
protected Instance Variables

9.4.5 CommissionEmployee–
BasePlusCommissionEmployee
Inheritance Hierarchy Using private
Instance Variables

9.5 Constructors in Subclasses
9.6 Software Engineering with

Inheritance
9.7 Class Object
9.8 Wrap-Up

226 Chapter 9 Object-Oriented Programming: Inheritance

New classes can inherit from classes in class libraries. Organizations develop their
own class libraries and can take advantage of others available worldwide. Some day, most
new software likely will be constructed from standardized reusable components, just as
automobiles and most computer hardware are constructed today. This will facilitate the
development of more powerful, abundant and economical software.

9.2 Superclasses and Subclasses
Often, an object of one class is an object of another class as well. Figure 9.1 lists several
simple examples of superclasses and subclasses—superclasses tend to be “more general”
and subclasses “more specific.” For example, a CarLoan is a Loan as are HomeImprovement-
Loans and MortgageLoans. Thus, in Java, class CarLoan can be said to inherit from class
Loan. In this context, class Loan is a superclass and class CarLoan is a subclass. A CarLoan

is a specific type of Loan, but it’s incorrect to claim that every Loan is a CarLoan—the Loan
could be any type of loan.

Because every subclass object is an object of its superclass, and one superclass can have
many subclasses, the set of objects represented by a superclass is often larger than the set
of objects represented by any of its subclasses. For example, the superclass Vehicle repre-
sents all vehicles, including cars, trucks, boats, bicycles and so on. By contrast, subclass Car
represents a smaller, more specific subset of vehicles.

University Community Member Hierarchy
Inheritance relationships form treelike hierarchical structures. A superclass exists in a hier-
archical relationship with its subclasses. Let’s develop a sample class hierarchy (Fig. 9.2),
also called an inheritance hierarchy. A university community has thousands of members,
including employees, students and alumni. Employees are either faculty or staff members.
Faculty members are either administrators (e.g., deans and department chairpersons) or
teachers. The hierarchy could contain many other classes. For example, students can be
graduate or undergraduate students. Undergraduate students can be freshmen, sopho-
mores, juniors or seniors.

Each arrow in the hierarchy represents an is-a relationship. As we follow the arrows
upward in this class hierarchy, we can state, for instance, that “an Employee is a
CommunityMember” and “a Teacher is a Faculty member.” CommunityMember is the direct
superclass of Employee, Student and Alumnus and is an indirect superclass of all the other
classes in the diagram. Starting from the bottom, you can follow the arrows and apply the

Superclass Subclasses

Student GraduateStudent, UndergraduateStudent

Shape Circle, Triangle, Rectangle, Sphere, Cube

Loan CarLoan, HomeImprovementLoan, MortgageLoan

Employee Faculty, Staff

BankAccount CheckingAccount, SavingsAccount

Fig. 9.1 | Inheritance examples.

9.2 Superclasses and Subclasses 227

is-a relationship up to the topmost superclass. For example, an Administrator is a Fac-

ulty member, is an Employee, is a CommunityMember and, of course, is an Object.

Shape Hierarchy
Now consider the Shape inheritance hierarchy in Fig. 9.3. This hierarchy begins with su-
perclass Shape, which is extended by subclasses TwoDimensionalShape and ThreeDim-

ensionalShape—Shapes are either TwoDimensionalShapes or ThreeDimensionalShapes.
The third level of this hierarchy contains specific types of TwoDimensionalShapes and
ThreeDimensionalShapes. As in Fig. 9.2, we can follow the arrows from the bottom of the
diagram to the topmost superclass in this class hierarchy to identify several is-a relation-
ships. For instance, a Triangle is a TwoDimensionalShape and is a Shape, while a Sphere

is a ThreeDimensionalShape and is a Shape. This hierarchy could contain many other
classes. For example, ellipses and trapezoids are TwoDimensionalShapes.

Not every class relationship is an inheritance relationship. In Chapter 8, we discussed
the has-a relationship, in which classes have members that are references to objects of other
classes. Such relationships create classes by composition of existing classes. For example,
given the classes Employee, BirthDate and TelephoneNumber, it’s improper to say that an
Employee is a BirthDate or that an Employee is a TelephoneNumber. However, an
Employee has a BirthDate, and an Employee has a TelephoneNumber.

Fig. 9.2 | Inheritance hierarchy for university CommunityMembers.

Fig. 9.3 | Inheritance hierarchy for Shapes.

Student

CommunityMember

Administrator

AlumnusEmployee

StaffFaculty

Teacher

ThreeDimensionalShape

TetrahedronCubeSphereSquare TriangleCircle

Shape

TwoDimensionalShape

228 Chapter 9 Object-Oriented Programming: Inheritance

It’s possible to treat superclass objects and subclass objects similarly—their common-
alities are expressed in the superclass’s members. Objects of all classes that extend a
common superclass can be treated as objects of that superclass—such objects have an is-a
relationship with the superclass. Later in this chapter and in Chapter 10, we consider
many examples that take advantage of the is-a relationship.

A subclass can customize methods that it inherits from its superclass. To do this, the
subclass overrides (redefines) the superclass method with an appropriate implementation,
as we’ll see often in the chapter’s code examples.

9.3 protected Members
Chapter 8 discussed access modifiers public and private. A class’s public members are
accessible wherever the program has a reference to an object of that class or one of its sub-
classes. A class’s private members are accessible only within the class itself. In this section,
we introduce access modifier protected. Using protected access offers an intermediate
level of access between public and private. A superclass’s protected members can be ac-
cessed by members of that superclass, by members of its subclasses and by members of oth-
er classes in the same package—protected members also have package access.

All public and protected superclass members retain their original access modifier
when they become members of the subclass—public members of the superclass become
public members of the subclass, and protected members of the superclass become pro-

tected members of the subclass. A superclass’s private members are not accessible out-
side the class itself. Rather, they’re hidden in its subclasses and can be accessed only
through the public or protected methods inherited from the superclass.

Subclass methods can refer to public and protected members inherited from the
superclass simply by using the member names. When a subclass method overrides an
inherited superclass method, the superclass method can be accessed from the subclass by
preceding the superclass method name with keyword super and a dot (.) separator. We
discuss accessing overridden members of the superclass in Section 9.4.

9.4 Relationship between Superclasses and Subclasses
We now use an inheritance hierarchy containing types of employees in a company’s pay-
roll application to discuss the relationship between a superclass and its subclass. In this
company, commission employees (who will be represented as objects of a superclass) are

Software Engineering Observation 9.1
Methods of a subclass cannot directly access private members of their superclass. A
subclass can change the state of private superclass instance variables only through non-
private methods provided in the superclass and inherited by the subclass.

Software Engineering Observation 9.2
Declaring private instance variables helps you test, debug and correctly modify systems.
If a subclass could access its superclass’s private instance variables, classes that inherit
from that subclass could access the instance variables as well. This would propagate access
to what should be private instance variables, and the benefits of information hiding
would be lost.

9.4 Relationship between Superclasses and Subclasses 229

paid a percentage of their sales, while base-salaried commission employees (who will be
represented as objects of a subclass) receive a base salary plus a percentage of their sales.

We divide our discussion of the relationship between these classes into five examples.
The first declares class CommissionEmployee, which directly inherits from class Object and
declares as private instance variables a first name, last name, social security number, com-
mission rate and gross (i.e., total) sales amount.

The second example declares class BasePlusCommissionEmployee, which also directly
inherits from class Object and declares as private instance variables a first name, last
name, social security number, commission rate, gross sales amount and base salary. We
create this class by writing every line of code the class requires—we’ll soon see that it’s much
more efficient to create it by inheriting from class CommissionEmployee.

The third example declares a new BasePlusCommissionEmployee class that extends
class CommissionEmployee (i.e., a BasePlusCommissionEmployee is a CommissionEm-

ployee who also has a base salary). This software reuse lets us write less code when developing
the new subclass. In this example, class BasePlusCommissionEmployee attempts to access
class CommissionEmployee’s private members—this results in compilation errors,
because the subclass cannot access the superclass’s private instance variables.

The fourth example shows that if CommissionEmployee’s instance variables are
declared as protected, the BasePlusCommissionEmployee subclass can access that data
directly. Both BasePlusCommissionEmployee classes contain identical functionality, but
we show how the inherited version is easier to create and manage.

After we discuss the convenience of using protected instance variables, we create the
fifth example, which sets the CommissionEmployee instance variables back to private to
enforce good software engineering. Then we show how the BasePlusCommissionEm-

ployee subclass can use CommissionEmployee’s public methods to manipulate (in a con-
trolled manner) the private instance variables inherited from CommissionEmployee.

9.4.1 Creating and Using a CommissionEmployee Class
We first declare class CommissionEmployee (Fig. 9.4). Line 4 begins the class declaration and
indicates that CommissionEmployee extends (i.e., inherits from) class Object (from package
java.lang). This causes class CommissionEmployee to inherit the class Object’s methods—
class Object does not have any fields. If you don’t explicitly specify which class a new class
extends, the class extends Object implicitly. For this reason, you typically will not include
“extends Object” in your code—we do so in this example only for demonstration purposes.

Overview of Class CommissionEmployee’s Methods and Instance Variables
Class CommissionEmployee’s public services include a constructor (lines 13–22) and
methods earnings (lines 93–96) and toString (lines 99–107). Lines 25–90 declare pub-
lic get and set methods for the class’s instance variables (declared in lines 6–10) first-
Name, lastName, socialSecurityNumber, grossSales and commissionRate. The class
declares its instance variables as private, so objects of other classes cannot directly access
these variables. Declaring instance variables as private and providing get and set methods
to manipulate and validate them helps enforce good software engineering. Methods set-
GrossSales and setCommissionRate, for example, validate their arguments before assign-
ing the values to instance variables grossSales and commissionRate. In a real-world,
business-critical application, we’d also perform validation in the class’s other set methods.

230 Chapter 9 Object-Oriented Programming: Inheritance

1 // Fig. 9.4: CommissionEmployee.java
2 // CommissionEmployee class represents an employee paid a
3 // percentage of gross sales.
4
5 {
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24 // set first name
25 public void setFirstName(String first)
26 {
27 firstName = first; // should validate
28 } // end method setFirstName
29
30 // return first name
31 public String getFirstName()
32 {
33 return firstName;
34 } // end method getFirstName
35
36 // set last name
37 public void setLastName(String last)
38 {
39 lastName = last; // should validate
40 } // end method setLastName
41
42 // return last name
43 public String getLastName()
44 {
45 return lastName;
46 } // end method getLastName
47
48 // set social security number
49 public void setSocialSecurityNumber(String ssn)
50 {
51 socialSecurityNumber = ssn; // should validate
52 } // end method setSocialSecurityNumber

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 1 of 3.)

public class CommissionEmployee extends Object

private String firstName;
private String lastName;
private String socialSecurityNumber;
private double grossSales; // gross weekly sales
private double commissionRate; // commission percentage

// five-argument constructor
public CommissionEmployee(String first, String last, String ssn,

double sales, double rate)
{

// implicit call to Object constructor occurs here
firstName = first;
lastName = last;
socialSecurityNumber = ssn;
setGrossSales(sales); // validate and store gross sales
setCommissionRate(rate); // validate and store commission rate

} // end five-argument CommissionEmployee constructor

9.4 Relationship between Superclasses and Subclasses 231

53
54 // return social security number
55 public String getSocialSecurityNumber()
56 {
57 return socialSecurityNumber;
58 } // end method getSocialSecurityNumber
59
60 // set gross sales amount
61 public void setGrossSales(double sales)
62 {
63 if (sales >= 0.0)
64 grossSales = sales;
65 else

66 throw new IllegalArgumentException(
67 "Gross sales must be >= 0.0");
68 } // end method setGrossSales
69
70 // return gross sales amount
71 public double getGrossSales()
72 {
73 return grossSales;
74 } // end method getGrossSales
75
76 // set commission rate
77 public void setCommissionRate(double rate)
78 {
79 if (rate > 0.0 && rate < 1.0)
80 commissionRate = rate;
81 else

82 throw new IllegalArgumentException(
83 "Commission rate must be > 0.0 and < 1.0");
84 } // end method setCommissionRate
85
86 // return commission rate
87 public double getCommissionRate()
88 {
89 return commissionRate;
90 } // end method getCommissionRate
91
92
93
94
95
96
97
98
99
100
101
102
103

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 2 of 3.)

// calculate earnings
public double earnings()
{

return commissionRate * grossSales;
} // end method earnings

// return String representation of CommissionEmployee object
@Override // indicates that this method overrides a superclass method
public String toString()
{

return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",
"commission employee", firstName, lastName,

232 Chapter 9 Object-Oriented Programming: Inheritance

Class CommissionEmployee’s Constructor
Constructors are not inherited, so class CommissionEmployee does not inherit class Ob-

ject’s constructor. However, a superclass’s constructors are still available to subclasses. In
fact, the first task of any subclass constructor is to call its direct superclass’s constructor, either
explicitly or implicitly (if no constructor call is specified), to ensure that the instance vari-
ables inherited from the superclass are initialized properly. In this example, class Commis-
sionEmployee’s constructor calls class Object’s constructor implicitly. The syntax for
calling a superclass constructor explicitly is discussed in Section 9.4.3. If the code does not
include an explicit call to the superclass constructor, Java implicitly calls the superclass’s
default or no-argument constructor. The comment in line 16 of Fig. 9.4 indicates where
the implicit call to the superclass Object’s default constructor is made (you do not write
the code for this call). Object’s default (empty) constructor does nothing. Even if a class
does not have constructors, the default constructor that the compiler implicitly declares
for the class will call the superclass’s default or no-argument constructor.

After the implicit call to Object’s constructor, lines 17–21 of CommissionEmployee’s
constructor assign values to the class’s instance variables. We do not validate the values of
arguments first, last and ssn before assigning them to the corresponding instance vari-
ables. We could validate the first and last names—perhaps to ensure that they’re of a rea-
sonable length. Similarly, a social security number could be validated using regular
expressions (Section 16.7) to ensure that it contains nine digits, with or without dashes
(e.g., 123-45-6789 or 123456789).

Class CommissionEmployee’s earnings Method
Method earnings (lines 93–96) calculates a CommissionEmployee’s earnings. Line 95
multiplies the commissionRate by the grossSales and returns the result.

Class CommissionEmployee’s toString Method and the @Override Annotation
Method toString (lines 99–107) is special—it’s one of the methods that every class inher-
its directly or indirectly from class Object (summarized in Section 9.7). Method toString

returns a String representing an object. It’s called implicitly whenever an object must be
converted to a String representation, such as when an object is output by printf or out-
put by String method format via the %s format specifier. Class Object’s toString meth-
od returns a String that includes the name of the object’s class. It’s primarily a placeholder
that can be overridden by a subclass to specify an appropriate String representation of the
data in a subclass object. Method toString of class CommissionEmployee overrides (rede-
fines) class Object’s toString method. When invoked, CommissionEmployee’s toString
method uses String method format to return a String containing information about the
CommissionEmployee. To override a superclass method, a subclass must declare a method

104
105
106
107
108 } // end class CommissionEmployee

Fig. 9.4 | CommissionEmployee class represents an employee paid a percentage of gross sales.
(Part 3 of 3.)

"social security number", socialSecurityNumber,
"gross sales", grossSales,
"commission rate", commissionRate);

} // end method toString

9.4 Relationship between Superclasses and Subclasses 233

with the same signature (method name, number of parameters, parameter types and order
of parameter types) as the superclass method—Object’s toString method takes no pa-
rameters, so CommissionEmployee declares toString with no parameters.

Line 99 uses the @Override annotation to indicate that method toString should
override a superclass method. Annotations have several purposes. For example, when you
attempt to override a superclass method, common errors include naming the subclass
method incorrectly, or using the wrong number or types of parameters in the parameter
list. Each of these problems creates an unintentional overload of the superclass method. If
you then attempt to call the method on a subclass object, the superclass’s version is
invoked and the subclass version is ignored—potentially leading to subtle logic errors.
When the compiler encounters a method declared with @Override, it compares the
method’s signature with the superclass’s method signatures. If there isn’t an exact match,
the compiler issues an error message, such as “method does not override or implement a
method from a supertype.” This indicates that you’ve accidentally overloaded a superclass
method. You can then fix your method’s signature so that it matches one in the superclass.

As you’ll see when we discuss web applications and web services in Chapters 26–28,
annotations can also add complex support code to your classes to simplify the develop-
ment process and can be used by servers to configure certain aspects of web applications.

Class CommissionEmployeeTest
Figure 9.5 tests class CommissionEmployee. Lines 9–10 instantiate a CommissionEmployee
object and invoke CommissionEmployee’s constructor (lines 13–22 of Fig. 9.4) to initialize
it with "Sue" as the first name, "Jones" as the last name, "222-22-2222" as the social se-
curity number, 10000 as the gross sales amount and .06 as the commission rate. Lines 15–
24 use CommissionEmployee’s get methods to retrieve the object’s instance-variable values
for output. Lines 26–27 invoke the object’s methods setGrossSales and setCommission-

Rate to change the values of instance variables grossSales and commissionRate. Lines

Common Programming Error 9.1
Using an incorrect method signature when attempting to override a superclass method
causes an unintentional method overload that can lead to subtle logic errors.

Error-Prevention Tip 9.1
Declare overridden methods with the @Override annotation to ensure at compilation
time that you defined their signatures correctly. It’s always better to find errors at compile
time rather than at runtime.

Common Programming Error 9.2
It’s a syntax error to override a method with a more restricted access modifier—a public

method of the superclass cannot become a protected or private method in the subclass;
a protected method of the superclass cannot become a private method in the subclass.
Doing so would break the is-a relationship in which it’s required that all subclass objects
be able to respond to method calls that are made to public methods declared in the super-
class. If a public method, for example, could be overridden as a protected or private
method, the subclass objects would not be able to respond to the same method calls as su-
perclass objects. Once a method is declared public in a superclass, the method remains
public for all that class’s direct and indirect subclasses.

234 Chapter 9 Object-Oriented Programming: Inheritance

29–30 output the String representation of the updated CommissionEmployee. When an
object is output using the %s format specifier, the object’s toString method is invoked im-
plicitly to obtain the object’s String representation. [Note: In this chapter, we do not use
the earnings methods of our classes—they’re used extensively in Chapter 10.]

1 // Fig. 9.5: CommissionEmployeeTest.java
2 // CommissionEmployee class test program.
3
4 public class CommissionEmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // instantiate CommissionEmployee object
9

10
11
12 // get commission employee data
13 System.out.println(
14 "Employee information obtained by get methods: \n");
15 System.out.printf("%s %s\n", "First name is",
16);
17 System.out.printf("%s %s\n", "Last name is",
18);
19 System.out.printf("%s %s\n", "Social security number is",
20);
21 System.out.printf("%s %.2f\n", "Gross sales is",
22);
23 System.out.printf("%s %.2f\n", "Commission rate is",
24);
25
26
27
28
29
30
31 } // end main
32 } // end class CommissionEmployeeTest

Employee information obtained by get methods:

First name is Sue
Last name is Jones
Social security number is 222-22-2222
Gross sales is 10000.00
Commission rate is 0.06

Updated employee information obtained by toString:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 500.00
commission rate: 0.10

Fig. 9.5 | CommissionEmployee class test program.

CommissionEmployee employee = new CommissionEmployee(
"Sue", "Jones", "222-22-2222", 10000, .06);

employee.getFirstName()

employee.getLastName()

employee.getSocialSecurityNumber()

employee.getGrossSales()

employee.getCommissionRate()

employee.setGrossSales(500); // set gross sales
employee.setCommissionRate(.1); // set commission rate

System.out.printf("\n%s:\n\n%s\n",
"Updated employee information obtained by toString", employee);

9.4 Relationship between Superclasses and Subclasses 235

9.4.2 Creating and Using a BasePlusCommissionEmployee Class
We now discuss the second part of our introduction to inheritance by declaring and testing
(a completely new and independent) class BasePlusCommissionEmployee (Fig. 9.6),
which contains a first name, last name, social security number, gross sales amount, com-
mission rate and base salary. Class BasePlusCommissionEmployee’s public services in-
clude a BasePlusCommissionEmployee constructor (lines 15–25) and methods earnings
(lines 112–115) and toString (lines 118–127). Lines 28–109 declare public get and set
methods for the class’s private instance variables (declared in lines 7–12) firstName,
lastName, socialSecurityNumber, grossSales, commissionRate and baseSalary. These
variables and methods encapsulate all the necessary features of a base-salaried commission
employee. Note the similarity between this class and class CommissionEmployee

(Fig. 9.4)—in this example, we’ll not yet exploit that similarity.

1 // Fig. 9.6: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class represents an employee who receives
3 // a base salary in addition to commission.
4
5 public class BasePlusCommissionEmployee
6 {
7 private String firstName;
8 private String lastName;
9 private String socialSecurityNumber;

10 private double grossSales; // gross weekly sales
11 private double commissionRate; // commission percentage
12
13
14 // six-argument constructor
15 public BasePlusCommissionEmployee(String first, String last,
16 String ssn, double sales, double rate, double salary)
17 {
18 // implicit call to Object constructor occurs here
19 firstName = first;
20 lastName = last;
21 socialSecurityNumber = ssn;
22 setGrossSales(sales); // validate and store gross sales
23 setCommissionRate(rate); // validate and store commission rate
24
25 } // end six-argument BasePlusCommissionEmployee constructor
26
27 // set first name
28 public void setFirstName(String first)
29 {
30 firstName = first; // should validate
31 } // end method setFirstName
32
33 // return first name
34 public String getFirstName()
35 {

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 1 of 3.)

private double baseSalary; // base salary per week

setBaseSalary(salary); // validate and store base salary

236 Chapter 9 Object-Oriented Programming: Inheritance

36 return firstName;
37 } // end method getFirstName
38
39 // set last name
40 public void setLastName(String last)
41 {
42 lastName = last; // should validate
43 } // end method setLastName
44
45 // return last name
46 public String getLastName()
47 {
48 return lastName;
49 } // end method getLastName
50
51 // set social security number
52 public void setSocialSecurityNumber(String ssn)
53 {
54 socialSecurityNumber = ssn; // should validate
55 } // end method setSocialSecurityNumber
56
57 // return social security number
58 public String getSocialSecurityNumber()
59 {
60 return socialSecurityNumber;
61 } // end method getSocialSecurityNumber
62
63 // set gross sales amount
64 public void setGrossSales(double sales)
65 {
66 if (sales >= 0.0)
67 grossSales = sales;
68 else

69 throw new IllegalArgumentException(
70 "Gross sales must be >= 0.0");
71 } // end method setGrossSales
72
73 // return gross sales amount
74 public double getGrossSales()
75 {
76 return grossSales;
77 } // end method getGrossSales
78
79 // set commission rate
80 public void setCommissionRate(double rate)
81 {
82 if (rate > 0.0 && rate < 1.0)
83 commissionRate = rate;
84 else

85 throw new IllegalArgumentException(
86 "Commission rate must be > 0.0 and < 1.0");
87 } // end method setCommissionRate

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 2 of 3.)

9.4 Relationship between Superclasses and Subclasses 237

Class BasePlusCommissionEmployee does not specify “extends Object” in line 5, so
the class implicitly extends Object. Also, like class CommissionEmployee’s constructor
(lines 13–22 of Fig. 9.4), class BasePlusCommissionEmployee’s constructor invokes class
Object’s default constructor implicitly, as noted in the comment in line 18.

Class BasePlusCommissionEmployee’s earnings method (lines 112–115) returns the
result of adding the BasePlusCommissionEmployee’s base salary to the product of the
commission rate and the employee’s gross sales.

88
89 // return commission rate
90 public double getCommissionRate()
91 {
92 return commissionRate;
93 } // end method getCommissionRate
94
95 // set base salary
96 public void setBaseSalary(double salary)
97 {
98 if (salary >= 0.0)
99 baseSalary = salary;
100 else

101 throw new IllegalArgumentException(
102 "Base salary must be >= 0.0");
103 } // end method setBaseSalary
104
105
106
107
108
109
110
111 // calculate earnings
112 public double earnings()
113 {
114 return

115 } // end method earnings
116
117 // return String representation of BasePlusCommissionEmployee
118 @Override // indicates that this method overrides a superclass method
119 public String toString()
120 {
121 return String.format(
122 "%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n ",
123 "base-salaried commission employee", firstName, lastName,
124 "social security number", socialSecurityNumber,
125 "gross sales", grossSales, "commission rate", commissionRate,
126);
127 } // end method toString
128 } // end class BasePlusCommissionEmployee

Fig. 9.6 | BasePlusCommissionEmployee class represents an employee who receives a base
salary in addition to a commission. (Part 3 of 3.)

// return base salary
public double getBaseSalary()
{

return baseSalary;
} // end method getBaseSalary

baseSalary + (commissionRate * grossSales);

%s: %.2f

"base salary", baseSalary

238 Chapter 9 Object-Oriented Programming: Inheritance

Class BasePlusCommissionEmployee overrides Object method toString to return a
String containing the BasePlusCommissionEmployee’s information. Once again, we use
format specifier %.2f to format the gross sales, commission rate and base salary with two
digits of precision to the right of the decimal point (line 122).

Testing Class BasePlusCommissionEmployee
Figure 9.7 tests class BasePlusCommissionEmployee. Lines 9–11 create a BasePlusCommis-
sionEmployee object and pass "Bob", "Lewis", "333-33-3333", 5000, .04 and 300 to the
constructor as the first name, last name, social security number, gross sales, commission rate
and base salary, respectively. Lines 16–27 use BasePlusCommissionEmployee’s get methods
to retrieve the values of the object’s instance variables for output. Line 29 invokes the object’s
setBaseSalary method to change the base salary. Method setBaseSalary (Fig. 9.6, lines
88–91) ensures that instance variable baseSalary is not assigned a negative value. Lines 31–
33 of Fig. 9.7 invoke method toString explicitly to get the object’s String representation.

1 // Fig. 9.7: BasePlusCommissionEmployeeTest.java
2 // BasePlusCommissionEmployee test program.
3
4 public class BasePlusCommissionEmployeeTest
5 {
6 public static void main(String[] args)
7 {
8 // instantiate BasePlusCommissionEmployee object
9

10
11
12
13 // get base-salaried commission employee data
14 System.out.println(
15 "Employee information obtained by get methods: \n");
16 System.out.printf("%s %s\n", "First name is",
17);
18 System.out.printf("%s %s\n", "Last name is",
19);
20 System.out.printf("%s %s\n", "Social security number is",
21);
22 System.out.printf("%s %.2f\n", "Gross sales is",
23);
24 System.out.printf("%s %.2f\n", "Commission rate is",
25);
26 System.out.printf("%s %.2f\n", "Base salary is",
27);
28
29
30
31 System.out.printf("\n%s:\n\n%s\n",
32 "Updated employee information obtained by toString",
33);
34 } // end main
35 } // end class BasePlusCommissionEmployeeTest

Fig. 9.7 | BasePlusCommissionEmployee test program. (Part 1 of 2.)

BasePlusCommissionEmployee employee =
new BasePlusCommissionEmployee(
"Bob", "Lewis", "333-33-3333", 5000, .04, 300);

employee.getFirstName()

employee.getLastName()

employee.getSocialSecurityNumber()

employee.getGrossSales()

employee.getCommissionRate()

employee.getBaseSalary()

employee.setBaseSalary(1000); // set base salary

employee.toString()

9.4 Relationship between Superclasses and Subclasses 239

Notes on Class BasePlusCommissionEmployee
Much of class BasePlusCommissionEmployee’s code (Fig. 9.6) is similar, or identical, to
that of class CommissionEmployee (Fig. 9.4). For example, private instance variables
firstName and lastName and methods setFirstName, getFirstName, setLastName and
getLastName are identical to those of class CommissionEmployee. The classes also both
contain private instance variables socialSecurityNumber, commissionRate and gross-

Sales, and corresponding get and set methods. In addition, the BasePlusCommissionEm-

ployee constructor is almost identical to that of class CommissionEmployee, except that
BasePlusCommissionEmployee’s constructor also sets the baseSalary. The other addi-
tions to class BasePlusCommissionEmployee are private instance variable baseSalary

and methods setBaseSalary and getBaseSalary. Class BasePlusCommissionEmployee’s
toString method is nearly identical to that of class CommissionEmployee except that it
also outputs instance variable baseSalary with two digits of precision to the right of the
decimal point.

We literally copied code from class CommissionEmployee and pasted it into class Base-
PlusCommissionEmployee, then modified class BasePlusCommissionEmployee to include
a base salary and methods that manipulate the base salary. This “copy-and-paste” approach
is often error prone and time consuming. Worse yet, it spreads copies of the same code
throughout a system, creating a code-maintenance nightmare. Is there a way to “absorb”
the instance variables and methods of one class in a way that makes them part of other
classes without duplicating code? Next we answer this question, using a more elegant
approach to building classes that emphasizes the benefits of inheritance.

Employee information obtained by get methods:

First name is Bob
Last name is Lewis
Social security number is 333-33-3333
Gross sales is 5000.00
Commission rate is 0.04
Base salary is 300.00

Updated employee information obtained by toString:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 1000.00

Software Engineering Observation 9.3
With inheritance, the common instance variables and methods of all the classes in the
hierarchy are declared in a superclass. When changes are made for these common features
in the superclass—subclasses then inherit the changes. Without inheritance, changes
would need to be made to all the source-code files that contain a copy of the code in
question.

Fig. 9.7 | BasePlusCommissionEmployee test program. (Part 2 of 2.)

240 Chapter 9 Object-Oriented Programming: Inheritance

9.4.3 Creating a CommissionEmployee–
BasePlusCommissionEmployee Inheritance Hierarchy
Now we redeclare class BasePlusCommissionEmployee (Fig. 9.8) to extend class Commis-
sionEmployee (Fig. 9.4). A BasePlusCommissionEmployee object is a CommissionEm-

ployee, because inheritance passes on class CommissionEmployee’s capabilities. Class
BasePlus-CommissionEmployee also has instance variable baseSalary (Fig. 9.8, line 6).
Keyword extends (line 4) indicates inheritance. BasePlusCommissionEmployee inherits
CommissionEmployee’s instance variables and methods, but only the superclass’s public
and protected members are directly accessible in the subclass. The CommissionEmployee

constructor is not inherited. So, the public BasePlusCommissionEmployee services in-
clude its constructor (lines 9–16), public methods inherited from CommissionEmployee,
and methods setBaseSalary (lines 19–26), getBaseSalary (lines 29–32), earnings

(lines 35–40) and toString (lines 43–53). Methods earnings and toString override the
corresponding methods in class CommissionEmployee because their superclass versions do
not properly calculate a BasePlusCommissionEmployee’s earnings or return an appropriate
String representation.

1 // Fig. 9.8: BasePlusCommissionEmployee.java
2 // private superclass members cannot be accessed in a subclass.
3
4
5 {
6 private double baseSalary; // base salary per week
7
8 // six-argument constructor
9 public BasePlusCommissionEmployee(String first, String last,

10 String ssn, double sales, double rate, double salary)
11 {
12
13
14
15 setBaseSalary(salary); // validate and store base salary
16 } // end six-argument BasePlusCommissionEmployee constructor
17
18 // set base salary
19 public void setBaseSalary(double salary)
20 {
21 if (salary >= 0.0)
22 baseSalary = salary;
23 else

24 throw new IllegalArgumentException(
25 "Base salary must be >= 0.0");
26 } // end method setBaseSalary
27
28 // return base salary
29 public double getBaseSalary()
30 {
31 return baseSalary;
32 } // end method getBaseSalary

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 1 of 2.)

public class BasePlusCommissionEmployee extends CommissionEmployee

// explicit call to superclass CommissionEmployee constructor
super(first, last, ssn, sales, rate);

9.4 Relationship between Superclasses and Subclasses 241

33
34 // calculate earnings
35 @Override // indicates that this method overrides a superclass method
36 public double earnings()
37 {
38
39
40 } // end method earnings
41
42 // return String representation of BasePlusCommissionEmployee
43 @Override // indicates that this method overrides a superclass method
44 public String toString()
45 {
46
47
48
49
50
51
52
53 } // end method toString
54 } // end class BasePlusCommissionEmployee

BasePlusCommissionEmployee.java:39: commissionRate has private access in
CommissionEmployee

return baseSalary + (commissionRate * grossSales);
^

BasePlusCommissionEmployee.java:39: grossSales has private access in
CommissionEmployee

return baseSalary + (commissionRate * grossSales);
^

BasePlusCommissionEmployee.java:49: firstName has private access in
CommissionEmployee

"base-salaried commission employee", firstName, lastName,
^

BasePlusCommissionEmployee.java:49: lastName has private access in
CommissionEmployee

"base-salaried commission employee", firstName, lastName,
^

BasePlusCommissionEmployee.java:50: socialSecurityNumber has private access
in CommissionEmployee

"social security number", socialSecurityNumber,
^

BasePlusCommissionEmployee.java:51: grossSales has private access in
CommissionEmployee

"gross sales", grossSales, "commission rate", commissionRate,
^

BasePlusCommissionEmployee.java:51: commissionRate has private access in
CommissionEmployee

"gross sales", grossSales, "commission rate", commissionRate,
^

7 errors

Fig. 9.8 | private superclass members cannot be accessed in a subclass. (Part 2 of 2.)

// not allowed: commissionRate and grossSales private in superclass
return baseSalary + (commissionRate * grossSales);

// not allowed: attempts to access private superclass members
return String.format(

"%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",
"base-salaried commission employee", firstName, lastName,
"social security number", socialSecurityNumber,
"gross sales", grossSales, "commission rate", commissionRate,
"base salary", baseSalary);

242 Chapter 9 Object-Oriented Programming: Inheritance

A Subclass’s Constructor Must Call Its Superclass’s Constructor
Each subclass constructor must implicitly or explicitly call its superclass constructor to
initialize the instance variables inherited from the superclass. Line 13 in BasePlusCommis-

sionEmployee’s six-argument constructor (lines 9–16) explicitly calls class Commission-

Employee’s five-argument constructor (declared at lines 13–22 of Fig. 9.4) to initialize the
superclass portion of a BasePlusCommissionEmployee object (i.e., variables firstName,
lastName, socialSecurityNumber, grossSales and commissionRate). We do this by us-
ing the superclass constructor call syntax—keyword super, followed by a set of parenthe-
ses containing the superclass constructor arguments. The arguments first, last, ssn,
sales and rate are used to initialize superclass members firstName, lastName, social-
SecurityNumber, grossSales and commissionRate, respectively. If BasePlusCommis-

sionEmployee’s constructor did not invoke the superclass’s constructor explicitly, Java
would attempt to invoke the superclass’s no-argument or default constructor. Class Com-
missionEmployee does not have such a constructor, so the compiler would issue an error.
The explicit superclass constructor call in line 13 of Fig. 9.8 must be the first statement in
the subclass constructor’s body. When a superclass contains a no-argument constructor,
you can use super() to call that constructor explicitly, but this is rarely done.

BasePlusCommissionEmployee Method Earnings

The compiler generates errors for line 39 because superclass CommissionEmployee’s in-
stance variables commissionRate and grossSales are private—subclass BasePlusCom-

missionEmployee’s methods are not allowed to access superclass CommissionEmployee’s
private instance variables. The compiler issues additional errors at lines 49–51 of
BasePlusCommissionEmployee’s toString method for the same reason. The errors in
BasePlusCommissionEmployee could have been prevented by using the get methods inher-
ited from class CommissionEmployee. For example, line 39 could have used getCommis-

sionRate and getGrossSales to access CommissionEmployee’s private instance variables
commissionRate and grossSales, respectively. Lines 49–51 also could have used appro-
priate get methods to retrieve the values of the superclass’s instance variables.

9.4.4 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using protected Instance Variables
To enable class BasePlusCommissionEmployee to directly access superclass instance vari-
ables firstName, lastName, socialSecurityNumber, grossSales and commissionRate,
we can declare those members as protected in the superclass. As we discussed in
Section 9.3, a superclass’s protected members are accessible by all subclasses of that su-
perclass. In the new CommissionEmployee class, we modified only lines 6–10 of Fig. 9.4
to declare the instance variables with the protected access modifier as follows:

The rest of the class declaration (which is not shown here) is identical to that of Fig. 9.4.
We could have declared CommissionEmployee’s instance variables public to enable

subclass BasePlusCommissionEmployee to access them. However, declaring public

protected String firstName;
protected String lastName;
protected String socialSecurityNumber;
protected double grossSales; // gross weekly sales
protected double commissionRate; // commission percentage

9.4 Relationship between Superclasses and Subclasses 243

instance variables is poor software engineering because it allows unrestricted access to the
these variables, greatly increasing the chance of errors. With protected instance variables,
the subclass gets access to the instance variables, but classes that are not subclasses and
classes that are not in the same package cannot access these variables directly—recall that
protected class members are also visible to other classes in the same package.

Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 9.9) extends the new version of class Commis-
sionEmployee with protected instance variables. BasePlusCommissionEmployee objects
inherit CommissionEmployee’s protected instance variables firstName, lastName, so-
cialSecurityNumber, grossSales and commissionRate—all these variables are now pro-

tected members of BasePlusCommissionEmployee. As a result, the compiler does not
generate errors when compiling line 37 of method earnings and lines 46–48 of method
toString. If another class extends this version of class BasePlusCommissionEmployee, the
new subclass also can access the protected members.

1 // Fig. 9.9: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee inherits protected instance
3 // variables from CommissionEmployee.
4
5
6 {
7 private double baseSalary; // base salary per week
8
9 // six-argument constructor

10 public BasePlusCommissionEmployee(String first, String last,
11 String ssn, double sales, double rate, double salary)
12 {
13
14 setBaseSalary(salary); // validate and store base salary
15 } // end six-argument BasePlusCommissionEmployee constructor
16
17 // set base salary
18 public void setBaseSalary(double salary)
19 {
20 if (salary >= 0.0)
21 baseSalary = salary;
22 else

23 throw new IllegalArgumentException(
24 "Base salary must be >= 0.0");
25 } // end method setBaseSalary
26
27 // return base salary
28 public double getBaseSalary()
29 {
30 return baseSalary;
31 } // end method getBaseSalary

Fig. 9.9 | BasePlusCommissionEmployee inherits protected instance variables from
CommissionEmployee. (Part 1 of 2.)

public class BasePlusCommissionEmployee extends CommissionEmployee

super(first, last, ssn, sales, rate);

244 Chapter 9 Object-Oriented Programming: Inheritance

When you create a BasePlusCommissionEmployee object, it contains all instance vari-
ables declared in the class hierarchy to that point—i.e., those from classes Object, Commis-
sionEmployee and BasePlusCommissionEmployee. Class BasePlusCommissionEmployee

does not inherit class CommissionEmployee’s constructor. However, class BasePlus-

CommissionEmployee’s six-argument constructor (lines 10–15) calls class Commission-

Employee’s five-argument constructor explicitly to initialize the instance variables that
BasePlusCommissionEmployee inherited from class CommissionEmployee. Similarly, class
CommissionEmployee’s constructor implicitly calls class Object’s constructor. Base-

PlusCommissionEmployee’s constructor must do this explicitly because CommissionEm-

ployee does not provide a no-argument constructor that could be invoked implicitly.

Testing Class BasePlusCommissionEmployee
The BasePlusCommissionEmployeeTest class for this example is identical to that of
Fig. 9.7 and produces the same output, so we do not show it here. Although the version
of class BasePlusCommissionEmployee in Fig. 9.6 does not use inheritance and the version
in Fig. 9.9 does, both classes provide the same functionality. The source code in Fig. 9.9 (47
lines) is considerably shorter than that in Fig. 9.6 (116 lines), because most of Base-

PlusCommissionEmployee’s functionality is now inherited from CommissionEmployee—
there’s now only one copy of the CommissionEmployee functionality. This makes the code
easier to maintain, modify and debug, because the code related to a commission employee
exists only in class CommissionEmployee.

Notes on Using protected Instance Variables
In this example, we declared superclass instance variables as protected so that subclasses
could access them. Inheriting protected instance variables slightly increases performance,
because we can directly access the variables in the subclass without incurring the overhead

32
33 // calculate earnings
34 @Override // indicates that this method overrides a superclass method
35 public double earnings()
36 {
37
38 } // end method earnings
39
40 // return String representation of BasePlusCommissionEmployee
41 @Override // indicates that this method overrides a superclass method
42 public String toString()
43 {
44
45
46
47
48
49
50 } // end method toString
51 } // end class BasePlusCommissionEmployee

Fig. 9.9 | BasePlusCommissionEmployee inherits protected instance variables from
CommissionEmployee. (Part 2 of 2.)

return baseSalary + (commissionRate * grossSales);

return String.format(
"%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f\n%s: %.2f",
"base-salaried commission employee", firstName, lastName,
"social security number", socialSecurityNumber,
"gross sales", grossSales, "commission rate", commissionRate,
"base salary", baseSalary);

9.4 Relationship between Superclasses and Subclasses 245

of a set or get method call. In most cases, however, it’s better to use private instance vari-
ables to encourage proper software engineering, and leave code optimization issues to the
compiler. Your code will be easier to maintain, modify and debug.

Using protected instance variables creates several potential problems. First, the sub-
class object can set an inherited variable’s value directly without using a set method. There-
fore, a subclass object can assign an invalid value to the variable, possibly leaving the object
in an inconsistent state. For example, if we were to declare CommissionEmployee’s instance
variable grossSales as protected, a subclass object (e.g., BasePlusCommissionEmployee)
could then assign a negative value to grossSales. Another problem with using protected

instance variables is that subclass methods are more likely to be written so that they depend
on the superclass’s data implementation. In practice, subclasses should depend only on the
superclass services (i.e., non-private methods) and not on the superclass data implemen-
tation. With protected instance variables in the superclass, we may need to modify all the
subclasses of the superclass if the superclass implementation changes. For example, if for
some reason we were to change the names of instance variables firstName and lastName

to first and last, then we would have to do so for all occurrences in which a subclass
directly references superclass instance variables firstName and lastName. In such a case,
the software is said to be fragile or brittle, because a small change in the superclass can
“break” subclass implementation. You should be able to change the superclass implemen-
tation while still providing the same services to the subclasses. Of course, if the superclass
services change, we must reimplement our subclasses. A third problem is that a class’s pro-
tected members are visible to all classes in the same package as the class containing the
protected members—this is not always desirable.

9.4.5 CommissionEmployee–BasePlusCommissionEmployee
Inheritance Hierarchy Using private Instance Variables
Let’s reexamine our hierarchy once more, this time using good software engineering practic-
es. Class CommissionEmployee (Fig. 9.10) declares instance variables firstName, lastName,
socialSecurityNumber, grossSales and commissionRate as private (lines 6–10) and pro-
vides public methods setFirstName, getFirstName, setLastName, getLastName, set-

SocialSecurityNumber, getSocialSecurityNumber, setGrossSales, getGrossSales,
setCommissionRate, getCommissionRate, earnings and toString for manipulating these
values. Methods earnings (lines 93–96) and toString (lines 99–107) use the class’s get

Software Engineering Observation 9.4
Use the protected access modifier when a superclass should provide a method only to its
subclasses and other classes in the same package, but not to other clients.

Software Engineering Observation 9.5
Declaring superclass instance variables private (as opposed to protected) enables the
superclass implementation of these instance variables to change without affecting subclass
implementations.

Error-Prevention Tip 9.2
When possible, do not include protected instance variables in a superclass. Instead, in-
clude non-private methods that access private instance variables. This will help ensure
that objects of the class maintain consistent states.

246 Chapter 9 Object-Oriented Programming: Inheritance

methods to obtain the values of its instance variables. If we decide to change the instance-
variable names, the earnings and toString declarations will not require modification—
only the bodies of the get and set methods that directly manipulate the instance variables will
need to change. These changes occur solely within the superclass—no changes to the subclass
are needed. Localizing the effects of changes like this is a good software engineering practice.

1 // Fig. 9.10: CommissionEmployee.java
2 // CommissionEmployee class uses methods to manipulate its
3 // private instance variables.
4 public class CommissionEmployee
5 {
6
7
8
9

10
11
12 // five-argument constructor
13 public CommissionEmployee(String first, String last, String ssn,
14 double sales, double rate)
15 {
16 // implicit call to Object constructor occurs here
17 firstName = first;
18 lastName = last;
19 socialSecurityNumber = ssn;
20 setGrossSales(sales); // validate and store gross sales
21 setCommissionRate(rate); // validate and store commission rate
22 } // end five-argument CommissionEmployee constructor
23
24 // set first name
25 public void setFirstName(String first)
26 {
27 firstName = first; // should validate
28 } // end method setFirstName
29
30 // return first name
31 public String getFirstName()
32 {
33 return firstName;
34 } // end method getFirstName
35
36 // set last name
37 public void setLastName(String last)
38 {
39 la5stName = last; // should validate
40 } // end method setLastName
41
42 // return last name
43 public String getLastName()
44 {

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 1 of 3.)

private String firstName;
private String lastName;
private String socialSecurityNumber;
private double grossSales; // gross weekly sales
private double commissionRate; // commission percentage

9.4 Relationship between Superclasses and Subclasses 247

45 return lastName;
46 } // end method getLastName
47
48 // set social security number
49 public void setSocialSecurityNumber(String ssn)
50 {
51 socialSecurityNumber = ssn; // should validate
52 } // end method setSocialSecurityNumber
53
54 // return social security number
55 public String getSocialSecurityNumber()
56 {
57 return socialSecurityNumber;
58 } // end method getSocialSecurityNumber
59
60 // set gross sales amount
61 public void setGrossSales(double sales)
62 {
63 if (sales >= 0.0)
64 grossSales = sales;
65 else

66 throw new IllegalArgumentException(
67 "Gross sales must be >= 0.0");
68 } // end method setGrossSales
69
70 // return gross sales amount
71 public double getGrossSales()
72 {
73 return grossSales;
74 } // end method getGrossSales
75
76 // set commission rate
77 public void setCommissionRate(double rate)
78 {
79 if (rate > 0.0 && rate < 1.0)
80 commissionRate = rate;
81 else

82 throw new IllegalArgumentException(
83 "Commission rate must be > 0.0 and < 1.0");
84 } // end method setCommissionRate
85
86 // return commission rate
87 public double getCommissionRate()
88 {
89 return commissionRate;
90 } // end method getCommissionRate
91
92 // calculate earnings
93 public double earnings()
94 {
95 return * ;
96 } // end method earnings

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 2 of 3.)

getCommissionRate() getGrossSales()

248 Chapter 9 Object-Oriented Programming: Inheritance

Subclass BasePlusCommissionEmployee (Fig. 9.11) inherits CommissionEmployee’s
non-private methods and can access the private superclass members via those methods.
Class BasePlusCommissionEmployee has several changes that distinguish it from Fig. 9.9.
Methods earnings (lines 35–39) and toString (lines 42–47) each invoke method get-

BaseSalary to obtain the base salary value, rather than accessing baseSalary directly. If
we decide to rename instance variable baseSalary, only the bodies of method setBas-

eSalary and getBaseSalary will need to change.

97
98 // return String representation of CommissionEmployee object
99 @Override // indicates that this method overrides a superclass method
100 public String toString()
101 {
102 return String.format("%s: %s %s\n%s: %s\n%s: %.2f\n%s: %.2f",
103 "commission employee", , ,
104 "social security number", ,
105 "gross sales", ,
106 "commission rate",);
107 } // end method toString
108 } // end class CommissionEmployee

1 // Fig. 9.11: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class inherits from CommissionEmployee
3 // and accesses the superclass’s private data via inherited
4 // public methods.
5
6 public class BasePlusCommissionEmployee extends CommissionEmployee
7 {
8 private double baseSalary; // base salary per week
9

10 // six-argument constructor
11 public BasePlusCommissionEmployee(String first, String last,
12 String ssn, double sales, double rate, double salary)
13 {
14 super(first, last, ssn, sales, rate);
15 setBaseSalary(salary); // validate and store base salary
16 } // end six-argument BasePlusCommissionEmployee constructor
17
18 // set base salary
19 public void setBaseSalary(double salary)
20 {
21 if (salary >= 0.0)
22 baseSalary = salary;

Fig. 9.11 | BasePlusCommissionEmployee class inherits from CommissionEmployee and
accesses the superclass’s private data via inherited public methods. (Part 1 of 2.)

Fig. 9.10 | CommissionEmployee class uses methods to manipulate its private instance
variables. (Part 3 of 3.)

getFirstName() getLastName()
getSocialSecurityNumber()

getGrossSales()
getCommissionRate()

9.4 Relationship between Superclasses and Subclasses 249

Class BasePlusCommissionEmployee’s earnings Method
Method earnings (lines 35–39) overrides class CommissionEmployee’s earnings method
(Fig. 9.10, lines 93–96) to calculate a base-salaried commission employee’s earnings. The
new version obtains the portion of the earnings based on commission alone by calling Com-

missionEmployee’s earnings method with super.earnings() (line 34), then adds the
base salary to this value to calculate the total earnings. Note the syntax used to invoke an
overridden superclass method from a subclass—place the keyword super and a dot (.) sep-
arator before the superclass method name. This method invocation is a good software en-
gineering practice—if a method performs all or some of the actions needed by another
method, call that method rather than duplicate its code. By having BasePlusCommission-

Employee’s earnings method invoke CommissionEmployee’s earnings method to calcu-
late part of a BasePlusCommissionEmployee object’s earnings, we avoid duplicating the
code and reduce code-maintenance problems. If we did not use “super.” then BasePlusCom-

missionEmployee’s earnings method would call itself rather than the superclass version.
This would result in infinite recursion, which would eventually cause the method-call stack
to overflow—a fatal runtime error.

Class BasePlusCommissionEmployee’s toString Method
Similarly, BasePlusCommissionEmployee’s toString method (Fig. 9.11, lines 38–43)
overrides class CommissionEmployee’s toString method (Fig. 9.10, lines 91–99) to return

23 else

24 throw new IllegalArgumentException(
25 "Base salary must be >= 0.0");
26 } // end method setBaseSalary
27
28 // return base salary
29 public double getBaseSalary()
30 {
31 return baseSalary;
32 } // end method getBaseSalary
33
34 // calculate earnings
35 @Override // indicates that this method overrides a superclass method
36 public double earnings()
37 {
38
39 } // end method earnings
40
41 // return String representation of BasePlusCommissionEmployee
42 @Override // indicates that this method overrides a superclass method
43 public String toString()
44 {
45
46
47 } // end method toString
48 } // end class BasePlusCommissionEmployee

Fig. 9.11 | BasePlusCommissionEmployee class inherits from CommissionEmployee and
accesses the superclass’s private data via inherited public methods. (Part 2 of 2.)

return getBaseSalary() + super.earnings();

return String.format("%s %s\n%s: %.2f", "base-salaried",
super.toString(), "base salary", getBaseSalary());

250 Chapter 9 Object-Oriented Programming: Inheritance

a String representation that’s appropriate for a base-salaried commission employee. The
new version creates part of a BasePlusCommissionEmployee object’s String representa-
tion (i.e., the String "commission employee" and the values of class CommissionEmploy-
ee’s private instance variables) by calling CommissionEmployee’s toString method with
the expression super.toString() (Fig. 9.11, line 42). BasePlusCommissionEmployee’s
toString method then outputs the remainder of a BasePlusCommissionEmployee object’s
String representation (i.e., the value of class BasePlusCommissionEmployee’s base salary).

Testing Class BasePlusCommissionEmployee
Class BasePlusCommissionEmployeeTest performs the same manipulations on a Base-

PlusCommissionEmployee object as in Fig. 9.7 and produces the same output, so we do
not show it here. Although each BasePlusCommissionEmployee class you’ve seen behaves
identically, the version in Fig. 9.11 is the best engineered. By using inheritance and by call-
ing methods that hide the data and ensure consistency, we’ve efficiently and effectively
constructed a well-engineered class.

Summary of the Inheritance Examples in Sections 9.4.1–9.4.5
You’ve now seen a set of examples that were designed to teach good software engineering
with inheritance. You used the keyword extends to create a subclass using inheritance,
used protected superclass members to enable a subclass to access inherited superclass in-
stance variables, and overrode superclass methods to provide versions that are more appro-
priate for subclass objects. In addition, you applied software engineering techniques from
Chapter 8 and this chapter to create classes that are easy to maintain, modify and debug.

9.5 Constructors in Subclasses
As we explained in the preceding section, instantiating a subclass object begins a chain of
constructor calls in which the subclass constructor, before performing its own tasks, in-
vokes its direct superclass’s constructor either explicitly via the super reference or implic-
itly calling the superclass’s default constructor or no-argument constructor. Similarly, if
the superclass is derived from another class—as is, of course, every class except Object—
the superclass constructor invokes the constructor of the next class up the hierarchy, and
so on. The last constructor called in the chain is always the constructor for class Object.
The original subclass constructor’s body finishes executing last. Each superclass’s construc-
tor manipulates the superclass instance variables that the subclass object inherits. For ex-
ample, consider again the CommissionEmployee–BasePlusCommissionEmployee hierarchy
from Fig. 9.10 and Fig. 9.11. When a program creates a BasePlusCommissionEmployee

object, its constructor is called. That constructor calls CommissionEmployee’s constructor,
which in turn calls Object’s constructor. Class Object’s constructor has an empty body,
so it immediately returns control to CommissionEmployee’s constructor, which then ini-

Common Programming Error 9.3
When a superclass method is overridden in a subclass, the subclass version often calls the
superclass version to do a portion of the work. Failure to prefix the superclass method name
with the keyword super and a dot (.) separator when calling the superclass’s method
causes the subclass method to call itself, potentially creating an error called infinite recur-
sion.

9.6 Software Engineering with Inheritance 251

tializes the CommissionEmployee private instance variables that are part of the Base-

PlusCommissionEmployee object. When CommissionEmployee’s constructor completes
execution, it returns control to BasePlusCommissionEmployee’s constructor, which ini-
tializes the BasePlusCommissionEmployee object’s baseSalary.

9.6 Software Engineering with Inheritance
When you extend a class, the new class inherits the superclass’s members—though the
private superclass members are hidden in the new class. You can customize the new class
to meet your needs by including additional members and by overriding superclass members.
Doing this does not require the subclass programmer to change (or even have access to)
the superclass’s source code. Java simply requires access to the superclass’s .class file so it
can compile and execute any program that uses or extends the superclass. This powerful
capability is attractive to independent software vendors (ISVs), who can develop proprie-
tary classes for sale or license and make them available to users in bytecode format. Users
then can derive new classes from these library classes rapidly and without accessing the
ISVs’ proprietary source code.

It’s sometimes difficult to appreciate the scope of the problems faced by designers who
work on large-scale software projects. People experienced with such projects say that effec-
tive software reuse improves the software-development process. Object-oriented program-
ming facilitates software reuse, often significantly shortening development time.

The availability of substantial and useful class libraries delivers the maximum benefits
of software reuse through inheritance. The standard Java class libraries that are shipped
with Java tend to be rather general purpose, encouraging broad software reuse. Many other
class libraries exist.

Reading subclass declarations can be confusing, because inherited members are not
declared explicitly in the subclasses but are nevertheless present in them. A similar problem
exists in documenting subclass members.

Software Engineering Observation 9.6
Java ensures that even if a constructor does not assign a value to an instance variable, the
variable is still initialized to its default value (e.g., 0 for primitive numeric types, false
for booleans, null for references).

Software Engineering Observation 9.7
Although inheriting from a class does not require access to the class’s source code,
developers often insist on seeing the source code to understand how the class is
implemented. Developers in industry want to ensure that they’re extending a solid class—
for example, a class that performs well and is implemented robustly and securely.

Software Engineering Observation 9.8
At the design stage in an object-oriented system, you’ll often find that certain classes are
closely related. You should “factor out” common instance variables and methods and place
them in a superclass. Then use inheritance to develop subclasses, specializing them with
capabilities beyond those inherited from the superclass.

252 Chapter 9 Object-Oriented Programming: Inheritance

9.7 Class Object
As we discussed earlier in this chapter, all classes in Java inherit directly or indirectly from
the Object class (package java.lang), so its 11 methods (some are overloaded) are inher-
ited by all other classes. Figure 9.12 summarizes Object’s methods. We discuss several
Object methods throughout this book (as indicated in Fig. 9.12).

Software Engineering Observation 9.9
Declaring a subclass does not affect its superclass’s source code. Inheritance preserves the
integrity of the superclass.

Software Engineering Observation 9.10
Designers of object-oriented systems should avoid class proliferation. Such proliferation
creates management problems and can hinder software reusability, because in a huge class
library it becomes difficult to locate the most appropriate classes. The alternative is to
create fewer classes that provide more substantial functionality, but such classes might
prove cumbersome.

Method Description

clone This protected method, which takes no arguments and returns an Object ref-
erence, makes a copy of the object on which it’s called. The default imple-
mentation performs a so-called shallow copy—instance-variable values in one
object are copied into another object of the same type. For reference types,
only the references are copied. A typical overridden clone method’s imple-
mentation would perform a deep copy that creates a new object for each ref-
erence-type instance variable. Implementing clone correctly is difficult. For
this reason, its use is discouraged. Many industry experts suggest that object
serialization should be used instead. We discuss object serialization in
Chapter 17, Files, Streams and Object Serialization.

equals This method compares two objects for equality and returns true if they’re
equal and false otherwise. The method takes any Object as an argument.
When objects of a particular class must be compared for equality, the class
should override method equals to compare the contents of the two objects.
For the requirements of implementing this method, refer to the method’s doc-
umentation at download.oracle.com/javase/6/docs/api/java/lang/
Object.html# equals(java.lang.Object). The default equals implementa-
tion uses operator == to determine whether two references refer to the same
object in memory. Section 16.3.3 demonstrates class String’s equals method
and differentiates between comparing String objects with == and with equals.

finalize This protected method (introduced in Section 8.10) is called by the garbage
collector to perform termination housekeeping on an object just before the
garbage collector reclaims the object’s memory. Recall that it’s unclear
whether, or when, method finalize will be called. For this reason, most pro-
grammers should avoid method finalize.

Fig. 9.12 | Object methods. (Part 1 of 2.)

9.8 Wrap-Up 253

Recall from Chapter 7 that arrays are objects. As a result, like all other objects, arrays
inherit the members of class Object. Every array has an overridden clone method that
copies the array. However, if the array stores references to objects, the objects are not
copied—a shallow copy is performed.

9.8 Wrap-Up
This chapter introduced inheritance—the ability to create classes by absorbing an existing
class’s members and embellishing them with new capabilities. You learned the notions of
superclasses and subclasses and used keyword extends to create a subclass that inherits
members from a superclass. We showed how to use the @Override annotation to prevent
unintended overloading by indicating that a method overrides a superclass method. We in-
troduced the access modifier protected; subclass methods can directly access protected
superclass members. You learned how to use super to access overridden superclass mem-
bers. You also saw how constructors are used in inheritance hierarchies. Finally, you learned
about the methods of class Object, the direct or indirect superclass of all Java classes.

In Chapter 10, Object-Oriented Programming: Polymorphism, we build on our dis-
cussion of inheritance by introducing polymorphism—an object-oriented concept that
enables us to write programs that conveniently handle, in a more general manner, objects
of a wide variety of classes related by inheritance. After studying Chapter 10, you’ll be
familiar with classes, objects, encapsulation, inheritance and polymorphism—the key
technologies of object-oriented programming.

getClass Every object in Java knows its own type at execution time. Method getClass

(used in Sections 10.5 and 14.5) returns an object of class Class (package
java.lang) that contains information about the object’s type, such as its class
name (returned by Class method getName).

hashCode Hashcodes are int values that are useful for high-speed storage and retrieval of
information stored in a data structure that’s known as a hashtable (discussed
in Section 18.11). This method is also called as part of class Object’s default
toString method implementation.

wait, notify,
notifyAll

Methods notify, notifyAll and the three overloaded versions of wait are
related to multithreading, which is discussed in Chapter 23.

toString This method (introduced in Section 9.4.1) returns a String representation of
an object. The default implementation of this method returns the package
name and class name of the object’s class followed by a hexadecimal represen-
tation of the value returned by the object’s hashCode method.

Method Description

Fig. 9.12 | Object methods. (Part 2 of 2.)

10
Object-Oriented
Programming:
Polymorphism

O b j e c t i v e s
In this chapter you’ll learn:

� The concept of polymorphism.

� To use overridden methods to effect polymorphism.

� To distinguish between abstract and concrete classes.

� To declare abstract methods to create abstract classes.

� How polymorphism makes systems extensible and
maintainable.

� To determine an object’s type at execution time.

� To declare and implement interfaces.

One Ring to rule them all,
One Ring to find them,
One Ring to bring them all
and in the darkness bind
them.
—John Ronald Reuel Tolkien

General propositions do not
decide concrete cases.
—Oliver Wendell Holmes

A philosopher of imposing
stature doesn’t think in a
vacuum. Even his most
abstract ideas are, to some
extent, conditioned by what
is or is not known in the
time when he lives.
—Alfred North Whitehead

Why art thou cast down, O
my soul?
—Psalms 42:5

10.1 Introduction 255

10.1 Introduction
We continue our study of object-oriented programming by explaining and demonstrating
polymorphism with inheritance hierarchies. Polymorphism enables you to “program in
the general” rather than “program in the specific.” In particular, polymorphism enables
you to write programs that process objects that share the same superclass (either directly
or indirectly) as if they’re all objects of the superclass; this can simplify programming.

Consider the following example of polymorphism. Suppose we create a program that
simulates the movement of several types of animals for a biological study. Classes Fish,
Frog and Bird represent the types of animals under investigation. Imagine that each class
extends superclass Animal, which contains a method move and maintains an animal’s cur-
rent location as x-y coordinates. Each subclass implements method move. Our program
maintains an Animal array containing references to objects of the various Animal sub-
classes. To simulate the animals’ movements, the program sends each object the same mes-
sage once per second—namely, move. Each specific type of Animal responds to a move

message in its own way—a Fish might swim three feet, a Frog might jump five feet and a
Bird might fly ten feet. Each object knows how to modify its x-y coordinates appropriately
for its specific type of movement. Relying on each object to know how to “do the right
thing” (i.e., do what is appropriate for that type of object) in response to the same method
call is the key concept of polymorphism. The same message (in this case, move) sent to a
variety of objects has “many forms” of results—hence the term polymorphism.

Implementing for Extensibility
With polymorphism, we can design and implement systems that are easily extensible—
new classes can be added with little or no modification to the general portions of the pro-
gram, as long as the new classes are part of the inheritance hierarchy that the program pro-
cesses generically. The only parts of a program that must be altered are those that require
direct knowledge of the new classes that we add to the hierarchy. For example, if we extend

10.1 Introduction
10.2 Polymorphism Examples
10.3 Demonstrating Polymorphic Behavior
10.4 Abstract Classes and Methods
10.5 Case Study: Payroll System Using

Polymorphism
10.5.1 Abstract Superclass Employee
10.5.2 Concrete Subclass

SalariedEmployee
10.5.3 Concrete SubclassHourlyEmployee
10.5.4 Concrete Subclass

CommissionEmployee
10.5.5 Indirect Concrete Subclass

BasePlusCommissionEmployee
10.5.6 Polymorphic Processing, Operator

instanceof and Downcasting
10.5.7 Summary of the Allowed

Assignments Between Superclass and
Subclass Variables

10.6 final Methods and Classes
10.7 Case Study: Creating and Using

Interfaces
10.7.1 Developing a Payable Hierarchy
10.7.2 Interface Payable
10.7.3 Class Invoice
10.7.4 Modifying Class Employee to

Implement Interface Payable
10.7.5 Modifying Class

SalariedEmployee for Use in the
Payable Hierarchy

10.7.6 Using Interface Payable to Process
Invoices and Employees
Polymorphically

10.7.7 Common Interfaces of the Java API
10.8 Wrap-Up

256 Chapter 10 Object-Oriented Programming: Polymorphism

class Animal to create class Tortoise (which might respond to a move message by crawling
one inch), we need to write only the Tortoise class and the part of the simulation that
instantiates a Tortoise object. The portions of the simulation that tell each Animal to
move generically can remain the same.

Chapter Overview
First, we discuss common examples of polymorphism. We then provide a simple example
demonstrating polymorphic behavior. We use superclass references to manipulate both su-
perclass objects and subclass objects polymorphically.

We then present a case study that revisits the employee hierarchy of Section 9.4.5. We
develop a simple payroll application that polymorphically calculates the weekly pay of sev-
eral different types of employees using each employee’s earnings method. Though the
earnings of each type of employee are calculated in a specific way, polymorphism allows
us to process the employees “in the general.” In the case study, we enlarge the hierarchy to
include two new classes—SalariedEmployee (for people paid a fixed weekly salary) and
HourlyEmployee (for people paid an hourly salary and “time-and-a-half” for overtime).
We declare a common set of functionality for all the classes in the updated hierarchy in an
“abstract” class, Employee, from which “concrete”classes SalariedEmployee, HourlyEm-
ployee and CommissionEmployee inherit directly and “concrete” class BasePlusCommis-
sionEmployee inherits indirectly. As you’ll soon see, when we invoke each employee’s
earnings method off a superclass Employee reference, the correct earnings subclass calculation
is performed, due to Java’s polymorphic capabilities.

Programming in the Specific
Occasionally, when performing polymorphic processing, we need to program “in the spe-
cific.” Our Employee case study demonstrates that a program can determine the type of an
object at execution time and act on that object accordingly. In the case study, we’ve decided
that BasePlusCommissionEmployees should receive 10% raises on their base salaries. So,
we use these capabilities to determine whether a particular employee object is a Base-

PlusCommissionEmployee. If so, we increase that employee’s base salary by 10%.

Interfaces
The chapter continues with an introduction to Java interfaces. An interface describes a set
of methods that can be called on an object, but does not provide concrete implementations
for all the methods. You can declare classes that implement (i.e., provide concrete imple-
mentations for the methods of) one or more interfaces. Each interface method must be de-
clared in all the classes that explicitly implement the interface. Once a class implements an
interface, all objects of that class have an is-a relationship with the interface type, and all
objects of the class are guaranteed to provide the functionality described by the interface.
This is true of all subclasses of that class as well.

Interfaces are particularly useful for assigning common functionality to possibly unre-
lated classes. This allows objects of unrelated classes to be processed polymorphically—
objects of classes that implement the same interface can respond to all of the interface
method calls. To demonstrate creating and using interfaces, we modify our payroll appli-
cation to create a general accounts payable application that can calculate payments due for
company employees and invoice amounts to be billed for purchased goods. As you’ll see,
interfaces enable polymorphic capabilities similar to those possible with inheritance.

10.2 Polymorphism Examples 257

10.2 Polymorphism Examples
We now consider several additional examples of polymorphism.

Quadrilaterals
If class Rectangle is derived from class Quadrilateral, then a Rectangle object is a more
specific version of a Quadrilateral. Any operation (e.g., calculating the perimeter or the
area) that can be performed on a Quadrilateral can also be performed on a Rectangle.
These operations can also be performed on other Quadrilaterals, such as Squares, Par-
allelograms and Trapezoids. The polymorphism occurs when a program invokes a meth-
od through a superclass Quadrilateral variable—at execution time, the correct subclass
version of the method is called, based on the type of the reference stored in the superclass
variable. You’ll see a simple code example that illustrates this process in Section 10.3.

Space Objects in a Video Game
Suppose we design a video game that manipulates objects of classes Martian, Venusian, Plu-
tonian, SpaceShip and LaserBeam. Imagine that each class inherits from the superclass Spa-
ceObject, which contains method draw. Each subclass implements this method. A screen
manager maintains a collection (e.g., a SpaceObject array) of references to objects of the var-
ious classes. To refresh the screen, the screen manager periodically sends each object the same
message—namely, draw. However, each object responds its own way, based on its class. For
example, a Martian object might draw itself in red with green eyes and the appropriate num-
ber of antennae. A SpaceShip object might draw itself as a bright silver flying saucer. A La-

serBeam object might draw itself as a bright red beam across the screen. Again, the same
message (in this case, draw) sent to a variety of objects has “many forms” of results.

A screen manager might use polymorphism to facilitate adding new classes to a system
with minimal modifications to the system’s code. Suppose that we want to add Mercurian

objects to our video game. To do so, we’d build a class Mercurian that extends SpaceOb-
ject and provides its own draw method implementation. When Mercurian objects appear
in the SpaceObject collection, the screen manager code invokes method draw, exactly as it
does for every other object in the collection, regardless of its type. So the new Mercurian objects
simply “plug right in” without any modification of the screen manager code by the pro-
grammer. Thus, without modifying the system (other than to build new classes and
modify the code that creates new objects), you can use polymorphism to conveniently
include additional types that were not envisioned when the system was created.

Software Engineering Observation 10.1
Polymorphism enables you to deal in generalities and let the execution-time environment
handle the specifics. You can command objects to behave in manners appropriate to those
objects, without knowing their types (as long as the objects belong to the same inheritance
hierarchy).

Software Engineering Observation 10.2
Polymorphism promotes extensibility: Software that invokes polymorphic behavior is
independent of the object types to which messages are sent. New object types that can
respond to existing method calls can be incorporated into a system without modifying the
base system. Only client code that instantiates new objects must be modified to
accommodate new types.

258 Chapter 10 Object-Oriented Programming: Polymorphism

10.3 Demonstrating Polymorphic Behavior
Section 9.4 created a class hierarchy, in which class BasePlusCommissionEmployee inher-
ited from CommissionEmployee. The examples in that section manipulated Commission-

Employee and BasePlusCommissionEmployee objects by using references to them to
invoke their methods—we aimed superclass variables at superclass objects and subclass
variables at subclass objects. These assignments are natural and straightforward—super-
class variables are intended to refer to superclass objects, and subclass variables are intended
to refer to subclass objects. However, as you’ll soon see, other assignments are possible.

In the next example, we aim a superclass reference at a subclass object. We then show
how invoking a method on a subclass object via a superclass reference invokes the subclass
functionality—the type of the referenced object, not the type of the variable, determines
which method is called. This example demonstrates that an object of a subclass can be treated
as an object of its superclass, enabling various interesting manipulations. A program can
create an array of superclass variables that refer to objects of many subclass types. This is
allowed because each subclass object is an object of its superclass. For instance, we can
assign the reference of a BasePlusCommissionEmployee object to a superclass Commission-
Employee variable, because a BasePlusCommissionEmployee is a CommissionEmployee—
we can treat a BasePlusCommissionEmployee as a CommissionEmployee.

As you’ll learn later in the chapter, you cannot treat a superclass object as a subclass
object, because a superclass object is not an object of any of its subclasses. For example, we
cannot assign the reference of a CommissionEmployee object to a subclass BasePlusCom-
missionEmployee variable, because a CommissionEmployee is not a BasePlusCommission-
Employee—a CommissionEmployee does not have a baseSalary instance variable and does
not have methods setBaseSalary and getBaseSalary. The is-a relationship applies only
up the hierarchy from a subclass to its direct (and indirect) superclasses, and not vice versa
(i.e., not down the hierarchy from a superclass to its subclasses).

The Java compiler does allow the assignment of a superclass reference to a subclass
variable if we explicitly cast the superclass reference to the subclass type—a technique we
discuss in Section 10.5. Why would we ever want to perform such an assignment? A super-
class reference can be used to invoke only the methods declared in the superclass—
attempting to invoke subclass-only methods through a superclass reference results in com-
pilation errors. If a program needs to perform a subclass-specific operation on a subclass
object referenced by a superclass variable, the program must first cast the superclass refer-
ence to a subclass reference through a technique known as downcasting. This enables the
program to invoke subclass methods that are not in the superclass. We show a downcasting
example in Section 10.5.

The example in Fig. 10.1 demonstrates three ways to use superclass and subclass vari-
ables to store references to superclass and subclass objects. The first two are straightfor-
ward—as in Section 9.4, we assign a superclass reference to a superclass variable, and a
subclass reference to a subclass variable. Then we demonstrate the relationship between
subclasses and superclasses (i.e., the is-a relationship) by assigning a subclass reference to a
superclass variable. This program uses classes CommissionEmployee and BasePlusCommis-

sionEmployee from Fig. 9.10 and Fig. 9.11, respectively.
In Fig. 10.1, lines 10–11 create a CommissionEmployee object and assign its reference

to a CommissionEmployee variable. Lines 14–16 create a BasePlusCommissionEmployee

object and assign its reference to a BasePlusCommissionEmployee variable. These assign-

10.3 Demonstrating Polymorphic Behavior 259

1 // Fig. 10.1: PolymorphismTest.java
2 // Assigning superclass and subclass references to superclass and
3 // subclass variables.
4
5 public class PolymorphismTest
6 {
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15
16
17
18 // invoke toString on superclass object using superclass variable
19 System.out.printf("%s %s:\n\n%s\n\n",
20 "Call CommissionEmployee's toString with superclass reference ",
21 "to superclass object",);
22
23 // invoke toString on subclass object using subclass variable
24 System.out.printf("%s %s:\n\n%s\n\n",
25 "Call BasePlusCommissionEmployee's toString with subclass",
26 "reference to subclass object",
27);
28
29 // invoke toString on subclass object using superclass variable
30
31
32 System.out.printf("%s %s:\n\n%s\n",
33 "Call BasePlusCommissionEmployee's toString with superclass",
34 "reference to subclass object",);
35 } // end main
36 } // end class PolymorphismTest

Call CommissionEmployee's toString with superclass reference to superclass
object:

commission employee: Sue Jones
social security number: 222-22-2222
gross sales: 10000.00
commission rate: 0.06

Call BasePlusCommissionEmployee's toString with subclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 1 of 2.)

// assign superclass reference to superclass variable
CommissionEmployee commissionEmployee = new CommissionEmployee(

"Sue", "Jones", "222-22-2222", 10000, .06);

// assign subclass reference to subclass variable
BasePlusCommissionEmployee basePlusCommissionEmployee =

new BasePlusCommissionEmployee(
"Bob", "Lewis", "333-33-3333", 5000, .04, 300);

commissionEmployee.toString()

basePlusCommissionEmployee.toString()

CommissionEmployee commissionEmployee2 =
basePlusCommissionEmployee;

commissionEmployee2.toString()

260 Chapter 10 Object-Oriented Programming: Polymorphism

ments are natural—for example, a CommissionEmployee variable’s primary purpose is to
hold a reference to a CommissionEmployee object. Lines 19–21 use commissionEmployee

to invoke toString explicitly. Because commissionEmployee refers to a CommissionEm-

ployee object, superclass CommissionEmployee’s version of toString is called. Similarly,
lines 24–27 use basePlusCommissionEmployee to invoke toString explicitly on the
BasePlusCommissionEmployee object. This invokes subclass BasePlusCommissionEm-

ployee’s version of toString.
Lines 30–31 then assign the reference of subclass object basePlusCommissionEm-

ployee to a superclass CommissionEmployee variable, which lines 32–34 use to invoke
method toString. When a superclass variable contains a reference to a subclass object, and
that reference is used to call a method, the subclass version of the method is called. Hence,
commissionEmployee2.toString() in line 34 actually calls class BasePlusCommissionEm-
ployee’s toString method. The Java compiler allows this “crossover” because an object
of a subclass is an object of its superclass (but not vice versa). When the compiler encoun-
ters a method call made through a variable, the compiler determines if the method can be
called by checking the variable’s class type. If that class contains the proper method decla-
ration (or inherits one), the call is compiled. At execution time, the type of the object to
which the variable refers determines the actual method to use. This process, called dynamic
binding, is discussed in detail in Section 10.5.

10.4 Abstract Classes and Methods
When we think of a class, we assume that programs will create objects of that type. Some-
times it’s useful to declare classes—called abstract classes—for which you never intend to
create objects. Because they’re used only as superclasses in inheritance hierarchies, we refer
to them as abstract superclasses. These classes cannot be used to instantiate objects, be-
cause, as we’ll soon see, abstract classes are incomplete. Subclasses must declare the “missing
pieces” to become “concrete” classes, from which you can instantiate objects. Otherwise,
these subclasses, too, will be abstract. We demonstrate abstract classes in Section 10.5.

Purpose of Abstract Classes
An abstract class’s purpose is to provide an appropriate superclass from which other classes
can inherit and thus share a common design. In the Shape hierarchy of Fig. 9.3, for exam-
ple, subclasses inherit the notion of what it means to be a Shape—perhaps common attri-
butes such as location, color and borderThickness, and behaviors such as draw, move,
resize and changeColor. Classes that can be used to instantiate objects are called concrete

Call BasePlusCommissionEmployee's toString with superclass reference to
subclass object:

base-salaried commission employee: Bob Lewis
social security number: 333-33-3333
gross sales: 5000.00
commission rate: 0.04
base salary: 300.00

Fig. 10.1 | Assigning superclass and subclass references to superclass and subclass variables.
(Part 2 of 2.)

10.4 Abstract Classes and Methods 261

classes. Such classes provide implementations of every method they declare (some of the
implementations can be inherited). For example, we could derive concrete classes Circle,
Square and Triangle from abstract superclass TwoDimensionalShape. Similarly, we could
derive concrete classes Sphere, Cube and Tetrahedron from abstract superclass ThreeDi-
mensionalShape. Abstract superclasses are too general to create real objects—they specify
only what is common among subclasses. We need to be more specific before we can create
objects. For example, if you send the draw message to abstract class TwoDimensionalShape,
the class knows that two-dimensional shapes should be drawable, but it does not know
what specific shape to draw, so it cannot implement a real draw method. Concrete classes
provide the specifics that make it reasonable to instantiate objects.

Not all hierarchies contain abstract classes. However, you’ll often write client code
that uses only abstract superclass types to reduce the client code’s dependencies on a range
of subclass types. For example, you can write a method with a parameter of an abstract
superclass type. When called, such a method can receive an object of any concrete class
that directly or indirectly extends the superclass specified as the parameter’s type.

Abstract classes sometimes constitute several levels of a hierarchy. For example, the
Shape hierarchy of Fig. 9.3 begins with abstract class Shape. On the next level of the hier-
archy are abstract classes TwoDimensionalShape and ThreeDimensionalShape. The next
level of the hierarchy declares concrete classes for TwoDimensionalShapes (Circle, Square
and Triangle) and for ThreeDimensionalShapes (Sphere, Cube and Tetrahedron).

Declaring an Abstract Class and Abstract Methods
You make a class abstract by declaring it with keyword abstract. An abstract class nor-
mally contains one or more abstract methods. An abstract method is one with keyword
abstract in its declaration, as in

Abstract methods do not provide implementations. A class that contains any abstract
methods must be explicitly declared abstract even if that class contains some concrete
(nonabstract) methods. Each concrete subclass of an abstract superclass also must provide
concrete implementations of each of the superclass’s abstract methods. Constructors and
static methods cannot be declared abstract. Constructors are not inherited, so an
abstract constructor could never be implemented. Though non-private static

methods are inherited, they cannot be overridden. Since abstract methods are meant to
be overridden so that they can process objects based on their types, it would not make
sense to declare a static method as abstract.

public abstract void draw(); // abstract method

Software Engineering Observation 10.3
An abstract class declares common attributes and behaviors (both abstract and concrete)
of the various classes in a class hierarchy. An abstract class typically contains one or more
abstract methods that subclasses must override if they are to be concrete. The instance
variables and concrete methods of an abstract class are subject to the normal rules of
inheritance.

Common Programming Error 10.1
Attempting to instantiate an object of an abstract class is a compilation error.

262 Chapter 10 Object-Oriented Programming: Polymorphism

Using Abstract Classes to Declare Variables
Although we cannot instantiate objects of abstract superclasses, you’ll soon see that we can
use abstract superclasses to declare variables that can hold references to objects of any con-
crete class derived from those abstract superclasses. Programs typically use such variables
to manipulate subclass objects polymorphically. You also can use abstract superclass names
to invoke static methods declared in those abstract superclasses.

Consider another application of polymorphism. A drawing program needs to display
many shapes, including types of new shapes that you’ll add to the system after writing the
drawing program. The drawing program might need to display shapes, such as Circles,
Triangles, Rectangles or others, that derive from abstract class Shape. The drawing pro-
gram uses Shape variables to manage the objects that are displayed. To draw any object in
this inheritance hierarchy, the drawing program uses a superclass Shape variable con-
taining a reference to the subclass object to invoke the object’s draw method. This method
is declared abstract in superclass Shape, so each concrete subclass must implement
method draw in a manner specific to that shape—each object in the Shape inheritance
hierarchy knows how to draw itself. The drawing program does not have to worry about the
type of each object or whether the program has ever encountered objects of that type.

Layered Software Systems
Polymorphism is particularly effective for implementing so-called layered software sys-
tems. In operating systems, for example, each type of physical device could operate quite
differently from the others. Even so, commands to read or write data from and to devices
may have a certain uniformity. For each device, the operating system uses a piece of soft-
ware called a device driver to control all communication between the system and the de-
vice. The write message sent to a device-driver object needs to be interpreted specifically
in the context of that driver and how it manipulates devices of a specific type. However,
the write call itself really is no different from the write to any other device in the system—
place some number of bytes from memory onto that device. An object-oriented operating
system might use an abstract superclass to provide an “interface” appropriate for all device
drivers. Then, through inheritance from that abstract superclass, subclasses are formed
that all behave similarly. The device-driver methods are declared as abstract methods in
the abstract superclass. The implementations of these abstract methods are provided in the
concrete subclasses that correspond to the specific types of device drivers. New devices are
always being developed, often long after the operating system has been released. When you
buy a new device, it comes with a device driver provided by the device vendor. The device
is immediately operational after you connect it to your computer and install the driver.
This is another elegant example of how polymorphism makes systems extensible.

10.5 Case Study: Payroll System Using Polymorphism
This section reexamines the hierarchy that we explored throughout Section 9.4. Now we
use an abstract method and polymorphism to perform payroll calculations based on an en-
hanced employee inheritance hierarchy that meets the following requirements:

Common Programming Error 10.2
Failure to implement a superclass’s abstract methods in a subclass is a compilation error
unless the subclass is also declared abstract.

10.5 Case Study: Payroll System Using Polymorphism 263

A company pays its employees on a weekly basis. The employees are of four types: Salaried
employees are paid a fixed weekly salary regardless of the number of hours worked, hourly
employees are paid by the hour and receive overtime pay (i.e., 1.5 times their hourly sal-
ary rate) for all hours worked in excess of 40 hours, commission employees are paid a per-
centage of their sales and base-salaried commission employees receive a base salary plus a
percentage of their sales. For the current pay period, the company has decided to reward
salaried-commission employees by adding 10% to their base salaries. The company
wants to write an application that performs its payroll calculations polymorphically.

We use abstract class Employee to represent the general concept of an employee. The
classes that extend Employee are SalariedEmployee, CommissionEmployee and HourlyEm-

ployee. Class BasePlusCommissionEmployee—which extends CommissionEmployee—
represents the last employee type. The UML class diagram in Fig. 10.2 shows the inheri-
tance hierarchy for our polymorphic employee-payroll application. Abstract class name
Employee is italicized—a convention of the UML.

Abstract superclass Employee declares the “interface” to the hierarchy—that is, the set
of methods that a program can invoke on all Employee objects. We use the term “interface”
here in a general sense to refer to the various ways programs can communicate with objects
of any Employee subclass. Be careful not to confuse the general notion of an “interface”
with the formal notion of a Java interface, the subject of Section 10.7. Each employee,
regardless of the way his or her earnings are calculated, has a first name, a last name and a
social security number, so private instance variables firstName, lastName and social-

SecurityNumber appear in abstract superclass Employee.
The following sections implement the Employee class hierarchy of Fig. 10.2. The first

section implements abstract superclass Employee. The next four sections each implement
one of the concrete classes. The last section implements a test program that builds objects
of all these classes and processes those objects polymorphically.

10.5.1 Abstract Superclass Employee
Class Employee (Fig. 10.4) provides methods earnings and toString, in addition to the
get and set methods that manipulate Employee’s instance variables. An earnings method
certainly applies generically to all employees. But each earnings calculation depends on the
employee’s class. So we declare earnings as abstract in superclass Employee because a de-

Fig. 10.2 | Employee hierarchy UML class diagram.

Employee

CommissionEmployee HourlyEmployeeSalariedEmployee

BasePlusCommissionEmployee

264 Chapter 10 Object-Oriented Programming: Polymorphism

fault implementation does not make sense for that method—there isn’t enough informa-
tion to determine what amount earnings should return. Each subclass overrides earnings
with an appropriate implementation. To calculate an employee’s earnings, the program as-
signs to a superclass Employee variable a reference to the employee’s object, then invokes
the earnings method on that variable. We maintain an array of Employee variables, each
holding a reference to an Employee object. (Of course, there cannot be Employee objects,
because Employee is an abstract class. Because of inheritance, however, all objects of all
subclasses of Employee may nevertheless be thought of as Employee objects.) The program
will iterate through the array and call method earnings for each Employee object. Java
processes these method calls polymorphically. Declaring earnings as an abstract method
in Employee enables the calls to earnings through Employee variables to compile and forc-
es every direct concrete subclass of Employee to override earnings.

Method toString in class Employee returns a String containing the first name, last
name and social security number of the employee. As we’ll see, each subclass of Employee
overrides method toString to create a String representation of an object of that class that
contains the employee’s type (e.g., "salaried employee:") followed by the rest of the
employee’s information.

The diagram in Fig. 10.3 shows each of the five classes in the hierarchy down the left
side and methods earnings and toString across the top. For each class, the diagram

Fig. 10.3 | Polymorphic interface for the Employee hierarchy classes.

weeklySalary

abstract

Commission-
Employee

BasePlus-
Commission-
Employee

Hourly-
Employee

Salaried-
Employee

Employee

toStringearnings

if (hours <= 40)
wage * hours

else if (hours > 40)
{
40 * wage +
(hours - 40) *
wage * 1.5

}

commissionRate *
grossSales

(commissionRate *
grossSales) +
baseSalary

salaried employee: firstName lastName
social security number: SSN
weekly salary: weeklySalary

hourly employee: firstName lastName
social security number: SSN
hourly wage: wage; hours worked: hours

commission employee: firstName lastName
social security number: SSN
gross sales: grossSales;
commission rate: commissionRate

base salaried commission employee:
firstName lastName

social security number: SSN
gross sales: grossSales;
commission rate: commissionRate;
base salary: baseSalary

firstName lastName
social security number: SSN

10.5 Case Study: Payroll System Using Polymorphism 265

shows the desired results of each method. We do not list superclass Employee’s get and set
methods because they’re not overridden in any of the subclasses—each of these methods
is inherited and used “as is” by each subclass.

Let’s consider class Employee’s declaration (Fig. 10.4). The class includes a con-
structor that takes the first name, last name and social security number as arguments (lines
11–16); get methods that return the first name, last name and social security number (lines
25–28, 37–40 and 49–52, respectively); set methods that set the first name, last name and
social security number (lines 19–22, 31–34 and 43–46, respectively); method toString

(lines 55–60), which returns the String representation of an Employee; and abstract

method earnings (line 63), which will be implemented by each of the concrete subclasses.
The Employee constructor does not validate its parameters in this example; normally, such
validation should be provided.

Why did we decide to declare earnings as an abstract method? It simply does not
make sense to provide an implementation of this method in class Employee. We cannot
calculate the earnings for a general Employee—we first must know the specific type of
Employee to determine the appropriate earnings calculation. By declaring this method
abstract, we indicate that each concrete subclass must provide an appropriate earnings

implementation and that a program will be able to use superclass Employee variables to
invoke method earnings polymorphically for any type of Employee.

1 // Fig. 10.4: Employee.java
2 // Employee abstract superclass.
3
4
5 {
6 private String firstName;
7 private String lastName;
8 private String socialSecurityNumber;
9

10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17
18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first; // should validate
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29

Fig. 10.4 | Employee abstract superclass. (Part 1 of 2.)

public abstract class Employee

266 Chapter 10 Object-Oriented Programming: Polymorphism

10.5.2 Concrete Subclass SalariedEmployee
Class SalariedEmployee (Fig. 10.5) extends class Employee (line 4) and overrides abstract
method earnings (lines 33–37), which makes SalariedEmployee a concrete class. The
class includes a constructor (lines 9–14) that takes a first name, a last name, a social secu-
rity number and a weekly salary as arguments; a set method to assign a new nonnegative
value to instance variable weeklySalary (lines 17–24); a get method to return weeklySal-

ary’s value (lines 27–30); a method earnings (lines 33–37) to calculate a SalariedEm-

ployee’s earnings; and a method toString (lines 40–45), which returns a String

including the employee’s type, namely, "salaried employee: " followed by employee-
specific information produced by superclass Employee’s toString method and Salaried-

Employee’s getWeeklySalary method. Class SalariedEmployee’s constructor passes the
first name, last name and social security number to the Employee constructor (line 12) to
initialize the private instance variables not inherited from the superclass. Method earn-

30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last; // should validate
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41
42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53
54 // return String representation of Employee object
55 @Override
56 public String toString()
57 {
58 return String.format("%s %s\nsocial security number: %s",
59 getFirstName(), getLastName(), getSocialSecurityNumber());
60 } // end method toString
61
62
63
64 } // end abstract class Employee

Fig. 10.4 | Employee abstract superclass. (Part 2 of 2.)

// abstract method overridden by concrete subclasses
public abstract double earnings(); // no implementation here

10.5 Case Study: Payroll System Using Polymorphism 267

ings overrides Employee’s abstract method earnings to provide a concrete implementa-
tion that returns the SalariedEmployee’s weekly salary. If we do not implement
earnings, class SalariedEmployee must be declared abstract—otherwise, class Sala-

riedEmployee will not compile. Of course, we want SalariedEmployee to be a concrete
class in this example.

1 // Fig. 10.5: SalariedEmployee.java
2 // SalariedEmployee concrete class extends abstract class Employee.
3
4
5 {
6 private double weeklySalary;
7
8 // four-argument constructor
9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else

22 throw new IllegalArgumentException(
23 "Weekly salary must be >= 0.0");
24 } // end method setWeeklySalary
25
26 // return salary
27 public double getWeeklySalary()
28 {
29 return weeklySalary;
30 } // end method getWeeklySalary
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46 } // end class SalariedEmployee

Fig. 10.5 | SalariedEmployee concrete class extends abstract class Employee.

public class SalariedEmployee extends Employee

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{

return getWeeklySalary();
} // end method earnings

// return String representation of SalariedEmployee object
@Override
public String toString()
{

return String.format("salaried employee: %s\n%s: $%,.2f",
super.toString(), "weekly salary", getWeeklySalary());

} // end method toString

268 Chapter 10 Object-Oriented Programming: Polymorphism

Method toString (lines 40–45) overrides Employee method toString. If class Sal-
ariedEmployee did not override toString, SalariedEmployee would have inherited the
Employee version of toString. In that case, SalariedEmployee’s toString method would
simply return the employee’s full name and social security number, which does not ade-
quately represent a SalariedEmployee. To produce a complete String representation of
a SalariedEmployee, the subclass’s toString method returns "salaried employee: " fol-
lowed by the superclass Employee-specific information (i.e., first name, last name and
social security number) obtained by invoking the superclass’s toString method (line
44)—this is a nice example of code reuse. The String representation of a SalariedEm-

ployee also contains the employee’s weekly salary obtained by invoking the class’s
getWeeklySalary method.

10.5.3 Concrete Subclass HourlyEmployee
Class HourlyEmployee (Fig. 10.6) also extends Employee (line 4). The class includes a con-
structor (lines 10–16) that takes as arguments a first name, a last name, a social security
number, an hourly wage and the number of hours worked. Lines 19–26 and 35–42 declare
set methods that assign new values to instance variables wage and hours, respectively.
Method setWage (lines 19–26) ensures that wage is nonnegative, and method setHours

(lines 35–42) ensures that hours is between 0 and 168 (the total number of hours in a
week) inclusive. Class HourlyEmployee also includes get methods (lines 29–32 and 45–48)
to return the values of wage and hours, respectively; a method earnings (lines 51–58) to
calculate an HourlyEmployee’s earnings; and a method toString (lines 61–67), which re-
turns a String containing the employee’s type ("hourly employee: ") and the employee-
specific information. The HourlyEmployee constructor, like the SalariedEmployee con-
structor, passes the first name, last name and social security number to the superclass Em-
ployee constructor (line 13) to initialize the private instance variables. In addition,
method toString calls superclass method toString (line 65) to obtain the Employee-spe-
cific information (i.e., first name, last name and social security number)—this is another
nice example of code reuse.

1 // Fig. 10.6: HourlyEmployee.java
2 // HourlyEmployee class extends Employee.
3
4
5 {
6 private double wage; // wage per hour
7 private double hours; // hours worked for week
8
9 // five-argument constructor

10 public HourlyEmployee(String first, String last, String ssn,
11 double hourlyWage, double hoursWorked)
12 {
13 super(first, last, ssn);
14 setWage(hourlyWage); // validate hourly wage
15 setHours(hoursWorked); // validate hours worked
16 } // end five-argument HourlyEmployee constructor
17

Fig. 10.6 | HourlyEmployee class extends Employee. (Part 1 of 2.)

public class HourlyEmployee extends Employee

10.5 Case Study: Payroll System Using Polymorphism 269

18 // set wage
19 public void setWage(double hourlyWage)
20 {
21 if (hourlyWage >= 0.0)
22 wage = hourlyWage;
23 else

24 throw new IllegalArgumentException(
25 "Hourly wage must be >= 0.0");
26 } // end method setWage
27
28 // return wage
29 public double getWage()
30 {
31 return wage;
32 } // end method getWage
33
34 // set hours worked
35 public void setHours(double hoursWorked)
36 {
37 if ((hoursWorked >= 0.0) && (hoursWorked <= 168.0))
38 hours = hoursWorked;
39 else

40 throw new IllegalArgumentException(
41 "Hours worked must be >= 0.0 and <= 168.0");
42 } // end method setHours
43
44 // return hours worked
45 public double getHours()
46 {
47 return hours;
48 } // end method getHours
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68 } // end class HourlyEmployee

Fig. 10.6 | HourlyEmployee class extends Employee. (Part 2 of 2.)

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{

if (getHours() <= 40) // no overtime
return getWage() * getHours();

else

return 40 * getWage() + (getHours() - 40) * getWage() * 1.5;
} // end method earnings

// return String representation of HourlyEmployee object
@Override
public String toString()
{

return String.format("hourly employee: %s\n%s: $%,.2f; %s: %,.2f",
super.toString(), "hourly wage", getWage(),
"hours worked", getHours());

} // end method toString

270 Chapter 10 Object-Oriented Programming: Polymorphism

10.5.4 Concrete Subclass CommissionEmployee
Class CommissionEmployee (Fig. 10.7) extends class Employee (line 4). The class includes
a constructor (lines 10–16) that takes a first name, a last name, a social security number,
a sales amount and a commission rate; set methods (lines 19–26 and 35–42) to assign new
values to instance variables commissionRate and grossSales, respectively; get methods
(lines 29–32 and 45–48) that retrieve the values of these instance variables; method earn-

ings (lines 51–55) to calculate a CommissionEmployee’s earnings; and method toString

(lines 58–65), which returns the employee’s type, namely, "commission employee: " and
employee-specific information. The constructor also passes the first name, last name and
social security number to Employee’s constructor (line 13) to initialize Employee’s private
instance variables. Method toString calls superclass method toString (line 62) to obtain
the Employee-specific information (i.e., first name, last name and social security number).

1 // Fig. 10.7: CommissionEmployee.java
2 // CommissionEmployee class extends Employee.
3
4
5 {
6 private double grossSales; // gross weekly sales
7 private double commissionRate; // commission percentage
8
9 // five-argument constructor

10 public CommissionEmployee(String first, String last, String ssn,
11 double sales, double rate)
12 {
13 super(first, last, ssn);
14 setGrossSales(sales);
15 setCommissionRate(rate);
16 } // end five-argument CommissionEmployee constructor
17
18 // set commission rate
19 public void setCommissionRate(double rate)
20 {
21 if (rate > 0.0 && rate < 1.0)
22 commissionRate = rate;
23 else

24 throw new IllegalArgumentException(
25 "Commission rate must be > 0.0 and < 1.0");
26 } // end method setCommissionRate
27
28 // return commission rate
29 public double getCommissionRate()
30 {
31 return commissionRate;
32 } // end method getCommissionRate
33
34 // set gross sales amount
35 public void setGrossSales(double sales)
36 {

Fig. 10.7 | CommissionEmployee class extends Employee. (Part 1 of 2.)

public class CommissionEmployee extends Employee

10.5 Case Study: Payroll System Using Polymorphism 271

10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
Class BasePlusCommissionEmployee (Fig. 10.8) extends class CommissionEmployee (line 4)
and therefore is an indirect subclass of class Employee. Class BasePlusCommissionEmployee
has a constructor (lines 9–14) that takes as arguments a first name, a last name, a social secu-
rity number, a sales amount, a commission rate and a base salary. It then passes all of these
except the base salary to the CommissionEmployee constructor (line 12) to initialize the in-
herited members. BasePlusCommissionEmployee also contains a set method (lines 17–24) to
assign a new value to instance variable baseSalary and a get method (lines 27–30) to return
baseSalary’s value. Method earnings (lines 33–37) calculates a BasePlusCommissionEm-

ployee’s earnings. Line 36 in method earnings calls superclass CommissionEmployee’s
earnings method to calculate the commission-based portion of the employee’s earnings—
this is another nice example of code reuse. BasePlusCommissionEmployee’s toString meth-
od (lines 40–46) creates a String representation of a BasePlusCommissionEmployee that
contains "base-salaried", followed by the String obtained by invoking superclass Com-
missionEmployee’s toString method (another example of code reuse), then the base salary.
The result is a String beginning with "base-salaried commission employee" followed by
the rest of the BasePlusCommissionEmployee’s information. Recall that CommissionEm-

37 if (sales >= 0.0)
38 grossSales = sales;
39 else

40 throw new IllegalArgumentException(
41 "Gross sales must be >= 0.0");
42 } // end method setGrossSales
43
44 // return gross sales amount
45 public double getGrossSales()
46 {
47 return grossSales;
48 } // end method getGrossSales
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66 } // end class CommissionEmployee

Fig. 10.7 | CommissionEmployee class extends Employee. (Part 2 of 2.)

// calculate earnings; override abstract method earnings in Employee
@Override
public double earnings()
{

return getCommissionRate() * getGrossSales();
} // end method earnings

// return String representation of CommissionEmployee object
@Override
public String toString()
{

return String.format("%s: %s\n%s: $%,.2f; %s: %.2f",
"commission employee", super.toString(),
"gross sales", getGrossSales(),
"commission rate", getCommissionRate());

} // end method toString

272 Chapter 10 Object-Oriented Programming: Polymorphism

ployee’s toString obtains the employee’s first name, last name and social security number
by invoking the toString method of its superclass (i.e., Employee)—yet another example of
code reuse. BasePlusCommissionEmployee’s toString initiates a chain of method calls that
span all three levels of the Employee hierarchy.

1 // Fig. 10.8: BasePlusCommissionEmployee.java
2 // BasePlusCommissionEmployee class extends CommissionEmployee.
3
4
5 {
6 private double baseSalary; // base salary per week
7
8 // six-argument constructor
9 public BasePlusCommissionEmployee(String first, String last,

10 String ssn, double sales, double rate, double salary)
11 {
12 super(first, last, ssn, sales, rate);
13 setBaseSalary(salary); // validate and store base salary
14 } // end six-argument BasePlusCommissionEmployee constructor
15
16 // set base salary
17 public void setBaseSalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else

22 throw new IllegalArgumentException(
23 "Base salary must be >= 0.0");
24 } // end method setBaseSalary
25
26 // return base salary
27 public double getBaseSalary()
28 {
29 return baseSalary;
30 } // end method getBaseSalary
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47 } // end class BasePlusCommissionEmployee

Fig. 10.8 | BasePlusCommissionEmployee class extends CommissionEmployee.

public class BasePlusCommissionEmployee extends CommissionEmployee

// calculate earnings; override method earnings in CommissionEmployee
@Override
public double earnings()
{

return getBaseSalary() + super.earnings();
} // end method earnings

// return String representation of BasePlusCommissionEmployee object
@Override
public String toString()
{

return String.format("%s %s; %s: $%,.2f",
"base-salaried", super.toString(),
"base salary", getBaseSalary());

} // end method toString

10.5 Case Study: Payroll System Using Polymorphism 273

10.5.6 Polymorphic Processing, Operator instanceof and Downcasting
To test our Employee hierarchy, the application in Fig. 10.9 creates an object of each of the
four concrete classes SalariedEmployee, HourlyEmployee, CommissionEmployee and
BasePlusCommissionEmployee. The program manipulates these objects nonpolymorphic-
ally, via variables of each object’s own type, then polymorphically, using an array of Em-
ployee variables. While processing the objects polymorphically, the program increases the
base salary of each BasePlusCommissionEmployee by 10%—this requires determining the
object’s type at execution time. Finally, the program polymorphically determines and outputs
the type of each object in the Employee array. Lines 9–18 create objects of each of the four
concrete Employee subclasses. Lines 22–30 output the String representation and earnings
of each of these objects nonpolymorphically. Each object’s toString method is called implic-
itly by printf when the object is output as a String with the %s format specifier.

1 // Fig. 10.9: PayrollSystemTest.java
2 // Employee hierarchy test program.
3
4 public class PayrollSystemTest
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12
13
14
15
16
17
18
19
20 System.out.println("Employees processed individually:\n");
21
22 System.out.printf("%s\n%s: $%,.2f\n\n",
23 salariedEmployee, "earned", salariedEmployee.earnings());
24 System.out.printf("%s\n%s: $%,.2f\n\n",
25 hourlyEmployee, "earned", hourlyEmployee.earnings());
26 System.out.printf("%s\n%s: $%,.2f\n\n",
27 commissionEmployee, "earned", commissionEmployee.earnings());
28 System.out.printf("%s\n%s: $%,.2f\n\n",
29 basePlusCommissionEmployee,
30 "earned", basePlusCommissionEmployee.earnings());
31
32 // create four-element Employee array
33
34
35
36
37

Fig. 10.9 | Employee hierarchy test program. (Part 1 of 3.)

// create subclass objects
SalariedEmployee salariedEmployee =

new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
HourlyEmployee hourlyEmployee =

new HourlyEmployee("Karen", "Price", "222-22-2222", 16.75, 40);
CommissionEmployee commissionEmployee =

new CommissionEmployee(
"Sue", "Jones", "333-33-3333", 10000, .06);

BasePlusCommissionEmployee basePlusCommissionEmployee =
new BasePlusCommissionEmployee(
"Bob", "Lewis", "444-44-4444", 5000, .04, 300);

Employee[] employees = new Employee[4];

// initialize array with Employees
employees[0] = salariedEmployee;
employees[1] = hourlyEmployee;

274 Chapter 10 Object-Oriented Programming: Polymorphism

38
39
40
41 System.out.println("Employees processed polymorphically:\n");
42
43 // generically process each element in array employees
44 for (Employee currentEmployee : employees)
45 {
46 System.out.println(); // invokes toString
47
48 // determine whether element is a BasePlusCommissionEmployee
49 if ()
50 {
51 // downcast Employee reference to
52 // BasePlusCommissionEmployee reference
53 BasePlusCommissionEmployee employee =
54 ;
55
56 employee.setBaseSalary(1.10 * employee.getBaseSalary());
57
58 System.out.printf(
59 "new base salary with 10%% increase is: $%,.2f\n",
60 employee.getBaseSalary());
61 } // end if
62
63 System.out.printf(
64 "earned $%,.2f\n\n",);
65 } // end for
66
67
68
69
70
71 } // end main
72 } // end class PayrollSystemTest

Employees processed individually:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned: $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned: $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned: $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444

Fig. 10.9 | Employee hierarchy test program. (Part 2 of 3.)

employees[2] = commissionEmployee;
employees[3] = basePlusCommissionEmployee;

currentEmployee

currentEmployee instanceof BasePlusCommissionEmployee

(BasePlusCommissionEmployee) currentEmployee

currentEmployee.earnings()

// get type name of each object in employees array
for (int j = 0; j < employees.length; j++)

System.out.printf("Employee %d is a %s\n", j,
employees[j].getClass().getName());

10.5 Case Study: Payroll System Using Polymorphism 275

Creating the Array of Employees
Line 33 declares employees and assigns it an array of four Employee variables. Line 36 as-
signs the reference to a SalariedEmployee object to employees[0]. Line 37 assigns the
reference to an HourlyEmployee object to employees[1]. Line 38 assigns the reference to
a CommissionEmployee object to employees[2]. Line 39 assigns the reference to a Base-

PlusCommissionEmployee object to employee[3]. These assignments are allowed, because
a SalariedEmployee is an Employee, an HourlyEmployee is an Employee, a Commission-

Employee is an Employee and a BasePlusCommissionEmployee is an Employee. Therefore,
we can assign the references of SalariedEmployee, HourlyEmployee, CommissionEmploy-
ee and BasePlusCommissionEmployee objects to superclass Employee variables, even
though Employee is an abstract class.

Polymorphically Processing Employees
Lines 44–65 iterate through array employees and invoke methods toString and earnings

with Employee variable currentEmployee, which is assigned the reference to a different
Employee in the array on each iteration. The output illustrates that the appropriate meth-
ods for each class are indeed invoked. All calls to method toString and earnings are re-
solved at execution time, based on the type of the object to which currentEmployee refers.
This process is known as dynamic binding or late binding. For example, line 46 implicitly
invokes method toString of the object to which currentEmployee refers. As a result of
dynamic binding, Java decides which class’s toString method to call at execution time
rather than at compile time. Only the methods of class Employee can be called via an Em-

gross sales: $5,000.00; commission rate: 0.04; base salary: $300.00

Employees processed polymorphically:

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
earned $800.00

hourly employee: Karen Price
social security number: 222-22-2222
hourly wage: $16.75; hours worked: 40.00
earned $670.00

commission employee: Sue Jones
social security number: 333-33-3333
gross sales: $10,000.00; commission rate: 0.06
earned $600.00

base-salaried commission employee: Bob Lewis
social security number: 444-44-4444
gross sales: $5,000.00; commission rate: 0.04;

Employee 0 is a SalariedEmployee
Employee 1 is a HourlyEmployee
Employee 2 is a CommissionEmployee
Employee 3 is a BasePlusCommissionEmployee

Fig. 10.9 | Employee hierarchy test program. (Part 3 of 3.)

earned: $500.00

base salary: $300.00
new base salary with 10% increase is: $330.00
earned $530.00

276 Chapter 10 Object-Oriented Programming: Polymorphism

ployee variable (and Employee, of course, includes the methods of class Object). A super-
class reference can be used to invoke only methods of the superclass—the subclass method
implementations are invoked polymorphically.

Performing Type-Specific Operations on BasePlusCommissionEmployees
We perform special processing on BasePlusCommissionEmployee objects—as we encoun-
ter these objects at execution time, we increase their base salary by 10%. When processing
objects polymorphically, we typically do not need to worry about the “specifics,” but to
adjust the base salary, we do have to determine the specific type of Employee object at ex-
ecution time. Line 49 uses the instanceof operator to determine whether a particular Em-
ployee object’s type is BasePlusCommissionEmployee. The condition in line 49 is true if
the object referenced by currentEmployee is a BasePlusCommissionEmployee. This
would also be true for any object of a BasePlusCommissionEmployee subclass because of
the is-a relationship a subclass has with its superclass. Lines 53–54 downcast currentEm-
ployee from type Employee to type BasePlusCommissionEmployee—this cast is allowed
only if the object has an is-a relationship with BasePlusCommissionEmployee. The condi-
tion at line 49 ensures that this is the case. This cast is required if we’re to invoke subclass
BasePlusCommissionEmployee methods getBaseSalary and setBaseSalary on the cur-
rent Employee object—as you’ll see momentarily, attempting to invoke a subclass-only meth-
od directly on a superclass reference is a compilation error.

If the instanceof expression in line 49 is true, lines 53–60 perform the special pro-
cessing required for the BasePlusCommissionEmployee object. Using BasePlusCommis-

sionEmployee variable employee, line 56 invokes subclass-only methods getBaseSalary
and setBaseSalary to retrieve and update the employee’s base salary with the 10% raise.

Calling earnings Polymorphically
Lines 63–64 invoke method earnings on currentEmployee, which polymorphically calls
the appropriate subclass object’s earnings method. Obtaining the earnings of the Sala-

riedEmployee, HourlyEmployee and CommissionEmployee polymorphically in lines 63–
64 produces the same results as obtaining these employees’ earnings individually in lines
22–27. The earnings amount obtained for the BasePlusCommissionEmployee in lines 63–
64 is higher than that obtained in lines 28–30, due to the 10% increase in its base salary.

Common Programming Error 10.3
Assigning a superclass variable to a subclass variable (without an explicit cast) is a com-
pilation error.

Software Engineering Observation 10.4
If a subclass object’s reference has been assigned to a variable of one of its direct or indirect
superclasses at execution time, it’s acceptable to downcast the reference stored in that
superclass variable back to a subclass-type reference. Before performing such a cast, use the
instanceof operator to ensure that the object is indeed an object of an appropriate subclass.

Common Programming Error 10.4
When downcasting a reference, a ClassCastException occurs if the referenced object at ex-
ecution time does not have an is-a relationship with the type specified in the cast operator.

10.5 Case Study: Payroll System Using Polymorphism 277

Using Reflection to Get Each Employee’s Class Name
Lines 68–70 display each employee’s type as a String, using basic features of Java’s so-
called reflection capabilities. Every object knows its own class and can access this informa-
tion through the getClass method, which all classes inherit from class Object. Method
getClass returns an object of type Class (from package java.lang), which contains in-
formation about the object’s type, including its class name. Line 70 invokes getClass on
the current object to get its runtime class. The result of the getClass call is used to invoke
getName to get the object’s class name.

Avoiding Compilation Errors with Downcasting
In the previous example, we avoided several compilation errors by downcasting an Em-

ployee variable to a BasePlusCommissionEmployee variable in lines 53–54. If you remove
the cast operator (BasePlusCommissionEmployee) from line 54 and attempt to assign Em-

ployee variable currentEmployee directly to BasePlusCommissionEmployee variable em-

ployee, you’ll receive an “incompatible types” compilation error. This error indicates
that the attempt to assign the reference of superclass object currentEmployee to subclass
variable employee is not allowed. The compiler prevents this assignment because a Com-

missionEmployee is not a BasePlusCommissionEmployee—the is-a relationship applies only
between the subclass and its superclasses, not vice versa.

Similarly, if lines 56 and 60 used superclass variable currentEmployee to invoke sub-
class-only methods getBaseSalary and setBaseSalary, we’d receive “cannot find symbol”
compilation errors at these lines. Attempting to invoke subclass-only methods via a super-
class variable is not allowed—even though lines 56 and 60 execute only if instanceof in line
49 returns true to indicate that currentEmployee holds a reference to a BasePlusCommis-

sionEmployee object. Using a superclass Employee variable, we can invoke only methods
found in class Employee—earnings, toString and Employee’s get and set methods.

10.5.7 Summary of the Allowed Assignments Between Superclass and
Subclass Variables
Now that you’ve seen a complete application that processes diverse subclass objects poly-
morphically, we summarize what you can and cannot do with superclass and subclass ob-
jects and variables. Although a subclass object also is a superclass object, the two objects are
nevertheless different. As discussed previously, subclass objects can be treated as objects of
their superclass. But because the subclass can have additional subclass-only members, as-
signing a superclass reference to a subclass variable is not allowed without an explicit cast—
such an assignment would leave the subclass members undefined for the superclass object.

We’ve discussed four ways to assign superclass and subclass references to variables of
superclass and subclass types:

1. Assigning a superclass reference to a superclass variable is straightforward.

2. Assigning a subclass reference to a subclass variable is straightforward.

Software Engineering Observation 10.5
Although the actual method that’s called depends on the runtime type of the object to
which a variable refers, a variable can be used to invoke only those methods that are
members of that variable’s type, which the compiler verifies.

278 Chapter 10 Object-Oriented Programming: Polymorphism

3. Assigning a subclass reference to a superclass variable is safe, because the subclass
object is an object of its superclass. However, the superclass variable can be used
to refer only to superclass members. If this code refers to subclass-only members
through the superclass variable, the compiler reports errors.

4. Attempting to assign a superclass reference to a subclass variable is a compilation
error. To avoid this error, the superclass reference must be cast to a subclass type
explicitly. At execution time, if the object to which the reference refers is not a sub-
class object, an exception will occur. (For more on exception handling, see
Chapter 11.) You should use the instanceof operator to ensure that such a cast
is performed only if the object is a subclass object.

10.6 final Methods and Classes
We saw in Sections 6.3 and 6.9 that variables can be declared final to indicate that they
cannot be modified after they’re initialized—such variables represent constant values. It’s
also possible to declare methods, method parameters and classes with the final modifier.

Final Methods Cannot Be Overridden
A final method in a superclass cannot be overridden in a subclass—this guarantees that
the final method implementation will be used by all direct and indirect subclasses in the
hierarchy. Methods that are declared private are implicitly final, because it’s not possi-
ble to override them in a subclass. Methods that are declared static are also implicitly fi-
nal. A final method’s declaration can never change, so all subclasses use the same method
implementation, and calls to final methods are resolved at compile time—this is known
as static binding.

Final Classes Cannot Be Superclasses
A final class that’s declared final cannot be a superclass (i.e., a class cannot extend a fi-
nal class). All methods in a final class are implicitly final. Class String is an example of
a final class. If you were allowed to create a subclass of String, objects of that subclass
could be used wherever Strings are expected. Since class String cannot be extended, pro-
grams that use Strings can rely on the functionality of String objects as specified in the
Java API. Making the class final also prevents programmers from creating subclasses that
might bypass security restrictions. For more insights on the use of keyword final, visit

and

download.oracle.com/javase/tutorial/java/IandI/final.html

www.ibm.com/developerworks/java/library/j-jtp1029.html

Common Programming Error 10.5
Attempting to declare a subclass of a final class is a compilation error.

Software Engineering Observation 10.6
In the Java API, the vast majority of classes are not declared final. This enables
inheritance and polymorphism. However, in some cases, it’s important to declare classes
final—typically for security reasons.

www.ibm.com/developerworks/java/library/j-jtp1029.html

10.7 Case Study: Creating and Using Interfaces 279

10.7 Case Study: Creating and Using Interfaces
Our next example (Figs. 10.11–10.15) reexamines the payroll system of Section 10.5.
Suppose that the company involved wishes to perform several accounting operations in a
single accounts payable application—in addition to calculating the earnings that must be
paid to each employee, the company must also calculate the payment due on each of sev-
eral invoices (i.e., bills for goods purchased). Though applied to unrelated things (i.e., em-
ployees and invoices), both operations have to do with obtaining some kind of payment
amount. For an employee, the payment refers to the employee’s earnings. For an invoice,
the payment refers to the total cost of the goods listed on the invoice. Can we calculate
such different things as the payments due for employees and invoices in a single application
polymorphically? Does Java offer a capability requiring that unrelated classes implement a
set of common methods (e.g., a method that calculates a payment amount)? Java interfaces
offer exactly this capability.

Standardizing Interactions
Interfaces define and standardize the ways in which things such as people and systems can
interact with one another. For example, the controls on a radio serve as an interface between
radio users and a radio’s internal components. The controls allow users to perform only a
limited set of operations (e.g., change the station, adjust the volume, choose between AM
and FM), and different radios may implement the controls in different ways (e.g., using
push buttons, dials, voice commands). The interface specifies what operations a radio must
permit users to perform but does not specify how the operations are performed.

Software Objects Communicate Via Interfaces
Software objects also communicate via interfaces. A Java interface describes a set of meth-
ods that can be called on an object to tell it, for example, to perform some task or return
some piece of information. The next example introduces an interface named Payable to
describe the functionality of any object that must be capable of being paid and thus must
offer a method to determine the proper payment amount due. An interface declaration
begins with the keyword interface and contains only constants and abstract methods.
Unlike classes, all interface members must be public, and interfaces may not specify any im-
plementation details, such as concrete method declarations and instance variables. All
methods declared in an interface are implicitly public abstract methods, and all fields
are implicitly public, static and final. [Note: As of Java SE 5, it became a better pro-
gramming practice to declare sets of constants as enumerations with keyword enum. See
Section 6.9 for an introduction to enum and Section 8.9 for additional enum details.]

Using an Interface
To use an interface, a concrete class must specify that it implements the interface and must
declare each method in the interface with the signature specified in the interface declara-
tion. To specify that a class implements an interface add the implements keyword and the

Good Programming Practice 10.1
According to Chapter 9 of the Java Language Specification, it’s proper style to declare an
interface’s methods without keywords public and abstract, because they’re redundant
in interface method declarations. Similarly, constants should be declared without key-
words public, static and final, because they, too, are redundant.

280 Chapter 10 Object-Oriented Programming: Polymorphism

name of the interface to the end of your class declaration’s first line. A class that does not
implement all the methods of the interface is an abstract class and must be declared
abstract. Implementing an interface is like signing a contract with the compiler that
states, “I will declare all the methods specified by the interface or I will declare my class
abstract.”

Relating Disparate Types
An interface is often used when disparate (i.e., unrelated) classes need to share common
methods and constants. This allows objects of unrelated classes to be processed polymor-
phically—objects of classes that implement the same interface can respond to the same
method calls. You can create an interface that describes the desired functionality, then im-
plement this interface in any classes that require that functionality. For example, in the ac-
counts payable application developed in this section, we implement interface Payable in
any class that must be able to calculate a payment amount (e.g., Employee, Invoice).

Interfaces vs. Abstract Classes
An interface is often used in place of an abstract class when there’s no default implementation
to inherit—that is, no fields and no default method implementations. Like public ab-

stract classes, interfaces are typically public types. Like a public class, a public interface
must be declared in a file with the same name as the interface and the .java file-name ex-
tension.

Tagging Interfaces
We’ll see in Chapter 17, Files, Streams and Object Serialization, the notion of “tagging
interfaces”—empty interfaces that have no methods or constant values. They’re used to
add is-a relationships to classes. For example, in Chapter 17 we’ll discuss a mechanism
called object serialization, which can convert objects to byte representations and can con-
vert those byte representations back to objects. To enable this mechanism to work with
your objects, you simply have to mark them as Serializable by adding implements Se-

rializable to the end of your class declaration’s first line. Then, all the objects of your
class have the is-a relationship with Serializable.

10.7.1 Developing a Payable Hierarchy
To build an application that can determine payments for employees and invoices alike, we
first create interface Payable, which contains method getPaymentAmount that returns a
double amount that must be paid for an object of any class that implements the interface.
Method getPaymentAmount is a general-purpose version of method earnings of the
Employee hierarchy—method earnings calculates a payment amount specifically for an
Employee, while getPaymentAmount can be applied to a broad range of unrelated objects.
After declaring interface Payable, we introduce class Invoice, which implements interface
Payable. We then modify class Employee such that it also implements interface Payable.

Common Programming Error 10.6
Failing to implement any method of an interface in a concrete class that implements the
interface results in a compilation error indicating that the class must be declared ab-

stract.

10.7 Case Study: Creating and Using Interfaces 281

Finally, we update Employee subclass SalariedEmployee to “fit” into the Payable hierar-
chy by renaming SalariedEmployee method earnings as getPaymentAmount.

Classes Invoice and Employee both represent things for which the company must be
able to calculate a payment amount. Both classes implement the Payable interface, so a
program can invoke method getPaymentAmount on Invoice objects and Employee objects
alike. As we’ll soon see, this enables the polymorphic processing of Invoices and
Employees required for the company’s accounts payable application.

The UML class diagram in Fig. 10.10 shows the hierarchy used in our accounts pay-
able application. The hierarchy begins with interface Payable. The UML distinguishes an
interface from other classes by placing the word “interface” in guillemets (« and ») above
the interface name. The UML expresses the relationship between a class and an interface
through a relationship known as realization. A class is said to “realize,” or implement, the
methods of an interface. A class diagram models a realization as a dashed arrow with a
hollow arrowhead pointing from the implementing class to the interface. The diagram in
Fig. 10.10 indicates that classes Invoice and Employee each realize (i.e., implement) inter-
face Payable. As in the class diagram of Fig. 10.2, class Employee appears in italics, indi-
cating that it’s an abstract class. Concrete class SalariedEmployee extends Employee and
inherits its superclass’s realization relationship with interface Payable.

10.7.2 Interface Payable
The declaration of interface Payable begins in Fig. 10.11 at line 4. Interface Payable con-
tains public abstract method getPaymentAmount (line 6). The method is not explicitly
declared public or abstract. Interface methods are always public and abstract, so they
do not need to be declared as such. Interface Payable has only one method—interfaces
can have any number of methods. In addition, method getPaymentAmount has no param-
eters, but interface methods can have parameters. Interfaces may also contain fields that
are implicitly final and static.

Good Programming Practice 10.2
When declaring a method in an interface, choose a method name that describes the meth-
od’s purpose in a general manner, because the method may be implemented by many un-
related classes.

Fig. 10.10 | Payable interface hierarchy UML class diagram.

Invoice Employee

SalariedEmployee

«interface»
Payable

282 Chapter 10 Object-Oriented Programming: Polymorphism

10.7.3 Class Invoice
We now create class Invoice (Fig. 10.12) to represent a simple invoice that contains bill-
ing information for only one kind of part. The class declares private instance variables
partNumber, partDescription, quantity and pricePerItem (in lines 6–9) that indicate
the part number, a description of the part, the quantity of the part ordered and the price
per item. Class Invoice also contains a constructor (lines 12–19), get and set methods
(lines 22–74) that manipulate the class’s instance variables and a toString method (lines
77–83) that returns a String representation of an Invoice object. Methods setQuantity
(lines 46–52) and setPricePerItem (lines 61–68) ensure that quantity and pricePer-

Item obtain only nonnegative values.
Line 4 indicates that class Invoice implements interface Payable. Like all classes, class

Invoice also implicitly extends Object. Java does not allow subclasses to inherit from
more than one superclass, but it allows a class to inherit from one superclass and imple-
ment as many interfaces as it needs. To implement more than one interface, use a comma-
separated list of interface names after keyword implements in the class declaration, as in:

1 // Fig. 10.11: Payable.java
2 // Payable interface declaration.
3
4
5
6
7

Fig. 10.11 | Payable interface declaration.

public class ClassName extends SuperclassName implements FirstInterface,
SecondInterface, …

Software Engineering Observation 10.7
All objects of a class that implement multiple interfaces have the is-a relationship with
each implemented interface type.

1 // Fig. 10.12: Invoice.java
2 // Invoice class that implements Payable.
3
4
5 {
6 private String partNumber;
7 private String partDescription;
8 private int quantity;
9 private double pricePerItem;

10
11 // four-argument constructor
12 public Invoice(String part, String description, int count,
13 double price)
14 {
15 partNumber = part;

Fig. 10.12 | Invoice class that implements Payable. (Part 1 of 3.)

public interface Payable
{

double getPaymentAmount(); // calculate payment; no implementation
} // end interface Payable

public class Invoice implements Payable

10.7 Case Study: Creating and Using Interfaces 283

16 partDescription = description;
17 setQuantity(count); // validate and store quantity
18 setPricePerItem(price); // validate and store price per item
19 } // end four-argument Invoice constructor
20
21 // set part number
22 public void setPartNumber(String part)
23 {
24 partNumber = part; // should validate
25 } // end method setPartNumber
26
27 // get part number
28 public String getPartNumber()
29 {
30 return partNumber;
31 } // end method getPartNumber
32
33 // set description
34 public void setPartDescription(String description)
35 {
36 partDescription = description; // should validate
37 } // end method setPartDescription
38
39 // get description
40 public String getPartDescription()
41 {
42 return partDescription;
43 } // end method getPartDescription
44
45 // set quantity
46 public void setQuantity(int count)
47 {
48 if (count >= 0)
49 quantity = count;
50 else

51 throw new IllegalArgumentException("Quantity must be >= 0");
52 } // end method setQuantity
53
54 // get quantity
55 public int getQuantity()
56 {
57 return quantity;
58 } // end method getQuantity
59
60 // set price per item
61 public void setPricePerItem(double price)
62 {
63 if (price >= 0.0)
64 pricePerItem = price;
65 else

66 throw new IllegalArgumentException(
67 "Price per item must be >= 0");
68 } // end method setPricePerItem

Fig. 10.12 | Invoice class that implements Payable. (Part 2 of 3.)

284 Chapter 10 Object-Oriented Programming: Polymorphism

Class Invoice implements the one method in interface Payable—method get-

PaymentAmount is declared in lines 86–90. The method calculates the total payment
required to pay the invoice. The method multiplies the values of quantity and pricePer-

Item (obtained through the appropriate get methods) and returns the result (line 89). This
method satisfies the implementation requirement for this method in interface Payable—
we’ve fulfilled the interface contract with the compiler.

10.7.4 Modifying Class Employee to Implement Interface Payable
We now modify class Employee such that it implements interface Payable. Figure 10.13
contains the modified class, which is identical to that of Fig. 10.4 with two exceptions.
First, line 4 of Fig. 10.13 indicates that class Employee now implements interface Payable.
So we must rename earnings to getPaymentAmount throughout the Employee hierarchy.
As with method earnings in the version of class Employee in Fig. 10.4, however, it does
not make sense to implement method getPaymentAmount in class Employee because we
cannot calculate the earnings payment owed to a general Employee—we must first know
the specific type of Employee. In Fig. 10.4, we declared method earnings as abstract for
this reason, so class Employee had to be declared abstract. This forced each Employee

concrete subclass to override earnings with an implementation.
In Fig. 10.13, we handle this situation differently. Recall that when a class imple-

ments an interface, it makes a contract with the compiler stating either that the class will
implement each of the methods in the interface or that the class will be declared abstract.
If the latter option is chosen, we do not need to declare the interface methods as abstract
in the abstract class—they’re already implicitly declared as such in the interface. Any

69
70 // get price per item
71 public double getPricePerItem()
72 {
73 return pricePerItem;
74 } // end method getPricePerItem
75
76 // return String representation of Invoice object
77 @Override
78 public String toString()
79 {
80 return String.format("%s: \n%s: %s (%s) \n%s: %d \n%s: $%,.2f",
81 "invoice", "part number", getPartNumber(), getPartDescription(),
82 "quantity", getQuantity(), "price per item", getPricePerItem());
83 } // end method toString
84
85
86
87
88
89
90
91 } // end class Invoice

Fig. 10.12 | Invoice class that implements Payable. (Part 3 of 3.)

// method required to carry out contract with interface Payable
@Override
public double getPaymentAmount()
{

return getQuantity() * getPricePerItem(); // calculate total cost
} // end method getPaymentAmount

10.7 Case Study: Creating and Using Interfaces 285

concrete subclass of the abstract class must implement the interface methods to fulfill the
superclass’s contract with the compiler. If the subclass does not do so, it too must be
declared abstract. As indicated by the comments in lines 62–63, class Employee of
Fig. 10.13 does not implement method getPaymentAmount, so the class is declared
abstract. Each direct Employee subclass inherits the superclass’s contract to implement
method getPaymentAmount and thus must implement this method to become a concrete
class for which objects can be instantiated. A class that extends one of Employee’s concrete
subclasses will inherit an implementation of getPaymentAmount and thus will also be a
concrete class.

1 // Fig. 10.13: Employee.java
2 // Employee abstract superclass that implements Payable.
3
4
5 {
6 private String firstName;
7 private String lastName;
8 private String socialSecurityNumber;
9

10 // three-argument constructor
11 public Employee(String first, String last, String ssn)
12 {
13 firstName = first;
14 lastName = last;
15 socialSecurityNumber = ssn;
16 } // end three-argument Employee constructor
17
18 // set first name
19 public void setFirstName(String first)
20 {
21 firstName = first; // should validate
22 } // end method setFirstName
23
24 // return first name
25 public String getFirstName()
26 {
27 return firstName;
28 } // end method getFirstName
29
30 // set last name
31 public void setLastName(String last)
32 {
33 lastName = last; // should validate
34 } // end method setLastName
35
36 // return last name
37 public String getLastName()
38 {
39 return lastName;
40 } // end method getLastName
41

Fig. 10.13 | Employee class that implements Payable. (Part 1 of 2.)

public abstract class Employee implements Payable

286 Chapter 10 Object-Oriented Programming: Polymorphism

10.7.5 Modifying Class SalariedEmployee for Use in the Payable
Hierarchy
Figure 10.14 contains a modified SalariedEmployee class that extends Employee and ful-
fills superclass Employee’s contract to implement Payable method getPaymentAmount.
This version of SalariedEmployee is identical to that of Fig. 10.5, but it replaces method
earnings with method getPaymentAmount (lines 34–38). Recall that the Payable version
of the method has a more general name to be applicable to possibly disparate classes. The
remaining Employee subclasses (e.g., HourlyEmployee, CommissionEmployee and Base-

PlusCommissionEmployee) also must be modified to contain method getPaymentAmount

in place of earnings to reflect the fact that Employee now implements Payable. We leave
these modifications as an exercise.

42 // set social security number
43 public void setSocialSecurityNumber(String ssn)
44 {
45 socialSecurityNumber = ssn; // should validate
46 } // end method setSocialSecurityNumber
47
48 // return social security number
49 public String getSocialSecurityNumber()
50 {
51 return socialSecurityNumber;
52 } // end method getSocialSecurityNumber
53
54 // return String representation of Employee object
55 @Override
56 public String toString()
57 {
58 return String.format("%s %s\nsocial security number: %s",
59 getFirstName(), getLastName(), getSocialSecurityNumber());
60 } // end method toString
61
62
63
64 } // end abstract class Employee

1 // Fig. 10.14: SalariedEmployee.java
2 // SalariedEmployee class extends Employee, which implements Payable.
3
4 public class SalariedEmployee extends Employee
5 {
6 private double weeklySalary;
7

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 1 of 2.)

Fig. 10.13 | Employee class that implements Payable. (Part 2 of 2.)

// Note: We do not implement Payable method getPaymentAmount here so
// this class must be declared abstract to avoid a compilation error.

10.7 Case Study: Creating and Using Interfaces 287

When a class implements an interface, the same is-a relationship provided by inheri-
tance applies. Class Employee implements Payable, so we can say that an Employee is a
Payable. In fact, objects of any classes that extend Employee are also Payable objects. Sal-
ariedEmployee objects, for instance, are Payable objects. Objects of any subclasses of the
class that implements the interface can also be thought of as objects of the interface type.
Thus, just as we can assign the reference of a SalariedEmployee object to a superclass
Employee variable, we can assign the reference of a SalariedEmployee object to an inter-

8 // four-argument constructor
9 public SalariedEmployee(String first, String last, String ssn,

10 double salary)
11 {
12 super(first, last, ssn); // pass to Employee constructor
13 setWeeklySalary(salary); // validate and store salary
14 } // end four-argument SalariedEmployee constructor
15
16 // set salary
17 public void setWeeklySalary(double salary)
18 {
19 if (salary >= 0.0)
20 baseSalary = salary;
21 else

22 throw new IllegalArgumentException(
23 "Weekly salary must be >= 0.0");
24 } // end method setWeeklySalary
25
26 // return salary
27 public double getWeeklySalary()
28 {
29 return weeklySalary;
30 } // end method getWeeklySalary
31
32
33
34 @Override
35
36
37
38
39
40 // return String representation of SalariedEmployee object
41 @Override
42 public String toString()
43 {
44 return String.format("salaried employee: %s\n%s: $%,.2f",
45 super.toString(), "weekly salary", getWeeklySalary());
46 } // end method toString
47 } // end class SalariedEmployee

Fig. 10.14 | SalariedEmployee class that implements interface Payable method
getPaymentAmount. (Part 2 of 2.)

// calculate earnings; implement interface Payable method that was
// abstract in superclass Employee

public double getPaymentAmount()
{

return getWeeklySalary();
} // end method getPaymentAmount

288 Chapter 10 Object-Oriented Programming: Polymorphism

face Payable variable. Invoice implements Payable, so an Invoice object also is a Pay-

able object, and we can assign the reference of an Invoice object to a Payable variable.

10.7.6 Using Interface Payable to Process Invoices and Employees
Polymorphically
PayableInterfaceTest (Fig. 10.15) illustrates that interface Payable can be used to pro-
cess a set of Invoices and Employees polymorphically in a single application. Line 9 de-
clares payableObjects and assigns it an array of four Payable variables. Lines 12–13
assign the references of Invoice objects to the first two elements of payableObjects. Lines
14–17 then assign the references of SalariedEmployee objects to the remaining two ele-
ments of payableObjects. These assignments are allowed because an Invoice is a Pay-

able, a SalariedEmployee is an Employee and an Employee is a Payable. Lines 23–29 use
the enhanced for statement to polymorphically process each Payable object in payable-

Objects, printing the object as a String, along with the payment amount due. Line 27
invokes method toString via a Payable interface reference, even though toString is not
declared in interface Payable—all references (including those of interface types) refer to objects
that extend Object and therefore have a toString method. (Method toString also can be
invoked implicitly here.) Line 28 invokes Payable method getPaymentAmount to obtain
the payment amount for each object in payableObjects, regardless of the actual type of
the object. The output reveals that the method calls in lines 27–28 invoke the appropriate
class’s implementation of methods toString and getPaymentAmount. For instance, when
currentPayable refers to an Invoice during the first iteration of the for loop, class In-
voice’s toString and getPaymentAmount execute.

Software Engineering Observation 10.8
When a method parameter is declared with a superclass or interface type, the method
processes the object received as an argument polymorphically.

Software Engineering Observation 10.9
Using a superclass reference, we can polymorphically invoke any method declared in the
superclass and its superclasses (e.g., class Object). Using an interface reference, we can
polymorphically invoke any method declared in the interface, its superinterfaces (one
interface can extend another) and in class Object—a variable of an interface type must
refer to an object to call methods, and all objects have the methods of class Object.

1 // Fig. 10.15: PayableInterfaceTest.java
2 // Tests interface Payable.
3
4 public class PayableInterfaceTest
5 {
6 public static void main(String[] args)
7 {
8 // create four-element Payable array
9

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 1 of 2.)

Payable[] payableObjects = new Payable[4];

10.7 Case Study: Creating and Using Interfaces 289

10.7.7 Common Interfaces of the Java API
In this section, we overview several common interfaces found in the Java API. The power
and flexibility of interfaces is used frequently throughout the Java API. These interfaces
are implemented and used in the same manner as the interfaces you create (e.g., interface

10
11 // populate array with objects that implement Payable
12 payableObjects[0] = new Invoice("01234", "seat", 2, 375.00);
13 payableObjects[1] = new Invoice("56789", "tire", 4, 79.95);
14 payableObjects[2] =
15 new SalariedEmployee("John", "Smith", "111-11-1111", 800.00);
16 payableObjects[3] =
17 new SalariedEmployee("Lisa", "Barnes", "888-88-8888", 1200.00);
18
19 System.out.println(
20 "Invoices and Employees processed polymorphically:\n");
21
22 // generically process each element in array payableObjects
23 for (Payable currentPayable : payableObjects)
24 {
25 // output currentPayable and its appropriate payment amount
26 System.out.printf("%s \n%s: $%,.2f\n\n",
27 ,
28 "payment due",);
29 } // end for
30 } // end main
31 } // end class PayableInterfaceTest

Invoices and Employees processed polymorphically:

invoice:
part number: 01234 (seat)
quantity: 2
price per item: $375.00
payment due: $750.00

invoice:
part number: 56789 (tire)
quantity: 4
price per item: $79.95
payment due: $319.80

salaried employee: John Smith
social security number: 111-11-1111
weekly salary: $800.00
payment due: $800.00

salaried employee: Lisa Barnes
social security number: 888-88-8888
weekly salary: $1,200.00
payment due: $1,200.00

Fig. 10.15 | Payable interface test program processing Invoices and Employees
polymorphically. (Part 2 of 2.)

currentPayable.toString()
currentPayable.getPaymentAmount()

290 Chapter 10 Object-Oriented Programming: Polymorphism

Payable in Section 10.7.2). The Java API’s interfaces enable you to use your own classes
within the frameworks provided by Java, such as comparing objects of your own types and
creating tasks that can execute concurrently with other tasks in the same program.
Figure 10.16 overviews a few of the more popular interfaces of the Java API that we use in
Java for Programmers, 2/e.

10.8 Wrap-Up
This chapter introduced polymorphism—the ability to process objects that share the same
superclass in a class hierarchy as if they’re all objects of the superclass. The chapter dis-
cussed how polymorphism makes systems extensible and maintainable, then demonstrated
how to use overridden methods to effect polymorphic behavior. We introduced abstract

Interface Description

Comparable Java contains several comparison operators (e.g., <, <=, >, >=, ==, !=) that
allow you to compare primitive values. However, these operators cannot
be used to compare objects. Interface Comparable is used to allow
objects of a class that implements the interface to be compared to one
another. Interface Comparable is commonly used for ordering objects in
a collection such as an array. We use Comparable in Chapter 18, Generic
Collections, and Chapter 19, Generic Classes and Methods.

Serializable An interface used to identify classes whose objects can be written to
(i.e., serialized) or read from (i.e., deserialized) some type of storage
(e.g., file on disk, database field) or transmitted across a network. We
use Serializable in Chapter 17, Files, Streams and Object Serializa-
tion, and Chapter 24, Networking.

Runnable Implemented by any class for which objects of that class should be able
to execute in parallel using a technique called multithreading (discussed
in Chapter 23, Multithreading). The interface contains one method,
run, which describes the behavior of an object when executed.

GUI event-listener
interfaces

You work with graphical user interfaces (GUIs) every day. In your web
browser, you might type the address of a website to visit, or you might
click a button to return to a previous site. The browser responds to your
interaction and performs the desired task. Your interaction is known as
an event, and the code that the browser uses to respond to an event is
known as an event handler. In Chapter 14, GUI Components: Part 1,
and Chapter 22, GUI Components: Part 2, you’ll learn how to build
GUIs and event handlers that respond to user interactions. Event han-
dlers are declared in classes that implement an appropriate event-lis-
tener interface. Each event-listener interface specifies one or more
methods that must be implemented to respond to user interactions.

SwingConstants Contains a set of constants used in GUI programming to position GUI
elements on the screen. We explore GUI programming in Chapters 14
and 22.

Fig. 10.16 | Common interfaces of the Java API.

10.8 Wrap-Up 291

classes, which allow you to provide an appropriate superclass from which other classes can
inherit. You learned that an abstract class can declare abstract methods that each subclass
must implement to become a concrete class and that a program can use variables of an ab-
stract class to invoke the subclasses’ implementations of abstract methods polymorphical-
ly. You also learned how to determine an object’s type at execution time. We discussed the
concepts of final methods and classes. Finally, the chapter discussed declaring and imple-
menting an interface as another way to achieve polymorphic behavior.

You should now be familiar with classes, objects, encapsulation, inheritance, inter-
faces and polymorphism—the most essential aspects of object-oriented programming.

In the next chapter, you’ll learn about exceptions, useful for handling errors during a
program’s execution. Exception handling provides for more robust programs.

11
Exception Handling: A
Deeper Look

O b j e c t i v e s
In this chapter you’ll learn:

� What exceptions are and how they’re handled.

� When to use exception handling.

� To use try blocks to delimit code in which exceptions
might occur.

� To throw exceptions to indicate a problem.

� To use catch blocks to specify exception handlers.

� To use the finally block to release resources.

� The exception class hierarchy.

� To create user-defined exceptions.

It is common sense to take a
method and try it. If it fails,
admit it frankly and try
another. But above all, try
something.
—Franklin Delano Roosevelt

O! throw away the
worser part of it,
And live the purer
with the other half.
—William Shakespeare

If they’re running and they
don’t look where they’re
going
I have to come out from
somewhere and catch them.
—Jerome David Salinger

11.1 Introduction 293

11.1 Introduction
As you know from Chapter 7, an exception is an indication of a problem that occurs during
a program’s execution. Exception handling enables you to create applications that can re-
solve (or handle) exceptions. In many cases, handling an exception allows a program to
continute executing as if no problem had been encountered. The features presented in this
chapter help you write robust and fault-tolerant programs that can deal with problems and
continue executing or terminate gracefully. Java exception handling is based in part on the
work of Andrew Koenig and Bjarne Stroustrup.1

First, we demonstrate basic exception-handling techniques by handling an exception
that occurs when a method attempts to divide an integer by zero. Next, we introduce sev-
eral classes at the top of Java’s exception-handling class hierarchy. As you’ll see, only classes
that extend Throwable (package java.lang) directly or indirectly can be used with excep-
tion handling. We then show how to use chained exceptions. When you invoke a method
that indicates an exception, you can throw another exception and chain the original one
to the new one—this enables you to add application-specific information to the orginal
exception. Next, we introduce preconditions and postconditions, which must be true
when your methods are called and when they return, respectively. We then present asser-
tions, which you can use at development time to help debug your code. Finally, we intro-
duce two new Java SE 7 exception-handling features—catching multiple exceptions with
one catch handler and the new try-with-resources statement that automatically releases a
resource after it’s used in the try block.

11.2 Example: Divide by Zero without Exception
Handling
First we demonstrate what happens when errors arise in an application that does not use
exception handling. Figure 11.1 prompts the user for two integers and passes them to
method quotient, which calculates the integer quotient and returns an int result. In this

11.1 Introduction
11.2 Example: Divide by Zero without

Exception Handling
11.3 Example: Handling

ArithmeticExceptions and
InputMismatchExceptions

11.4 When to Use Exception Handling
11.5 Java Exception Hierarchy
11.6 finally Block
11.7 Stack Unwinding and Obtaining

Information from an Exception
Object

11.8 Chained Exceptions
11.9 Declaring New Exception Types

11.10 Preconditions and Postconditions
11.11 Assertions
11.12 (New in Java SE 7) Multi-catch:

Handling Multiple Exceptions in One
catch

11.13 (New in Java SE 7) try-with-
Resources: Automatic Resource
Deallocation

11.14 Wrap-Up

1. A. Koenig and B. Stroustrup, “Exception Handling for C++ (revised),” Proceedings of the Usenix C++
Conference, pp. 149–176, San Francisco, April 1990.

294 Chapter 11 Exception Handling: A Deeper Look

example, you’ll see that exceptions are thrown (i.e., the exception occurs) when a method
detects a problem and is unable to handle it.

1 // Fig. 11.1: DivideByZeroNoExceptionHandling.java
2 // Integer division without exception handling.
3 import java.util.Scanner;
4
5 public class DivideByZeroNoExceptionHandling
6 {
7 // demonstrates throwing an exception when a divide-by-zero occurs
8 public static int quotient(int numerator, int denominator)
9 {

10
11 } // end method quotient
12
13 public static void main(String[] args)
14 {
15 Scanner scanner = new Scanner(System.in); // scanner for input
16
17 System.out.print("Please enter an integer numerator: ");
18 int numerator = scanner.nextInt();
19 System.out.print("Please enter an integer denominator: ");
20
21
22 int result = quotient(numerator, denominator);
23 System.out.printf(
24 "\nResult: %d / %d = %d\n", numerator, denominator, result);
25 } // end main
26 } // end class DivideByZeroNoExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0
Exception in thread "main" java.lang.ArithmeticException: / by zero

at DivideByZeroNoExceptionHandling.quotient(
DivideByZeroNoExceptionHandling.java:10)

at DivideByZeroNoExceptionHandling.main(
DivideByZeroNoExceptionHandling.java:22)

Please enter an integer numerator: 100
Please enter an integer denominator: hello
Exception in thread "main" java.util.InputMismatchException

at java.util.Scanner.throwFor(Unknown Source)
at java.util.Scanner.next(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at java.util.Scanner.nextInt(Unknown Source)
at DivideByZeroNoExceptionHandling.main(

DivideByZeroNoExceptionHandling.java:20)

Fig. 11.1 | Integer division without exception handling.

return numerator / denominator; // possible division by zero

int denominator = scanner.nextInt();

11.2 Example: Divide by Zero without Exception Handling 295

The first sample execution in Fig. 11.1 shows a successful division. In the second exe-
cution, the user enters the value 0 as the denominator. Several lines of information are dis-
played in response to this invalid input. This information is known as a stack trace, which
includes the name of the exception (java.lang.ArithmeticException) in a descriptive
message that indicates the problem that occurred and the method-call stack (i.e., the call
chain) at the time it occurred. The stack trace includes the path of execution that led to
the exception method by method. This helps you debug the program. The first line spec-
ifies that an ArithmeticException has occurred. The text after the name of the exception
(“/ by zero”) indicates that this exception occurred as a result of an attempt to divide by
zero. Java does not allow division by zero in integer arithmetic. When this occurs, Java
throws an ArithmeticException. ArithmeticExceptions can arise from a number of dif-
ferent problems in arithmetic, so the extra data (“/ by zero”) provides more specific infor-
mation. Java does allow division by zero with floating-point values. Such a calculation
results in the value positive or negative infinity, which is represented in Java as a floating-
point value (but displays as the string Infinity or -Infinity). If 0.0 is divided by 0.0, the
result is NaN (not a number), which is also represented in Java as a floating-point value
(but displays as NaN).

Starting from the last line of the stack trace, we see that the exception was detected in
line 22 of method main. Each line of the stack trace contains the class name and method
(DivideByZeroNoExceptionHandling.main) followed by the file name and line number
(DivideByZeroNoExceptionHandling.java:22). Moving up the stack trace, we see that
the exception occurs in line 10, in method quotient. The top row of the call chain indi-
cates the throw point—the initial point at which the exception occurs. The throw point
of this exception is in line 10 of method quotient.

In the third execution, the user enters the string "hello" as the denominator. Notice
again that a stack trace is displayed. This informs us that an InputMismatchException has
occurred (package java.util). Our prior examples that read numeric values from the user
assumed that the user would input a proper integer value. However, users sometimes make
mistakes and input noninteger values. An InputMismatchException occurs when Scanner

method nextInt receives a string that does not represent a valid integer. Starting from
the end of the stack trace, we see that the exception was detected in line 20 of method
main. Moving up the stack trace, we see that the exception occurred in method nextInt.
Notice that in place of the file name and line number, we’re provided with the text
Unknown Source. This means that the so-called debugging symbols that provide the file-
name and line number information for that method’s class were not available to the
JVM—this is typically the case for the classes of the Java API. Many IDEs have access to
the Java API source code and will display file names and line numbers in stack traces.

In the sample executions of Fig. 11.1 when exceptions occur and stack traces are dis-
played, the program also exits. This does not always occur in Java—sometimes a program
may continue even though an exception has occurred and a stack trace has been printed.
In such cases, the application may produce unexpected results. For example, a graphical
user interface (GUI) application will often continue executing. The next section demon-
strates how to handle these exceptions.

In Fig. 11.1 both types of exceptions were detected in method main. In the next
example, we’ll see how to handle these exceptions to enable the program to run to normal
completion.

296 Chapter 11 Exception Handling: A Deeper Look

11.3 Example: Handling ArithmeticExceptions and
InputMismatchExceptions
The application in Fig. 11.2, which is based on Fig. 11.1, uses exception handling to pro-
cess any ArithmeticExceptions and InputMistmatchExceptions that arise. The applica-
tion still prompts the user for two integers and passes them to method quotient, which
calculates the quotient and returns an int result. This version of the application uses ex-
ception handling so that if the user makes a mistake, the program catches and handles (i.e.,
deals with) the exception—in this case, allowing the user to enter the input again.

1 // Fig. 11.2: DivideByZeroWithExceptionHandling.java
2 // Handling ArithmeticExceptions and InputMismatchExceptions.
3
4 import java.util.Scanner;
5
6 public class DivideByZeroWithExceptionHandling
7 {
8 // demonstrates throwing an exception when a divide-by-zero occurs
9 public static int quotient(int numerator, int denominator)

10
11 {
12 return numerator / denominator; // possible division by zero
13 } // end method quotient
14
15 public static void main(String[] args)
16 {
17 Scanner scanner = new Scanner(System.in); // scanner for input
18 boolean continueLoop = true; // determines if more input is needed
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

Fig. 11.2 | Handling ArithmeticExceptions and InputMismatchExceptions. (Part 1 of 2.)

import java.util.InputMismatchException;

throws ArithmeticException

do

{
try // read two numbers and calculate quotient
{

System.out.print("Please enter an integer numerator: ");
int numerator = scanner.nextInt();
System.out.print("Please enter an integer denominator: ");
int denominator = scanner.nextInt();

int result = quotient(numerator, denominator);
System.out.printf("\nResult: %d / %d = %d\n", numerator,

denominator, result);
continueLoop = false; // input successful; end looping

} // end try
catch (InputMismatchException inputMismatchException)
{

System.err.printf("\nException: %s\n",
inputMismatchException);

scanner.nextLine(); // discard input so user can try again
System.out.println(

"You must enter integers. Please try again.\n");
} // end catch

11.3 ArithmeticExceptions and InputMismatchExceptions 297

The first sample execution in Fig. 11.2 is a successful one that does not encounter any
problems. In the second execution the user enters a zero denominator, and an Arithmet-

icException exception occurs. In the third execution the user enters the string "hello"

as the denominator, and an InputMismatchException occurs. For each exception, the user
is informed of the mistake and asked to try again, then is prompted for two new integers.
In each sample execution, the program runs successfully to completion.

Class InputMismatchException is imported in line 3. Class ArithmeticException

does not need to be imported because it’s in package java.lang. Line 18 creates the
boolean variable continueLoop, which is true if the user has not yet entered valid input.
Lines 20–48 repeatedly ask users for input until a valid input is received.

42
43
44
45
46
47
48
49 } // end main
50 } // end class DivideByZeroWithExceptionHandling

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: 0

Exception: java.lang.ArithmeticException: / by zero
Zero is an invalid denominator. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Please enter an integer numerator: 100
Please enter an integer denominator: hello

Exception: java.util.InputMismatchException
You must enter integers. Please try again.

Please enter an integer numerator: 100
Please enter an integer denominator: 7

Result: 100 / 7 = 14

Fig. 11.2 | Handling ArithmeticExceptions and InputMismatchExceptions. (Part 2 of 2.)

catch (ArithmeticException arithmeticException)
{

System.err.printf("\nException: %s\n", arithmeticException);
System.out.println(

"Zero is an invalid denominator. Please try again.\n");
} // end catch

} while (continueLoop); // end do...while

298 Chapter 11 Exception Handling: A Deeper Look

Enclosing Code in a try Block
Lines 22–33 contain a try block, which encloses the code that might throw an exception
and the code that should not execute if an exception occurs (i.e., if an exception occurs, the
remaining code in the try block will be skipped). A try block consists of the keyword try

followed by a block of code enclosed in curly braces. [Note: The term “try block” some-
times refers only to the block of code that follows the try keyword (not including the try

keyword itself). For simplicity, we use the term “try block” to refer to the block of code
that follows the try keyword, as well as the try keyword.] The statements that read the in-
tegers from the keyboard (lines 25 and 27) each use method nextInt to read an int value.
Method nextInt throws an InputMismatchException if the value read in is not an integer.

The division that can cause an ArithmeticException is not performed in the try

block. Rather, the call to method quotient (line 29) invokes the code that attempts the
division (line 12); the JVM throws an ArithmeticException object when the denomi-
nator is zero.

Catching Exceptions
The try block in this example is followed by two catch blocks—one that handles an In-

putMismatchException (lines 34–41) and one that handles an ArithmeticException

(lines 42–47). A catch block (also called a catch clause or exception handler) catches (i.e.,
receives) and handles an exception. A catch block begins with the keyword catch and is
followed by a parameter in parentheses (called the exception parameter, discussed shortly)
and a block of code enclosed in curly braces. [Note: The term “catch clause” is sometimes
used to refer to the keyword catch followed by a block of code, whereas the term “catch
block” refers to only the block of code following the catch keyword, but not including it.
For simplicity, we use the term “catch block” to refer to the block of code following the
catch keyword, as well as the keyword itself.]

At least one catch block or a finally block (discussed in Section 11.6) must imme-
diately follow the try block. Each catch block specifies in parentheses an exception
parameter that identifies the exception type the handler can process. When an exception
occurs in a try block, the catch block that executes is the first one whose type matches the
type of the exception that occurred (i.e., the type in the catch block matches the thrown
exception type exactly or is a superclass of it). The exception parameter’s name enables the
catch block to interact with a caught exception object—e.g., to implicitly invoke the
caught exception’s toString method (as in lines 37 and 44), which displays basic infor-
mation about the exception. Notice that we use the System.err (standard error stream)
object to output error messages. By default, System.err’s print methods, like those of
System.out, display data to the command prompt.

Line 38 of the first catch block calls Scanner method nextLine. Because an Input-

MismatchException occurred, the call to method nextInt never successfully read in the
user’s data—so we read that input with a call to method nextLine. We do not do anything
with the input at this point, because we know that it’s invalid. Each catch block displays
an error message and asks the user to try again. After either catch block terminates, the

Software Engineering Observation 11.1
Exceptions may surface through explicitly mentioned code in a try block, through calls to
other methods, through deeply nested method calls initiated by code in a try block or from
the Java Virtual Machine as it executes Java bytecodes.

11.3 ArithmeticExceptions and InputMismatchExceptions 299

user is prompted for input. We’ll soon take a deeper look at how this flow of control works
in exception handling.

An uncaught exception is one for which there are no matching catch blocks. You saw
uncaught exceptions in the second and third outputs of Fig. 11.1. Recall that when excep-
tions occurred in that example, the application terminated early (after displaying the
exception’s stack trace). This does not always occur as a result of uncaught exceptions. Java
uses a “multithreaded” model of program execution—each thread is a parallel activity.
One program can have many threads. If a program has only one thread, an uncaught
exception will cause the program to terminate. If a program has multiple threads, an
uncaught exception will terminate only the thread where the exception occurred. In such
programs, however, certain threads may rely on others, and if one thread terminates due
to an uncaught exception, there may be adverse effects to the rest of the program.
Chapter 23, Multithreading, discusses these issues in depth.

Termination Model of Exception Handling
If an exception occurs in a try block (such as an InputMismatchException being thrown
as a result of the code at line 25 of Fig. 11.2), the try block terminates immediately and
program control transfers to the first of the following catch blocks in which the exception
parameter’s type matches the thrown exception’s type. In Fig. 11.2, the first catch block
catches InputMismatchExceptions (which occur if invalid input is entered) and the sec-
ond catch block catches ArithmeticExceptions (which occur if an attempt is made to di-
vide by zero). After the exception is handled, program control does not return to the throw
point, because the try block has expired (and its local variables have been lost). Rather,
control resumes after the last catch block. This is known as the termination model of ex-
ception handling. Some languages use the resumption model of exception handling, in
which, after an exception is handled, control resumes just after the throw point.

Notice that we name our exception parameters (inputMismatchException and
arithmeticException) based on their type. Java programmers often simply use the letter
e as the name of their exception parameters.

After executing a catch block, this program’s flow of control proceeds to the first
statement after the last catch block (line 48 in this case). The condition in the do…while

statement is true (variable continueLoop contains its initial value of true), so control
returns to the beginning of the loop and the user is once again prompted for input. This
control statement will loop until valid input is entered. At that point, program control

Common Programming Error 11.1
It’s a syntax error to place code between a try block and its corresponding catch blocks.

Common Programming Error 11.2
Each catch block can have only a single parameter—specifying a comma-separated list of
exception parameters is a syntax error.

Good Programming Practice 11.1
Using an exception-parameter name that reflects the parameter’s type promotes clarity by
reminding you of the type of exception being handled.

300 Chapter 11 Exception Handling: A Deeper Look

reaches line 32, which assigns false to variable continueLoop. The try block then termi-
nates. If no exceptions are thrown in the try block, the catch blocks are skipped and con-
trol continues with the first statement after the catch blocks (we’ll learn about another
possibility when we discuss the finally block in Section 11.6). Now the condition for the
do…while loop is false, and method main ends.

The try block and its corresponding catch and/or finally blocks form a try state-
ment. Do not confuse the terms “try block” and “try statement”—the latter includes the
try block as well as the following catch blocks and/or finally block.

As with any other block of code, when a try block terminates, local variables declared
in the block go out of scope and are no longer accessible; thus, the local variables of a try

block are not accessible in the corresponding catch blocks. When a catch block termi-
nates, local variables declared within the catch block (including the exception parameter
of that catch block) also go out of scope and are destroyed. Any remaining catch blocks
in the try statement are ignored, and execution resumes at the first line of code after the
try…catch sequence—this will be a finally block, if one is present.

Using the throws Clause
Now let’s examine method quotient (Fig. 11.2, lines 9–13). The portion of the method
declaration located at line 10 is known as a throws clause. It specifies the exceptions the
method throws. This clause appears after the method’s parameter list and before the meth-
od’s body. It contains a comma-separated list of the exceptions that the method will throw
if various problems occur. Such exceptions may be thrown by statements in the method’s
body or by methods called from the body. A method can throw exceptions of the classes
listed in its throws clause or of their subclasses. We’ve added the throws clause to this ap-
plication to indicate to the rest of the program that this method may throw an Arithmet-

icException. Clients of method quotient are thus informed that the method may throw
an ArithmeticException. You’ll learn more about the throws clause in Section 11.5.

When line 12 executes, if the denominator is zero, the JVM throws an ArithmeticEx-

ception object. This object will be caught by the catch block at lines 42–47, which dis-
plays basic information about the exception by implicitly invoking the exception’s
toString method, then asks the user to try again.

If the denominator is not zero, method quotient performs the division and returns
the result to the point of invocation of method quotient in the try block (line 29). Lines
30–31 display the result of the calculation and line 32 sets continueLoop to false. In this
case, the try block completes successfully, so the program skips the catch blocks and fails
the condition at line 48, and method main completes execution normally.

When quotient throws an ArithmeticException, quotient terminates and does not
return a value, and quotient’s local variables go out of scope (and are destroyed). If quo-
tient contained local variables that were references to objects and there were no other ref-

Error-Prevention Tip 11.1
Read the online API documentation for a method before using it in a program. The docu-
mentation specifies the exceptions thrown by the method (if any) and indicates reasons why
such exceptions may occur. Next, read the online API documentation for the specified excep-
tion classes. The documentation for an exception class typically contains potential reasons
that such exceptions occur. Finally, provide for handling those exceptions in your program.

11.4 When to Use Exception Handling 301

erences to those objects, the objects would be marked for garbage collection. Also, when
an exception occurs, the try block from which quotient was called terminates before lines
30–32 can execute. Here, too, if local variables were created in the try block prior to the
exception’s being thrown, these variables would go out of scope.

If an InputMismatchException is generated by lines 25 or 27, the try block termi-
nates and execution continues with the catch block at lines 34–41. In this case, method
quotient is not called. Then method main continues after the last catch block (line 48).

11.4 When to Use Exception Handling
Exception handling is designed to process synchronous errors, which occur when a state-
ment executes. Common examples we’ll see throughout the book are out-of-range array
indices, arithmetic overflow (i.e., a value outside the representable range of values), divi-
sion by zero, invalid method parameters, thread interruption (as we’ll see in Chapter 23)
and unsuccessful memory allocation (due to lack of memory). Exception handling is not
designed to process problems associated with asynchronous events (e.g., disk I/O comple-
tions, network message arrivals, mouse clicks and keystrokes), which occur in parallel with,
and independent of, the program’s flow of control.

11.5 Java Exception Hierarchy
All Java exception classes inherit directly or indirectly from class Exception, forming an
inheritance hierarchy. You can extend this hierarchy with your own exception classes.

Figure 11.3 shows a small portion of the inheritance hierarchy for class Throwable (a
subclass of Object), which is the superclass of class Exception. Only Throwable objects
can be used with the exception-handling mechanism. Class Throwable has two subclasses:
Exception and Error. Class Exception and its subclasses—for instance, RuntimeExcep-
tion (package java.lang) and IOException (package java.io)—represent exceptional
situations that can occur in a Java program and that can be caught by the application. Class
Error and its subclasses represent abnormal situations that happen in the JVM. Most
Errors happen infrequently and should not be caught by applications—it’s usually not possible
for applications to recover from Errors.

The Java exception hierarchy contains hundreds of classes. Information about Java’s
exception classes can be found throughout the Java API. You can view Throwable’s docu-
mentation at download.oracle.com/javase/6/docs/api/java/lang/Throwable.html.
From there, you can look at this class’s subclasses to get more information about Java’s
Exceptions and Errors.

Software Engineering Observation 11.2
Incorporate your exception-handling strategy into your system from the inception of the
design process. Including exception handling after a system has been implemented can be
difficult.

Software Engineering Observation 11.3
Exception handling provides a single, uniform technique for processing problems. This
helps programmers working on large projects understand each other’s error-processing
code.

302 Chapter 11 Exception Handling: A Deeper Look

Checked vs. Unchecked Exceptions
Java distinguishes between checked exceptions and unchecked exceptions. This distinction
is important, because the Java compiler enforces a catch-or-declare requirement for checked
exceptions. An exception’s type determines whether it’s checked or unchecked. All exception
types that are direct or indirect subclasses of class RuntimeException (package java.lang)
are unchecked exceptions. These are typically caused by defects in your program’s code. Ex-
amples of unchecked exceptions include ArrayIndexOutOfBoundsExceptions (discussed in
Chapter 7) and ArithmeticExceptions (shown in Fig. 11.3). All classes that inherit from
class Exception but not class RuntimeException are considered to be checked exceptions.
Such exceptions are typically caused by conditions that are not under the control of the pro-
gram—for example, in file processing, the program can’t open a file because the file does not
exist. Classes that inherit from class Error are considered to be unchecked.

The compiler checks each method call and method declaration to determine whether
the method throws checked exceptions. If so, the compiler verifies that the checked excep-
tion is caught or is declared in a throws clause. We show how to catch and declare checked
exceptions in the next several examples. Recall from Section 11.3 that the throws clause
specifies the exceptions a method throws. Such exceptions are not caught in the method’s
body. To satisfy the catch part of the catch-or-declare requirement, the code that generates
the exception must be wrapped in a try block and must provide a catch handler for the
checked-exception type (or one of its superclass types). To satisfy the declare part of the
catch-or-declare requirement, the method containing the code that generates the excep-
tion must provide a throws clause containing the checked-exception type after its param-
eter list and before its method body. If the catch-or-declare requirement is not satisfied,
the compiler will issue an error message indicating that the exception must be caught or

Fig. 11.3 | Portion of class Throwable’s inheritance hierarchy.

VirtualMachineErrorAWTError ThreadDeath

ErrorException

RuntimeException IOException

Throwable

ClassCastException NullPointerException ArithmeticException

NoSuchElementException

ArrayIndexOutOfBoundsException

IndexOutOfBoundsException

InputMismatchException

11.5 Java Exception Hierarchy 303

declared. This forces you to think about the problems that may occur when a method that
throws checked exceptions is called.

Unlike checked exceptions, the Java compiler does not check the code to determine
whether an unchecked exception is caught or declared. Unchecked exceptions typically
can be prevented by proper coding. For example, the unchecked ArithmeticException

thrown by method quotient (lines 9–13) in Fig. 11.2 can be avoided if the method
ensures that the denominator is not zero before attempting to perform the division.
Unchecked exceptions are not required to be listed in a method’s throws clause—even if
they are, it’s not required that such exceptions be caught by an application.

Catching Subclass Exceptions
If a catch handler is written to catch superclass-type exception objects, it can also catch all
objects of that class’s subclasses. This enables catch to handle related errors with a concise
notation and allows for polymorphic processing of related exceptions. You can certainly
catch each subclass type individually if those exceptions require different processing.

Only the First Matching catch Executes
If there are multiple catch blocks that match a particular exception type, only the first
matching catch block executes when an exception of that type occurs. It’s a compilation
error to catch the exact same type in two different catch blocks associated with a particular

Software Engineering Observation 11.4
You must deal with checked exceptions. This results in more robust code than would be
created if you were able to simply ignore the exceptions.

Common Programming Error 11.3
A compilation error occurs if a method explicitly attempts to throw a checked exception
(or calls another method that throws a checked exception) and that exception is not listed
in that method’s throws clause.

Common Programming Error 11.4
If a subclass method overrides a superclass method, it’s an error for the subclass method to
list more exceptions in its throws clause than the overridden superclass method does. How-
ever, a subclass’s throws clause can contain a subset of a superclass’s throws list.

Software Engineering Observation 11.5
If your method calls other methods that throw checked exceptions, those exceptions must
be caught or declared in your method. If an exception can be handled meaningfully in a
method, the method should catch the exception rather than declare it.

Software Engineering Observation 11.6
Although the compiler does not enforce the catch-or-declare requirement for unchecked
exceptions, provide appropriate exception-handling code when it’s known that such
exceptions might occur. For example, a program should process the
NumberFormatException from Integer method parseInt, even though
NumberFormatException (an indirect subclass of RuntimeException) is an unchecked
exception type. This makes your programs more robust.

304 Chapter 11 Exception Handling: A Deeper Look

try block. However, there may be several catch blocks that match an exception—i.e., sev-
eral catch blocks whose types are the same as the exception type or a superclass of that
type. For instance, we could follow a catch block for type ArithmeticException with a
catch block for type Exception—both would match ArithmeticExceptions, but only
the first matching catch block would execute.

11.6 finally Block
Programs that obtain certain types of resources must return them to the system explicitly
to avoid so-called resource leaks. In programming languages such as C and C++, the most
common kind of resource leak is a memory leak. Java performs automatic garbage collec-
tion of memory no longer used by programs, thus avoiding most memory leaks. However,
other types of resource leaks can occur. For example, files, database connections and net-
work connections that are not closed properly after they’re no longer needed might not be
available for use in other programs.

The finally block (which consists of the finally keyword, followed by code
enclosed in curly braces), sometimes referred to as the finally clause, is optional. If it’s
present, it’s placed after the last catch block. If there are no catch blocks, the finally

block immediately follows the try block.
The finally block will execute whether or not an exception is thrown in the corre-

sponding try block. The finally block also will execute if a try block exits by using a
return, break or continue statement or simply by reaching its closing right brace. The
finally block will not execute if the application exits early from a try block by calling
method System.exit. This method, which we demonstrate in Chapter 17, immediately
terminates an application.

Because a finally block almost always executes, it typically contains resource-release
code. Suppose a resource is allocated in a try block. If no exception occurs, the catch

blocks are skipped and control proceeds to the finally block, which frees the resource.
Control then proceeds to the first statement after the finally block. If an exception
occurs in the try block, the try block terminates. If the program catches the exception in

Error-Prevention Tip 11.2
Catching subclass types individually is subject to error if you forget to test for one or more
of the subclass types explicitly; catching the superclass guarantees that objects of all sub-
classes will be caught. Positioning a catch block for the superclass type after all other sub-
class catch blocks ensures that all subclass exceptions are eventually caught.

Common Programming Error 11.5
Placing a catch block for a superclass exception type before other catch blocks that catch
subclass exception types would prevent those catch blocks from executing, so a compilation
error occurs.

Error-Prevention Tip 11.3
A subtle issue is that Java does not entirely eliminate memory leaks. Java will not garbage-
collect an object until there are no remaining references to it. Thus, if you erroneously keep
references to unwanted objects, memory leaks can occur. To help avoid this problem, set
reference-type variables to null when they’re no longer needed.

11.6 finally Block 305

one of the corresponding catch blocks, it processes the exception, then the finally block
releases the resource and control proceeds to the first statement after the finally block. If
the program doesn’t catch the exception, the finally block still releases the resource and
an attempt is made to catch the exception in a calling method.

If an exception that occurs in a try block cannot be caught by one of that try block’s
catch handlers, the program skips the rest of the try block and control proceeds to the
finally block. Then the program passes the exception to the next outer try block—nor-
mally in the calling method—where an associated catch block might catch it. This process
can occur through many levels of try blocks. Also, the exception could go uncaught.

If a catch block throws an exception, the finally block still executes. Then the
exception is passed to the next outer try block—again, normally in the calling method.

Figure 11.4 demonstrates that the finally block executes even if an exception is not
thrown in the corresponding try block. The program contains static methods main

(lines 6–18), throwException (lines 21–44) and doesNotThrowException (lines 47–64).
Methods throwException and doesNotThrowException are declared static, so main can
call them directly without instantiating a UsingExceptions object.

Error-Prevention Tip 11.4
The finally block is an ideal place to release resources acquired in a try block (such as
opened files), which helps eliminate resource leaks.

Performance Tip 11.1
Always release a resource explicitly and at the earliest possible moment at which it’s no lon-
ger needed. This makes resources available for reuse as early as possible, thus improving
resource utilization.

1 // Fig. 11.4: UsingExceptions.java
2 // try...catch...finally exception handling mechanism.
3
4 public class UsingExceptions
5 {
6 public static void main(String[] args)
7 {
8 try

9 {
10 throwException(); // call method throwException
11 } // end try
12 catch (Exception exception) // exception thrown by throwException
13 {
14 System.err.println("Exception handled in main");
15 } // end catch
16
17 doesNotThrowException();
18 } // end main
19
20 // demonstrate try...catch...finally
21 public static void throwException() throws Exception
22 {

Fig. 11.4 | try…catch…finally exception-handling mechanism. (Part 1 of 2.)

306 Chapter 11 Exception Handling: A Deeper Look

23 try // throw an exception and immediately catch it
24 {
25 System.out.println("Method throwException");
26
27 } // end try
28 catch (Exception exception) // catch exception thrown in try
29 {
30 System.err.println(
31 "Exception handled in method throwException");
32
33
34 // code here would not be reached; would cause compilation errors
35
36 } // end catch
37
38
39
40
41
42 // code here would not be reached; would cause compilation errors
43
44 } // end method throwException
45
46 // demonstrate finally when no exception occurs
47 public static void doesNotThrowException()
48 {
49 try // try block does not throw an exception
50 {
51 System.out.println("Method doesNotThrowException");
52 } // end try
53 catch (Exception exception) // does not execute
54 {
55 System.err.println(exception);
56 } // end catch
57
58
59
60
61
62
63 System.out.println("End of method doesNotThrowException");
64 } // end method doesNotThrowException
65 } // end class UsingExceptions

Method throwException
Exception handled in method throwException
Finally executed in throwException
Exception handled in main
Method doesNotThrowException
Finally executed in doesNotThrowException
End of method doesNotThrowException

Fig. 11.4 | try…catch…finally exception-handling mechanism. (Part 2 of 2.)

throw new Exception(); // generate exception

throw exception; // rethrow for further processing

finally // executes regardless of what occurs in try...catch
{

System.err.println("Finally executed in throwException");
} // end finally

finally // executes regardless of what occurs in try...catch
{

System.err.println(
"Finally executed in doesNotThrowException");

} // end finally

11.6 finally Block 307

System.out and System.err are streams—sequences of bytes. While System.out

(known as the standard output stream) displays a program’s output, System.err (known
as the standard error stream) displays a program’s errors. Output from these streams can
be redirected (i.e., sent to somewhere other than the command prompt, such as to a file).
Using two different streams enables you to easily separate error messages from other
output. For instance, data output from System.err could be sent to a log file, while data
output from System.out can be displayed on the screen. For simplicity, this chapter will
not redirect output from System.err, but will display such messages to the command
prompt. You’ll learn more about streams in Chapter 17.

Throwing Exceptions Using the throw Statement
Method main (Fig. 11.4) begins executing, enters its try block and immediately calls
method throwException (line 10). Method throwException throws an Exception. The
statement at line 26 is known as a throw statement—it’s executed to indicate that an ex-
ception has occurred. So far, you’ve only caught exceptions thrown by called methods.
You can throw exceptions yourself by using the throw statement. Just as with exceptions
thrown by the Java API’s methods, this indicates to client applications that an error has
occurred. A throw statement specifies an object to be thrown. The operand of a throw can
be of any class derived from class Throwable.

Rethrowing Exceptions
Line 32 of Fig. 11.4 rethrows the exception. Exceptions are rethrown when a catch block,
upon receiving an exception, decides either that it cannot process that exception or that it
can only partially process it. Rethrowing an exception defers the exception handling (or
perhaps a portion of it) to another catch block associated with an outer try statement. An
exception is rethrown by using the throw keyword, followed by a reference to the excep-
tion object that was just caught. Exceptions cannot be rethrown from a finally block, as
the exception parameter (a local variable) from the catch block no longer exists.

When a rethrow occurs, the next enclosing try block detects the rethrown exception,
and that try block’s catch blocks attempt to handle it. In this case, the next enclosing try

block is found at lines 8–11 in method main. Before the rethrown exception is handled,
however, the finally block (lines 37–40) executes. Then method main detects the
rethrown exception in the try block and handles it in the catch block (lines 12–15).

Software Engineering Observation 11.7
When toString is invoked on any Throwable object, its resulting string includes the
descriptive string that was supplied to the constructor, or simply the class name if no
string was supplied.

Software Engineering Observation 11.8
An object can be thrown without containing information about the problem that
occurred. In this case, simply knowing that an exception of a particular type occurred may
provide sufficient information for the handler to process the problem correctly.

Software Engineering Observation 11.9
Exceptions can be thrown from constructors. When an error is detected in a constructor,
an exception should be thrown to avoid creating an improperly formed object.

308 Chapter 11 Exception Handling: A Deeper Look

Next, main calls method doesNotThrowException (line 17). No exception is thrown
in doesNotThrowException’s try block (lines 49–52), so the program skips the catch

block (lines 53–56), but the finally block (lines 57–61) nevertheless executes. Control
proceeds to the statement after the finally block (line 63). Then control returns to main

and the program terminates.

11.7 Stack Unwinding and Obtaining Information from
an Exception Object
When an exception is thrown but not caught in a particular scope, the method-call stack
is “unwound,” and an attempt is made to catch the exception in the next outer try block.
This process is called stack unwinding. Unwinding the method-call stack means that the
method in which the exception was not caught terminates, all local variables in that meth-
od go out of scope and control returns to the statement that originally invoked that meth-
od. If a try block encloses that statement, an attempt is made to catch the exception. If a
try block does not enclose that statement or if the exception is not caught, stack unwind-
ing occurs again. Figure 11.5 demonstrates stack unwinding, and the exception handler in
main shows how to access the data in an exception object.

Stack Unwinding
In main, the try block (lines 8–11) calls method1 (declared at lines 35–38), which in turn
calls method2 (declared at lines 41–44), which in turn calls method3 (declared at lines 47–
50). Line 49 of method3 throws an Exception object—this is the throw point. Because the
throw statement at line 49 is not enclosed in a try block, stack unwinding occurs—method3

terminates at line 49, then returns control to the statement in method2 that invoked
method3 (i.e., line 43). Because no try block encloses line 43, stack unwinding occurs

Common Programming Error 11.6
If an exception has not been caught when control enters a finally block and the finally
block throws an exception that’s not caught in the finally block, the first exception will
be lost and the exception from the finally block will be returned to the calling method.

Error-Prevention Tip 11.5
Avoid placing code that can throw an exception in a finally block. If such code is re-
quired, enclose the code in a try…catch within the finally block.

Common Programming Error 11.7
Assuming that an exception thrown from a catch block will be processed by that catch block
or any other catch block associated with the same try statement can lead to logic errors.

Good Programming Practice 11.2
Exception handling is intended to remove error-processing code from the main line of a
program’s code to improve program clarity. Do not place try…catch… finally around
every statement that may throw an exception. This makes programs difficult to read.
Rather, place one try block around a significant portion of your code, follow that try
block with catch blocks that handle each possible exception and follow the catch blocks
with a single finally block (if one is required).

11.7 Stack Unwinding and Obtaining Information from an Exception Object 309

1 // Fig. 11.5: UsingExceptions.java
2 // Stack unwinding and obtaining data from an exception object.
3
4 public class UsingExceptions
5 {
6 public static void main(String[] args)
7 {
8 try

9 {
10
11 } // end try
12 catch (Exception exception) // catch exception thrown in method1
13 {
14 System.err.printf("%s\n\n",);
15
16
17 // obtain the stack-trace information
18
19
20 System.out.println("\nStack trace from getStackTrace:");
21 System.out.println("Class\t\tFile\t\t\tLine\tMethod");
22
23 // loop through traceElements to get exception description
24 for (StackTraceElement element : traceElements)
25 {
26 System.out.printf("%s\t",);
27 System.out.printf("%s\t",);
28 System.out.printf("%s\t",);
29 System.out.printf("%s\n",);
30 } // end for
31 } // end catch
32 } // end main
33
34 // call method2; throw exceptions back to main
35 public static void method1()
36 {
37
38 } // end method method1
39
40 // call method3; throw exceptions back to method1
41 public static void method2()
42 {
43
44 } // end method method2
45
46 // throw Exception back to method2
47 public static void method3()
48 {
49
50 } // end method method3
51 } // end class UsingExceptions

Fig. 11.5 | Stack unwinding and obtaining data from an exception object. (Part 1 of 2.)

method1(); // call method1

exception.getMessage()
exception.printStackTrace(); // print exception stack trace

StackTraceElement[] traceElements = exception.getStackTrace();

element.getClassName()
element.getFileName()
element.getLineNumber()
element.getMethodName()

throws Exception

method2();

throws Exception

method3();

throws Exception

throw new Exception("Exception thrown in method3");

310 Chapter 11 Exception Handling: A Deeper Look

again—method2 terminates at line 43 and returns control to the statement in method1 that
invoked method2 (i.e., line 37). Because no try block encloses line 37, stack unwinding oc-
curs one more time—method1 terminates at line 37 and returns control to the statement
in main that invoked method1 (i.e., line 10). The try block at lines 8–11 encloses this state-
ment. The exception has not been handled, so the try block terminates and the first
matching catch block (lines 12–31) catches and processes the exception. If there were no
matching catch blocks, and the exception is not declared in each method that throws it,
a compilation error would occur. Remember that this is not always the case—for un-
checked exceptions, the application will compile, but it will run with unexpected results.

Obtaining Data from an Exception Object
Recall that exceptions derive from class Throwable. Class Throwable offers a printStack-
Trace method that outputs to the standard error stream the stack trace (discussed in
Section 11.2). Often, this is helpful in testing and debugging. Class Throwable also pro-
vides a getStackTrace method that retrieves the stack-trace information that might be
printed by printStackTrace. Class Throwable’s getMessage method returns the descrip-
tive string stored in an exception.

The catch handler in Fig. 11.5 (lines 12–31) demonstrates getMessage, print-

StackTrace and getStackTrace. If we wanted to output the stack-trace information to
streams other than the standard error stream, we could use the information returned from

Exception thrown in method3

java.lang.Exception: Exception thrown in method3
at UsingExceptions.method3(UsingExceptions.java:49)
at UsingExceptions.method2(UsingExceptions.java:43)
at UsingExceptions.method1(UsingExceptions.java:37)
at UsingExceptions.main(UsingExceptions.java:10)

Stack trace from getStackTrace:
Class File Line Method
UsingExceptions UsingExceptions.java 49 method3
UsingExceptions UsingExceptions.java 43 method2
UsingExceptions UsingExceptions.java 37 method1
UsingExceptions UsingExceptions.java 10 main

Error-Prevention Tip 11.6
An exception that’s not caught in an application causes Java’s default exception handler
to run. This displays the name of the exception, a descriptive message that indicates the
problem that occurred and a complete execution stack trace. In an application with a sin-
gle thread of execution, the application terminates. In an application with multiple
threads, the thread that caused the exception terminates.

Error-Prevention Tip 11.7
Throwable method toString (inherited by all Throwable subclasses) returns a String

containing the name of the exception’s class and a descriptive message.

Fig. 11.5 | Stack unwinding and obtaining data from an exception object. (Part 2 of 2.)

11.8 Chained Exceptions 311

getStackTrace and output it to another stream or use one of the overloaded versions of
method printStackTrace. Sending data to other streams is discussed in Chapter 17.

Line 14 invokes the exception’s getMessage method to get the exception description.
Line 15 invokes the exception’s printStackTrace method to output the stack trace that
indicates where the exception occurred. Line 18 invokes the exception’s getStackTrace
method to obtain the stack-trace information as an array of StackTraceElement objects.
Lines 24–30 get each StackTraceElement in the array and invoke its methods getClass-
Name, getFileName, getLineNumber and getMethodName to get the class name, file name,
line number and method name, respectively, for that StackTraceElement. Each Stack-

TraceElement represents one method call on the method-call stack.
The program’s output shows that the stack-trace information printed by printStack-

Trace follows the pattern: className.methodName(fileName:lineNumber), where class-
Name, methodName and fileName indicate the names of the class, method and file in which
the exception occurred, respectively, and the lineNumber indicates where in the file the
exception occurred. You saw this in the output for Fig. 11.1. Method getStackTrace

enables custom processing of the exception information. Compare the output of print-
StackTrace with the output created from the StackTraceElements to see that both con-
tain the same stack-trace information.

11.8 Chained Exceptions
Sometimes a method responds to an exception by throwing a different exception type
that’s specific to the current application. If a catch block throws a new exception, the orig-
inal exception’s information and stack trace are lost. Earlier Java versions provided no
mechanism to wrap the original exception information with the new exception’s informa-
tion to provide a complete stack trace showing where the original problem occurred. This
made debugging such problems particularly difficult. Chained exceptions enable an ex-
ception object to maintain the complete stack-trace information from the original excep-
tion. Figure 11.6 demonstrates chained exceptions.

Software Engineering Observation 11.10
Never provide a catch handler with an empty body—this effectively ignores the exception.
At least use printStackTrace to output an error message to indicate that a problem exists.

1 // Fig. 11.6: UsingChainedExceptions.java
2 // Chained exceptions.
3
4 public class UsingChainedExceptions
5 {
6 public static void main(String[] args)
7 {
8 try

9 {
10
11 } // end try
12
13 {

Fig. 11.6 | Chained exceptions. (Part 1 of 2.)

method1(); // call method1

catch (Exception exception) // exceptions thrown from method1

312 Chapter 11 Exception Handling: A Deeper Look

The program consists of four methods—main (lines 6–16), method1 (lines 19–29),
method2 (lines 32–42) and method3 (lines 45–48). Line 10 in method main’s try block
calls method1. Line 23 in method1’s try block calls method2. Line 36 in method2’s try

14 exception.printStackTrace();
15 } // end catch
16 } // end main
17
18 // call method2; throw exceptions back to main
19 public static void method1()
20 {
21 try

22 {
23
24 } // end try
25
26 {
27
28 } // end catch
29 } // end method method1
30
31 // call method3; throw exceptions back to method1
32 public static void method2()
33 {
34 try

35 {
36
37 } // end try
38
39 {
40
41 } // end catch
42 } // end method method2
43
44 // throw Exception back to method2
45 public static void method3() throws Exception
46 {
47
48 } // end method method3
49 } // end class UsingChainedExceptions

java.lang.Exception: Exception thrown in method1
at UsingChainedExceptions.method1(UsingChainedExceptions.java:27)
at UsingChainedExceptions.main(UsingChainedExceptions.java:10)

Caused by: java.lang.Exception: Exception thrown in method2
at UsingChainedExceptions.method2(UsingChainedExceptions.java:40)
at UsingChainedExceptions.method1(UsingChainedExceptions.java:23)
... 1 more

Caused by: java.lang.Exception: Exception thrown in method3
at UsingChainedExceptions.method3(UsingChainedExceptions.java:47)
at UsingChainedExceptions.method2(UsingChainedExceptions.java:36)
... 2 more

Fig. 11.6 | Chained exceptions. (Part 2 of 2.)

throws ExceptionW

method2(); // call method2

catch (Exception exception) // exception thrown from method2

throw new Exception("Exception thrown in method1", exception);

throws Exception

method3(); // call method3

catch (Exception exception) // exception thrown from method3

throw new Exception("Exception thrown in method2", exception);

throw new Exception("Exception thrown in method3");

11.9 Declaring New Exception Types 313

block calls method3. In method3, line 47 throws a new Exception. Because this statement
is not in a try block, method3 terminates, and the exception is returned to the calling
method (method2) at line 36. This statement is in a try block; therefore, the try block
terminates and the exception is caught at lines 38–41. Line 40 in the catch block throws
a new exception. In this case, the Exception constructor with two arguments is called. The
second argument represents the exception that was the original cause of the problem. In
this program, that exception occurred at line 47. Because an exception is thrown from the
catch block, method2 terminates and returns the new exception to the calling method
(method1) at line 23. Once again, this statement is in a try block, so the try block termi-
nates and the exception is caught at lines 25–28. Line 27 in the catch block throws a new
exception and uses the exception that was caught as the second argument to the Exception
constructor. Because an exception is thrown from the catch block, method1 terminates
and returns the new exception to the calling method (main) at line 10. The try block in
main terminates, and the exception is caught at lines 12–15. Line 14 prints a stack trace.

Notice in the program output that the first three lines show the most recent exception
that was thrown (i.e., the one from method1 at line 27). The next four lines indicate the
exception that was thrown from method2 at line 40. Finally, the last four lines represent the
exception that was thrown from method3 at line 47. Also notice that, as you read the
output in reverse, it shows how many more chained exceptions remain.

11.9 Declaring New Exception Types
Most Java programmers use existing classes from the Java API, third-party vendors and
freely available class libraries (usually downloadable from the Internet) to build Java appli-
cations. The methods of those classes typically are declared to throw appropriate excep-
tions when problems occur. You write code that processes these existing exceptions to
make your programs more robust.

If you build classes that other programmers will use, you might find it useful to declare
your own exception classes that are specific to the problems that can occur when another
programmer uses your reusable classes.

A new exception class must extend an existing exception class to ensure that the class can
be used with the exception-handling mechanism. Like any other class, an exception class can
contain fields and methods. A typical new exception class contains only four constructors:
one that takes no arguments and passes a default error message String to the superclass con-
structor; one that receives a customized error message as a String and passes it to the super-
class constructor; one that receives a customized error message as a String and a Throwable
(for chaining exceptions) and passes both to the superclass constructor; and one that receives
a Throwable (for chaining exceptions) and passes it to the superclass constructor.

Software Engineering Observation 11.11
If possible, indicate exceptions from your methods by using existing exception classes,
rather than creating new ones. The Java API contains many exception classes that might
be suitable for the type of problems your methods need to indicate.

Good Programming Practice 11.3
Associating each type of serious execution-time malfunction with an appropriately named
Exception class improves program clarity.

314 Chapter 11 Exception Handling: A Deeper Look

In Chapter 19, Generic Classes and Methods, we provide an example of a custom
exception class. We declare a generic class called Stack. Some operations typically per-
formed on a Stack are not allowed if the Stack is empty, such as removing an item from
the top of the stack. For this reason, some Stack methods throw exceptions of exception
class EmptyStackException.

11.10 Preconditions and Postconditions
Programmers spend significant time maintaining and debugging code. To facilitate these
tasks and to improve the overall design, you can specify the expected states before and after
a method’s execution. These states are called preconditions and postconditions, respectively.

A precondition must be true when a method is invoked. Preconditions describe con-
straints on method parameters and any other expectations the method has about the cur-
rent state of a program just before it begins executing. If the preconditions are not met,
then the method’s behavior is undefined—it may throw an exception, proceed with an
illegal value or attempt to recover from the error. You should not expect consistent
behavior if the preconditions are not satisfied.

A postcondition is true after the method successfully returns. Postconditions describe
constraints on the return value and any other side effects the method may have. When
defining a method, you should document all postconditions so that others know what to
expect when they call your method, and you should make certain that your method honors
all its postconditions if its preconditions are indeed met.

When their preconditions or postconditions are not met, methods typically throw
exceptions. As an example, examine String method charAt, which has one int param-
eter—an index in the String. For a precondition, method charAt assumes that index is
greater than or equal to zero and less than the length of the String. If the precondition is
met, the postcondition states that the method will return the character at the position in
the String specified by the parameter index. Otherwise, the method throws an Index-

OutOfBoundsException. We trust that method charAt satisfies its postcondition, pro-
vided that we meet the precondition. We need not be concerned with the details of how
the method actually retrieves the character at the index.

Software Engineering Observation 11.12
When defining your own exception type, study the existing exception classes in the Java
API and try to extend a related exception class. For example, if you’re creating a new class
to represent when a method attempts a division by zero, you might extend class
ArithmeticException because division by zero occurs during arithmetic. If the existing
classes are not appropriate superclasses for your new exception class, decide whether your
new class should be a checked or an unchecked exception class. The new exception class
should be a checked exception (i.e., extend Exception but not RuntimeException) if
clients should be required to handle the exception. The client application should be able
to reasonably recover from such an exception. The new exception class should extend
RuntimeException if the client code should be able to ignore the exception (i.e., the
exception is an unchecked one).

Good Programming Practice 11.4
By convention, all exception-class names should end with the word Exception.

11.11 Assertions 315

Typically, a method’s preconditions and postconditions are described as part of its
specification. When designing your own methods, you should state the preconditions and
postconditions in a comment before the method declaration.

11.11 Assertions
When implementing and debugging a class, it’s sometimes useful to state conditions that
should be true at a particular point in a method. These conditions, called assertions, help
ensure a program’s validity by catching potential bugs and identifying possible logic errors
during development. Preconditions and postconditions are two types of assertions. Pre-
conditions are assertions about its state when a method is invoked, and postconditions are
assertions about a program’s state after a method finishes.

While assertions can be stated as comments to guide you during program develop-
ment, Java includes two versions of the assert statement for validating assertions progra-
matically. The assert statement evaluates a boolean expression and, if false, throws an
AssertionError (a subclass of Error). The first form of the assert statement is

which throws an AssertionError if expression is false. The second form is

which evaluates expression1 and throws an AssertionError with expression2 as the error
message if expression1 is false.

You can use assertions to implement preconditions and postconditions programmat-
ically or to verify any other intermediate states that help you ensure that your code is
working correctly. Figure 11.7 demonstrates the assert statement. Line 11 prompts the
user to enter a number between 0 and 10, then line 12 reads the number. Line 15 deter-
mines whether the user entered a number within the valid range. If the number is out of
range, the assert statement reports an error; otherwise, the program proceeds normally.

You use assertions primarily for debugging and identifying logic errors in an applica-
tion. You must explicitly enable assertions when executing a program, because they reduce
performance and are unnecessary for the program’s user. To do so, use the java com-
mand’s -ea command-line option, as in

assert expression;

assert expression1 : expression2;

java -ea AssertTest

1 // Fig. 11.7: AssertTest.java
2 // Checking with assert that a value is within range
3 import java.util.Scanner;
4
5 public class AssertTest
6 {
7 public static void main(String[] args)
8 {
9 Scanner input = new Scanner(System.in);

10
11 System.out.print("Enter a number between 0 and 10: ");

Fig. 11.7 | Checking with assert that a value is within range. (Part 1 of 2.)

316 Chapter 11 Exception Handling: A Deeper Look

Users should not encounter any AssertionErrors through normal execution of a
properly written program. Such errors should only indicate bugs in the implementation.
As a result, you should never catch an AssertionError. Rather, you should allow the pro-
gram to terminate when the error occurs, so you can see the error message, then locate and
fix the source of the problem. Since application users can choose not to enable assertions
at runtime, you should not use assert to indicate runtime problems in production code—
use the exception mechanism for this purpose.

11.12 (New in Java SE 7) Multi-catch: Handling
Multiple Exceptions in One catch
It’s relatively common for a try block to be followed by several catch blocks to handle
various types of exceptions. If the bodies of several catch blocks are identical, you can use
the new Java SE 7 multi-catch feature to catch those exception types in a single catch

handler and perform the same task. The syntax for a multi-catch is:

Each exception type is separated from the next with a vertical bar (|). The preceding line
of code indicates that one of the specified types (or any subclasses of those types) can be
caught in the exception handler. Any number of Throwable types can be specified in a
multi-catch.

11.13 (New in Java SE 7) try-with-Resources:
Automatic Resource Deallocation
Typically resource-release code should be placed in a finally block to ensure that a re-
source is released, regardless of whether there were exceptions when the resource was used
in the corresponding try block. An alternative notation—the try-with-resources state-
ment (which is new in Java SE 7)—simplifies writing code in which you obtain one or

12 int number = input.nextInt();
13
14 // assert that the value is >= 0 and <= 10
15 assert (number >= 0 && number <= 10) : "bad number: " + number;
16
17 System.out.printf("You entered %d\n", number);
18 } // end main
19 } // end class AssertTest

Enter a number between 0 and 10: 5
You entered 5

Enter a number between 0 and 10: 50
Exception in thread "main" java.lang.AssertionError: bad number: 50

at AssertTest.main(AssertTest.java:15)

catch (Type1 | Type2 | Type3 e)

Fig. 11.7 | Checking with assert that a value is within range. (Part 2 of 2.)

11.14 Wrap-Up 317

more resources, use them in a try block and release them in a corresponding finally

block. For example, a file-processing application (Chapter 17) could process a file with a
try-with-resources statement to ensure that the file is closed properly when it’s no longer
needed. Each resource must be an object of a class that implements the AutoCloseable

interface—such a class has a close method. The general form of a try-with-resources
statement is

where ClassName is a class that implements the AutoCloseable interface. This code creates
an object of type ClassName and uses it in the try block, then calls its close method to
release any resources used by the object. The try-with-resources statement implicitly calls
the theObject’s close method at the end of the try block. You can allocate multiple re-
sources in the parentheses following try by separating them with a semicolon (;).

11.14 Wrap-Up
In this chapter, you learned how to use exception handling to deal with errors. You learned
that exception handling enables you to remove error-handling code from the “main line”
of the program’s execution. We showed how to use try blocks to enclose code that may
throw an exception, and how to use catch blocks to deal with exceptions that may arise.
You learned about the termination model of exception handling, which dictates that after
an exception is handled, program control does not return to the throw point. We discussed
checked vs. unchecked exceptions, and how to specify with the throws clause the excep-
tions that a method might throw. You learned how to use the finally block to release re-
sources whether or not an exception occurs. You also learned how to throw and rethrow
exceptions. We showed how to obtain information about an exception using methods
printStackTrace, getStackTrace and getMessage. Next, we presented chained excep-
tions, which allow you to wrap original exception information with new exception infor-
mation. Then, we showed how to create your own exception classes. We introduced
preconditions and postconditions to help programmers using your methods understand
conditions that must be true when the method is called and when it returns, respectively.
When preconditions and postconditions are not met, methods typically throw exceptions.
We discussed the assert statement and how it can be used to help you debug your pro-
grams. In particular, assert can be used to ensure that preconditions and postconditions
are met. Finally, we introduced Java SE 7’s new exception-handling features, including
multi-catch for processing several types of exceptions in the same catch handler and the
try-with-resources statement for automatically deallocating a resource after it’s used in the
try block. In the next chapter, we begin our two-chapter, optional case study on object-
oriented design with the UML.

try (ClassName theObject = new ClassName())
{

// use theObject here
}
catch (Exception e)
{

// catch exceptions that occur while using the resource
}

12
ATM Case Study, Part 1:
Object-Oriented Design
with the UML

O b j e c t i v e s
In this chapter you’ll learn:

� A simple object-oriented design methodology.

� What a requirements document is.

� To identify classes and class attributes from a requirements
document.

� To identify objects’ states, activities and operations from a
requirements document.

� To determine the collaborations among objects in a system.

� To work with the UML’s use case, class, state, activity,
communication and sequence diagrams to graphically
model an object-oriented system.

Action speaks louder than
words but not nearly as
often.
—Mark Twain

Always design a thing by
considering it in its next
larger context.
—Eliel Saarinen

Oh, life is a glorious cycle of
song.
—Dorothy Parker

The Wright brothers’ design
… allowed them to survive
long enough to learn how to
fly.
—Michael Potts

12.1 Case Study Introduction 319

12.1 Case Study Introduction
Now we begin our object-oriented design and implementation case study. In this chapter
and Chapter 13, you’ll design and implement an object-oriented automated teller ma-
chine (ATM) software system. The case study provides you with a concise, carefully paced,
complete design and implementation experience. In Sections 12.2–12.7 and 13.2–13.3,
you’ll perform the steps of an object-oriented design (OOD) process using the UML while
relating these steps to the object-oriented concepts discussed in Chapters 2–10. In this
chapter, you’ll work with six popular types of UML diagrams to graphically represent the
design. In Chapter 13, you’ll tune the design with inheritance, then fully implement the
ATM in a 673-line Java application (Section 13.4).

This is not an exercise; rather, it’s an end-to-end learning experience that concludes
with a detailed walkthrough of the complete Java code that implements our design. It will
begin to acquaint you with the kinds of substantial problems encountered in industry.

These chapters can be studied as a continuous unit after you’ve completed the intro-
duction to object-oriented programming in Chapters 8–11. Or, you can pace the sections
one at a time after Chapters 2–8 and 10. Each section of the case study begins with a note
telling you the chapter after which it can be covered.

12.2 Examining the Requirements Document
We begin our design process by presenting a requirements document that specifies the
purpose of the ATM system and what it must do. Throughout the case study, we refer of-
ten to this requirements document.

Requirements Document
A local bank intends to install a new automated teller machine (ATM) to allow users (i.e.,
bank customers) to perform basic financial transactions (Fig. 12.1). Each user can have
only one account at the bank. ATM users should be able to view their account balance,
withdraw cash (i.e., take money out of an account) and deposit funds (i.e., place money
into an account). The user interface of the automated teller machine contains:

• a screen that displays messages to the user

• a keypad that receives numeric input from the user

• a cash dispenser that dispenses cash to the user and

• a deposit slot that receives deposit envelopes from the user.

12.1 Case Study Introduction
12.2 Examining the Requirements

Document
12.3 Identifying the Classes in a

Requirements Document
12.4 Identifying Class Attributes

12.5 Identifying Objects’ States and
Activities

12.6 Identifying Class Operations
12.7 Indicating Collaboration Among

Objects
12.8 Wrap-Up

Answers to Self-Review Exercises

320 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

The cash dispenser begins each day loaded with 500 $20 bills. [Note: Owing to the limited
scope of this case study, certain elements of the ATM described here do not accurately
mimic those of a real ATM. For example, a real ATM typically contains a device that reads
a user’s account number from an ATM card, whereas this ATM asks the user to type the
account number on the keypad. A real ATM also usually prints a receipt at the end of a
session, but all output from this ATM appears on the screen.]

The bank wants you to develop software to perform the financial transactions initi-
ated by bank customers through the ATM. The bank will integrate the software with the
ATM’s hardware at a later time. The software should encapsulate the functionality of the
hardware devices (e.g., cash dispenser, deposit slot) within software components, but it
need not concern itself with how these devices perform their duties. The ATM hardware
has not been developed yet, so instead of writing your software to run on the ATM, you
should develop a first version to run on a personal computer. This version should use the
computer’s monitor to simulate the ATM’s screen, and the computer’s keyboard to sim-
ulate the ATM’s keypad.

An ATM session consists of authenticating a user (i.e., proving the user’s identity)
based on an account number and personal identification number (PIN), followed by cre-
ating and executing financial transactions. To authenticate a user and perform transac-
tions, the ATM must interact with the bank’s account information database (i.e., an
organized collection of data stored on a computer; we study database access in
Chapter 25). For each bank account, the database stores an account number, a PIN and a
balance indicating the amount of money in the account. [Note: We assume that the bank
plans to build only one ATM, so we need not worry about multiple ATMs accessing this
database at the same time. Furthermore, we assume that the bank does not make any
changes to the information in the database while a user is accessing the ATM. Also, any

Fig. 12.1 | Automated teller machine user interface.

Welcome!

Please enter your account number: 12345

Enter your PIN: 54321

I n el erer os t e e h eInsert deposit envelope here

e c sTake cash here

Keypad

Screen

Deposit slot

Cash dispenser

Security issue:
The PIN would
not be displayed
as plain text in
an actual ATM

12.2 Examining the Requirements Document 321

business system like an ATM faces complex and challenging security issues that are beyond
the scope of this book. We make the simplifying assumption, however, that the bank trusts
the ATM to access and manipulate the information in the database without significant
security measures.]

Upon first approaching the ATM (assuming no one is currently using it), the user
should experience the following sequence of events (shown in Fig. 12.1):

1. The screen displays Welcome! and prompts the user to enter an account number.

2. The user enters a five-digit account number using the keypad.

3. The screen prompts the user to enter the PIN (personal identification number)
associated with the specified account number.

4. The user enters a five-digit PIN using the keypad.1

5. If the user enters a valid account number and the correct PIN for that account,
the screen displays the main menu (Fig. 12.2). If the user enters an invalid ac-
count number or an incorrect PIN, the screen displays an appropriate message,
then the ATM returns to Step 1 to restart the authentication process.

After the ATM authenticates the user, the main menu (Fig. 12.2) should contain a
numbered option for each of the three types of transactions: balance inquiry (option 1),
withdrawal (option 2) and deposit (option 3). It also should contain an option to allow

1. In this simple, command-line, text-based ATM, as you type the PIN, it appears on the screen. This
is an obvious security breach—you would not want someone looking over your shoulder at an ATM
and seeing your PIN displayed on the screen. In Chapter 14, we introduce the JPasswordField GUI
component, which displays asterisks as the user types—making it more appropriate for entering PIN
numbers and passwords.

Fig. 12.2 | ATM main menu.

Main menu
1 - View my balance
2 - Withdraw cash
3 - Deposit funds
4 - Exit

Enter a choice:

epo pe eInsert deposit envelope hereInsert deposit envelope here

Take cash herek he eTake cash here

322 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

the user to exit the system (option 4). The user then chooses either to perform a transac-
tion (by entering 1, 2 or 3) or to exit the system (by entering 4).

If the user enters 1 to make a balance inquiry, the screen displays the user’s account
balance. To do so, the ATM must retrieve the balance from the bank’s database. The fol-
lowing steps describe what occurs when the user enters 2 to make a withdrawal:

1. The screen displays a menu (Fig. 12.3) containing standard withdrawal amounts:
$20 (option 1), $40 (option 2), $60 (option 3), $100 (option 4) and $200 (op-
tion 5). The menu also contains an option to allow the user to cancel the trans-
action (option 6).

2. The user enters a menu selection using the keypad.

3. If the withdrawal amount chosen is greater than the user’s account balance, the
screen displays a message stating this and telling the user to choose a smaller
amount. The ATM then returns to Step 1. If the withdrawal amount chosen is
less than or equal to the user’s account balance (i.e., an acceptable amount), the
ATM proceeds to Step 4. If the user chooses to cancel the transaction (option 6),
the ATM displays the main menu and waits for user input.

4. If the cash dispenser contains enough cash, the ATM proceeds to Step 5. Other-
wise, the screen displays a message indicating the problem and telling the user to
choose a smaller withdrawal amount. The ATM then returns to Step 1.

5. The ATM debits the withdrawal amount from the user’s account in the bank’s
database (i.e., subtracts the withdrawal amount from the user’s account balance).

6. The cash dispenser dispenses the desired amount of money to the user.

7. The screen displays a message reminding the user to take the money.

Fig. 12.3 | ATM withdrawal menu.

epo pe eInsert deposit envelope hereInsert deposit envelope here

Take cash herek he eTake cash here

Withdrawal menu
1 - $20 4 - $100
2 - $40 5 - $200
3 - $60 6 - Cancel transaction

Choose a withdrawal amount:

12.2 Examining the Requirements Document 323

The following steps describe the actions that occur when the user enters 3 (when
viewing the main menu of Fig. 12.2) to make a deposit:

1. The screen prompts the user to enter a deposit amount or type 0 (zero) to cancel.

2. The user enters a deposit amount or 0 using the keypad. [Note: The keypad does
not contain a decimal point or a dollar sign, so the user cannot type a real dollar
amount (e.g., $27.25). Instead, the user must enter a deposit amount as a number
of cents (e.g., 2725). The ATM then divides this number by 100 to obtain a
number representing a dollar amount (e.g., 2725 ÷ 100 = 27.25).]

3. If the user specifies a deposit amount, the ATM proceeds to Step 4. If the user
chooses to cancel the transaction (by entering 0), the ATM displays the main
menu and waits for user input.

4. The screen displays a message telling the user to insert a deposit envelope.

5. If the deposit slot receives a deposit envelope within two minutes, the ATM cred-
its the deposit amount to the user’s account in the bank’s database (i.e., adds the
deposit amount to the user’s account balance). [Note: This money is not immedi-
ately available for withdrawal. The bank first must physically verify the amount
of cash in the deposit envelope, and any checks in the envelope must clear (i.e.,
money must be transferred from the check writer’s account to the check recipi-
ent’s account). When either of these events occurs, the bank appropriately up-
dates the user’s balance stored in its database. This occurs independently of the
ATM system.] If the deposit slot does not receive a deposit envelope within this
time period, the screen displays a message that the system has canceled the trans-
action due to inactivity. The ATM then displays the main menu and waits for
user input.

After the system successfully executes a transaction, it should return to the main menu
so that the user can perform additional transactions. If the user exits the system, the screen
should display a thank you message, then display the welcome message for the next user.

Analyzing the ATM System
The preceding statement is a simplified example of a requirements document. Typically,
such a document is the result of a detailed process of requirements gathering, which might
include interviews with possible users of the system and specialists in fields related to the
system. For example, a systems analyst who is hired to prepare a requirements document
for banking software (e.g., the ATM system described here) might interview banking ex-
perts to gain a better understanding of what the software must do. The analyst would use
the information gained to compile a list of system requirements to guide systems designers
as they design the system.

The process of requirements gathering is a key task of the first stage of the software
life cycle. The software life cycle specifies the stages through which software goes from the
time it’s first conceived to the time it’s retired from use. These stages typically include:
analysis, design, implementation, testing and debugging, deployment, maintenance and
retirement. Several software life-cycle models exist, each with its own preferences and spec-
ifications for when and how often software engineers should perform each of these stages.
Waterfall models perform each stage once in succession, whereas iterative models may
repeat one or more stages several times throughout a product’s life cycle.

324 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

The analysis stage focuses on defining the problem to be solved. When designing any
system, one must solve the problem right, but of equal importance, one must solve the right
problem. Systems analysts collect the requirements that indicate the specific problem to solve.
Our requirements document describes the requirements of our ATM system in sufficient
detail that you need not go through an extensive analysis stage—it’s been done for you.

To capture what a proposed system should do, developers often employ a technique
known as use case modeling. This process identifies the use cases of the system, each rep-
resenting a different capability that the system provides to its clients. For example, ATMs
typically have several use cases, such as “View Account Balance,” “Withdraw Cash,”
“Deposit Funds,” “Transfer Funds Between Accounts” and “Buy Postage Stamps.” The
simplified ATM system we build in this case study allows only the first three.

Each use case describes a typical scenario for which the user uses the system. You’ve
already read descriptions of the ATM system’s use cases in the requirements document;
the lists of steps required to perform each transaction type (i.e., balance inquiry, with-
drawal and deposit) actually described the three use cases of our ATM—“View Account
Balance,” “Withdraw Cash” and “Deposit Funds,” respectively.

Use Case Diagrams
We now introduce the first of several UML diagrams in the case study. We create a use
case diagram to model the interactions between a system’s clients (in this case study, bank
customers) and its use cases. The goal is to show the kinds of interactions users have with
a system without providing the details—these are provided in other UML diagrams
(which we present throughout this case study). Use case diagrams are often accompanied
by informal text that gives more detail—like the text that appears in the requirements doc-
ument. Use case diagrams are produced during the analysis stage of the software life cycle.
In larger systems, use case diagrams are indispensable tools that help system designers re-
main focused on satisfying the users’ needs.

Figure 12.4 shows the use case diagram for our ATM system. The stick figure repre-
sents an actor, which defines the roles that an external entity—such as a person or another
system—plays when interacting with the system. For our automated teller machine, the
actor is a User who can view an account balance, withdraw cash and deposit funds from
the ATM. The User is not an actual person, but instead comprises the roles that a real
person—when playing the part of a User—can play while interacting with the ATM. A

Fig. 12.4 | Use case diagram for the ATM system from the User’s perspective.

Deposit Funds

Withdraw Cash

View Account Balance

User

12.2 Examining the Requirements Document 325

use case diagram can include multiple actors. For example, the use case diagram for a real
bank’s ATM system might also include an actor named Administrator who refills the cash
dispenser each day.

Our requirements document supplies the actors—“ATM users should be able to view
their account balance, withdraw cash and deposit funds.” Therefore, the actor in each of
the three use cases is the user who interacts with the ATM. An external entity—a real
person—plays the part of the user to perform financial transactions. Figure 12.4 shows
one actor, whose name, User, appears below the actor in the diagram. The UML models
each use case as an oval connected to an actor with a solid line.

Software engineers (more precisely, systems designers) must analyze the requirements
document or a set of use cases and design the system before programmers implement it in
a particular programming language. During the analysis stage, systems designers focus on
understanding the requirements document to produce a high-level specification that
describes what the system is supposed to do. The output of the design stage—a design
specification—should specify clearly how the system should be constructed to satisfy these
requirements. In the next several sections, we perform the steps of a simple object-oriented
design (OOD) process on the ATM system to produce a design specification containing
a collection of UML diagrams and supporting text.

The UML is designed for use with any OOD process. Many such processes exist, the
best known of which is the Rational Unified Process™ (RUP) developed by Rational Soft-
ware Corporation, now part of IBM. RUP is a rich process intended for designing “indus-
trial strength” applications. For this case study, we present our own simplified design
process.

Designing the ATM System
We now begin the design stage of our ATM system. A system is a set of components that
interact to solve a problem. For example, to perform the ATM system’s designated tasks,
our ATM system has a user interface (Fig. 12.1), and contains software that executes fi-
nancial transactions and interacts with a database of bank account information. System
structure describes the system’s objects and their interrelationships. System behavior de-
scribes how the system changes as its objects interact with one another.

Every system has both structure and behavior—designers must specify both. There
are several types of system structures and behaviors. For example, the interactions among
objects in the system differ from those between the user and the system, yet both constitute
a portion of the system behavior.

The UML 2 standard specifies 13 diagram types for documenting the system models.
Each models a distinct characteristic of a system’s structure or behavior—six diagrams
relate to system structure, the remaining seven to system behavior. We list here only the
six diagram types used in our case study—one models system structure; the other five
model system behavior. We provide an overview of the remaining seven UML diagram
types in Appendix J, UML 2: Additional Diagram Types.

1. Use case diagrams, such as the one in Fig. 12.4, model the interactions between
a system and its external entities (actors) in terms of use cases (system capabilities,
such as “View Account Balance,” “Withdraw Cash” and “Deposit Funds”).

2. Class diagrams, which you’ll study in Section 12.3, model the classes, or “build-
ing blocks,” used in a system. Each noun or “thing” described in the requirements

326 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

document is a candidate to be a class in the system (e.g., Account, Keypad). Class
diagrams help us specify the structural relationships between parts of the system.
For example, the ATM system class diagram will specify that the ATM is physi-
cally composed of a screen, a keypad, a cash dispenser and a deposit slot.

3. State machine diagrams, which you’ll study in Section 12.5, model the ways in
which an object changes state. An object’s state is indicated by the values of all its
attributes at a given time. When an object changes state, it may behave differently
in the system. For example, after validating a user’s PIN, the ATM transitions
from the “user not authenticated” state to the “user authenticated” state, at which
point it allows the user to perform financial transactions (e.g., view account bal-
ance, withdraw cash, deposit funds).

4. Activity diagrams, which you’ll also study in Section 12.5, model an object’s ac-
tivity—is workflow (sequence of events) during program execution. An activity
diagram models the actions the object performs and specifies the order in which it
performs them. For example, an activity diagram shows that the ATM must ob-
tain the balance of the user’s account (from the bank’s account information da-
tabase) before the screen can display the balance to the user.

5. Communication diagrams (called collaboration diagrams in earlier versions of
the UML) model the interactions among objects in a system, with an emphasis
on what interactions occur. You’ll learn in Section 12.7 that these diagrams show
which objects must interact to perform an ATM transaction. For example, the
ATM must communicate with the bank’s account information database to re-
trieve an account balance.

6. Sequence diagrams also model the interactions among the objects in a system,
but unlike communication diagrams, they emphasize when interactions occur.
You’ll learn in Section 12.7 that these diagrams help show the order in which in-
teractions occur in executing a financial transaction. For example, the screen
prompts the user to enter a withdrawal amount before cash is dispensed.

In Section 12.3, we continue designing our ATM system by identifying the classes
from the requirements document. We accomplish this by extracting key nouns and noun
phrases from the requirements document. Using these classes, we develop our first draft of
the class diagram that models the structure of our ATM system.

Web Resource
We’ve created an extensive UML Resource Center that contains many links to additional
information, including introductions, tutorials, blogs, books, certification, conferences,
developer tools, documentation, e-books, FAQs, forums, groups, UML in Java, podcasts,
security, tools, downloads, training courses, videos and more. Browse our UML Resource
Center at www.deitel.com/UML/.

Self-Review Exercises for Section 12.2
12.1 Suppose we enabled a user of our ATM system to transfer money between two bank ac-
counts. Modify the use case diagram of Fig. 12.4 to reflect this change.

12.2 model the interactions among objects in a system with an emphasis on when these
interactions occur.

www.deitel.com/UML/

12.3 Identifying the Classes in a Requirements Document 327

a) Class diagrams
b) Sequence diagrams
c) Communication diagrams
d) Activity diagrams

12.3 Which of the following choices lists stages of a typical software life cycle in sequential order?
a) design, analysis, implementation, testing
b) design, analysis, testing, implementation
c) analysis, design, testing, implementation
d) analysis, design, implementation, testing

12.3 Identifying the Classes in a Requirements
Document
Now we begin designing the ATM system. In this section, we identify the classes that are
needed to build the system by analyzing the nouns and noun phrases that appear in the re-
quirements document. We introduce UML class diagrams to model these classes. This is
an important first step in defining the system’s structure.

Identifying the Classes in a System
We begin our OOD process by identifying the classes required to build the ATM system.
We’ll eventually describe these classes using UML class diagrams and implement these
classes in Java. First, we review the requirements document of Section 12.2 and identify
key nouns and noun phrases to help us identify classes that comprise the ATM system. We
may decide that some of these are actually attributes of other classes in the system. We may
also conclude that some of the nouns do not correspond to parts of the system and thus
should not be modeled at all. Additional classes may become apparent to us as we proceed
through the design process.

Figure 12.5 lists the nouns and noun phrases found in the requirements document.
We list them from left to right in the order in which we first encounter them. We list only
the singular form of each.

We create classes only for the nouns and noun phrases that have significance in the
ATM system. We don’t model “bank” as a class, because the bank is not a part of the ATM
system—the bank simply wants us to build the ATM. “Customer” and “user” also repre-
sent outside entities—they’re important because they interact with our ATM system, but

Nouns and noun phrases in the ATM requirements document

bank money / funds account number ATM

screen PIN user keypad

bank database customer cash dispenser balance inquiry

transaction $20 bill / cash withdrawal account

deposit slot deposit balance deposit envelope

Fig. 12.5 | Nouns and noun phrases in the ATM requirements document.

328 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

we do not need to model them as classes in the ATM software. Recall that we modeled an
ATM user (i.e., a bank customer) as the actor in the use case diagram of Fig. 12.4.

We do not model “$20 bill” or “deposit envelope” as classes. These are physical
objects in the real world, but they’re not part of what is being automated. We can ade-
quately represent the presence of bills in the system using an attribute of the class that
models the cash dispenser. (We assign attributes to the ATM system’s classes in
Section 12.4.) For example, the cash dispenser maintains a count of the number of bills it
contains. The requirements document does not say anything about what the system
should do with deposit envelopes after it receives them. We can assume that simply
acknowledging the receipt of an envelope—an operation performed by the class that
models the deposit slot—is sufficient to represent the presence of an envelope in the
system. We assign operations to the ATM system’s classes in Section 12.6.

In our simplified ATM system, representing various amounts of “money,” including
an account’s “balance,” as attributes of classes seems most appropriate. Likewise, the nouns
“account number” and “PIN” represent significant pieces of information in the ATM
system. They’re important attributes of a bank account. They do not, however, exhibit
behaviors. Thus, we can most appropriately model them as attributes of an account class.

Though the requirements document frequently describes a “transaction” in a general
sense, we do not model the broad notion of a financial transaction at this time. Instead,
we model the three types of transactions (i.e., “balance inquiry,” “withdrawal” and
“deposit”) as individual classes. These classes possess specific attributes needed for exe-
cuting the transactions they represent. For example, a withdrawal needs to know the
amount of the withdrawal. A balance inquiry, however, does not require any additional
data other than the account number. Furthermore, the three transaction classes exhibit
unique behaviors. A withdrawal includes dispensing cash to the user, whereas a deposit
involves receiving deposit envelopes from the user. In Section 13.3, we “factor out”
common features of all transactions into a general “transaction” class using the object-ori-
ented concept of inheritance.

We determine the classes for our system based on the remaining nouns and noun
phrases from Fig. 12.5. Each of these refers to one or more of the following:

• ATM

• screen

• keypad

• cash dispenser

• deposit slot

• account

• bank database

• balance inquiry

• withdrawal

• deposit

The elements of this list are likely to be classes that we’ll need to implement our system.
We can now model the classes in our system based on the list we’ve created. We cap-

italize class names in the design process—a UML convention—as we’ll do when we write

12.3 Identifying the Classes in a Requirements Document 329

the actual Java code that implements our design. If the name of a class contains more than
one word, we run the words together and capitalize each word (e.g., MultipleWordName).
Using this convention, we create classes ATM, Screen, Keypad, CashDispenser, Deposit-
Slot, Account, BankDatabase, BalanceInquiry, Withdrawal and Deposit. We construct
our system using these classes as building blocks. Before we begin building the system,
however, we must gain a better understanding of how the classes relate to one another.

Modeling Classes
The UML enables us to model, via class diagrams, the classes in the ATM system and their
interrelationships. Figure 12.6 represents class ATM. Each class is modeled as a rectangle
with three compartments. The top one contains the name of the class centered horizon-
tally in boldface. The middle compartment contains the class’s attributes. (We discuss at-
tributes in Sections 12.4–12.5.) The bottom compartment contains the class’s operations
(discussed in Section 12.6). In Fig. 12.6, the middle and bottom compartments are empty
because we’ve not yet determined this class’s attributes and operations.

Class diagrams also show the relationships between the classes of the system.
Figure 12.7 shows how our classes ATM and Withdrawal relate to one another. For the
moment, for simplicity, we choose to model only this subset of classes. We present a more
complete class diagram later in this section. Notice that the rectangles representing classes
in this diagram are not subdivided into compartments. The UML allows the suppression
of class attributes and operations in this manner to create more readable diagrams, when
appropriate. Such a diagram is said to be an elided diagram—one in which some informa-
tion, such as the contents of the second and third compartments, is not modeled. We’ll
place information in these compartments in Sections 12.4–12.6.

In Fig. 12.7, the solid line that connects the two classes represents an association—a
relationship between classes. The numbers near each end of the line are multiplicity
values, which indicate how many objects of each class participate in the association. In this
case, following the line from left to right reveals that, at any given moment, one ATM object
participates in an association with either zero or one Withdrawal objects—zero if the cur-
rent user is not currently performing a transaction or has requested a different type of
transaction, and one if the user has requested a withdrawal. The UML can model many
types of multiplicity. Figure 12.8 lists and explains the multiplicity types.

Fig. 12.6 | Representing a class in the UML using a class diagram.

Fig. 12.7 | Class diagram showing an association among classes.

ATM

Executes1

currentTransaction

0..1
WithdrawalATM

330 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

An association can be named. For example, the word Executes above the line con-
necting classes ATM and Withdrawal in Fig. 12.7 indicates the name of that association.
This part of the diagram reads “one object of class ATM executes zero or one objects of class
Withdrawal.” Association names are directional, as indicated by the filled arrowhead—so
it would be improper, for example, to read the preceding association from right to left as
“zero or one objects of class Withdrawal execute one object of class ATM.”

The word currentTransaction at the Withdrawal end of the association line in
Fig. 12.7 is a role name, identifying the role the Withdrawal object plays in its relationship
with the ATM. A role name adds meaning to an association between classes by identifying
the role a class plays in the context of an association. A class can play several roles in the
same system. For example, in a school personnel system, a person may play the role of
“professor” when relating to students. The same person may take on the role of “colleague”
when participating in an association with another professor, and “coach” when coaching
student athletes. In Fig. 12.7, the role name currentTransaction indicates that the With-
drawal object participating in the Executes association with an object of class ATM repre-
sents the transaction currently being processed by the ATM. In other contexts, a
Withdrawal object may take on other roles (e.g., the “previous transaction”). Notice that
we do not specify a role name for the ATM end of the Executes association. Role names in
class diagrams are often omitted when the meaning of an association is clear without them.

In addition to indicating simple relationships, associations can specify more complex
relationships, such as objects of one class being composed of objects of other classes. Con-
sider a real-world automated teller machine. What “pieces” does a manufacturer put
together to build a working ATM? Our requirements document tells us that the ATM is
composed of a screen, a keypad, a cash dispenser and a deposit slot.

In Fig. 12.9, the solid diamonds attached to the ATM class’s association lines indicate
that ATM has a composition relationship with classes Screen, Keypad, CashDispenser and
DepositSlot. Composition implies a whole/part relationship. The class that has the com-
position symbol (the solid diamond) on its end of the association line is the whole (in this
case, ATM), and the classes on the other end of the association lines are the parts—in this
case, Screen, Keypad, CashDispenser and DepositSlot. The compositions in Fig. 12.9
indicate that an object of class ATM is formed from one object of class Screen, one object

Symbol Meaning

0 None

1 One

m An integer value

0..1 Zero or one

m, n m or n

m..n At least m, but not more than n

* Any nonnegative integer (zero or more)

0..* Zero or more (identical to *)

1..* One or more

Fig. 12.8 | Multiplicity types.

12.3 Identifying the Classes in a Requirements Document 331

of class CashDispenser, one object of class Keypad and one object of class DepositSlot.
The ATM has a screen, a keypad, a cash dispenser and a deposit slot. (As we saw in
Chapter 9, the is-a relationship defines inheritance. We’ll see in Section 13.3 that there’s
a nice opportunity to use inheritance in the ATM system design.)

According to the UML specification (www.omg.org/technology/documents/
formal/uml.htm), composition relationships have the following properties:

1. Only one class in the relationship can represent the whole (i.e., the diamond can
be placed on only one end of the association line). For example, either the screen
is part of the ATM or the ATM is part of the screen, but the screen and the ATM
cannot both represent the whole in the relationship.

2. The parts in the composition relationship exist only as long as the whole does, and
the whole is responsible for the creation and destruction of its parts. For example,
the act of constructing an ATM includes manufacturing its parts. Also, if the ATM
is destroyed, its screen, keypad, cash dispenser and deposit slot are also destroyed.

3. A part may belong to only one whole at a time, although it may be removed and
attached to another whole, which then assumes responsibility for the part.

The solid diamonds in our class diagrams indicate composition relationships that ful-
fill these properties. If a has-a relationship does not satisfy one or more of these criteria,
the UML specifies that hollow diamonds be attached to the ends of association lines to
indicate aggregation—a weaker form of composition. For example, a personal computer
and a computer monitor participate in an aggregation relationship—the computer has a
monitor, but the two parts can exist independently, and the same monitor can be attached
to multiple computers at once, thus violating composition’s second and third properties.

Figure 12.10 shows a class diagram for the ATM system. This diagram models most
of the classes that we’ve identified, as well as the associations between them that we can
infer from the requirements document. Classes BalanceInquiry and Deposit participate
in associations similar to those of class Withdrawal, so we’ve chosen to omit them from
this diagram to keep it simple. In Section 13.3, we expand our class diagram to include all
the classes in the ATM system.

Fig. 12.9 | Class diagram showing composition relationships.

1 1 1 1

1

1

1

1

Screen

ATM

Keypad

DepositSlot CashDispenser

www.omg.org/technology/documents/formal/uml.htm
www.omg.org/technology/documents/formal/uml.htm

332 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

Figure 12.10 presents a graphical model of ATM system’s structure. It includes classes
BankDatabase and Account, and several associations that were not present in either
Fig. 12.7 or Fig. 12.9. It shows that class ATM has a one-to-one relationship with class
BankDatabase—one ATM object authenticates users against one BankDatabase object. In
Fig. 12.10, we also model the fact that the bank’s database contains information about
many accounts—one BankDatabase object participates in a composition relationship with
zero or more Account objects. The multiplicity value 0..* at the Account end of the asso-
ciation between class BankDatabase and class Account indicates that zero or more objects
of class Account take part in the association. Class BankDatabase has a one-to-many rela-
tionship with class Account—the BankDatabase can contain many Accounts. Similarly,
class Account has a many-to-one relationship with class BankDatabase—there can be
many Accounts stored in the BankDatabase. Recall from Fig. 12.8 that the multiplicity
value * is identical to 0..*. We include 0..* in our class diagrams for clarity.

Figure 12.10 also indicates that at any given time 0 or 1 Withdrawal objects can exist.
If the user is performing a withdrawal, “one object of class Withdrawal accesses/modifies
an account balance through one object of class BankDatabase.” We could have created an
association directly between class Withdrawal and class Account. The requirements docu-
ment, however, states that the “ATM must interact with the bank’s account information
database” to perform transactions. A bank account contains sensitive information, and sys-
tems engineers must always consider the security of personal data when designing a system.
Thus, only the BankDatabase can access and manipulate an account directly. All other

Fig. 12.10 | Class diagram for the ATM system model.

Accesses/modifies an

account balance through

Executes

1

1

1

1 1

1

1

1

1 1 1 1

1

0..*

0..1

0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Withdrawal

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

1

1

12.4 Identifying Class Attributes 333

parts of the system must interact with the database to retrieve or update account informa-
tion (e.g., an account balance).

The class diagram in Fig. 12.10 also models associations between class Withdrawal

and classes Screen, CashDispenser and Keypad. A withdrawal transaction includes
prompting the user to choose a withdrawal amount, and receiving numeric input. These
actions require the use of the screen and the keypad, respectively. Furthermore, dispensing
cash to the user requires access to the cash dispenser.

Classes BalanceInquiry and Deposit, though not shown in Fig. 12.10, take part in
several associations with the other classes of the ATM system. Like class Withdrawal, each
of these classes associates with classes ATM and BankDatabase. An object of class Balance-
Inquiry also associates with an object of class Screen to display the balance of an account
to the user. Class Deposit associates with classes Screen, Keypad and DepositSlot. Like
withdrawals, deposit transactions require use of the screen and the keypad to display
prompts and receive input, respectively. To receive deposit envelopes, an object of class
Deposit accesses the deposit slot.

We’ve now identified the initial classes in our ATM system—we may discover others
as we proceed with the design and implementation. In Section 12.4 we determine the
attributes for each of these classes, and in Section 12.5 we use these attributes to examine
how the system changes over time.

Self-Review Exercises for Section 12.3
12.4 Suppose we have a class Car that represents a car. Think of some of the different pieces that
a manufacturer would put together to produce a whole car. Create a class diagram (similar to
Fig. 12.9) that models some of the composition relationships of class Car.

12.5 Suppose we have a class File that represents an electronic document in a standalone, non-
networked computer represented by class Computer. What sort of association exists between class
Computer and class File?

a) Class Computer has a one-to-one relationship with class File.
b) Class Computer has a many-to-one relationship with class File.
c) Class Computer has a one-to-many relationship with class File.
d) Class Computer has a many-to-many relationship with class File.

12.6 State whether the following statement is true or false, and if false, explain why: A UML dia-
gram in which a class’s second and third compartments are not modeled is said to be an elided diagram.

12.7 Modify the class diagram of Fig. 12.10 to include class Deposit instead of class Withdrawal.

12.4 Identifying Class Attributes
Classes have attributes (data) and operations (behaviors). Class attributes are implemented
as fields, and class operations are implemented as methods. In this section, we determine
many of the attributes needed in the ATM system. In Section 12.5 we examine how these
attributes represent an object’s state. In Section 12.6 we determine class operations.

Identifying Attributes
Consider the attributes of some real-world objects: A person’s attributes include height,
weight and whether the person is left-handed, right-handed or ambidextrous. A radio’s at-
tributes include its station, volume and AM or FM settings. A car’s attributes include its

334 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

speedometer and odometer readings, the amount of gas in its tank and what gear it’s in. A
personal computer’s attributes include its manufacturer (e.g., Dell, Sun, Apple or IBM),
type of screen (e.g., LCD or CRT), main memory size and hard disk size.

We can identify many attributes of the classes in our system by looking for descriptive
words and phrases in the requirements document. For each such word and phrase we find
that plays a significant role in the ATM system, we create an attribute and assign it to one
or more of the classes identified in Section 12.3. We also create attributes to represent any
additional data that a class may need, as such needs become clear throughout the design
process.

Figure 12.11 lists the words or phrases from the requirements document that describe
each class. We formed this list by reading the requirements document and identifying any
words or phrases that refer to characteristics of the classes in the system. For example, the
requirements document describes the steps taken to obtain a “withdrawal amount,” so we
list “amount” next to class Withdrawal.

Figure 12.11 leads us to create one attribute of class ATM. Class ATM maintains informa-
tion about the state of the ATM. The phrase “user is authenticated” describes a state of the
ATM (we introduce states in Section 12.5), so we include userAuthenticated as a Boolean
attribute (i.e., an attribute that has a value of either true or false) in class ATM. The
Boolean attribute type in the UML is equivalent to the boolean type in Java. This attribute
indicates whether the ATM has successfully authenticated the current user—userAuthen-

ticated must be true for the system to allow the user to perform transactions and access
account information. This attribute helps ensure the security of the data in the system.

Classes BalanceInquiry, Withdrawal and Deposit share one attribute. Each transac-
tion involves an “account number” that corresponds to the account of the user making the

Class Descriptive words and phrases

ATM user is authenticated

BalanceInquiry account number

Withdrawal account number
amount

Deposit account number
amount

BankDatabase [no descriptive words or phrases]

Account account number
PIN
balance

Screen [no descriptive words or phrases]

Keypad [no descriptive words or phrases]

CashDispenser begins each day loaded with 500 $20 bills

DepositSlot [no descriptive words or phrases]

Fig. 12.11 | Descriptive words and phrases from the ATM
requirements document.

12.4 Identifying Class Attributes 335

transaction. We assign an integer attribute accountNumber to each transaction class to
identify the account to which an object of the class applies.

Descriptive words and phrases in the requirements document also suggest some dif-
ferences in the attributes required by each transaction class. The requirements document
indicates that to withdraw cash or deposit funds, users must input a specific “amount” of
money to be withdrawn or deposited, respectively. Thus, we assign to classes Withdrawal
and Deposit an attribute amount to store the value supplied by the user. The amounts of
money related to a withdrawal and a deposit are defining characteristics of these transac-
tions that the system requires for these transactions to take place. Class BalanceInquiry,
however, needs no additional data to perform its task—it requires only an account number
to indicate the account whose balance should be retrieved.

Class Account has several attributes. The requirements document states that each
bank account has an “account number” and “PIN,” which the system uses for identifying
accounts and authenticating users. We assign to class Account two integer attributes:
accountNumber and pin. The requirements document also specifies that an account main-
tains a “balance” of the amount of money in the account and that money the user deposits
does not become available for a withdrawal until the bank verifies the amount of cash in
the deposit envelope, and any checks in the envelope clear. An account must still record
the amount of money that a user deposits, however. Therefore, we decide that an account
should represent a balance using two attributes: availableBalance and totalBalance.
Attribute availableBalance tracks the amount of money that a user can withdraw from
the account. Attribute totalBalance refers to the total amount of money that the user has
“on deposit” (i.e., the amount of money available, plus the amount waiting to be verified
or cleared). For example, suppose an ATM user deposits $50.00 into an empty account.
The totalBalance attribute would increase to $50.00 to record the deposit, but the
availableBalance would remain at $0. [Note: We assume that the bank updates the
availableBalance attribute of an Account some length of time after the ATM transaction
occurs, in response to confirming that $50 worth of cash or checks was found in the
deposit envelope. We assume that this update occurs through a transaction that a bank
employee performs using some piece of bank software other than the ATM. Thus, we do
not discuss this transaction in our case study.]

Class CashDispenser has one attribute. The requirements document states that the
cash dispenser “begins each day loaded with 500 $20 bills.” The cash dispenser must keep
track of the number of bills it contains to determine whether enough cash is on hand to
satisfy withdrawal requests. We assign to class CashDispenser an integer attribute count,
which is initially set to 500.

For real problems in industry, there’s no guarantee that requirements documents will
be precise enough for the object-oriented systems designer to determine all the attributes
or even all the classes. The need for additional classes, attributes and behaviors may
become clear as the design process proceeds. As we progress through this case study, we
will continue to add, modify and delete information about the classes in our system.

Modeling Attributes
The class diagram in Fig. 12.12 lists some of the attributes for the classes in our system—
the descriptive words and phrases in Fig. 12.11 lead us to identify these attributes. For
simplicity, Fig. 12.12 does not show the associations among classes—we showed these in
Fig. 12.10. This is a common practice of systems designers when designs are being devel-

336 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

oped. Recall from Section 12.3 that in the UML, a class’s attributes are placed in the mid-
dle compartment of the class’s rectangle. We list each attribute’s name and type separated
by a colon (:), followed in some cases by an equal sign (=) and an initial value.

Consider the userAuthenticated attribute of class ATM:

This attribute declaration contains three pieces of information about the attribute. The at-
tribute name is userAuthenticated. The attribute type is Boolean. In Java, an attribute
can be represented by a primitive type, such as boolean, int or double, or a reference type
like a class. We’ve chosen to model only primitive-type attributes in Fig. 12.12—we dis-
cuss the reasoning behind this decision shortly. The attribute types in Fig. 12.12 are in
UML notation. We’ll associate the types Boolean, Integer and Double in the UML dia-
gram with the primitive types boolean, int and double in Java, respectively.

We can also indicate an initial value for an attribute. The userAuthenticated attri-
bute in class ATM has an initial value of false. This indicates that the system initially does
not consider the user to be authenticated. If an attribute has no initial value specified, only
its name and type (separated by a colon) are shown. For example, the accountNumber attri-
bute of class BalanceInquiry is an integer. Here we show no initial value, because the

userAuthenticated : Boolean = false

Fig. 12.12 | Classes with attributes.

ATM

userAuthenticated : Boolean = false

BalanceInquiry

accountNumber : Integer

CashDispenser

count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

accountNumber : Integer

amount : Double

BankDatabase

Deposit

accountNumber : Integer

amount : Double

Account

accountNumber : Integer

pin : Integer

availableBalance : Double

totalBalance : Double

12.4 Identifying Class Attributes 337

value of this attribute is a number that we do not yet know. This number will be deter-
mined at execution time based on the account number entered by the current ATM user.

Figure 12.12 does not include attributes for classes Screen, Keypad and DepositSlot.
These are important components of our system, for which our design process has not yet
revealed any attributes. We may discover some, however, in the remaining phases of design
or when we implement these classes in Java. This is perfectly normal.

Figure 12.12 also does not include attributes for class BankDatabase. Recall that attri-
butes in Java can be represented by either primitive types or reference types. We’ve chosen
to include only primitive-type attributes in the class diagram in Fig. 12.12 (and in similar
class diagrams throughout the case study). A reference-type attribute is modeled more
clearly as an association between the class holding the reference and the class of the object
to which the reference points. For example, the class diagram in Fig. 12.10 indicates that
class BankDatabase participates in a composition relationship with zero or more Account

objects. From this composition, we can determine that when we implement the ATM
system in Java, we’ll be required to create an attribute of class BankDatabase to hold ref-
erences to zero or more Account objects. Similarly, we can determine reference-type attri-
butes of class ATM that correspond to its composition relationships with classes Screen,
Keypad, CashDispenser and DepositSlot. These composition-based attributes would be
redundant if modeled in Fig. 12.12, because the compositions modeled in Fig. 12.10
already convey the fact that the database contains information about zero or more
accounts and that an ATM is composed of a screen, keypad, cash dispenser and deposit
slot. Software developers typically model these whole/part relationships as compositions
rather than as attributes required to implement the relationships.

The class diagram in Fig. 12.12 provides a solid basis for the structure of our model,
but the diagram is not complete. In Section 12.5 we identify the states and activities of the
objects in the model, and in Section 12.6 we identify the operations that the objects per-
form. As we present more of the UML and object-oriented design, we’ll continue to
strengthen the structure of our model.

Self-Review Exercises for Section 12.4
12.8 We typically identify the attributes of the classes in our system by analyzing the in
the requirements document.

a) nouns and noun phrases
b) descriptive words and phrases
c) verbs and verb phrases
d) All of the above.

12.9 Which of the following is not an attribute of an airplane?
a) length
b) wingspan
c) fly
d) number of seats

Software Engineering Observation 12.1
At early stages in the design process, classes often lack attributes (and operations). Such
classes should not be eliminated, however, because attributes (and operations) may become
evident in the later phases of design and implementation.

338 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

12.10 Describe the meaning of the following attribute declaration of class CashDispenser in the
class diagram in Fig. 12.12:

count : Integer = 500

12.5 Identifying Objects’ States and Activities
[Note: This section can be taught after Chapter 5.]
In Section 12.4, we identified many of the class attributes needed to implement the ATM
system and added them to the class diagram in Fig. 12.12. We now show how these attri-
butes represent an object’s state. We identify some key states that our objects may occupy
and discuss how objects change state in response to various events occurring in the system.
We also discuss the workflow, or activities, that objects perform in the ATM system, and
we present the activities of BalanceInquiry and Withdrawal transaction objects.

State Machine Diagrams
Each object in a system goes through a series of states. An object’s state is indicated by the
values of its attributes at a given time. State machine diagrams (commonly called state di-
agrams) model several states of an object and show under what circumstances the object
changes state. Unlike the class diagrams presented in earlier case study sections, which fo-
cused primarily on the system’s structure, state diagrams model some of the system’s
behavior.

Figure 12.13 is a simple state diagram that models some of the states of an object of
class ATM. The UML represents each state in a state diagram as a rounded rectangle with
the name of the state placed inside it. A solid circle with an attached stick () arrowhead
designates the initial state. Recall that we modeled this state information as the Boolean

attribute userAuthenticated in the class diagram of Fig. 12.12. This attribute is initial-
ized to false, or the “User not authenticated” state, according to the state diagram.

The arrows with stick () arrowhead indicate transitions between states. An object
can transition from one state to another in response to various events that occur in the
system. The name or description of the event that causes a transition is written near the
line that corresponds to the transition. For example, the ATM object changes from the “User
not authenticated” to the “User authenticated” state after the database authenticates the
user. Recall from the requirements document that the database authenticates a user by
comparing the account number and PIN entered by the user with those of an account in
the database. If the user has entered a valid account number and the correct PIN, the ATM

object transitions to the “User authenticated” state and changes its userAuthenticated

attribute to a value of true. When the user exits the system by choosing the “exit” option
from the main menu, the ATM object returns to the “User not authenticated” state.

Fig. 12.13 | State diagram for the ATM object.

User not authenticated User authenticated

bank database authenticates user

user exits system

12.5 Identifying Objects’ States and Activities 339

Activity Diagrams
Like a state diagram, an activity diagram models aspects of system behavior. Unlike a state
diagram, an activity diagram models an object’s workflow (sequence of events) during
program execution. An activity diagram models the actions the object will perform and in
what order. The activity diagram in Fig. 12.14 models the actions involved in executing a
balance-inquiry transaction. We assume that a BalanceInquiry object has already been
initialized and assigned a valid account number (that of the current user), so the object
knows which balance to retrieve. The diagram includes the actions that occur after the user
selects a balance inquiry from the main menu and before the ATM returns the user to the
main menu—a BalanceInquiry object does not perform or initiate these actions, so we
do not model them here. The diagram begins with retrieving the balance of the account
from the database. Next, the BalanceInquiry displays the balance on the screen. This ac-
tion completes the execution of the transaction. Recall that we’ve chosen to represent an
account balance as both the availableBalance and totalBalance attributes of class Ac-
count, so the actions modeled in Fig. 12.14 refer to the retrieval and display of both bal-
ance attributes.

The UML represents an action in an activity diagram as an action state modeled by a
rectangle with its left and right sides replaced by arcs curving outward. Each action state
contains an action expression—for example, “get balance of account from database”—that
specifies an action to be performed. An arrow with a stick () arrowhead connects two
action states, indicating the order in which the actions represented by the action states
occur. The solid circle (at the top of Fig. 12.14) represents the activity’s initial state—the
beginning of the workflow before the object performs the modeled actions. In this case,
the transaction first executes the “get balance of account from database” action expression.
The transaction then displays both balances on the screen. The solid circle enclosed in an
open circle (at the bottom of Fig. 12.14) represents the final state—the end of the work-

Software Engineering Observation 12.2
Software designers do not generally create state diagrams showing every possible state and
state transition for all attributes—there are simply too many of them. State diagrams
typically show only key states and state transitions.

Fig. 12.14 | Activity diagram for a BalanceInquiry object.

get balance of account from database

display balance on screen

340 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

flow after the object performs the modeled actions. We used UML activity diagrams to
illustrate the flow of control for the control statements presented in Chapters 4–5.

Figure 12.15 shows an activity diagram for a withdrawal transaction. We assume that
a Withdrawal object has been assigned a valid account number. We do not model the user

Fig. 12.15 | Activity diagram for a withdrawal transaction.

[user canceled transaction]

[user selected an amount]

[amount > available balance]

[amount <= available balance]

[sufficient cash available]

[insufficient cash available]

display menu of withdrawal amounts and option to cancel

input the menu selection

interact with database to debit amount from user’s account

dispense cash

instruct user to take cash

set amount attribute

display appropriate error message

test whether sufficient cash is available in cash dispenser

get available balance of user’s account from database

12.5 Identifying Objects’ States and Activities 341

selecting a withdrawal from the main menu or the ATM returning the user to the main
menu because these are not actions performed by a Withdrawal object. The transaction
first displays a menu of standard withdrawal amounts (shown in Fig. 12.3) and an option
to cancel the transaction. The transaction then receives a menu selection from the user.
The activity flow now arrives at a decision (a fork indicated by the small diamond symbol).
This point determines the next action based on the associated guard condition (in square
brackets next to the transition), which states that the transition occurs if this guard condi-
tion is met. If the user cancels the transaction by choosing the “cancel” option from the
menu, the activity flow immediately skips to the final state. Note the merge (indicated by
the small diamond symbol) where the cancellation flow of activity joins the main flow of
activity before reaching the activity’s final state. If the user selects a withdrawal amount
from the menu, Withdrawal sets amount (an attribute originally modeled in Fig. 12.12) to
the value chosen by the user.

After setting the withdrawal amount, the transaction retrieves the available balance
of the user’s account (i.e., the availableBalance attribute of the user’s Account object)
from the database. The activity flow then arrives at another decision. If the requested with-
drawal amount exceeds the user’s available balance, the system displays an appropriate
error message informing the user of the problem, then returns to the beginning of the
activity diagram and prompts the user to input a new amount. If the requested withdrawal
amount is less than or equal to the user’s available balance, the transaction proceeds. The
transaction next tests whether the cash dispenser has enough cash remaining to satisfy the
withdrawal request. If it does not, the transaction displays an appropriate error message,
then returns to the beginning of the activity diagram and prompts the user to choose a new
amount. If sufficient cash is available, the transaction interacts with the database to debit
the withdrawal amount from the user’s account (i.e., subtract the amount from both the
availableBalance and totalBalance attributes of the user’s Account object). The trans-
action then dispenses the desired amount of cash and instructs the user to take it. Finally,
the main flow of activity merges with the cancellation flow of activity before reaching the
final state.

We’ve taken the first steps in modeling the ATM software system’s behavior and have
shown how an object’s attributes participate in performing the object’s activities. In
Section 12.6, we investigate the behaviors for all classes to give a more accurate interpre-
tation of the system behavior by filling in the third compartments of the classes in our class
diagram.

Self-Review Exercises for Section 12.5
12.11 State whether the following statement is true or false, and if false, explain why: State dia-
grams model structural aspects of a system.

12.12 An activity diagram models the that an object performs and the order in which
it performs them.

a) actions
b) attributes
c) states
d) state transitions

12.13 Based on the requirements document, create an activity diagram for a deposit transaction.

342 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

12.6 Identifying Class Operations
[Note: This section can be taught after Chapter 6.]
In this section, we determine some of the class operations (or behaviors) needed to imple-
ment the ATM system. An operation is a service that objects of a class provide to clients
(users) of the class. Consider the operations of some real-world objects. A radio’s opera-
tions include setting its station and volume (typically invoked by a person’s adjusting the
radio’s controls). A car’s operations include accelerating (invoked by the driver’s pressing
the accelerator pedal), decelerating (invoked by the driver’s pressing the brake pedal or re-
leasing the gas pedal), turning and shifting gears. Software objects can offer operations as
well—for example, a software graphics object might offer operations for drawing a circle,
drawing a line, drawing a square and the like. A spreadsheet software object might offer
operations like printing the spreadsheet, totaling the elements in a row or column and
graphing information in the spreadsheet as a bar chart or pie chart.

We can derive many of the class operations by examining the key verbs and verb phrases
in the requirements document. We then relate these verbs and verb phrases to classes in
our system (Fig. 12.16). The verb phrases in Fig. 12.16 help us determine the operations
of each class.

Modeling Operations
To identify operations, we examine the verb phrases listed for each class in Fig. 12.16. The
“executes financial transactions” phrase associated with class ATM implies that class ATM in-
structs transactions to execute. Therefore, classes BalanceInquiry, Withdrawal and
Deposit each need an operation to provide this service to the ATM. We place this opera-
tion (which we’ve named execute) in the third compartment of the three transaction
classes in the updated class diagram of Fig. 12.17. During an ATM session, the ATM object
will invoke these transaction operations as necessary.

Class Verbs and verb phrases

ATM executes financial transactions

BalanceInquiry [none in the requirements document]

Withdrawal [none in the requirements document]

Deposit [none in the requirements document]

BankDatabase authenticates a user, retrieves an account balance, credits a deposit
amount to an account, debits a withdrawal amount from an account

Account retrieves an account balance, credits a deposit amount to an account,
debits a withdrawal amount from an account

Screen displays a message to the user

Keypad receives numeric input from the user

CashDispenser dispenses cash, indicates whether it contains enough cash to satisfy a
withdrawal request

DepositSlot receives a deposit envelope

Fig. 12.16 | Verbs and verb phrases for each class in the ATM system.

12.6 Identifying Class Operations 343

The UML represents operations (that is, methods) by listing the operation name, fol-
lowed by a comma-separated list of parameters in parentheses, a colon and the return type:

Each parameter in the comma-separated parameter list consists of a parameter name, fol-
lowed by a colon and the parameter type:

For the moment, we do not list the parameters of our operations—we’ll identify and
model some of them shortly. For some of the operations, we do not yet know the return
types, so we also omit them from the diagram. These omissions are perfectly normal at this
point. As our design and implementation proceed, we’ll add the remaining return types.

Authenticating a User
Figure 12.16 lists the phrase “authenticates a user” next to class BankDatabase—the data-
base is the object that contains the account information necessary to determine whether

Fig. 12.17 | Classes in the ATM system with attributes and operations.

operationName(parameter1, parameter2, …, parameterN) : return type

parameterName : parameterType

ATM

userAuthenticated : Boolean = false

BalanceInquiry

accountNumber : Integer

CashDispenser

count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

accountNumber : Integer

amount : Double

BankDatabase

Deposit

accountNumber : Integer

amount : Double

authenticateUser() : Boolean

getAvailableBalance() : Double

getTotalBalance() : Double

credit()

debit()

Account

accountNumber : Integer

pin : Integer

availableBalance : Double

totalBalance : Double

validatePIN() : Boolean

getAvailableBalance() : Double

getTotalBalance() : Double

credit()

debit()

execute()

execute()
displayMessage()

dispenseCash()

isSufficientCashAvailable() : Boolean

getInput() : Integerexecute()

isEnvelopeReceived() : Boolean

344 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

the account number and PIN entered by a user match those of an account held at the
bank. Therefore, class BankDatabase needs an operation that provides an authentication
service to the ATM. We place the operation authenticateUser in the third compartment
of class BankDatabase (Fig. 12.17). However, an object of class Account, not class Bank-
Database, stores the account number and PIN that must be accessed to authenticate a us-
er, so class Account must provide a service to validate a PIN obtained through user input
against a PIN stored in an Account object. Therefore, we add a validatePIN operation to
class Account. We specify a return type of Boolean for the authenticateUser and vali-

datePIN operations. Each operation returns a value indicating either that the operation
was successful in performing its task (i.e., a return value of true) or that it was not (i.e., a
return value of false).

Other BankDatabase and Account Operations
Figure 12.16 lists several additional verb phrases for class BankDatabase: “retrieves an ac-
count balance,” “credits a deposit amount to an account” and “debits a withdrawal
amount from an account.” Like “authenticates a user,” these remaining phrases refer to
services that the database must provide to the ATM, because the database holds all the ac-
count data used to authenticate a user and perform ATM transactions. However, objects
of class Account actually perform the operations to which these phrases refer. Thus, we as-
sign an operation to both class BankDatabase and class Account to correspond to each of
these phrases. Recall from Section 12.3 that, because a bank account contains sensitive in-
formation, we do not allow the ATM to access accounts directly. The database acts as an
intermediary between the ATM and the account data, thus preventing unauthorized ac-
cess. As we’ll see in Section 12.7, class ATM invokes the operations of class BankDatabase,
each of which in turn invokes the operation with the same name in class Account.

Getting the Balances
The phrase “retrieves an account balance” suggests that classes BankDatabase and Account

each need a getBalance operation. However, recall that we created two attributes in class
Account to represent a balance—availableBalance and totalBalance. A balance inqui-
ry requires access to both balance attributes so that it can display them to the user, but a
withdrawal needs to check only the value of availableBalance. To allow objects in the
system to obtain each balance attribute individually, we add operations getAvailable-

Balance and getTotalBalance to the third compartment of classes BankDatabase and Ac-

count (Fig. 12.17). We specify a return type of Double for these operations because the
balance attributes they retrieve are of type Double.

Crediting and Debiting an Account

The phrases “credits a deposit amount to an account” and “debits a withdrawal amount
from an account” indicate that classes BankDatabase and Account must perform opera-
tions to update an account during a deposit and withdrawal, respectively. We therefore as-
sign credit and debit operations to classes BankDatabase and Account. You may recall
that crediting an account (as in a deposit) adds an amount only to the totalBalance at-
tribute. Debiting an account (as in a withdrawal), on the other hand, subtracts the amount
from both balance attributes. We hide these implementation details inside class Account.
This is a good example of encapsulation and information hiding.

12.6 Identifying Class Operations 345

Deposit Confirmations Performed by Another Banking System
If this were a real ATM system, classes BankDatabase and Account would also provide a
set of operations to allow another banking system to update a user’s account balance after
either confirming or rejecting all or part of a deposit. Operation confirmDepositAmount,
for example, would add an amount to the availableBalance attribute, thus making de-
posited funds available for withdrawal. Operation rejectDepositAmount would subtract
an amount from the totalBalance attribute to indicate that a specified amount, which
had recently been deposited through the ATM and added to the totalBalance, was not
found in the deposit envelope. The bank would invoke this operation after determining
either that the user failed to include the correct amount of cash or that any checks did not
clear (i.e., they “bounced”). While adding these operations would make our system more
complete, we do not include them in our class diagrams or our implementation because
they’re beyond the scope of the case study.

Displaying Messages
Class Screen “displays a message to the user” at various times in an ATM session. All visual
output occurs through the screen of the ATM. The requirements document describes
many types of messages (e.g., a welcome message, an error message, a thank you message)
that the screen displays to the user. The requirements document also indicates that the
screen displays prompts and menus to the user. However, a prompt is really just a message
describing what the user should input next, and a menu is essentially a type of prompt con-
sisting of a series of messages (i.e., menu options) displayed consecutively. Therefore, rath-
er than assign class Screen an individual operation to display each type of message, prompt
and menu, we simply create one operation that can display any message specified by a pa-
rameter. We place this operation (displayMessage) in the third compartment of class
Screen in our class diagram (Fig. 12.17). We do not worry about the parameter of this
operation at this time—we model it later in this section.

Keyboard Input
From the phrase “receives numeric input from the user” listed by class Keypad in
Fig. 12.16, we conclude that class Keypad should perform a getInput operation. Because
the ATM’s keypad, unlike a computer keyboard, contains only the numbers 0–9, we spec-
ify that this operation returns an integer value. Recall from the requirements document
that in different situations the user may be required to enter a different type of number
(e.g., an account number, a PIN, the number of a menu option, a deposit amount as a
number of cents). Class Keypad simply obtains a numeric value for a client of the class—
it does not determine whether the value meets any specific criteria. Any class that uses this
operation must verify that the user entered an appropriate number in a given situation,
then respond accordingly (i.e., display an error message via class Screen). [Note: When we
implement the system, we simulate the ATM’s keypad with a computer keyboard, and for
simplicity we assume that the user does not enter nonnumeric input using keys on the
computer keyboard that do not appear on the ATM’s keypad.]

Dispensing Cash
Figure 12.16 lists “dispenses cash” for class CashDispenser. Therefore, we create opera-
tion dispenseCash and list it under class CashDispenser in Fig. 12.17. Class CashDis-
penser also “indicates whether it contains enough cash to satisfy a withdrawal request.”

346 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

Thus, we include isSufficientCashAvailable, an operation that returns a value of UML
type Boolean, in class CashDispenser.

Figure 12.16 also lists “receives a deposit envelope” for class DepositSlot. The
deposit slot must indicate whether it received an envelope, so we place an operation
isEnvelopeReceived, which returns a Boolean value, in the third compartment of class
DepositSlot. [Note: A real hardware deposit slot would most likely send the ATM a signal
to indicate that an envelope was received. We simulate this behavior, however, with an
operation in class DepositSlot that class ATM can invoke to find out whether the deposit
slot received an envelope.]

Class ATM
We do not list any operations for class ATM at this time. We’re not yet aware of any services
that class ATM provides to other classes in the system. When we implement the system with
Java code, however, operations of this class, and additional operations of the other classes
in the system, may emerge.

Identifying and Modeling Operation Parameters for Class BankDatabase
So far, we’ve not been concerned with the parameters of our operations—we’ve attempted
to gain only a basic understanding of the operations of each class. Let’s now take a closer
look at some operation parameters. We identify an operation’s parameters by examining
what data the operation requires to perform its assigned task.

Consider BankDatabase’s authenticateUser operation. To authenticate a user, this
operation must know the account number and PIN supplied by the user. So we specify
that authenticateUser takes integer parameters userAccountNumber and userPIN, which
the operation must compare to an Account object’s account number and PIN in the data-
base. We prefix these parameter names with “user” to avoid confusion between the oper-
ation’s parameter names and class Account’s attribute names. We list these parameters in
the class diagram in Fig. 12.18 that models only class BankDatabase. [Note: It’s perfectly
normal to model only one class. In this case, we’re examining the parameters of this one
class, so we omit the other classes. In class diagrams later in the case study, in which param-
eters are no longer the focus of our attention, we omit these parameters to save space.
Remember, however, that the operations listed in these diagrams still have parameters.]

Recall that the UML models each parameter in an operation’s comma-separated
parameter list by listing the parameter name, followed by a colon and the parameter type

Fig. 12.18 | Class BankDatabase with operation parameters.

BankDatabase

authenticateUser(userAccountNumber : Integer, userPIN : Integer) : Boolean

getAvailableBalance(userAccountNumber : Integer) : Double

getTotalBalance(userAccountNumber : Integer) : Double

credit(userAccountNumber : Integer, amount : Double)

debit(userAccountNumber : Integer, amount : Double)

12.6 Identifying Class Operations 347

(in UML notation). Figure 12.18 thus specifies that operation authenticateUser takes
two parameters—userAccountNumber and userPIN, both of type Integer. When we
implement the system in Java, we’ll represent these parameters with int values.

Class BankDatabase operations getAvailableBalance, getTotalBalance, credit

and debit also each require a userAccountNumber parameter to identify the account to
which the database must apply the operations, so we include these parameters in the class
diagram of Fig. 12.18. In addition, operations credit and debit each require a Double

parameter amount to specify the amount of money to be credited or debited, respectively.

Identifying and Modeling Operation Parameters for Class Account
Figure 12.19 models class Account’s operation parameters. Operation validatePIN re-
quires only a userPIN parameter, which contains the user-specified PIN to be compared
with the account’s PIN. Like their BankDatabase counterparts, operations credit and
debit in class Account each require a Double parameter amount that indicates the amount
of money involved in the operation. Operations getAvailableBalance and getTotal-

Balance in class Account require no additional data to perform their tasks. Class Account’s
operations do not require an account-number parameter to distinguish between Accounts,
because these operations can be invoked only on a specific Account object.

Identifying and Modeling Operation Parameters for Class Screen
Figure 12.20 models class Screen with a parameter specified for operation display-

Message. This operation requires only a String parameter message that indicates the text
to be displayed. Recall that the parameter types listed in our class diagrams are in UML
notation, so the String type listed in Fig. 12.20 refers to the UML type. When we imple-
ment the system in Java, we’ll use the Java class String to represent this parameter.

Fig. 12.19 | Class Account with operation parameters.

Fig. 12.20 | Class Screen with operation parameters.

Account

accountNumber : Integer

pin : Integer

availableBalance : Double

totalBalance : Double

validatePIN(userPIN: Integer) : Boolean

getAvailableBalance() : Double

getTotalBalance() : Double

credit(amount : Double)

debit(amount : Double)

Screen

displayMessage(message : String)

348 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

Identifying and Modeling Operation Parameters for Class CashDispenser
Figure 12.21 specifies that operation dispenseCash of class CashDispenser takes a Double
parameter amount to indicate the amount of cash (in dollars) to be dispensed. Operation
isSufficientCashAvailable also takes a Double parameter amount to indicate the
amount of cash in question.

Identifying and Modeling Operation Parameters for Other Classes
We do not discuss parameters for operation execute of classes BalanceInquiry, With-
drawal and Deposit, operation getInput of class Keypad and operation isEnvelope-

Received of class DepositSlot. At this point in our design process, we cannot determine
whether these operations require additional data, so we leave their parameter lists empty.
Later, we may decide to add parameters.

In this section, we’ve determined many of the operations performed by the classes in
the ATM system. We’ve identified the parameters and return types of some of the opera-
tions. As we continue our design process, the number of operations belonging to each class
may vary—we might find that new operations are needed or that some current operations
are unnecessary. We also might determine that some of our class operations need addi-
tional parameters and different return types, or that some parameters are unnecessary or
require different types.

Self-Review Exercises for Section 12.6
12.14 Which of the following is not a behavior?

a) reading data from a file
b) printing output
c) text output
d) obtaining input from the user

12.15 If you were to add to the ATM system an operation that returns the amount attribute of class
Withdrawal, how and where would you specify this operation in the class diagram of Fig. 12.17?

12.16 Describe the meaning of the following operation listing that might appear in a class diagram
for an object-oriented design of a calculator:

add(x : Integer, y : Integer) : Integer

12.7 Indicating Collaboration Among Objects
[Note: This section can be taught after Chapter 7.]
In this section, we concentrate on the collaborations (interactions) among objects. When
two objects communicate with each other to accomplish a task, they’re said to collabo-
rate—objects do this by invoking one another’s operations. A collaboration consists of an

Fig. 12.21 | Class CashDispenser with operation parameters.

CashDispenser

dispenseCash(amount : Double)

isSufficientCashAvailable(amount : Double) : Boolean

count : Integer = 500

12.7 Indicating Collaboration Among Objects 349

object of one class sending a message to an object of another class. Messages are sent in
Java via method calls.

In Section 12.6, we determined many of the operations of the system’s classes. Now, we
concentrate on the messages that invoke these operations. To identify the collaborations in
the system, we return to the requirements document in Section 12.2. Recall that this docu-
ment specifies the range of activities that occur during an ATM session (e.g., authenticating
a user, performing transactions). The steps used to describe how the system must perform
each of these tasks are our first indication of the collaborations in our system. As we proceed
through this section and Chapter 13, we may discover additional collaborations.

Identifying the Collaborations in a System
We identify the collaborations in the system by carefully reading the sections of the re-
quirements document that specify what the ATM should do to authenticate a user and to
perform each transaction type. For each action or step described, we decide which objects
in our system must interact to achieve the desired result. We identify one object as the
sending object and another as the receiving object. We then select one of the receiving ob-
ject’s operations (identified in Section 12.6) that must be invoked by the sending object
to produce the proper behavior. For example, the ATM displays a welcome message when
idle. We know that an object of class Screen displays a message to the user via its dis-
playMessage operation. Thus, we decide that the system can display a welcome message
by employing a collaboration between the ATM and the Screen in which the ATM sends a
displayMessage message to the Screen by invoking the displayMessage operation of
class Screen. [Note: To avoid repeating the phrase “an object of class…,” we refer to an
object by using its class name preceded by an article (e.g., “a,” “an” or “the”)—for exam-
ple, “the ATM” refers to an object of class ATM.]

Figure 12.22 lists the collaborations that can be derived from the requirements docu-
ment. For each sending object, we list the collaborations in the order in which they first
occur during an ATM session (i.e., the order in which they’re discussed in the require-
ments document). We list each collaboration involving a unique sender, message and
recipient only once, even though the collaborations may occur at several different times
throughout an ATM session. For example, the first row in Fig. 12.22 indicates that the
ATM collaborates with the Screen whenever the ATM needs to display a message to the user.

Let’s consider the collaborations in Fig. 12.22. Before allowing a user to perform any
transactions, the ATM must prompt the user to enter an account number, then to enter a
PIN. It accomplishes these tasks by sending a displayMessage message to the Screen.
Both actions refer to the same collaboration between the ATM and the Screen, which is
already listed in Fig. 12.22. The ATM obtains input in response to a prompt by sending a
getInput message to the Keypad. Next, the ATM must determine whether the user-spec-
ified account number and PIN match those of an account in the database. It does so by
sending an authenticateUser message to the BankDatabase. Recall that the BankData-

base cannot authenticate a user directly—only the user’s Account (i.e., the Account that
contains the account number specified by the user) can access the user’s PIN on record to
authenticate the user. Figure 12.22 therefore lists a collaboration in which the BankData-
base sends a validatePIN message to an Account.

After the user is authenticated, the ATM displays the main menu by sending a series of
displayMessage messages to the Screen and obtains input containing a menu selection

350 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

by sending a getInput message to the Keypad. We’ve already accounted for these collab-
orations, so we do not add anything to Fig. 12.22. After the user chooses a type of trans-
action to perform, the ATM executes the transaction by sending an execute message to an
object of the appropriate transaction class (i.e., a BalanceInquiry, a Withdrawal or a
Deposit). For example, if the user chooses to perform a balance inquiry, the ATM sends an
execute message to a BalanceInquiry.

Further examination of the requirements document reveals the collaborations
involved in executing each transaction type. A BalanceInquiry retrieves the amount of
money available in the user’s account by sending a getAvailableBalance message to the
BankDatabase, which responds by sending a getAvailableBalance message to the user’s
Account. Similarly, the BalanceInquiry retrieves the amount of money on deposit by
sending a getTotalBalance message to the BankDatabase, which sends the same message
to the user’s Account. To display both parts of the user’s account balance at the same time,
the BalanceInquiry sends a displayMessage message to the Screen.

A Withdrawal responds to an execute message by sending displayMessage messages
to the Screen to display a menu of standard withdrawal amounts (i.e., $20, $40, $60,

An object of class… sends the message…
to an object of
class…

ATM displayMessage

getInput

authenticateUser

execute

execute

execute

Screen

Keypad

BankDatabase

BalanceInquiry

Withdrawal

Deposit

BalanceInquiry getAvailableBalance

getTotalBalance

displayMessage

BankDatabase

BankDatabase

Screen

Withdrawal displayMessage

getInput

getAvailableBalance

isSufficientCashAvailable

debit

dispenseCash

Screen

Keypad

BankDatabase

CashDispenser

BankDatabase

CashDispenser

Deposit displayMessage

getInput

isEnvelopeReceived

credit

Screen

Keypad

DepositSlot

BankDatabase

BankDatabase validatePIN

getAvailableBalance

getTotalBalance

debit

credit

Account

Account

Account

Account

Account

Fig. 12.22 | Collaborations in the ATM system.

12.7 Indicating Collaboration Among Objects 351

$100, $200). The Withdrawal sends a getInput message to the Keypad to obtain the user’s
selection. Next, the Withdrawal determines whether the requested amount is less than or
equal to the user’s account balance. The Withdrawal can obtain the amount of money
available by sending a getAvailableBalance message to the BankDatabase. The With-

drawal then tests whether the cash dispenser contains enough cash by sending an
isSufficientCashAvailable message to the CashDispenser. A Withdrawal sends a
debit message to the BankDatabase to decrease the user’s account balance. The Bank-

Database in turn sends the same message to the appropriate Account, which decreases
both the totalBalance and the availableBalance. To dispense the requested amount of
cash, the Withdrawal sends a dispenseCash message to the CashDispenser. Finally, the
Withdrawal sends a displayMessage message to the Screen, instructing the user to take
the cash.

A Deposit responds to an execute message first by sending a displayMessage mes-
sage to the Screen to prompt the user for a deposit amount. The Deposit sends a get-

Input message to the Keypad to obtain the user’s input. The Deposit then sends a
displayMessage message to the Screen to tell the user to insert a deposit envelope. To
determine whether the deposit slot received an incoming deposit envelope, the Deposit

sends an isEnvelopeReceived message to the DepositSlot. The Deposit updates the
user’s account by sending a credit message to the BankDatabase, which subsequently
sends a credit message to the user’s Account. Recall that crediting funds to an Account

increases the totalBalance but not the availableBalance.

Interaction Diagrams
Now that we’ve identified possible collaborations between our ATM system’s objects, let’s
graphically model these interactions using the UML. The UML provides several types of
interaction diagrams that model the behavior of a system by modeling how objects inter-
act. The communication diagram emphasizes which objects participate in collaborations.
Like the communication diagram, the sequence diagram shows collaborations among ob-
jects, but it emphasizes when messages are sent between objects over time.

Communication Diagrams
Figure 12.23 shows a communication diagram that models the ATM executing a Balance-

Inquiry. Objects are modeled in the UML as rectangles containing names in the form
objectName : ClassName. In this example, which involves only one object of each type, we
disregard the object name and list only a colon followed by the class name. [Note: Specify-
ing each object’s name in a communication diagram is recommended when modeling mul-
tiple objects of the same type.] Communicating objects are connected with solid lines, and
messages are passed between objects along these lines in the direction shown by arrows.
The name of the message, which appears next to the arrow, is the name of an operation
(i.e., a method in Java) belonging to the receiving object—think of the name as a “service”
that the receiving object provides to sending objects (its clients).

Fig. 12.23 | Communication diagram of the ATM executing a balance inquiry.

: ATM : BalanceInquiry

execute()

352 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

The solid filled arrow represents a message—or synchronous call—in the UML and a
method call in Java. This arrow indicates that the flow of control is from the sending object
(the ATM) to the receiving object (a BalanceInquiry). Since this is a synchronous call, the
sending object can’t send another message, or do anything at all, until the receiving object
processes the message and returns control to the sending object. The sender just waits. In
Fig. 12.23, the ATM calls BalanceInquiry method execute and can’t send another message
until execute has finished and returns control to the ATM. [Note: If this were an asynchro-
nous call, represented by a stick () arrowhead, the sending object would not have to wait
for the receiving object to return control—it would continue sending additional messages
immediately following the asynchronous call. Asynchronous calls are implemented in Java
using a technique called multithreading, which is discussed in Chapter 23.]

Sequence of Messages in a Communication Diagram
Figure 12.24 shows a communication diagram that models the interactions among system
objects when an object of class BalanceInquiry executes. We assume that the object’s
accountNumber attribute contains the account number of the current user. The collabora-
tions in Fig. 12.24 begin after the ATM sends an execute message to a BalanceInquiry

(i.e., the interaction modeled in Fig. 12.23). The number to the left of a message name
indicates the order in which the message is passed. The sequence of messages in a com-
munication diagram progresses in numerical order from least to greatest. In this diagram,
the numbering starts with message 1 and ends with message 3. The BalanceInquiry first
sends a getAvailableBalance message to the BankDatabase (message 1), then sends a
getTotalBalance message to the BankDatabase (message 2). Within the parentheses fol-
lowing a message name, we can specify a comma-separated list of the names of the param-
eters sent with the message (i.e., arguments in a Java method call)—the BalanceInquiry

passes attribute accountNumber with its messages to the BankDatabase to indicate which
Account’s balance information to retrieve. Recall from Fig. 12.18 that operations
getAvailableBalance and getTotalBalance of class BankDatabase each require a param-
eter to identify an account. The BalanceInquiry next displays the availableBalance and

Fig. 12.24 | Communication diagram for executing a balance inquiry.

: BalanceInquiry

: Screen

: BankDatabase : Account

3: displayMessage(message)

1: getAvailableBalance(accountNumber)

2: getTotalBalance(accountNumber)

1.1: getAvailableBalance()

2.1: getTotalBalance()

12.7 Indicating Collaboration Among Objects 353

the totalBalance to the user by passing a displayMessage message to the Screen (mes-
sage 3) that includes a parameter indicating the message to be displayed.

Figure 12.24 models two additional messages passing from the BankDatabase to an
Account (message 1.1 and message 2.1). To provide the ATM with the two balances of the
user’s Account (as requested by messages 1 and 2), the BankDatabase must pass a getAvail-
ableBalance and a getTotalBalance message to the user’s Account. Such messages passed
within the handling of another message are called nested messages. The UML recommends
using a decimal numbering scheme to indicate nested messages. For example, message 1.1 is
the first message nested in message 1—the BankDatabase passes a getAvailableBalance

message during BankDatabase’s processing of a message by the same name. [Note: If the
BankDatabase needed to pass a second nested message while processing message 1, the
second message would be numbered 1.2.] A message may be passed only when all the nested
messages from the previous message have been passed. For example, the BalanceInquiry

passes message 3 only after messages 2 and 2.1 have been passed, in that order.
The nested numbering scheme used in communication diagrams helps clarify pre-

cisely when and in what context each message is passed. For example, if we numbered the
messages in Fig. 12.24 using a flat numbering scheme (i.e., 1, 2, 3, 4, 5), someone looking
at the diagram might not be able to determine that BankDatabase passes the
getAvailableBalance message (message 1.1) to an Account during the BankDatabase’s
processing of message 1, as opposed to after completing the processing of message 1. The
nested decimal numbers make it clear that the second getAvailableBalance message
(message 1.1) is passed to an Account within the handling of the first getAvailableBal-
ance message (message 1) by the BankDatabase.

Sequence Diagrams
Communication diagrams emphasize the participants in collaborations, but model their
timing a bit awkwardly. A sequence diagram helps model the timing of collaborations
more clearly. Figure 12.25 shows a sequence diagram modeling the sequence of interac-
tions that occur when a Withdrawal executes. The dotted line extending down from an
object’s rectangle is that object’s lifeline, which represents the progression of time. Actions
occur along an object’s lifeline in chronological order from top to bottom—an action near
the top happens before one near the bottom.

Message passing in sequence diagrams is similar to message passing in communica-
tion diagrams. A solid arrow with a filled arrowhead extending from the sending object to
the receiving object represents a message between two objects. The arrowhead points to an
activation on the receiving object’s lifeline. An activation, shown as a thin vertical rect-
angle, indicates that an object is executing. When an object returns control, a return mes-
sage, represented as a dashed line with a stick () arrowhead, extends from the activation
of the object returning control to the activation of the object that initially sent the message.
To eliminate clutter, we omit the return-message arrows—the UML allows this practice
to make diagrams more readable. Like communication diagrams, sequence diagrams can
indicate message parameters between the parentheses following a message name.

The sequence of messages in Fig. 12.25 begins when a Withdrawal prompts the user
to choose a withdrawal amount by sending a displayMessage message to the Screen. The
Withdrawal then sends a getInput message to the Keypad, which obtains input from the
user. We’ve already modeled the control logic involved in a Withdrawal in the activity dia-
gram of Fig. 12.15, so we do not show this logic in the sequence diagram of Fig. 12.25.

354 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

Instead, we model the best-case scenario in which the balance of the user’s account is
greater than or equal to the chosen withdrawal amount, and the cash dispenser contains a
sufficient amount of cash to satisfy the request. You can model control logic in a sequence
diagram with UML frames (which are not covered in this case study). For a quick overview
of UML frames, visit www.agilemodeling.com/style/frame.htm.

After obtaining a withdrawal amount, the Withdrawal sends a getAvailableBalance
message to the BankDatabase, which in turn sends a getAvailableBalance message to the
user’s Account. Assuming that the user’s account has enough money available to permit
the transaction, the Withdrawal next sends an isSufficientCashAvailable message to
the CashDispenser. Assuming that there’s enough cash available, the Withdrawal

decreases the balance of the user’s account (i.e., both the totalBalance and the avail-

ableBalance) by sending a debit message to the BankDatabase. The BankDatabase

Fig. 12.25 | Sequence diagram that models a Withdrawal executing.

getAvailableBalance()
getAvailableBalance(accountNumber)

dispenseCash(amount)

: CashDispenser: BankDatabase: Screen

: Account: Keypad: Withdrawal

debit(amount)

isSufficientCashAvailable(amount)

debit(accountNumber, amount)

displayMessage(message)

getInput()

displayMessage(message)

www.agilemodeling.com/style/frame.htm

12.8 Wrap-Up 355

responds by sending a debit message to the user’s Account. Finally, the Withdrawal sends
a dispenseCash message to the CashDispenser and a displayMessage message to the
Screen, telling the user to remove the cash from the machine.

We’ve identified the collaborations among objects in the ATM system and modeled
some of them using UML interaction diagrams—both communication diagrams and
sequence diagrams. In Section 13.2, we enhance the structure of our model to complete a
preliminary object-oriented design, then we begin implementing the ATM system in Java.

Self-Review Exercises for Section 12.7
12.17 A(n) consists of an object of one class sending a message to an object of another class.

12.18 Which form of interaction diagram emphasizes what collaborations occur? Which form em-
phasizes when collaborations occur?

12.19 Create a sequence diagram that models the interactions among objects in the ATM system
that occur when a Deposit executes successfully, and explain the sequence of messages modeled by
the diagram.

12.8 Wrap-Up
In this chapter, you learned how to work from a detailed requirements document to de-
velop an object-oriented design. You worked with six popular types of UML diagrams to
graphically model an object-oriented automated teller machine software system. In
Chapter 13, we tune the design using inheritance, then completely implement the design
in a 673-line Java application.

a) association b) aggregation
c) collaboration d) composition

Answers to Self-Review Exercises
12.1 Figure 12.26 contains a use case diagram for a modified version of our ATM system
that also allows users to transfer money between accounts.

12.2 b.

Fig. 12.26 | Use case diagram for a modified version of our ATM system that also allows
users to transfer money between accounts.

Transfer Funds

Between Accounts

Deposit Funds

Withdraw Cash

View Account Balance

User

356 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

12.3 d.
12.4 [Note: Answers may vary.] Figure 12.27 presents a class diagram that shows some of the
composition relationships of a class Car.
12.5 c. [Note: In a computer network, this relationship could be many-to-many.]
12.6 True.
12.7 Figure 12.28 presents a class diagram for the ATM including class Deposit instead of class
Withdrawal (as in Fig. 12.10). Deposit does not access CashDispenser, but does access DepositSlot.

Fig. 12.27 | Class diagram showing composition relationships of a class Car.

Fig. 12.28 | Class diagram for the ATM system model including class Deposit.

Car

Wheel

Windshield

SeatBeltSteeringWheel
11 5

2

1

1

4

1

Accesses/modifies an

account balance through

Executes

1

1

1

1

1

1

1

1

1 1 1 1

1

0..*

0..1

0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Deposit

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

12.8 Wrap-Up 357

12.8 b.

12.9 c. Fly is an operation or behavior of an airplane, not an attribute.

12.10 This indicates that count is an Integer with an initial value of 500. This attribute keeps
track of the number of bills available in the CashDispenser at any given time.

12.11 False. State diagrams model some of the behavior of a system.

12.12 a.

12.13 Figure 12.29 models the actions that occur after the user chooses the deposit option from
the main menu and before the ATM returns the user to the main menu. Recall that part of receiving
a deposit amount from the user involves converting an integer number of cents to a dollar amount.
Also recall that crediting a deposit amount to an account increases only the totalBalance attribute
of the user’s Account object. The bank updates the availableBalance attribute of the user’s Account
object only after confirming the amount of cash in the deposit envelope and after the enclosed
checks clear—this occurs independently of the ATM system.

Fig. 12.29 | Activity diagram for a deposit transaction.

[user canceled transaction]

[user entered an amount]

[deposit envelope received]

[deposit envelope

not received]

prompt user to enter a deposit amount or cancel

receive input from user

attempt to receive deposit envelope

interact with database to credit amount to user’s account

display message

set amount attribute

instruct user to insert deposit envelope

358 Chapter 12 ATM Case Study, Part 1: Object-Oriented Design with the UML

12.14 c.

12.15 To specify an operation that retrieves the amount attribute of class Withdrawal, the following
operation listing would be placed in the operation (i.e., third) compartment of class Withdrawal:

getAmount() : Double

12.16 This operation listing indicates an operation named add that takes integers x and y as pa-
rameters and returns an integer value.

12.17 c.

12.18 Communication diagrams emphasize what collaborations occur. Sequence diagrams em-
phasize when collaborations occur.

12.19 Figure 12.30 presents a sequence diagram that models the interactions between objects in
the ATM system that occur when a Deposit executes successfully. A Deposit first sends a dis-

playMessage message to the Screen to ask the user to enter a deposit amount. Next the Deposit

sends a getInput message to the Keypad to receive input from the user. The Deposit then instructs
the user to enter a deposit envelope by sending a displayMessage message to the Screen. The De-

posit next sends an isEnvelopeReceived message to the DepositSlot to confirm that the deposit
envelope has been received by the ATM. Finally, the Deposit increases the totalBalance attribute
(but not the availableBalance attribute) of the user’s Account by sending a credit message to the
BankDatabase. The BankDatabase responds by sending the same message to the user’s Account.

Fig. 12.30 | Sequence diagram that models a Deposit executing.

: Account: DepositSlot: Screen

: BankDatabase: Keypad: Deposit

isEnvelopeReceived()

credit(accountNumber, amount)

getinput()

displayMessage(message)

displayMessage(message)

credit(amount)

13
ATM Case Study Part 2:
Implementing an
Object-Oriented Design

O b j e c t i v e s
In this chapter you’ll learn:

� Incorporate inheritance into the design of the ATM.

� Incorporate polymorphism into the design of the ATM.

� Fully implement in Java the UML-based object-oriented
design of the ATM software.

� Study a detailed code walkthrough of the ATM software
system that explains the implementation issues.

You can’t work in the
abstract.
—I. M. Pei

To generalize means to
think.
—Georg Wilhelm Friedrich Hegel

We are all gifted. That is
our inheritance.
—Ethel Waters

Let me walk through the
fields of paper
touching with my wand
dry stems and stunted
butterflies…
—Denise Levertov

360 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

13.1 Introduction
In Chapter 12, we developed an object-oriented design for our ATM system. We now im-
plement our object-oriented design in Java. In Section 13.2, we show how to convert class
diagrams to Java code. In Section 13.3, we tune the design with inheritance and polymor-
phism. Then we present a full Java code implementation of the ATM software in
Section 13.4. The code is carefully commented and the discussions of the implementation
are thorough and precise. Studying this application provides the opportunity for you to
see a more substantial application of the kind you’re likely to encounter in industry.

13.2 Starting to Program the Classes of the ATM System
Visibility
We now apply access modifiers to the members of our classes. We’ve introduced access
modifiers public and private. Access modifiers determine the visibility or accessibility of
an object’s attributes and methods to other objects. Before we can begin implementing our
design, we must consider which attributes and methods of our classes should be public

and which should be private.
We’ve observed that attributes normally should be private and that methods

invoked by clients of a given class should be public. Methods that are called as “utility
methods” only by other methods of the same class normally should be private. The UML
employs visibility markers for modeling the visibility of attributes and operations. Public
visibility is indicated by placing a plus sign (+) before an operation or an attribute, whereas
a minus sign (–) indicates private visibility. Figure 13.1 shows our updated class diagram
with visibility markers included. [Note: We do not include any operation parameters in
Fig. 13.1—this is perfectly normal. Adding visibility markers does not affect the parame-
ters already modeled in the class diagrams of Figs. 12.17–12.21.]

Navigability
Before we begin implementing our design in Java, we introduce an additional UML nota-
tion. The class diagram in Fig. 13.2 further refines the relationships among classes in the
ATM system by adding navigability arrows to the association lines. Navigability arrows
(represented as arrows with stick () arrowheads in the class diagram) indicate in the

13.1 Introduction
13.2 Starting to Program the Classes of the

ATM System
13.3 Incorporating Inheritance and

Polymorphism into the ATM System
13.4 ATM Case Study Implementation

13.4.1 Class ATM
13.4.2 Class Screen
13.4.3 Class Keypad

13.4.4 Class CashDispenser
13.4.5 Class DepositSlot
13.4.6 Class Account
13.4.7 Class BankDatabase
13.4.8 Class Transaction
13.4.9 Class BalanceInquiry

13.4.10 Class Withdrawal
13.4.11 Class Deposit
13.4.12 Class ATMCaseStudy

13.5 Wrap-Up

Answers to Self-Review Exercises

13.2 Starting to Program the Classes of the ATM System 361

direction which an association can be traversed. When implementing a system designed
using the UML, you use navigability arrows to determine which objects need references to
other objects. For example, the navigability arrow pointing from class ATM to class Bank-
Database indicates that we can navigate from the former to the latter, thereby enabling
the ATM to invoke the BankDatabase’s operations. However, since Fig. 13.2 does not con-
tain a navigability arrow pointing from class BankDatabase to class ATM, the BankDatabase
cannot access the ATM’s operations. Associations in a class diagram that have navigability
arrows at both ends or have none at all indicate bidirectional navigability—navigation can
proceed in either direction across the association.

Like the class diagram of Fig. 12.10, that of Fig. 13.2 omits classes BalanceInquiry and
Deposit for simplicity. The navigability of the associations in which these classes participate
closely parallels that of class Withdrawal. Recall from Section 12.3 that BalanceInquiry has
an association with class Screen. We can navigate from class BalanceInquiry to class Screen
along this association, but we cannot navigate from class Screen to class BalanceInquiry.
Thus, if we were to model class BalanceInquiry in Fig. 13.2, we would place a navigability

Fig. 13.1 | Class diagram with visibility markers.

ATM

– userAuthenticated : Boolean = false

BalanceInquiry

– accountNumber : Integer

CashDispenser

– count : Integer = 500

DepositSlot

Screen

Keypad

Withdrawal

– accountNumber : Integer

– amount : Double

BankDatabase

Deposit

– accountNumber : Integer

– amount : Double

+ authenticateUser() : Boolean

+ getAvailableBalance() : Double

+ getTotalBalance() : Double

+ credit()

+ debit()

Account

– accountNumber : Integer

– pin : Integer

– availableBalance : Double

– totalBalance : Double

+ validatePIN() : Boolean

+ getAvailableBalance() : Double

+ getTotalBalance() : Double

+ credit()

+ debit()

+ execute()

+ execute()
+ displayMessage()

+ dispenseCash()

+ isSufficientCashAvailable() : Boolean

+ getinput() : Integer+ execute()

+ isEnvelopeReceived() : Boolean

362 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

arrow at class Screen’s end of this association. Also recall that class Deposit associates with
classes Screen, Keypad and DepositSlot. We can navigate from class Deposit to each of
these classes, but not vice versa. We therefore would place navigability arrows at the Screen,
Keypad and DepositSlot ends of these associations. [Note: We model these additional classes
and associations in our final class diagram in Section 13.3, after we’ve simplified the struc-
ture of our system by incorporating the object-oriented concept of inheritance.]

Implementing the ATM System from Its UML Design
We’re now ready to begin implementing the ATM system. We first convert the classes in
the diagrams of Fig. 13.1 and Fig. 13.2 into Java code. The code will represent the “skel-
eton” of the system. In Section 13.3, we modify the code to incorporate inheritance. In
Section 13.4, we present the complete working Java code for our model.

As an example, we develop the code from our design of class Withdrawal in Fig. 13.1.
We use this figure to determine the attributes and operations of the class. We use the UML
model in Fig. 13.2 to determine the associations among classes. We follow the following
four guidelines for each class:

1. Use the name located in the first compartment to declare the class as a public

class with an empty no-argument constructor. We include this constructor sim-
ply as a placeholder to remind us that most classes will indeed need custom construc-
tors. In Section 13.4, when we complete a working version of this class, we’ll add
arguments and code the body of the constructor as needed. For example, class

Fig. 13.2 | Class diagram with navigability arrows.

Accesses/modifies an

account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

1

0..*

0..11
0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Withdrawal

DepositSlot

ATM

CashDispenser

Screen

Account

BankDatabase

13.2 Starting to Program the Classes of the ATM System 363

Withdrawal yields the code in Fig. 13.3. If we find that the class’s instance vari-
ables require only default initialization, then we’ll remove the empty no-argu-
ment constructor because it’s unnecessary.

2. Use the attributes located in the second compartment to declare the instance vari-
ables. For example, the private attributes accountNumber and amount of class
Withdrawal yield the code in Fig. 13.4. [Note: The constructor of the complete
working version of this class will assign values to these attributes.]

3. Use the associations described in the class diagram to declare the references to
other objects. For example, according to Fig. 13.2, Withdrawal can access one
object of class Screen, one object of class Keypad, one object of class CashDis-
penser and one object of class BankDatabase. This yields the code in Fig. 13.5.
[Note: The constructor of the complete working version of this class will initialize
these instance variables with references to actual objects.]

4. Use the operations located in the third compartment of Fig. 13.1 to declare the
shells of the methods. If we have not yet specified a return type for an operation,
we declare the method with return type void. Refer to the class diagrams of
Figs. 12.17–12.21 to declare any necessary parameters. For example, adding the
public operation execute in class Withdrawal, which has an empty parameter
list, yields the code in Fig. 13.6. [Note: We code the bodies of methods when we
implement the complete system in Section 13.4.]

This concludes our discussion of the basics of generating classes from UML diagrams.

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal
3 {
4 // no-argument constructor
5 public Withdrawal()
6 {
7 } // end no-argument Withdrawal constructor
8 } // end class Withdrawal

Fig. 13.3 | Java code for class Withdrawal based on Figs. 13.1–13.2.

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal
3 {
4 // attributes
5 private int accountNumber; // account to withdraw funds from
6 private double amount; // amount to withdraw
7
8 // no-argument constructor
9 public Withdrawal()

10 {
11 } // end no-argument Withdrawal constructor
12 } // end class Withdrawal

Fig. 13.4 | Java code for class Withdrawal based on Figs. 13.1–13.2.

364 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

Self-Review Exercises for Section 13.2
13.1 State whether the following statement is true or false, and if false, explain why: If an attribute
of a class is marked with a minus sign (-) in a class diagram, the attribute is not directly accessible
outside the class.

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal
3 {
4 // attributes
5 private int accountNumber; // account to withdraw funds from
6 private double amount; // amount to withdraw
7
8 // refere
9 nces to associated objects

10 private Screen screen; // ATM’s screen
11 private Keypad keypad; // ATM’s keypad
12 private CashDispenser cashDispenser; // ATM’s cash dispenser
13 private BankDatabase bankDatabase; // account info database
14
15 // no-argument constructor
16 public Withdrawal()
17 {
18 } // end no-argument Withdrawal constructor
19 } // end class Withdrawal

Fig. 13.5 | Java code for class Withdrawal based on Figs. 13.1–13.2.

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal
3 {
4 // attributes
5 private int accountNumber; // account to withdraw funds from
6 private double amount; // amount to withdraw
7
8 // references to associated objects
9 private Screen screen; // ATM’s screen

10 private Keypad keypad; // ATM’s keypad
11 private CashDispenser cashDispenser; // ATM’s cash dispenser
12 private BankDatabase bankDatabase; // account info database
13
14 // no-argument constructor
15 public Withdrawal()
16 {
17 } // end no-argument Withdrawal constructor
18
19 // operations
20 public void execute()
21 {
22 } // end method execute
23 } // end class Withdrawal

Fig. 13.6 | Java code for class Withdrawal based on Figs. 13.1–13.2.

13.3 Incorporating Inheritance and Polymorphism into the ATM System 365

13.2 In Fig. 13.2, the association between the ATM and the Screen indicates that:
a) we can navigate from the Screen to the ATM

b) we can navigate from the ATM to the Screen

c) Both (a) and (b); the association is bidirectional
d) None of the above

13.3 Write Java code to begin implementing the design for class Keypad.

13.3 Incorporating Inheritance and Polymorphism into
the ATM System
We now revisit our ATM system design to see how it might benefit from inheritance. To
apply inheritance, we first look for commonality among classes in the system. We create an
inheritance hierarchy to model similar (yet not identical) classes in a more elegant and ef-
ficient manner. We then modify our class diagram to incorporate the new inheritance re-
lationships. Finally, we demonstrate how our updated design is translated into Java code.

In Section 12.3, we encountered the problem of representing a financial transaction
in the system. Rather than create one class to represent all transaction types, we decided to
create three individual transaction classes—BalanceInquiry, Withdrawal and Deposit—
to represent the transactions that the ATM system can perform. Figure 13.7 shows the
attributes and operations of classes BalanceInquiry, Withdrawal and Deposit. These
classes have one attribute (accountNumber) and one operation (execute) in common.
Each class requires attribute accountNumber to specify the account to which the transac-
tion applies. Each class contains operation execute, which the ATM invokes to perform the
transaction. Clearly, BalanceInquiry, Withdrawal and Deposit represent types of transac-
tions. Figure 13.7 reveals commonality among the transaction classes, so using inheritance
to factor out the common features seems appropriate for designing classes BalanceIn-

quiry, Withdrawal and Deposit. We place the common functionality in a superclass,
Transaction, that classes BalanceInquiry, Withdrawal and Deposit extend.

Generalization
The UML specifies a relationship called a generalization to model inheritance.
Figure 13.8 is the class diagram that models the generalization of superclass Transaction
and subclasses BalanceInquiry, Withdrawal and Deposit. The arrows with triangular
hollow arrowheads indicate that classes BalanceInquiry, Withdrawal and Deposit extend

Fig. 13.7 | Attributes and operations of BalanceInquiry, Withdrawal and Deposit.

BalanceInquiry

- accountNumber : Integer

Withdrawal

- accountNumber : Integer

- amount : Double

Deposit

- accountNumber : Integer

- amount : Double

+ execute()

+ execute() + execute()

366 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

class Transaction. Class Transaction is said to be a generalization of classes BalanceIn-
quiry, Withdrawal and Deposit. Class BalanceInquiry, Withdrawal and Deposit are
said to be specializations of class Transaction.

Classes BalanceInquiry, Withdrawal and Deposit share integer attribute account-

Number, so we factor out this common attribute and place it in superclass Transaction. We
no longer list accountNumber in the second compartment of each subclass, because the
three subclasses inherit this attribute from Transaction. Recall, however, that subclasses
cannot directly access private attributes of a superclass. We therefore include public

method getAccountNumber in class Transaction. Each subclass will inherit this method,
enabling the subclass to access its accountNumber as needed to execute a transaction.

According to Fig. 13.7, classes BalanceInquiry, Withdrawal and Deposit also share
operation execute, so we placed public method execute in superclass Transaction.
However, it does not make sense to implement execute in class Transaction, because the
functionality that this method provides depends on the type of the actual transaction. We
therefore declare method execute as abstract in superclass Transaction. Any class that
contains at least one abstract method must also be declared abstract. This forces any sub-
class of Transaction that must be a concrete class (i.e., BalanceInquiry, Withdrawal and
Deposit) to implement method execute. The UML requires that we place abstract class
names (and abstract methods) in italics, so Transaction and its method execute appear
in italics in Fig. 13.8. Method execute is not italicized in subclasses BalanceInquiry,
Withdrawal and Deposit. Each subclass overrides superclass Transaction’s execute

method with a concrete implementation that performs the steps appropriate for com-
pleting that type of transaction. Figure 13.8 includes operation execute in the third com-
partment of classes BalanceInquiry, Withdrawal and Deposit, because each class has a
different concrete implementation of the overridden method.

Processing Transactions Polymorphically
Polymorphism provides the ATM with an elegant way to execute all transactions “in the gen-
eral.” For example, suppose a user chooses to perform a balance inquiry. The ATM sets a

Fig. 13.8 | Class diagram modeling generalization of superclass Transaction and
subclasses BalanceInquiry, Withdrawal and Deposit. Abstract class names (e.g.,
Transaction) and method names (e.g., execute in class Transaction) appear in italics.

Transaction

– accountNumber : Integer

+ getAccountNumber()

+ execute()

BalanceInquiry

+ execute()

Withdrawal

+ execute()

– amount : Double

Deposit

+ execute()

– amount : Double

13.3 Incorporating Inheritance and Polymorphism into the ATM System 367

Transaction reference to a new BalanceInquiry object. When the ATM uses its Transac-
tion reference to invoke method execute, BalanceInquiry’s version of execute is called.

This polymorphic approach also makes the system easily extensible. Should we wish to
create a new transaction type (e.g., funds transfer or bill payment), we would just create
an additional Transaction subclass that overrides the execute method with a version of
the method appropriate for executing the new transaction type. We would need to make
only minimal changes to the system code to allow users to choose the new transaction type
from the main menu and for the ATM to instantiate and execute objects of the new subclass.
The ATM could execute transactions of the new type using the current code, because it exe-
cutes all transactions polymorphically using a general Transaction reference.

Recall that an abstract class like Transaction is one for which you never intend to
instantiate objects. An abstract class simply declares common attributes and behaviors of
its subclasses in an inheritance hierarchy. Class Transaction defines the concept of what
it means to be a transaction that has an account number and executes. You may wonder
why we bother to include abstract method execute in class Transaction if it lacks a con-
crete implementation. Conceptually, we include it because it corresponds to the defining
behavior of all transactions—executing. Technically, we must include method execute in
superclass Transaction so that the ATM (or any other class) can polymorphically invoke
each subclass’s overridden version of this method through a Transaction reference. Also,
from a software engineering perspective, including an abstract method in a superclass
forces the implementor of the subclasses to override that method with concrete implemen-
tations in the subclasses, or else the subclasses, too, will be abstract, preventing objects of
those subclasses from being instantiated.

Additional Attribute of Classes Withdrawal and Deposit

Subclasses BalanceInquiry, Withdrawal and Deposit inherit attribute accountNumber

from superclass Transaction, but classes Withdrawal and Deposit contain the additional
attribute amount that distinguishes them from class BalanceInquiry. Classes Withdrawal
and Deposit require this additional attribute to store the amount of money that the user
wishes to withdraw or deposit. Class BalanceInquiry has no need for such an attribute
and requires only an account number to execute. Even though two of the three Transac-

tion subclasses share this attribute, we do not place it in superclass Transaction—we
place only features common to all the subclasses in the superclass, otherwise subclasses
could inherit attributes (and methods) that they do not need and should not have.

Class Diagram with Transaction Hierarchy Incorporated
Figure 13.9 presents an updated class diagram of our model that incorporates inheritance
and introduces class Transaction. We model an association between class ATM and class
Transaction to show that the ATM, at any given moment, either is executing a transaction
or is not (i.e., zero or one objects of type Transaction exist in the system at a time). Be-
cause a Withdrawal is a type of Transaction, we no longer draw an association line direct-
ly between class ATM and class Withdrawal. Subclass Withdrawal inherits superclass
Transaction’s association with class ATM. Subclasses BalanceInquiry and Deposit inherit
this association, too, so the previously omitted associations between ATM and classes Bal-
anceInquiry and Deposit no longer exist either.

368 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

We also add an association between class Transaction and the BankDatabase

(Fig. 13.9). All Transactions require a reference to the BankDatabase so they can access
and modify account information. Because each Transaction subclass inherits this refer-
ence, we no longer model the association between class Withdrawal and the BankData-

base. Similarly, the previously omitted associations between the BankDatabase and classes
BalanceInquiry and Deposit no longer exist.

We show an association between class Transaction and the Screen. All Transactions
display output to the user via the Screen. Thus, we no longer include the association pre-
viously modeled between Withdrawal and the Screen, although Withdrawal still partici-
pates in associations with the CashDispenser and the Keypad. Our class diagram
incorporating inheritance also models Deposit and BalanceInquiry. We show associa-
tions between Deposit and both the DepositSlot and the Keypad. Class BalanceInquiry
takes part in no associations other than those inherited from class Transaction—a
BalanceInquiry needs to interact only with the BankDatabase and with the Screen.

Figure 13.1 showed attributes and operations with visibility markers. Now in
Fig. 13.10 we present a modified class diagram that incorporates inheritance. This abbre-
viated diagram does not show inheritance relationships, but instead shows the attributes
and methods after we’ve employed inheritance in our system. To save space, as we did in

Fig. 13.9 | Class diagram of the ATM system (incorporating inheritance). The abstract class
name Transaction appears in italics.

Accesses/modifies an

account balance through

Executes

1

1

1

1 1

1

1

1

1

1 1 1 1

11

1

0..*

0..11

0..1

0..1 0..1

0..1 0..10..1

1
Contains

Authenticates user against

Keypad

Transaction

BalanceInquiry

Withdrawal
DepositSlot

ATM

CashDispenser

Screen

Deposit

Account

BankDatabase

13.3 Incorporating Inheritance and Polymorphism into the ATM System 369

Fig. 12.12, we do not include those attributes shown by associations in Fig. 13.9—we do,
however, include them in the Java implementation in Section 13.4. We also omit all oper-
ation parameters, as we did in Fig. 13.1—incorporating inheritance does not affect the
parameters already modeled in Figs. 12.17–12.21.

Software Engineering Observation 13.1
A complete class diagram shows all the associations among classes and all the attributes
and operations for each class. When the number of class attributes, methods and
associations is substantial (as in Figs. 13.9 and 13.10), a good practice that promotes
readability is to divide this information between two class diagrams—one focusing on
associations and the other on attributes and methods.

Fig. 13.10 | Class diagram with attributes and operations (incorporating inheritance). The
abstract class name Transaction and the abstract method name execute in class
Transaction appear in italics.

ATM

– userAuthenticated : Boolean = false

BalanceInquiry

CashDispenser

– count : Integer = 500

DepositSlot

Screen

Keypad
Withdrawal

– amount : Double

BankDatabase

Deposit

– amount : Double

+ authenticateUser() : Boolean

+ getAvailableBalance() : Double

+ getTotalBalance() : Double

+ credit()

+ debit()

Account

– accountNumber : Integer

– pin : Integer

– availableBalance : Double

– totalBalance : Double

+ validatePIN() : Boolean

+ getAvailableBalance() : Double

+ getTotalBalance() : Double

+ credit()

+ debit()

+ execute()

Transaction

– accountNumber : Integer

+ getAccountNumber()

+ execute()

+ execute()

+ displayMessage()

+ dispenseCash()

+ isSufficientCashAvailable() : Boolean

+ getinput() : Integer

+ execute()

+ isEnvelopeReceived() : Boolean

370 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

Implementing the ATM System Design (Incorporating Inheritance)
In Section 13.2, we began implementing the ATM system design in Java code. We now
modify our implementation to incorporate inheritance, using class Withdrawal as an ex-
ample.

1. If a class A is a generalization of class B, then class B extends class A in the class
declaration. For example, abstract superclass Transaction is a generalization of
class Withdrawal. Figure 13.11 shows the declaration of class Withdrawal.

2. If class A is an abstract class and class B is a subclass of class A, then class B must im-
plement the abstract methods of class A if class B is to be a concrete class. For example,
class Transaction contains abstract method execute, so class Withdrawal must
implement this method if we want to instantiate a Withdrawal object. Figure 13.12
is the Java code for class Withdrawal from Fig. 13.9 and Fig. 13.10. Class With-
drawal inherits field accountNumber from superclass Transaction, so Withdrawal

does not need to declare this field. Class Withdrawal also inherits references to the
Screen and the BankDatabase from its superclass Transaction, so we do not in-
clude these references in our code. Figure 13.10 specifies attribute amount and op-
eration execute for class Withdrawal. Line 6 of Fig. 13.12 declares a field for
attribute amount. Lines 16–19 declare the shell of a method for operation execute.
Recall that subclass Withdrawal must provide a concrete implementation of the
abstract method execute in superclass Transaction. The keypad and cashDis-

penser references (lines 7–8) are fields derived from Withdrawal’s associations in
Fig. 13.9. The constructor in the complete working version of this class will ini-
tialize these references to actual objects.

1 // Class Withdrawal represents an ATM withdrawal transaction
2 public class Withdrawal extends Transaction
3 {
4 } // end class Withdrawal

Fig. 13.11 | Java code for shell of class Withdrawal.

1 // Withdrawal.java
2 // Generated using the class diagrams in Fig. 13.9 and Fig. 13.10
3 public class Withdrawal extends Transaction
4 {
5 // attributes
6 private double amount; // amount to withdraw
7 private Keypad keypad; // reference to keypad
8 private CashDispenser cashDispenser; // reference to cash dispenser
9

10 // no-argument constructor
11 public Withdrawal()
12 {
13 } // end no-argument Withdrawal constructor
14

Fig. 13.12 | Java code for class Withdrawal based on Figs. 13.9 and 13.10. (Part 1 of 2.)

Self-Review Exercises for Section 13.3 371

Congratulations on completing the case study’s design portion! We implement the
ATM system in Java code in Section 13.4. We recommend that you carefully read the
code and its description. The code is abundantly commented and precisely follows the
design with which you’re now familiar. The accompanying description is carefully written
to guide your understanding of the implementation based on the UML design. Mastering
this code is a wonderful culminating accomplishment after studying Sections 12.2–12.7
and 13.2–13.3.

Self-Review Exercises for Section 13.3
13.4 The UML uses an arrow with a to indicate a generalization relationship.

a) solid filled arrowhead
b) triangular hollow arrowhead
c) diamond-shaped hollow arrowhead
d) stick arrowhead

13.5 State whether the following statement is true or false, and if false, explain why: The UML
requires that we underline abstract class names and method names.

13.6 Write Java code to begin implementing the design for class Transaction specified in
Figs. 13.9 and 13.10. Be sure to include private reference-type attributes based on class Transac-
tion’s associations. Also be sure to include public get methods that provide access to any of these
private attributes that the subclasses require to perform their tasks.

13.4 ATM Case Study Implementation
This section contains the complete working 673-line implementation of the ATM system.
We consider the classes in the order in which we identified them in Section 12.3—ATM,
Screen, Keypad, CashDispenser, DepositSlot, Account, BankDatabase, Transaction,
BalanceInquiry, Withdrawal and Deposit.

We apply the guidelines discussed in Sections 13.2–13.3 to code these classes based
on how we modeled them in the UML class diagrams of Figs. 13.9 and 13.10. To develop
the bodies of class methods, we refer to the activity diagrams in Section 12.5 and the com-
munication and sequence diagrams presented in Section 12.7. Our ATM design does not
specify all the program logic and may not specify all the attributes and operations required
to complete the ATM implementation. This is a normal part of the object-oriented design

15 // method overriding execute
16 @Override
17 public void execute()
18 {
19 } // end method execute
20 } // end class Withdrawal

Software Engineering Observation 13.2
Several UML modeling tools can convert UML-based designs into Java code, speeding the
implementation process considerably. For more information on these tools, visit our UML
Resource Center at www.deitel.com/UML/.

Fig. 13.12 | Java code for class Withdrawal based on Figs. 13.9 and 13.10. (Part 2 of 2.)

www.deitel.com/UML/

372 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

process. As we implement the system, we complete the program logic and add attributes
and behaviors as necessary to construct the ATM system specified by the requirements
document in Section 12.2.

We conclude the discussion by presenting a Java application (ATMCaseStudy) that
starts the ATM and puts the other classes in the system in use. Recall that we’re developing
a first version of the ATM system that runs on a personal computer and uses the com-
puter’s keyboard and monitor to approximate the ATM’s keypad and screen. We also sim-
ulate only the actions of the ATM’s cash dispenser and deposit slot. We attempt to
implement the system, however, so that real hardware versions of these devices could be
integrated without significant changes in the code.

13.4.1 Class ATM
Class ATM (Fig. 13.13) represents the ATM as a whole. Lines 6–12 implement the class’s
attributes. We determine all but one of these attributes from the UML class diagrams of
Figs. 13.9 and 13.10. We implement the UML Boolean attribute userAuthenticated in
Fig. 13.10 as a boolean in Java (line 6). Line 7 declares an attribute not found in our UML
design—an int attribute currentAccountNumber that keeps track of the account number
of the current authenticated user. We’ll soon see how the class uses this attribute. Lines 8–
12 declare reference-type attributes corresponding to the ATM class’s associations modeled
in the class diagram of Fig. 13.9. These attributes allow the ATM to access its parts (i.e.,
its Screen, Keypad, CashDispenser and DepositSlot) and interact with the bank’s ac-
count-information database (i.e., a BankDatabase object).

1 // ATM.java
2 // Represents an automated teller machine
3
4 public class ATM
5 {
6 private boolean userAuthenticated; // whether user is authenticated
7 private int currentAccountNumber; // current user's account number
8 private Screen screen; // ATM's screen
9 private Keypad keypad; // ATM's keypad

10 private CashDispenser cashDispenser; // ATM's cash dispenser
11 private DepositSlot depositSlot; // ATM's deposit slot
12 private BankDatabase bankDatabase; // account information database
13
14 // constants corresponding to main menu options
15 private static final int BALANCE_INQUIRY = 1;
16 private static final int WITHDRAWAL = 2;
17 private static final int DEPOSIT = 3;
18 private static final int EXIT = 4;
19
20 // no-argument ATM constructor initializes instance variables
21 public ATM()
22 {
23 userAuthenticated = false; // user is not authenticated to start
24 currentAccountNumber = 0; // no current account number to start
25 screen = new Screen(); // create screen

Fig. 13.13 | Class ATM represents the ATM. (Part 1 of 4.)

13.4 ATM Case Study Implementation 373

26 keypad = new Keypad(); // create keypad
27 cashDispenser = new CashDispenser(); // create cash dispenser
28 depositSlot = new DepositSlot(); // create deposit slot
29 bankDatabase = new BankDatabase(); // create acct info database
30 } // end no-argument ATM constructor
31
32 // start ATM
33 public void run()
34 {
35 // welcome and authenticate user; perform transactions
36 while (true)
37 {
38 // loop while user is not yet authenticated
39 while (!userAuthenticated)
40 {
41 screen.displayMessageLine("\nWelcome!");
42 authenticateUser(); // authenticate user
43 } // end while
44
45 performTransactions(); // user is now authenticated
46 userAuthenticated = false; // reset before next ATM session
47 currentAccountNumber = 0; // reset before next ATM session
48 screen.displayMessageLine("\nThank you! Goodbye!");
49 } // end while
50 } // end method run
51
52 // attempts to authenticate user against database
53 private void authenticateUser()
54 {
55 screen.displayMessage("\nPlease enter your account number: ");
56 int accountNumber = keypad.getInput(); // input account number
57 screen.displayMessage("\nEnter your PIN: "); // prompt for PIN
58 int pin = keypad.getInput(); // input PIN
59
60 // set userAuthenticated to boolean value returned by database
61 userAuthenticated =
62 bankDatabase.authenticateUser(accountNumber, pin);
63
64 // check whether authentication succeeded
65 if (userAuthenticated)
66 {
67 currentAccountNumber = accountNumber; // save user's account #
68 } // end if
69 else

70 screen.displayMessageLine(
71 "Invalid account number or PIN. Please try again.");
72 } // end method authenticateUser
73
74 // display the main menu and perform transactions
75 private void performTransactions()
76 {
77 // local variable to store transaction currently being processed
78 Transaction currentTransaction = null;

Fig. 13.13 | Class ATM represents the ATM. (Part 2 of 4.)

374 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

79
80 boolean userExited = false; // user has not chosen to exit
81
82 // loop while user has not chosen option to exit system
83 while (!userExited)
84 {
85 // show main menu and get user selection
86 int mainMenuSelection = displayMainMenu();
87
88 // decide how to proceed based on user's menu selection
89 switch (mainMenuSelection)
90 {
91 // user chose to perform one of three transaction types
92 case BALANCE_INQUIRY:
93 case WITHDRAWAL:
94 case DEPOSIT:
95
96 // initialize as new object of chosen type
97 currentTransaction =
98 createTransaction(mainMenuSelection);
99
100 currentTransaction.execute(); // execute transaction
101 break;
102 case EXIT: // user chose to terminate session
103 screen.displayMessageLine("\nExiting the system...");
104 userExited = true; // this ATM session should end
105 break;
106 default: // user did not enter an integer from 1-4
107 screen.displayMessageLine(
108 "\nYou did not enter a valid selection. Try again.");
109 break;
110 } // end switch
111 } // end while
112 } // end method performTransactions
113
114 // display the main menu and return an input selection
115 private int displayMainMenu()
116 {
117 screen.displayMessageLine("\nMain menu:");
118 screen.displayMessageLine("1 - View my balance");
119 screen.displayMessageLine("2 - Withdraw cash");
120 screen.displayMessageLine("3 - Deposit funds");
121 screen.displayMessageLine("4 - Exit\n");
122 screen.displayMessage("Enter a choice: ");
123 return keypad.getInput(); // return user's selection
124 } // end method displayMainMenu
125
126 // return object of specified Transaction subclass
127 private Transaction createTransaction(int type)
128 {
129 Transaction temp = null; // temporary Transaction variable
130

Fig. 13.13 | Class ATM represents the ATM. (Part 3 of 4.)

13.4 ATM Case Study Implementation 375

Lines 15–18 declare integer constants that correspond to the four options in the
ATM’s main menu (i.e., balance inquiry, withdrawal, deposit and exit). Lines 21–30
declare the constructor, which initializes the class’s attributes. When an ATM object is first
created, no user is authenticated, so line 23 initializes userAuthenticated to false. Like-
wise, line 24 initializes currentAccountNumber to 0 because there’s no current user yet.
Lines 25–28 instantiate new objects to represent the ATM’s parts. Recall that class ATM has
composition relationships with classes Screen, Keypad, CashDispenser and DepositSlot,
so class ATM is responsible for their creation. Line 29 creates a new BankDatabase. [Note:
If this were a real ATM system, the ATM class would receive a reference to an existing data-
base object created by the bank. However, in this implementation we’re only simulating
the bank’s database, so class ATM creates the BankDatabase object with which it interacts.]

ATM Method run

The class diagram of Fig. 13.10 does not list any operations for class ATM. We now imple-
ment one operation (i.e., public method) in class ATM that allows an external client of the
class (i.e., class ATMCaseStudy) to tell the ATM to run. ATM method run (lines 33–50) uses
an infinite loop (lines 36–49) to repeatedly welcome a user, attempt to authenticate the
user and, if authentication succeeds, allow the user to perform transactions. After an au-
thenticated user performs the desired transactions and chooses to exit, the ATM resets it-
self, displays a goodbye message to the user and restarts the process. We use an infinite loop
here to simulate the fact that an ATM appears to run continuously until the bank turns it
off (an action beyond the user’s control). An ATM user has the option to exit the system
but not the ability to turn off the ATM completely.

Authenticating a User
In method run’s infinite loop, lines 39–43 cause the ATM to repeatedly welcome and at-
tempt to authenticate the user as long as the user has not been authenticated (i.e., !user-

131 // determine which type of Transaction to create
132 switch (type)
133 {
134 case BALANCE_INQUIRY: // create new BalanceInquiry transaction
135 temp = new BalanceInquiry(
136 currentAccountNumber, screen, bankDatabase);
137 break;
138 case WITHDRAWAL: // create new Withdrawal transaction
139 temp = new Withdrawal(currentAccountNumber, screen,
140 bankDatabase, keypad, cashDispenser);
141 break;
142 case DEPOSIT: // create new Deposit transaction
143 temp = new Deposit(currentAccountNumber, screen,
144 bankDatabase, keypad, depositSlot);
145 break;
146 } // end switch
147
148 return temp; // return the newly created object
149 } // end method createTransaction
150 } // end class ATM

Fig. 13.13 | Class ATM represents the ATM. (Part 4 of 4.)

376 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

Authenticated is true). Line 41 invokes method displayMessageLine of the ATM’s
screen to display a welcome message. Like Screen method displayMessage designed in
the case study, method displayMessageLine (declared in lines 13–16 of Fig. 13.14) dis-
plays a message to the user, but this method also outputs a newline after the message.
We’ve added this method during implementation to give class Screen’s clients more con-
trol over the placement of displayed messages. Line 42 invokes class ATM’s private utility
method authenticateUser (declared in lines 53–72) to attempt to authenticate the user.

We refer to the requirements document to determine the steps necessary to authenti-
cate the user before allowing transactions to occur. Line 55 of method authenticateUser

invokes method displayMessage of the screen to prompt the user to enter an account
number. Line 56 invokes method getInput of the keypad to obtain the user’s input, then
stores the integer value entered by the user in a local variable accountNumber. Method
authenticateUser next prompts the user to enter a PIN (line 57), and stores the PIN
input by the user in a local variable pin (line 58). Next, lines 61–62 attempt to authenti-
cate the user by passing the accountNumber and pin entered by the user to the bankData-
base’s authenticateUser method. Class ATM sets its userAuthenticated attribute to the
boolean value returned by this method—userAuthenticated becomes true if authenti-
cation succeeds (i.e., accountNumber and pin match those of an existing Account in bank-

Database) and remains false otherwise. If userAuthenticated is true, line 67 saves the
account number entered by the user (i.e., accountNumber) in the ATM attribute current-
AccountNumber. The other ATM methods use this variable whenever an ATM session
requires access to the user’s account number. If userAuthenticated is false, lines 70–71
use the screen’s displayMessageLine method to indicate that an invalid account number
and/or PIN was entered and the user must try again. We set currentAccountNumber only
after authenticating the user’s account number and the associated PIN—if the database
could not authenticate the user, currentAccountNumber remains 0.

After method run attempts to authenticate the user (line 42), if userAuthenticated
is still false, the while loop in lines 39–43 executes again. If userAuthenticated is now
true, the loop terminates and control continues with line 45, which calls class ATM’s utility
method performTransactions.

Performing Transactions
Method performTransactions (lines 75–112) carries out an ATM session for an authenti-
cated user. Line 78 declares a local Transaction variable to which we’ll assign a BalanceIn-
quiry, Withdrawal or Deposit object representing the ATM transaction the user selected.
We use a Transaction variable here to allow us to take advantage of polymorphism. Also,
we name this variable after the role name included in the class diagram of Fig. 12.7—cur-

rentTransaction. Line 80 declares another local variable—a boolean called userExited

that keeps track of whether the user has chosen to exit. This variable controls a while loop
(lines 83–111) that allows the user to execute an unlimited number of transactions before
choosing to exit. Within this loop, line 86 displays the main menu and obtains the user’s
menu selection by calling an ATM utility method displayMainMenu (declared in lines 115–
124). This method displays the main menu by invoking methods of the ATM’s screen and
returns a menu selection obtained from the user through the ATM’s keypad. Line 86 stores the
user’s selection returned by displayMainMenu in local variable mainMenuSelection.

After obtaining a main menu selection, method performTransactions uses a switch

statement (lines 89–110) to respond to the selection appropriately. If mainMenuSelection

13.4 ATM Case Study Implementation 377

is equal to any of the three integer constants representing transaction types (i.e., if the user
chose to perform a transaction), lines 97–98 call utility method createTransaction

(declared in lines 127–149) to return a newly instantiated object of the type that corre-
sponds to the selected transaction. Variable currentTransaction is assigned the reference
returned by createTransaction, then line 100 invokes method execute of this transac-
tion to execute it. We’ll discuss Transaction method execute and the three Transaction
subclasses shortly. We assign the Transaction variable currentTransaction an object of
one of the three Transaction subclasses so that we can execute transactions polymorphi-
cally. For example, if the user chooses to perform a balance inquiry, mainMenuSelection
equals BALANCE_INQUIRY, leading createTransaction to return a BalanceInquiry object.
Thus, currentTransaction refers to a BalanceInquiry, and invoking currentTransac-

tion.execute() results in BalanceInquiry’s version of execute being called.

Creating a Transaction
Method createTransaction (lines 127–149) uses a switch statement (lines 132–146) to
instantiate a new Transaction subclass object of the type indicated by the parameter type.
Recall that method performTransactions passes mainMenuSelection to this method only
when mainMenuSelection contains a value corresponding to one of the three transaction
types. Therefore type is BALANCE_INQUIRY, WITHDRAWAL or DEPOSIT. Each case in the
switch statement instantiates a new object by calling the appropriate Transaction sub-
class constructor. Each constructor has a unique parameter list, based on the specific data
required to initialize the subclass object. A BalanceInquiry requires only the account
number of the current user and references to the ATM’s screen and the bankDatabase. In
addition to these parameters, a Withdrawal requires references to the ATM’s keypad and
cashDispenser, and a Deposit requires references to the ATM’s keypad and depositSlot.
We discuss the transaction classes in more detail in Sections 13.4.8–13.4.11.

Exiting the Main Menu and Processing Invalid Selections
After executing a transaction (line 100 in performTransactions), userExited remains
false and lines 83–111 repeat, returning the user to the main menu. However, if a user
does not perform a transaction and instead selects the main menu option to exit, line 104
sets userExited to true, causing the condition of the while loop (!userExited) to be-
come false. This while is the final statement of method performTransactions, so con-
trol returns to the calling method run. If the user enters an invalid main menu selection
(i.e., not an integer from 1–4), lines 107–108 display an appropriate error message, user-
Exited remains false and the user returns to the main menu to try again.

Awaiting the Next ATM User
When performTransactions returns control to method run, the user has chosen to exit
the system, so lines 46–47 reset the ATM’s attributes userAuthenticated and current-

AccountNumber to prepare for the next ATM user. Line 48 displays a goodbye message be-
fore the ATM starts over and welcomes the next user.

13.4.2 Class Screen
Class Screen (Fig. 13.14) represents the screen of the ATM and encapsulates all aspects of
displaying output to the user. Class Screen approximates a real ATM’s screen with a com-
puter monitor and outputs text messages using standard console output methods

378 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

System.out.print, System.out.println and System.out.printf. In this case study, we
designed class Screen to have one operation—displayMessage. For greater flexibility in
displaying messages to the Screen, we now declare three Screen methods—displayMes-

sage, displayMessageLine and displayDollarAmount.

Method displayMessage (lines 7–10) takes a String argument and prints it to the
console. The cursor stays on the same line, making this method appropriate for displaying
prompts to the user. Method displayMessageLine (lines 13–16) does the same using
System.out.println, which outputs a newline to move the cursor to the next line.
Finally, method displayDollarAmount (lines 19–22) outputs a properly formatted dollar
amount (e.g., $1,234.56). Line 21 uses System.out.printf to output a double value for-
matted with commas to increase readability and two decimal places.

13.4.3 Class Keypad
Class Keypad (Fig. 13.15) represents the keypad of the ATM and is responsible for receiv-
ing all user input. Recall that we’re simulating this hardware, so we use the computer’s key-
board to approximate the keypad. We use class Scanner to obtain console input from the
user. A computer keyboard contains many keys not found on the ATM’s keypad. Howev-
er, we assume that the user presses only the keys on the computer keyboard that also appear
on the keypad—the keys numbered 0–9 and the Enter key.

Line 3 of class Keypad imports class Scanner for use in class Keypad. Line 7 declares
Scanner variable input as an instance variable. Line 12 in the constructor creates a new
Scanner object that reads input from the standard input stream (System.in) and assigns the
object’s reference to variable input. Method getInput (lines 16–19) invokes Scanner

1 // Screen.java
2 // Represents the screen of the ATM
3
4 public class Screen
5 {
6 // display a message without a carriage return
7 public void displayMessage(String message)
8 {
9 System.out.print(message);

10 } // end method displayMessage
11
12 // display a message with a carriage return
13 public void displayMessageLine(String message)
14 {
15 System.out.println(message);
16 } // end method displayMessageLine
17
18 // displays a dollar amount
19 public void displayDollarAmount(double amount)
20 {
21 System.out.printf("$%,.2f", amount);
22 } // end method displayDollarAmount
23 } // end class Screen

Fig. 13.14 | Class Screen represents the screen of the ATM.

13.4 ATM Case Study Implementation 379

method nextInt (line 18) to return the next integer input by the user. [Note: Method
nextInt can throw an InputMismatchException if the user enters non-integer input.
Because the real ATM’s keypad permits only integer input, we assume that no exception will
occur and do not attempt to fix this problem. See Chapter 11, Exception Handling: A
Deeper Look, for information on catching exceptions.] Recall that nextInt obtains all the
input used by the ATM. Keypad’s getInput method simply returns the integer input by the
user. If a client of class Keypad requires input that satisfies some criteria (i.e., a number cor-
responding to a valid menu option), the client must perform the error checking.

13.4.4 Class CashDispenser
Class CashDispenser (Fig. 13.16) represents the cash dispenser of the ATM. Line 7 de-
clares constant INITIAL_COUNT, which indicates the initial count of bills in the cash dis-
penser when the ATM starts (i.e., 500). Line 8 implements attribute count (modeled in
Fig. 13.10), which keeps track of the number of bills remaining in the CashDispenser at
any time. The constructor (lines 11–14) sets count to the initial count. CashDispenser
has two public methods—dispenseCash (lines 17–21) and isSufficientCashAvail-

able (lines 24–32). The class trusts that a client (i.e., Withdrawal) calls dispenseCash

only after establishing that sufficient cash is available by calling isSufficientCashAvail-

able. Thus, dispenseCash simply simulates dispensing the requested amount without
checking whether sufficient cash is available.

1 // Keypad.java
2 // Represents the keypad of the ATM
3 import java.util.Scanner; // program uses Scanner to obtain user input
4
5 public class Keypad
6 {
7 private Scanner input; // reads data from the command line
8
9 // no-argument constructor initializes the Scanner

10 public Keypad()
11 {
12 input = new Scanner(System.in);
13 } // end no-argument Keypad constructor
14
15 // return an integer value entered by user
16 public int getInput()
17 {
18 return input.nextInt(); // we assume that user enters an integer
19 } // end method getInput
20 } // end class Keypad

Fig. 13.15 | Class Keypad represents the ATM’s keypad.

1 // CashDispenser.java
2 // Represents the cash dispenser of the ATM
3

Fig. 13.16 | Class CashDispenser represents the ATM’s cash dispenser. (Part 1 of 2.)

380 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

Method isSufficientCashAvailable (lines 24–32) has a parameter amount that
specifies the amount of cash in question. Line 26 calculates the number of $20 bills
required to dispense the specified amount. The ATM allows the user to choose only with-
drawal amounts that are multiples of $20, so we divide amount by 20 to obtain the number
of billsRequired. Lines 28–31 return true if the CashDispenser’s count is greater than
or equal to billsRequired (i.e., enough bills are available) and false otherwise (i.e., not
enough bills). For example, if a user wishes to withdraw $80 (i.e., billsRequired is 4),
but only three bills remain (i.e., count is 3), the method returns false.

Method dispenseCash (lines 17–21) simulates cash dispensing. If our system were
hooked up to a real hardware cash dispenser, this method would interact with the device
to physically dispense cash. Our version of the method simply decreases the count of bills
remaining by the number required to dispense the specified amount (line 20). It’s the
responsibility of the client of the class (i.e., Withdrawal) to inform the user that cash has
been dispensed—CashDispenser cannot interact directly with Screen.

13.4.5 Class DepositSlot
Class DepositSlot (Fig. 13.17) represents the ATM’s deposit slot. Like class CashDis-

penser, class DepositSlot merely simulates the functionality of a real hardware deposit

4 public class CashDispenser
5 {
6 // the default initial number of bills in the cash dispenser
7 private final static int INITIAL_COUNT = 500;
8 private int count; // number of $20 bills remaining
9

10 // no-argument CashDispenser constructor initializes count to default
11 public CashDispenser()
12 {
13 count = INITIAL_COUNT; // set count attribute to default
14 } // end CashDispenser constructor
15
16 // simulates dispensing of specified amount of cash
17 public void dispenseCash(int amount)
18 {
19 int billsRequired = amount / 20; // number of $20 bills required
20 count -= billsRequired; // update the count of bills
21 } // end method dispenseCash
22
23 // indicates whether cash dispenser can dispense desired amount
24 public boolean isSufficientCashAvailable(int amount)
25 {
26 int billsRequired = amount / 20; // number of $20 bills required
27
28 if (count >= billsRequired)
29 return true; // enough bills available
30 else

31 return false; // not enough bills available
32 } // end method isSufficientCashAvailable
33 } // end class CashDispenser

Fig. 13.16 | Class CashDispenser represents the ATM’s cash dispenser. (Part 2 of 2.)

13.4 ATM Case Study Implementation 381

slot. DepositSlot has no attributes and only one method—isEnvelopeReceived (lines 8–
11)—which indicates whether a deposit envelope was received.

Recall from the requirements document that the ATM allows the user up to two min-
utes to insert an envelope. The current version of method isEnvelopeReceived simply
returns true immediately (line 10), because this is only a software simulation, and we
assume that the user has inserted an envelope within the required time frame. If an actual
hardware deposit slot were connected to our system, method isEnvelopeReceived might
be implemented to wait for a maximum of two minutes to receive a signal from the hard-
ware deposit slot indicating that the user has indeed inserted a deposit envelope. If
isEnvelopeReceived were to receive such a signal within two minutes, the method would
return true. If two minutes elapsed and the method still had not received a signal, then
the method would return false.

13.4.6 Class Account
Class Account (Fig. 13.18) represents a bank account. Each Account has four attributes
(modeled in Fig. 13.10)—accountNumber, pin, availableBalance and totalBalance.
Lines 6–9 implement these attributes as private fields. Variable availableBalance rep-
resents the amount of funds available for withdrawal. Variable totalBalance represents
the amount of funds available, plus the amount of deposited funds still pending confirma-
tion or clearance.

1 // DepositSlot.java
2 // Represents the deposit slot of the ATM
3
4 public class DepositSlot
5 {
6 // indicates whether envelope was received (always returns true,
7 // because this is only a software simulation of a real deposit slot)
8 public boolean isEnvelopeReceived()
9 {

10 return true; // deposit envelope was received
11 } // end method isEnvelopeReceived
12 } // end class DepositSlot

Fig. 13.17 | Class DepositSlot represents the ATM’s deposit slot.

1 // Account.java
2 // Represents a bank account
3
4 public class Account
5 {
6 private int accountNumber; // account number
7 private int pin; // PIN for authentication
8 private double availableBalance; // funds available for withdrawal
9 private double totalBalance; // funds available + pending deposits

Fig. 13.18 | Class Account represents a bank account. (Part 1 of 2.)

382 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

10
11 // Account constructor initializes attributes
12 public Account(int theAccountNumber, int thePIN,
13 double theAvailableBalance, double theTotalBalance)
14 {
15 accountNumber = theAccountNumber;
16 pin = thePIN;
17 availableBalance = theAvailableBalance;
18 totalBalance = theTotalBalance;
19 } // end Account constructor
20
21 // determines whether a user-specified PIN matches PIN in Account
22 public boolean validatePIN(int userPIN)
23 {
24 if (userPIN == pin)
25 return true;
26 else

27 return false;
28 } // end method validatePIN
29
30 // returns available balance
31 public double getAvailableBalance()
32 {
33 return availableBalance;
34 } // end getAvailableBalance
35
36 // returns the total balance
37 public double getTotalBalance()
38 {
39 return totalBalance;
40 } // end method getTotalBalance
41
42 // credits an amount to the account
43 public void credit(double amount)
44 {
45 totalBalance += amount; // add to total balance
46 } // end method credit
47
48 // debits an amount from the account
49 public void debit(double amount)
50 {
51 availableBalance -= amount; // subtract from available balance
52 totalBalance -= amount; // subtract from total balance
53 } // end method debit
54
55 // returns account number
56 public int getAccountNumber()
57 {
58 return accountNumber;
59 } // end method getAccountNumber
60 } // end class Account

Fig. 13.18 | Class Account represents a bank account. (Part 2 of 2.)

13.4 ATM Case Study Implementation 383

The Account class has a constructor (lines 12–19) that takes an account number, the
PIN established for the account, the account’s initial available balance and the account’s
initial total balance as arguments. Lines 15–18 assign these values to the class’s attributes
(i.e., fields).

Method validatePIN (lines 22–28) determines whether a user-specified PIN (i.e.,
parameter userPIN) matches the PIN associated with the account (i.e., attribute pin).
Recall that we modeled this method’s parameter userPIN in Fig. 12.19. If the two PINs
match, the method returns true (line 25); otherwise, it returns false (line 27).

Methods getAvailableBalance (lines 31–34) and getTotalBalance (lines 37–40)
return the values of double attributes availableBalance and totalBalance, respectively.

Method credit (lines 43–46) adds an amount of money (i.e., parameter amount) to an
Account as part of a deposit transaction. This method adds the amount only to attribute
totalBalance (line 45). The money credited to an account during a deposit does not
become available immediately, so we modify only the total balance. We assume that the bank
updates the available balance appropriately at a later time. Our implementation of class
Account includes only methods required for carrying out ATM transactions. Therefore, we
omit the methods that some other bank system would invoke to add to attribute available-
Balance (to confirm a deposit) or subtract from attribute totalBalance (to reject a deposit).

Method debit (lines 49–53) subtracts an amount of money (i.e., parameter amount)
from an Account as part of a withdrawal transaction. This method subtracts the amount

from both attribute availableBalance (line 51) and attribute totalBalance (line 52),
because a withdrawal affects both measures of an account balance.

Method getAccountNumber (lines 56–59) provides access to an Account’s account-
Number. We include this method in our implementation so that a client of the class (i.e.,
BankDatabase) can identify a particular Account. For example, BankDatabase contains
many Account objects, and it can invoke this method on each of its Account objects to
locate the one with a specific account number.

13.4.7 Class BankDatabase
Class BankDatabase (Fig. 13.19) models the bank’s database with which the ATM inter-
acts to access and modify a user’s account information. We study database access in
Chapter 25. For now we model the database as an array. An exercise in Chapter 25 asks
you to reimplement this portion of the ATM using an actual database.

1 // BankDatabase.java
2 // Represents the bank account information database
3
4 public class BankDatabase
5 {
6 private Account[] accounts; // array of Accounts
7
8 // no-argument BankDatabase constructor initializes accounts
9 public BankDatabase()

10 {

Fig. 13.19 | Class BankDatabase represents the bank’s account information database. (Part 1
of 3.)

384 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

11 accounts = new Account[2]; // just 2 accounts for testing
12 accounts[0] = new Account(12345, 54321, 1000.0, 1200.0);
13 accounts[1] = new Account(98765, 56789, 200.0, 200.0);
14 } // end no-argument BankDatabase constructor
15
16 // retrieve Account object containing specified account number
17 private Account getAccount(int accountNumber)
18 {
19 // loop through accounts searching for matching account number
20 for (Account currentAccount : accounts)
21 {
22 // return current account if match found
23 if (currentAccount.getAccountNumber() == accountNumber)
24 return currentAccount;
25 } // end for
26
27 return null; // if no matching account was found, return null
28 } // end method getAccount
29
30 // determine whether user-specified account number and PIN match
31 // those of an account in the database
32 public boolean authenticateUser(int userAccountNumber, int userPIN)
33 {
34 // attempt to retrieve the account with the account number
35 Account userAccount = getAccount(userAccountNumber);
36
37 // if account exists, return result of Account method validatePIN
38 if (userAccount != null)
39 return userAccount.validatePIN(userPIN);
40 else

41 return false; // account number not found, so return false
42 } // end method authenticateUser
43
44 // return available balance of Account with specified account number
45 public double getAvailableBalance(int userAccountNumber)
46 {
47 return getAccount(userAccountNumber).getAvailableBalance();
48 } // end method getAvailableBalance
49
50 // return total balance of Account with specified account number
51 public double getTotalBalance(int userAccountNumber)
52 {
53 return getAccount(userAccountNumber).getTotalBalance();
54 } // end method getTotalBalance
55
56 // credit an amount to Account with specified account number
57 public void credit(int userAccountNumber, double amount)
58 {
59 getAccount(userAccountNumber).credit(amount);
60 } // end method credit
61

Fig. 13.19 | Class BankDatabase represents the bank’s account information database. (Part 2
of 3.)

13.4 ATM Case Study Implementation 385

We determine one reference-type attribute for class BankDatabase based on its com-
position relationship with class Account. Recall from Fig. 13.9 that a BankDatabase is
composed of zero or more objects of class Account. Line 6 implements attribute
accounts—an array of Account objects—to implement this composition relationship.
Class BankDatabase has a no-argument constructor (lines 9–14) that initializes accounts
to contain a set of new Account objects. For the sake of testing the system, we declare
accounts to hold just two array elements (line 11), which we instantiate as new Account

objects with test data (lines 12–13). The Account constructor has four parameters—the
account number, the PIN assigned to the account, the initial available balance and the ini-
tial total balance. Recall that class BankDatabase serves as an intermediary between class
ATM and the actual Account objects that contain a user’s account information. Thus, the
methods of class BankDatabase do nothing more than invoke the corresponding methods
of the Account object belonging to the current ATM user.

We include private utility method getAccount (lines 17–28) to allow the Bank-

Database to obtain a reference to a particular Account within array accounts. To locate
the user’s Account, the BankDatabase compares the value returned by method get-

AccountNumber for each element of accounts to a specified account number until it finds
a match. Lines 20–25 traverse the accounts array. If the account number of currentAc-
count equals the value of parameter accountNumber, the method immediately returns the
currentAccount. If no account has the given account number, then line 27 returns null.

Method authenticateUser (lines 32–42) proves or disproves the identity of an ATM
user. This method takes a user-specified account number and PIN as arguments and indi-
cates whether they match the account number and PIN of an Account in the database.
Line 35 calls method getAccount, which returns either an Account with userAccount-

Number as its account number or null to indicate that userAccountNumber is invalid. If
getAccount returns an Account object, line 39 returns the boolean value returned by that
object’s validatePIN method. BankDatabase’s authenticateUser method does not per-
form the PIN comparison itself—rather, it forwards userPIN to the Account object’s val-
idatePIN method to do so. The value returned by Account method validatePIN indicates
whether the user-specified PIN matches the PIN of the user’s Account, so method authen-

ticateUser simply returns this value to the class’s client (i.e., ATM).
BankDatabase trusts the ATM to invoke method authenticateUser and receive a

return value of true before allowing the user to perform transactions. BankDatabase also
trusts that each Transaction object created by the ATM contains the valid account number
of the current authenticated user and that this is the account number passed to the
remaining BankDatabase methods as argument userAccountNumber. Methods getAvail-
ableBalance (lines 45–48), getTotalBalance (lines 51–54), credit (lines 57–60) and

62 // debit an amount from Account with specified account number
63 public void debit(int userAccountNumber, double amount)
64 {
65 getAccount(userAccountNumber).debit(amount);
66 } // end method debit
67 } // end class BankDatabase

Fig. 13.19 | Class BankDatabase represents the bank’s account information database. (Part 3
of 3.)

386 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

debit (lines 63–66) therefore simply retrieve the user’s Account object with utility method
getAccount, then invoke the appropriate Account method on that object. We know that
the calls to getAccount from these methods will never return null, because userAccount-
Number must refer to an existing Account. Methods getAvailableBalance and getTotal-

Balance return the values returned by the corresponding Account methods. Also, credit
and debit simply redirect parameter amount to the Account methods they invoke.

13.4.8 Class Transaction
Class Transaction (Fig. 13.20) is an abstract superclass that represents the notion of an
ATM transaction. It contains the common features of subclasses BalanceInquiry, With-
drawal and Deposit. This class expands upon the “skeleton” code first developed in
Section 13.3. Line 4 declares this class to be abstract. Lines 6–8 declare the class’s pri-
vate attributes. Recall from the class diagram of Fig. 13.10 that class Transaction con-
tains an attribute accountNumber (line 6) that indicates the account involved in the
Transaction. We derive attributes screen (line 7) and bankDatabase (line 8) from class
Transaction’s associations modeled in Fig. 13.9—all transactions require access to the
ATM’s screen and the bank’s database.

1 // Transaction.java
2 // Abstract superclass Transaction represents an ATM transaction
3
4 public abstract class Transaction
5 {
6 private int accountNumber; // indicates account involved
7 private Screen screen; // ATM's screen
8 private BankDatabase bankDatabase; // account info database
9

10 // Transaction constructor invoked by subclasses using super()
11 public Transaction(int userAccountNumber, Screen atmScreen,
12 BankDatabase atmBankDatabase)
13 {
14 accountNumber = userAccountNumber;
15 screen = atmScreen;
16 bankDatabase = atmBankDatabase;
17 } // end Transaction constructor
18
19 // return account number
20 public int getAccountNumber()
21 {
22 return accountNumber;
23 } // end method getAccountNumber
24
25 // return reference to screen
26 public Screen getScreen()
27 {
28 return screen;
29 } // end method getScreen
30

Fig. 13.20 | Abstract superclass Transaction represents an ATM transaction. (Part 1 of 2.)

13.4 ATM Case Study Implementation 387

Class Transaction has a constructor (lines 11–17) that takes as arguments the current
user’s account number and references to the ATM’s screen and the bank’s database.
Because Transaction is an abstract class, this constructor will be called only by the con-
structors of the Transaction subclasses.

The class has three public get methods—getAccountNumber (lines 20–23), get-

Screen (lines 26–29) and getBankDatabase (lines 32–35). These are inherited by Trans-

action subclasses and used to gain access to class Transaction’s private attributes.
Class Transaction also declares abstract method execute (line 38). It does not

make sense to provide this method’s implementation, because a generic transaction cannot
be executed. So, we declare this method abstract and force each Transaction subclass to
provide a concrete implementation that executes that particular type of transaction.

13.4.9 Class BalanceInquiry
Class BalanceInquiry (Fig. 13.21) extends Transaction and represents a balance-inquiry
ATM transaction. BalanceInquiry does not have any attributes of its own, but it inherits
Transaction attributes accountNumber, screen and bankDatabase, which are accessible
through Transaction’s public get methods. The BalanceInquiry constructor takes argu-
ments corresponding to these attributes and simply forwards them to Transaction’s con-
structor using super (line 10).

31 // return reference to bank database
32 public BankDatabase getBankDatabase()
33 {
34 return bankDatabase;
35 } // end method getBankDatabase
36
37 // perform the transaction (overridden by each subclass)
38 abstract public void execute();
39 } // end class Transaction

1 // BalanceInquiry.java
2 // Represents a balance inquiry ATM transaction
3
4 public class BalanceInquiry extends Transaction
5 {
6 // BalanceInquiry constructor
7 public BalanceInquiry(int userAccountNumber, Screen atmScreen,
8 BankDatabase atmBankDatabase)
9 {

10 super(userAccountNumber, atmScreen, atmBankDatabase);
11 } // end BalanceInquiry constructor
12
13 // performs the transaction
14 @Override
15 public void execute()
16 {

Fig. 13.21 | Class BalanceInquiry represents a balance-inquiry ATM transaction. (Part 1 of 2.)

Fig. 13.20 | Abstract superclass Transaction represents an ATM transaction. (Part 2 of 2.)

388 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

Class BalanceInquiry overrides Transaction’s abstract method execute to provide
a concrete implementation (lines 14–36) that performs the steps involved in a balance
inquiry. Lines 18–19 get references to the bank database and the ATM’s screen by
invoking methods inherited from superclass Transaction. Lines 22–23 retrieve the avail-
able balance of the account involved by invoking method getAvailableBalance of bank-
Database. Line 23 uses inherited method getAccountNumber to get the account number
of the current user, which it then passes to getAvailableBalance. Lines 26–27 retrieve
the total balance of the current user’s account. Lines 30–35 display the balance informa-
tion on the ATM’s screen. Recall that displayDollarAmount takes a double argument and
outputs it to the screen formatted as a dollar amount. For example, if a user’s available-
Balance is 1000.5, line 32 outputs $1,000.50. Line 35 inserts a blank line of output to
separate the balance information from subsequent output (i.e., the main menu repeated
by class ATM after executing the BalanceInquiry).

13.4.10 Class Withdrawal
Class Withdrawal (Fig. 13.22) extends Transaction and represents a withdrawal ATM
transaction. This class expands upon the “skeleton” code for this class developed in
Fig. 13.12. Recall from the class diagram of Fig. 13.10 that class Withdrawal has one at-
tribute, amount, which line 6 implements as an int field. Figure 13.9 models associations
between class Withdrawal and classes Keypad and CashDispenser, for which lines 7–8 im-
plement reference-type attributes keypad and cashDispenser, respectively. Line 11 de-
clares a constant corresponding to the cancel menu option. We’ll soon discuss how the
class uses this constant.

17 // get references to bank database and screen
18 BankDatabase bankDatabase = getBankDatabase();
19 Screen screen = getScreen();
20
21 // get the available balance for the account involved
22 double availableBalance =
23 bankDatabase.getAvailableBalance(getAccountNumber());
24
25 // get the total balance for the account involved
26 double totalBalance =
27 bankDatabase.getTotalBalance(getAccountNumber());
28
29 // display the balance information on the screen
30 screen.displayMessageLine("\nBalance Information:");
31 screen.displayMessage(" - Available balance: ");
32 screen.displayDollarAmount(availableBalance);
33 screen.displayMessage("\n - Total balance: ");
34 screen.displayDollarAmount(totalBalance);
35 screen.displayMessageLine("");
36 } // end method execute
37 } // end class BalanceInquiry

Fig. 13.21 | Class BalanceInquiry represents a balance-inquiry ATM transaction. (Part 2 of 2.)

13.4 ATM Case Study Implementation 389

1 // Withdrawal.java
2 // Represents a withdrawal ATM transaction
3
4 public class Withdrawal extends Transaction
5 {
6 private int amount; // amount to withdraw
7 private Keypad keypad; // reference to keypad
8 private CashDispenser cashDispenser; // reference to cash dispenser
9

10 // constant corresponding to menu option to cancel
11 private final static int CANCELED = 6;
12
13 // Withdrawal constructor
14 public Withdrawal(int userAccountNumber, Screen atmScreen,
15 BankDatabase atmBankDatabase, Keypad atmKeypad,
16 CashDispenser atmCashDispenser)
17 {
18 // initialize superclass variables
19 super(userAccountNumber, atmScreen, atmBankDatabase);
20
21 // initialize references to keypad and cash dispenser
22 keypad = atmKeypad;
23 cashDispenser = atmCashDispenser;
24 } // end Withdrawal constructor
25
26 // perform transaction
27 @Override
28 public void execute()
29 {
30 boolean cashDispensed = false; // cash was not dispensed yet
31 double availableBalance; // amount available for withdrawal
32
33 // get references to bank database and screen
34 BankDatabase bankDatabase = getBankDatabase();
35 Screen screen = getScreen();
36
37 // loop until cash is dispensed or the user cancels
38 do

39 {
40 // obtain a chosen withdrawal amount from the user
41 amount = displayMenuOfAmounts();
42
43 // check whether user chose a withdrawal amount or canceled
44 if (amount != CANCELED)
45 {
46 // get available balance of account involved
47 availableBalance =
48 bankDatabase.getAvailableBalance(getAccountNumber());
49
50 // check whether the user has enough money in the account
51 if (amount <= availableBalance)
52 {

Fig. 13.22 | Class Withdrawal represents a withdrawal ATM transaction. (Part 1 of 3.)

390 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

53 // check whether the cash dispenser has enough money
54 if (cashDispenser.isSufficientCashAvailable(amount))
55 {
56 // update the account involved to reflect the withdrawal
57 bankDatabase.debit(getAccountNumber(), amount);
58
59 cashDispenser.dispenseCash(amount); // dispense cash
60 cashDispensed = true; // cash was dispensed
61
62 // instruct user to take cash
63 screen.displayMessageLine("\nYour cash has been" +
64 " dispensed. Please take your cash now.");
65 } // end if
66 else // cash dispenser does not have enough cash
67 screen.displayMessageLine(
68 "\nInsufficient cash available in the ATM." +
69 "\n\nPlease choose a smaller amount.");
70 } // end if
71 else // not enough money available in user's account
72 {
73 screen.displayMessageLine(
74 "\nInsufficient funds in your account." +
75 "\n\nPlease choose a smaller amount.");
76 } // end else
77 } // end if
78 else // user chose cancel menu option
79 {
80 screen.displayMessageLine("\nCanceling transaction...");
81 return; // return to main menu because user canceled
82 } // end else
83 } while (!cashDispensed);
84
85 } // end method execute
86
87 // display a menu of withdrawal amounts and the option to cancel;
88 // return the chosen amount or 0 if the user chooses to cancel
89 private int displayMenuOfAmounts()
90 {
91 int userChoice = 0; // local variable to store return value
92
93 Screen screen = getScreen(); // get screen reference
94
95 // array of amounts to correspond to menu numbers
96 int[] amounts = { 0, 20, 40, 60, 100, 200 };
97
98 // loop while no valid choice has been made
99 while (userChoice == 0)
100 {
101 // display the withdrawal menu
102 screen.displayMessageLine("\nWithdrawal Menu:");
103 screen.displayMessageLine("1 - $20");
104 screen.displayMessageLine("2 - $40");
105 screen.displayMessageLine("3 - $60");

Fig. 13.22 | Class Withdrawal represents a withdrawal ATM transaction. (Part 2 of 3.)

13.4 ATM Case Study Implementation 391

Class Withdrawal’s constructor (lines 14–24) has five parameters. It uses super to
pass parameters userAccountNumber, atmScreen and atmBankDatabase to superclass
Transaction’s constructor to set the attributes that Withdrawal inherits from Transac-

tion. The constructor also takes references atmKeypad and atmCashDispenser as param-
eters and assigns them to reference-type attributes keypad and cashDispenser.

Class Withdrawal overrides Transaction method execute with a concrete imple-
mentation (lines 27–85) that performs the steps of a withdrawal. Line 30 declares and ini-
tializes a local boolean variable cashDispensed, which indicates whether cash has been
dispensed (i.e., whether the transaction has completed successfully) and is initially false.
Line 31 declares local double variable availableBalance, which will store the user’s avail-
able balance during a withdrawal transaction. Lines 34–35 get references to the bank data-
base and the ATM’s screen by invoking methods inherited from superclass Transaction.

Lines 38–83 contain a do…while that executes its body until cash is dispensed (i.e.,
until cashDispensed becomes true) or until the user chooses to cancel (in which case, the
loop terminates). We use this loop to continuously return the user to the start of the trans-
action if an error occurs (i.e., the requested withdrawal amount is greater than the user’s
available balance or greater than the amount of cash in the cash dispenser). Line 41 dis-
plays a menu of withdrawal amounts and obtains a user selection by calling private utility
method displayMenuOfAmounts (declared in lines 89–133). This method displays the

106 screen.displayMessageLine("4 - $100");
107 screen.displayMessageLine("5 - $200");
108 screen.displayMessageLine("6 - Cancel transaction");
109 screen.displayMessage("\nChoose a withdrawal amount: ");
110
111 int input = keypad.getInput(); // get user input through keypad
112
113 // determine how to proceed based on the input value
114 switch (input)
115 {
116 case 1: // if the user chose a withdrawal amount
117 case 2: // (i.e., chose option 1, 2, 3, 4 or 5), return the
118 case 3: // corresponding amount from amounts array
119 case 4:
120 case 5:
121 userChoice = amounts[input]; // save user's choice
122 break;
123 case CANCELED: // the user chose to cancel
124 userChoice = CANCELED; // save user's choice
125 break;
126 default: // the user did not enter a value from 1-6
127 screen.displayMessageLine(
128 "\nInvalid selection. Try again.");
129 } // end switch
130 } // end while
131
132 return userChoice; // return withdrawal amount or CANCELED
133 } // end method displayMenuOfAmounts
134 } // end class Withdrawal

Fig. 13.22 | Class Withdrawal represents a withdrawal ATM transaction. (Part 3 of 3.)

392 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

menu of amounts and returns either an int withdrawal amount or an int constant
CANCELED to indicate that the user has chosen to cancel the transaction.

Method displayMenuOfAmounts (lines 89–133) first declares local variable user-

Choice (initially 0) to store the value that the method will return (line 91). Line 93 gets a
reference to the screen by calling method getScreen inherited from superclass Transac-
tion. Line 96 declares an integer array of withdrawal amounts that correspond to the
amounts displayed in the withdrawal menu. We ignore the first element in the array (index
0) because the menu has no option 0. The while statement at lines 99–130 repeats until
userChoice takes on a value other than 0. We’ll see shortly that this occurs when the user
makes a valid selection from the menu. Lines 102–109 display the withdrawal menu on
the screen and prompt the user to enter a choice. Line 111 obtains integer input through
the keypad. The switch statement at lines 114–129 determines how to proceed based on
the user’s input. If the user selects a number between 1 and 5, line 121 sets userChoice to
the value of the element in amounts at index input. For example, if the user enters 3 to
withdraw $60, line 121 sets userChoice to the value of amounts[3] (i.e., 60). Line 122
terminates the switch. Variable userChoice no longer equals 0, so the while at lines 99–
130 terminates and line 132 returns userChoice. If the user selects the cancel menu
option, lines 124–125 execute, setting userChoice to CANCELED and causing the method
to return this value. If the user does not enter a valid menu selection, lines 127–128 display
an error message and the user is returned to the withdrawal menu.

Line 44 in method execute determines whether the user has selected a withdrawal
amount or chosen to cancel. If the user cancels, lines 80–81 execute and display an appro-
priate message to the user before returning control to the calling method (i.e., ATM method
performTransactions). If the user has chosen a withdrawal amount, lines 47–48 retrieve
the available balance of the current user’s Account and store it in variable availableBal-

ance. Next, line 51 determines whether the selected amount is less than or equal to the
user’s available balance. If it’s not, lines 73–75 display an appropriate error message. Con-
trol then continues to the end of the do…while, and the loop repeats because cash-

Dispensed is still false. If the user’s balance is high enough, the if statement at line 54
determines whether the cash dispenser has enough money to satisfy the withdrawal request
by invoking the cashDispenser’s isSufficientCashAvailable method. If this method
returns false, lines 67–69 display an appropriate error message and the do…while

repeats. If sufficient cash is available, then the requirements for the withdrawal are satis-
fied, and line 57 debits amount from the user’s account in the database. Lines 59–60 then
instruct the cash dispenser to dispense the cash to the user and set cashDispensed to true.
Finally, lines 63–64 display a message to the user that cash has been dispensed. Because
cashDispensed is now true, control continues after the do…while. No additional state-
ments appear below the loop, so the method returns.

13.4.11 Class Deposit
Class Deposit (Fig. 13.23) extends Transaction and represents a deposit transaction. Re-
call from Fig. 13.10 that class Deposit has one attribute amount, which line 6 implements
as an int field. Lines 7–8 create reference attributes keypad and depositSlot that imple-
ment the associations between class Deposit and classes Keypad and DepositSlot mod-
eled in Fig. 13.9. Line 9 declares a constant CANCELED that corresponds to the value a user
enters to cancel. We’ll soon discuss how the class uses this constant.

13.4 ATM Case Study Implementation 393

1 // Deposit.java
2 // Represents a deposit ATM transaction
3
4 public class Deposit extends Transaction
5 {
6 private double amount; // amount to deposit
7 private Keypad keypad; // reference to keypad
8 private DepositSlot depositSlot; // reference to deposit slot
9 private final static int CANCELED = 0; // constant for cancel option

10
11 // Deposit constructor
12 public Deposit(int userAccountNumber, Screen atmScreen,
13 BankDatabase atmBankDatabase, Keypad atmKeypad,
14 DepositSlot atmDepositSlot)
15 {
16 // initialize superclass variables
17 super(userAccountNumber, atmScreen, atmBankDatabase);
18
19 // initialize references to keypad and deposit slot
20 keypad = atmKeypad;
21 depositSlot = atmDepositSlot;
22 } // end Deposit constructor
23
24 // perform transaction
25 @Override
26 public void execute()
27 {
28 BankDatabase bankDatabase = getBankDatabase(); // get reference
29 Screen screen = getScreen(); // get reference
30
31 amount = promptForDepositAmount(); // get deposit amount from user
32
33 // check whether user entered a deposit amount or canceled
34 if (amount != CANCELED)
35 {
36 // request deposit envelope containing specified amount
37 screen.displayMessage(
38 "\nPlease insert a deposit envelope containing ");
39 screen.displayDollarAmount(amount);
40 screen.displayMessageLine(".");
41
42 // receive deposit envelope
43 boolean envelopeReceived = depositSlot.isEnvelopeReceived();
44
45 // check whether deposit envelope was received
46 if (envelopeReceived)
47 {
48 screen.displayMessageLine("\nYour envelope has been " +
49 "received.\nNOTE: The money just deposited will not " +
50 "be available until we verify the amount of any " +
51 "enclosed cash and your checks clear.");
52

Fig. 13.23 | Class Deposit represents a deposit ATM transaction. (Part 1 of 2.)

394 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

Like Withdrawal, class Deposit contains a constructor (lines 12–22) that passes three
parameters to superclass Transaction’s constructor. The constructor also has parameters
atmKeypad and atmDepositSlot, which it assigns to corresponding attributes (lines 20–21).

Method execute (lines 25–66) overrides the abstract version in superclass Trans-
action with a concrete implementation that performs the steps required in a deposit trans-
action. Lines 28–29 get references to the database and the screen. Line 31 prompts the user
to enter a deposit amount by invoking private utility method promptForDepositAmount

(declared in lines 69–85) and sets attribute amount to the value returned. Method prompt-

ForDepositAmount asks the user to enter a deposit amount as an integer number of cents
(because the ATM’s keypad does not contain a decimal point; this is consistent with many
real ATMs) and returns the double value representing the dollar amount to be deposited.

Line 71 in method promptForDepositAmount gets a reference to the ATM’s screen.
Lines 74–75 display a message asking the user to input a deposit amount as a number of
cents or “0” to cancel the transaction. Line 76 receives the user’s input from the keypad.
Lines 79–84 determine whether the user has entered a real deposit amount or chosen to

53 // credit account to reflect the deposit
54 bankDatabase.credit(getAccountNumber(), amount);
55 } // end if
56 else // deposit envelope not received
57 {
58 screen.displayMessageLine("\nYou did not insert an " +
59 "envelope, so the ATM has canceled your transaction.");
60 } // end else
61 } // end if
62 else // user canceled instead of entering amount
63 {
64 screen.displayMessageLine("\nCanceling transaction...");
65 } // end else
66 } // end method execute
67
68 // prompt user to enter a deposit amount in cents
69 private double promptForDepositAmount()
70 {
71 Screen screen = getScreen(); // get reference to screen
72
73 // display the prompt
74 screen.displayMessage("\nPlease enter a deposit amount in " +
75 "CENTS (or 0 to cancel): ");
76 int input = keypad.getInput(); // receive input of deposit amount
77
78 // check whether the user canceled or entered a valid amount
79 if (input == CANCELED)
80 return CANCELED;
81 else

82 {
83 return (double) input / 100; // return dollar amount
84 } // end else
85 } // end method promptForDepositAmount
86 } // end class Deposit

Fig. 13.23 | Class Deposit represents a deposit ATM transaction. (Part 2 of 2.)

13.5 Wrap-Up 395

cancel. If the latter, line 80 returns the constant CANCELED. Otherwise, line 83 returns the
deposit amount after converting from the number of cents to a dollar amount by casting
input to a double, then dividing by 100. For example, if the user enters 125 as the number
of cents, line 83 returns 125.0 divided by 100, or 1.25—125 cents is $1.25.

Lines 34–65 in method execute determine whether the user has chosen to cancel the
transaction instead of entering a deposit amount. If the user cancels, line 64 displays an
appropriate message, and the method returns. If the user enters a deposit amount, lines
37–40 instruct the user to insert a deposit envelope with the correct amount. Recall that
Screen method displayDollarAmount outputs a double formatted as a dollar amount.

Line 43 sets a local boolean variable to the value returned by depositSlot’s isEn-
velopeReceived method, indicating whether a deposit envelope has been received. Recall
that we coded method isEnvelopeReceived (lines 8–11 of Fig. 13.17) to always return
true, because we’re simulating the functionality of the deposit slot and assume that the
user always inserts an envelope. However, we code method execute of class Deposit to
test for the possibility that the user does not insert an envelope—good software engi-
neering demands that programs account for all possible return values. Thus, class Deposit
is prepared for future versions of isEnvelopeReceived that could return false. Lines 48–
54 execute if the deposit slot receives an envelope. Lines 48–51 display an appropriate
message to the user. Line 54 then credits the deposit amount to the user’s account in the
database. Lines 58–59 will execute if the deposit slot does not receive a deposit envelope.
In this case, we display a message to the user stating that the ATM has canceled the trans-
action. The method then returns without modifying the user’s account.

13.4.12 Class ATMCaseStudy
Class ATMCaseStudy (Fig. 13.24) is a simple class that allows us to start, or “turn on,” the
ATM and test the implementation of our ATM system model. Class ATMCaseStudy’s main
method (lines 7–11) does nothing more than instantiate a new ATM object named theATM

(line 9) and invoke its run method (line 10) to start the ATM.

13.5 Wrap-Up
In this chapter, you used inheritance to tune the design of the ATM software system, and
you fully implemented the ATM in Java. Congratulations on completing the entire ATM

1 // ATMCaseStudy.java
2 // Driver program for the ATM case study
3
4 public class ATMCaseStudy
5 {
6 // main method creates and runs the ATM
7 public static void main(String[] args)
8 {
9 ATM theATM = new ATM();

10 theATM.run();
11 } // end main
12 } // end class ATMCaseStudy

Fig. 13.24 | ATMCaseStudy.java starts the ATM.

396 Chapter 13 ATM Case Study Part 2: Implementing an Object-Oriented Design

case study! We hope you found this experience to be valuable and that it reinforced many
of the object-oriented programming concepts that you’ve learned. In the next chapter, we
take a deeper look at graphical user interfaces (GUIs).

Answers to Self-Review Exercises
13.1 True. The minus sign (–) indicates private visibility.

13.2 b.

13.3 The design for class Keypad yields the code in Fig. 13.25. Recall that class Keypad has no
attributes for the moment, but attributes may become apparent as we continue the implementation.
Also, if we were designing a real ATM, method getInput would need to interact with the ATM’s
keypad hardware. We’ll actually read input from the keyboard of a personal computer when we write
the complete Java code in Section 13.4.

13.4 b.

13.5 False. The UML requires that we italicize abstract class names and method names.

13.6 The design for class Transaction yields the code in Fig. 13.26. The bodies of the class con-
structor and methods are completed in Section 13.4. When fully implemented, methods getScreen
and getBankDatabase will return superclass Transaction’s private reference attributes screen and
bankDatabase, respectively. These methods allow the Transaction subclasses to access the ATM’s
screen and interact with the bank’s database.

1 // Class Keypad represents an ATM’s keypad
2 public class Keypad
3 {
4 // no attributes have been specified yet
5
6 // no-argument constructor
7 public Keypad()
8 {
9 } // end no-argument Keypad constructor

10
11 // operations
12 public int getInput()
13 {
14 } // end method getInput
15 } // end class Keypad

Fig. 13.25 | Java code for class Keypad based on Figs. 13.1–13.2.

1 // Abstract class Transaction represents an ATM transaction
2 public abstract class Transaction
3 {
4 // attributes
5 private int accountNumber; // indicates account involved
6 private Screen screen; // ATM’s screen
7 private BankDatabase bankDatabase; // account info database

Fig. 13.26 | Java code for class Transaction based on Figs. 13.9 and 13.10. (Part 1 of 2.)

Answers to Self-Review Exercises 397

8
9 // no-argument constructor invoked by subclasses using super()

10 public Transaction()
11 {
12 } // end no-argument Transaction constructor
13
14 // return account number
15 public int getAccountNumber()
16 {
17 } // end method getAccountNumber
18
19 // return reference to screen
20 public Screen getScreen()
21 {
22 } // end method getScreen
23
24 // return reference to bank database
25 public BankDatabase getBankDatabase()
26 {
27 } // end method getBankDatabase
28
29 // abstract method overridden by subclasses
30 public abstract void execute();
31 } // end class Transaction

Fig. 13.26 | Java code for class Transaction based on Figs. 13.9 and 13.10. (Part 2 of 2.)

14
GUI Components:
Part 1

O b j e c t i v e s
In this chapter you’ll learn:

� How to use Java’s elegant, cross-platform Nimbus look-and-
feel.

� To build GUIs and handle events generated by user
interactions with GUIs.

� To understand the packages containing GUI components,
event-handling classes and interfaces.

� To create and manipulate buttons, labels, lists, text fields
and panels.

� To handle mouse events and keyboard events.

� To use layout managers to arrange GUI components.

Do you think I can listen all
day to such stuff?
—Lewis Carroll

Even a minor event in the
life of a child is an event of
that child’s world and thus
a world event.
—Gaston Bachelard

You pays your money and
you takes your choice.
—Punch

14.1 Introduction 399

14.1 Introduction
A graphical user interface (GUI) presents a user-friendly mechanism for interacting with
an application. A GUI (pronounced “GOO-ee”) gives an application a distinctive “look
and feel.” GUIs are built from GUI components. These are sometimes called controls or
widgets—short for window gadgets. A GUI component is an object with which the user
interacts via the mouse, the keyboard or another form of input, such as voice recognition.
In this chapter and Chapter 22, GUI Components: Part 2, you’ll learn about many of
Java’s so-called Swing GUI components from the javax.swing package. We cover other
GUI components as they’re needed throughout the rest of the book.

IDE Support for GUI Design
Many IDEs provide GUI design tools with which you can specify a component’s exact size
and location in a visual manner by using the mouse. The IDE generates the GUI code for
you. Though this greatly simplifies creating GUIs, each IDE generates this code different-
ly. For this reason, we wrote the GUI code by hand.

Sample GUI: The SwingSet3 Demo Application
As an example of a GUI, consider Fig. 14.1, which shows the SwingSet3 application that’s
available at download.java.net/javadesktop/swingset3/SwingSet3.jnlp. This appli-
cation is a nice way for you to browse through the various GUI components provided by
Java’s Swing GUI APIs. Simply click a component name (e.g., JFrame, JTabbedPane, etc.)

14.1 Introduction

14.2 Java’s New Nimbus Look-and-Feel

14.3 Simple GUI-Based Input/Output with
JOptionPane

14.4 Overview of Swing Components

14.5 Displaying Text and Images in a
Window

14.6 Text Fields and an Introduction to
Event Handling with Nested Classes

14.7 Common GUI Event Types and
Listener Interfaces

14.8 How Event Handling Works

14.9 JButton

14.10 Buttons That Maintain State
14.10.1 JCheckBox
14.10.2 JRadioButton

14.11 JComboBox; Using an Anonymous
Inner Class for Event Handling

14.12 JList

14.13 Multiple-Selection Lists
14.14 Mouse Event Handling
14.15 Adapter Classes
14.16 JPanel Subclass for Drawing with

the Mouse
14.17 Key Event Handling
14.18 Introduction to Layout Managers

14.18.1 FlowLayout
14.18.2 BorderLayout
14.18.3 GridLayout

14.19 Using Panels to Manage More
Complex Layouts

14.20 JTextArea

14.21 Wrap-Up

Look-and-Feel Observation 14.1
Providing different applications with consistent, intuitive user-interface components gives
users a sense of familiarity with a new application, so that they can learn it more quickly
and use it more productively.

400 Chapter 14 GUI Components: Part 1

in the GUI Components area at the left of the window to see a demonstration of the GUI
component in the right side of the window. The source code for each demo is shown in
the text area at the bottom of the window. We’ve labeled a few of the GUI components in
the application. At the top of the window is a title bar that contains the window’s title.
Below that is a menu bar containing menus (File and View). In the top-right region of the
window is a set of buttons—typically, users press buttons to perform tasks. In the GUI
Components area of the window is a combo box; the user can click the down arrow at the
right side of the box to select from a list of items. The menus, buttons and combo box are
part of the application’s GUI. They enable you to interact with the application.

14.2 Java’s New Nimbus Look-and-Feel
In Java SE 6 update 10, Java’s elegant, cross-platform look-and-feel known as Nimbus was
introduced. For GUI screen captures like Fig. 14.1, we’ve configured our systems to use
Nimbus as the default look-and-feel. There are three ways that you can use Nimbus:

1. Set it as the default for all Java applications that run on your computer.

2. Set it as the look-and-feel at the time that you launch an application by passing a
command-line argument to the java command.

3. Set it as the look-and-feel programatically in your application (see Section 22.6).

Fig. 14.1 | SwingSet3 application demonstrates many of Java’s Swing GUI components.

menu menu bar buttoncombo boxtitle bar text area scroll bar

14.3 Simple GUI-Based Input/Output with JOptionPane 401

To set Nimbus as the default for all Java applications, you must create a text file
named swing.properties in the lib folder of both your JDK installation folder and your
JRE installation folder. Place the following line of code in the file:

For more information on locating these installation folders visit

In addition to the standalone JRE, there is a JRE nested in your JDK’s installation folder.
If you’re using an IDE that depends on the JDK, you may also need to place the
swing.properties file in the nested jre folder’s lib folder.

If you prefer to select Nimbus on an application-by-application basis, place the fol-
lowing command-line argument after the java command and before the application’s
name when you run the application:

14.3 Simple GUI-Based Input/Output with
JOptionPane
The applications in Chapters 2–10 display text in the command window and obtain input
from the command window. Most applications you use on a daily basis use windows or
dialog boxes (also called dialogs) to interact with the user. For example, an e-mail program
allows you to type and read messages in a window the program provides. Dialog boxes are
windows in which programs display important messages to the user or obtain information
from the user. Java’s JOptionPane class (package javax.swing) provides prebuilt dialog
boxes for both input and output. These are displayed by invoking static JOptionPane

methods. Figure 14.2 presents a simple addition application that uses two input dialogs
to obtain integers from the user and a message dialog to display the sum of the integers
the user enters.

swing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

bit.ly/JavaInstallationInstructions

-Dswing.defaultlaf=com.sun.java.swing.plaf.nimbus.NimbusLookAndFeel

1 // Fig. 14.2: Addition.java
2 // Addition program that uses JOptionPane for input and output.
3 import javax.swing.JOptionPane; // program uses JOptionPane
4
5 public class Addition
6 {
7 public static void main(String[] args)
8 {
9

10
11
12
13
14
15 // convert String inputs to int values for use in a calculation
16 int number1 = Integer.parseInt(firstNumber);
17 int number2 = Integer.parseInt(secondNumber);

Fig. 14.2 | Addition program that uses JOptionPane for input and output. (Part 1 of 2.)

// obtain user input from JOptionPane input dialogs
String firstNumber =

JOptionPane.showInputDialog("Enter first integer");
String secondNumber =

JOptionPane.showInputDialog("Enter second integer");

402 Chapter 14 GUI Components: Part 1

Input Dialogs
Line 3 imports class JOptionPane. Lines 10–11 declare the local String variable first-

Number and assign it the result of the call to JOptionPane static method showInputDia-

log. This method displays an input dialog (see the first screen capture in Fig. 14.2), using
the method’s String argument ("Enter first integer") as a prompt.

The user types characters in the text field, then clicks OK or presses the Enter key to
submit the String to the program. Clicking OK also dismisses (hides) the dialog. [Note:
If you type in the text field and nothing appears, activate the text field by clicking it with
the mouse.] Unlike Scanner, which can be used to input values of several types from the
user at the keyboard, an input dialog can input only Strings. This is typical of most GUI
components. The user can type any characters in the input dialog’s text field. Our program

18
19 int sum = number1 + number2; // add numbers
20
21
22
23
24 } // end method main
25 } // end class Addition

Look-and-Feel Observation 14.2
The prompt in an input dialog typically uses sentence-style capitalization—a style that
capitalizes only the first letter of the first word in the text unless the word is a proper noun
(for example, Jones).

Fig. 14.2 | Addition program that uses JOptionPane for input and output. (Part 2 of 2.)

// display result in a JOptionPane message dialog
JOptionPane.showMessageDialog(null, "The sum is " + sum,

"Sum of Two Integers", JOptionPane.PLAIN_MESSAGE);

(a) Input dialog displayed by lines 10–11

(b) Input dialog displayed by lines 12–13

When the user clicks OK,
showInputDialog returns

to the program the 100 typed
by the user as a String; the

program must convert the
String to an int

Text field in which the
user types a value

Prompt to the user

(c) Message dialog displayed by lines 22–23

When the user clicks OK, the message dialog is
dismissed (removed from the screen).

14.3 Simple GUI-Based Input/Output with JOptionPane 403

assumes that the user enters a valid integer. If the user clicks Cancel, showInputDialog
returns null. If the user either types a noninteger value or clicks the Cancel button in the
input dialog, an exception will occur and the program will not operate correctly.
Chapter 11 discussed how to handle such errors. Lines 12–13 display another input dialog
that prompts the user to enter the second integer. Each JOptionPane dialog that you dis-
play is a so called modal dialog—while the dialog is on the screen, the user cannot interact
with the rest of the application.

Converting Strings to int Values
To perform the calculation, we convert the Strings that the user entered to int values.
Recall that the Integer class’s static method parseInt converts its String argument to
an int value. Lines 16–17 assign the converted values to local variables number1 and
number2, and line 19 sums these values.

Message Dialogs
Lines 22–23 use JOptionPane static method showMessageDialog to display a message
dialog (the last screen of Fig. 14.2) containing the sum. The first argument helps the Java
application determine where to position the dialog box. A dialog is typically displayed
from a GUI application with its own window. The first argument refers to that window
(known as the parent window) and causes the dialog to appear centered over the parent (as
we’ll do in Section 14.9). If the first argument is null, the dialog box is displayed at the
center of your screen. The second argument is the message to display—in this case, the
result of concatenating the String "The sum is " and the value of sum. The third argu-
ment—"Sum of Two Integers"—is the String that should appear in the title bar at the
top of the dialog. The fourth argument—JOptionPane.PLAIN_MESSAGE—is the type of
message dialog to display. A PLAIN_MESSAGE dialog does not display an icon to the left of
the message. Class JOptionPane provides several overloaded versions of methods showIn-
putDialog and showMessageDialog, as well as methods that display other dialog types.
For complete information on class JOptionPane, visit download.oracle.com/javase/6/
docs/api/javax/swing/JOptionPane.html.

JOptionPane Message Dialog Constants
The constants that represent the message dialog types are shown in Fig. 14.3. All message
dialog types except PLAIN_MESSAGE display an icon to the left of the message. These icons
provide a visual indication of the message’s importance to the user. A QUESTION_MESSAGE

icon is the default icon for an input dialog box (see Fig. 14.2).

Look-and-Feel Observation 14.3
Do not overuse modal dialogs, as they can reduce the usability of your applications. Use a
modal dialog only when it’s necessary to prevent users from interacting with the rest of an
application until they dismiss the dialog.

Look-and-Feel Observation 14.4
The title bar of a window typically uses book-title capitalization—a style that capital-
izes the first letter of each significant word in the text and does not end with any punctu-
ation (for example, Capitalization in a Book Title).

404 Chapter 14 GUI Components: Part 1

14.4 Overview of Swing Components
Though it’s possible to perform input and output using the JOptionPane dialogs, most
GUI applications require more elaborate user interfaces. The remainder of this chapter
discusses many GUI components that enable application developers to create robust
GUIs. Figure 14.4 lists several basic Swing GUI components that we discuss.

Swing vs. AWT
There are actually two sets of Java GUI components. In Java’s early days, GUIs were built
with components from the Abstract Window Toolkit (AWT) in package java.awt.
These look like the native GUI components of the platform on which a Java program ex-
ecutes. For example, a Button object displayed in a Java program running on Microsoft
Windows looks like those in other Windows applications. On Apple Mac OS X, the But-

ton looks like those in other Mac applications. Sometimes, even the manner in which a
user can interact with an AWT component differs between platforms. The component’s ap-
pearance and the way in which the user interacts with it are known as its look-and-feel.

Message dialog type Icon Description

ERROR_MESSAGE Indicates an error.

INFORMATION_MESSAGE Indicates an informational message.

WARNING_MESSAGE Warns of a potential problem.

QUESTION_MESSAGE Poses a question. This dialog normally requires a
response, such as clicking a Yes or a No button.

PLAIN_MESSAGE no
icon

A dialog that contains a message, but no icon.

Fig. 14.3 | JOptionPane static constants for message dialogs.

Component Description

JLabel Displays uneditable text and/or icons.

JTextField Typically receives input from the user.

JButton Triggers an event when clicked with the mouse.

JCheckBox Specifies an option that can be selected or not selected.

JComboBox A drop-down list of items from which the user can make a selection.

JList A list of items from which the user can make a selection by clicking on any
one of them. Multiple elements can be selected.

JPanel An area in which components can be placed and organized.

Fig. 14.4 | Some basic GUI components.

14.4 Overview of Swing Components 405

Lightweight vs. Heavyweight GUI Components
Most Swing components are lightweight components—they’re written, manipulated and
displayed completely in Java. AWT components are heavyweight components, because
they rely on the local platform’s windowing system to determine their functionality and
their look-and-feel. Several Swing components are heavyweight components.

Superclasses of Swing’s Lightweight GUI Components
The UML class diagram of Fig. 14.5 shows an inheritance hierarchy of classes from which
lightweight Swing components inherit their common attributes and behaviors.

Class Component (package java.awt) is a superclass that declares the common features
of GUI components in packages java.awt and javax.swing. Any object that is a Con-

tainer (package java.awt) can be used to organize Components by attaching the Compo-

nents to the Container. Containers can be placed in other Containers to organize a GUI.
Class JComponent (package javax.swing) is a subclass of Container. JComponent is

the superclass of all lightweight Swing components and declares their common attributes
and behaviors. Because JComponent is a subclass of Container, all lightweight Swing com-
ponents are also Containers. Some common features supported by JComponent include:

1. A pluggable look-and-feel for customizing the appearance of components (e.g.,
for use on particular platforms). You’ll see an example of this in Section 22.6.

2. Shortcut keys (called mnemonics) for direct access to GUI components through
the keyboard. You’ll see an example of this in Section 22.4.

3. Brief descriptions of a GUI component’s purpose (called tool tips) that are dis-
played when the mouse cursor is positioned over the component for a short time.
You’ll see an example of this in the next section.

4. Support for accessibility, such as braille screen readers for the visually impaired.

5. Support for user-interface localization—that is, customizing the user interface to
display in different languages and use local cultural conventions.

Look-and-Feel Observation 14.5
Swing GUI components allow you to specify a uniform look-and-feel for your application
across all platforms or to use each platform’s custom look-and-feel. An application can
even change the look-and-feel during execution to enable users to choose their own pre-
ferred look-and-feel.

Fig. 14.5 | Common superclasses of the lightweight Swing components.

Object

Component

Container

JComponent

406 Chapter 14 GUI Components: Part 1

14.5 Displaying Text and Images in a Window
Our next example introduces a framework for building GUI applications. Several concepts
in this framework will appear in many of our GUI applications. This is our first example
in which the application appears in its own window. Most windows you’ll create that can
contain Swing GUI components are instances of class JFrame or a subclass of JFrame.
JFrame is an indirect subclass of class java.awt.Window that provides the basic attributes
and behaviors of a window—a title bar at the top, and buttons to minimize, maximize and
close the window. Since an application’s GUI is typically specific to the application, most
of our examples will consist of two classes—a subclass of JFrame that helps us demonstrate
new GUI concepts and an application class in which main creates and displays the appli-
cation’s primary window.

Labeling GUI Components
A typical GUI consists of many components. GUI designers often provide text stating the
purpose of each. Such text is known as a label and is created with a JLabel—a subclass of
JComponent. A JLabel displays read-only text, an image, or both text and an image. Ap-
plications rarely change a label’s contents after creating it.

The application of Figs. 14.6–14.7 demonstrates several JLabel features and presents
the framework we use in most of our GUI examples. We did not highlight the code in this
example, since most of it is new. [Note: There are many more features for each GUI com-
ponent than we can cover in our examples. To learn the complete details of each GUI
component, visit its page in the online documentation. For class JLabel, visit down-

load.oracle.com/javase/6/docs/api/javax/swing/JLabel.html.]

Look-and-Feel Observation 14.6
Text in a JLabel normally uses sentence-style capitalization.

1 // Fig. 14.6: LabelFrame.java
2 // Demonstrating the JLabel class.
3 import java.awt.FlowLayout; // specifies how components are arranged
4 import javax.swing.JFrame; // provides basic window features
5 import javax.swing.JLabel; // displays text and images
6 import javax.swing.SwingConstants; // common constants used with Swing
7 import javax.swing.Icon; // interface used to manipulate images
8 import javax.swing.ImageIcon; // loads images
9

10 public class LabelFrame extends JFrame
11 {
12 private JLabel label1; // JLabel with just text
13 private JLabel label2; // JLabel constructed with text and icon
14 private JLabel label3; // JLabel with added text and icon
15
16 // LabelFrame constructor adds JLabels to JFrame
17 public LabelFrame()
18 {

Fig. 14.6 | JLabels with text and icons. (Part 1 of 2.)

14.5 Displaying Text and Images in a Window 407

19 super("Testing JLabel");
20 setLayout(new FlowLayout()); // set frame layout
21
22
23
24
25 add(label1); // add label1 to JFrame
26
27
28
29
30
31
32 add(label2); // add label2 to JFrame
33
34
35
36
37
38
39
40 add(label3); // add label3 to JFrame
41 } // end LabelFrame constructor
42 } // end class LabelFrame

1 // Fig. 14.7: LabelTest.java
2 // Testing LabelFrame.
3 import javax.swing.JFrame;
4
5 public class LabelTest
6 {
7 public static void main(String[] args)
8 {
9 LabelFrame labelFrame = new LabelFrame(); // create LabelFrame

10 labelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 labelFrame.setSize(260, 180); // set frame size
12 labelFrame.setVisible(true); // display frame
13 } // end main
14 } // end class LabelTest

Fig. 14.7 | Test class for LabelFrame.

Fig. 14.6 | JLabels with text and icons. (Part 2 of 2.)

// JLabel constructor with a string argument
label1 = new JLabel("Label with text");
label1.setToolTipText("This is label1");

// JLabel constructor with string, Icon and alignment arguments
Icon bug = new ImageIcon(getClass().getResource("bug1.png"));
label2 = new JLabel("Label with text and icon", bug,

SwingConstants.LEFT);
label2.setToolTipText("This is label2");

label3 = new JLabel(); // JLabel constructor no arguments
label3.setText("Label with icon and text at bottom");
label3.setIcon(bug); // add icon to JLabel
label3.setHorizontalTextPosition(SwingConstants.CENTER);
label3.setVerticalTextPosition(SwingConstants.BOTTOM);
label3.setToolTipText("This is label3");

408 Chapter 14 GUI Components: Part 1

Class LabelFrame (Fig. 14.6) is a subclass of JFrame. We’ll use an instance of class
LabelFrame to display a window containing three JLabels. Lines 3–8 import the classes
used in class LabelFrame. The class extends JFrame to inherit the features of a window.
Lines 12–14 declare the three JLabel instance variables that are instantiated in the Label-
Frame constructor (lines 17–41). Typically, the JFrame subclass’s constructor builds the
GUI that’s displayed in the window when the application executes. Line 19 invokes super-
class JFrame’s constructor with the argument "Testing JLabel". JFrame’s constructor
uses this String as the text in the window’s title bar.

Specifying the Layout
When building a GUI, you must attach each GUI component to a container, such as a win-
dow created with a JFrame. Also, you typically must decide where to position each GUI com-
ponent—known as specifying the layout. Java provides several layout managers that can
help you position components, as you’ll learn at the end of this chapter and in Chapter 22.

Many IDEs provide GUI design tools in which you can specify components’ exact
sizes and locations in a visual manner by using the mouse; then the IDE will generate the
GUI code for you. Such IDEs can greatly simplify GUI creation.

To ensure that our GUIs can be used with any IDE, we did not use an IDE to create
the GUI code. We use Java’s layout managers to size and position components. With the
FlowLayout layout manager, components are placed on a container from left to right in
the order in which they’re added. When no more components can fit on the current line,
they continue to display left to right on the next line. If the container is resized, a Flow-

Layout reflows the components, possibly with fewer or more rows based on the new con-
tainer width. Every container has a default layout, which we’re changing for LabelFrame
to a FlowLayout (line 20). Method setLayout is inherited into class LabelFrame indirectly
from class Container. The argument to the method must be an object of a class that imple-
ments the LayoutManager interface (e.g., FlowLayout). Line 20 creates a new FlowLayout

object and passes its reference as the argument to setLayout.

Creating and Attaching label1
Now that we’ve specified the window’s layout, we can begin creating and attaching GUI
components to the window. Line 23 creates a JLabel object and passes "Label with text"
to the constructor. The JLabel displays this text on the screen as part of the application’s
GUI. Line 24 uses method setToolTipText (inherited by JLabel from JComponent) to
specify the tool tip that’s displayed when the user positions the mouse cursor over the
JLabel in the GUI. You can see a sample tool tip in the second screen capture of Fig. 14.7.
When you execute this application, try positioning the mouse over each JLabel to see its
tool tip. Line 25 attaches label1 to the LabelFrame by passing label1 to the add method,
which is inherited indirectly from class Container.

Common Programming Error 14.1
If you do not explicitly add a GUI component to a container, the GUI component will
not be displayed when the container appears on the screen.

Look-and-Feel Observation 14.7
Use tool tips to add descriptive text to your GUI components. This text helps the user de-
termine the GUI component’s purpose in the user interface.

14.5 Displaying Text and Images in a Window 409

The Icon Interface and Class ImageIcon
Icons are a popular way to enhance the look-and-feel of an application and are also com-
monly used to indicate functionality. For example, the same icon is used to play most of
today’s media on devices like DVD players and MP3 players. Several Swing components
can display images. An icon is normally specified with an Icon argument to a constructor
or to the component’s setIcon method. An Icon is an object of any class that implements
interface Icon (package javax.swing). Class ImageIcon supports several image formats,
including Graphics Interchange Format (GIF), Portable Network Graphics (PNG) and
Joint Photographic Experts Group (JPEG).

Line 28 declares an ImageIcon. The file bug1.png contains the image to load and store
in the ImageIcon object. This image is included in the directory for this example. The
ImageIcon object is assigned to Icon reference bug.

Loading an Image Resource
In line 28, the expression getClass().getResource("bug1.png") invokes method get-

Class (inherited indirectly from class Object) to retrieve a reference to the Class object
that represents the LabelFrame class declaration. That reference is then used to invoke
Class method getResource, which returns the location of the image as a URL. The Im-

ageIcon constructor uses the URL to locate the image, then loads it into memory. As we
discussed in Chapter 1, the JVM loads class declarations into memory, using a class loader.
The class loader knows where each class it loads is located on disk. Method getResource

uses the Class object’s class loader to determine the location of a resource, such as an im-
age file. In this example, the image file is stored in the same location as the Label-

Frame.class file. The techniques described here enable an application to load image files
from locations that are relative to the class file’s location.

Creating and Attaching label2
Lines 29–30 use another JLabel constructor to create a JLabel that displays the text "La-
bel with text and icon" and the Icon bug created in line 28. The last constructor argu-
ment indicates that the label’s contents are left justified, or left aligned (i.e., the icon and
text are at the left side of the label’s area on the screen). Interface SwingConstants (package
javax.swing) declares a set of common integer constants (such as SwingConstants.LEFT)
that are used with many Swing components. By default, the text appears to the right of the
image when a label contains both text and an image. The horizontal and vertical align-
ments of a JLabel can be set with methods setHorizontalAlignment and setVerticalA-

lignment, respectively. Line 31 specifies the tool-tip text for label2, and line 32 adds
label2 to the JFrame.

Creating and Attaching label3
Class JLabel provides methods to change a label’s appearance after it’s been instantiated.
Line 34 creates an empty JLabel with the no-argument constructor. Line 35 uses JLabel
method setText to set the text displayed on the label. Method getText can be used to
retrieve the current text displayed on a label. Line 36 uses JLabel method setIcon to spec-
ify the Icon to display on the label. Method getIcon can be used to retrieve the current
Icon displayed on a label. Lines 37–38 use JLabel methods setHorizontalTextPosition
and setVerticalTextPosition to specify the text position in the label. In this case, the
text will be centered horizontally and will appear at the bottom of the label. Thus, the Icon

410 Chapter 14 GUI Components: Part 1

will appear above the text. The horizontal-position constants in SwingConstants are LEFT,
CENTER and RIGHT (Fig. 14.8). The vertical-position constants in SwingConstants are TOP,
CENTER and BOTTOM (Fig. 14.8). Line 39 sets the tool-tip text for label3. Line 40 adds
label3 to the JFrame.

Creating and Displaying a LabelFrame Window
Class LabelTest (Fig. 14.7) creates an object of class LabelFrame (line 9), then specifies
the default close operation for the window. By default, closing a window simply hides the
window. However, when the user closes the LabelFrame window, we would like the ap-
plication to terminate. Line 10 invokes LabelFrame’s setDefaultCloseOperation meth-
od (inherited from class JFrame) with constant JFrame.EXIT_ON_CLOSE as the argument
to indicate that the program should terminate when the window is closed by the user. This
line is important. Without it the application will not terminate when the user closes the
window. Next, line 11 invokes LabelFrame’s setSize method to specify the width and
height of the window in pixels. Finally, line 12 invokes LabelFrame’s setVisible method
with the argument true to display the window on the screen. Try resizing the window to
see how the FlowLayout changes the JLabel positions as the window width changes.

14.6 Text Fields and an Introduction to Event Handling
with Nested Classes
Normally, a user interacts with an application’s GUI to indicate the tasks that the appli-
cation should perform. For example, when you write an e-mail in an e-mail application,
clicking the Send button tells the application to send the e-mail to the specified e-mail ad-
dresses. GUIs are event driven. When the user interacts with a GUI component, the in-
teraction—known as an event—drives the program to perform a task. Some common user
interactions that cause an application to perform a task include clicking a button, typing
in a text field, selecting an item from a menu, closing a window and moving the mouse.
The code that performs a task in response to an event is called an event handler, and the
overall process of responding to events is known as event handling.

Let’s consider two other GUI components that can generate events—JTextFields
and JPasswordFields (package javax.swing). Class JTextField extends class JTextCom-
ponent (package javax.swing.text), which provides many features common to Swing’s
text-based components. Class JPasswordField extends JTextField and adds methods
that are specific to processing passwords. Each of these components is a single-line area in
which the user can enter text via the keyboard. Applications can also display text in a
JTextField (see the output of Fig. 14.10). A JPasswordField shows that characters are

Constant Description Constant Description

Horizontal-position constants Vertical-position constants

LEFT Place text on the left TOP Place text at the top

CENTER Place text in the center CENTER Place text in the center

RIGHT Place text on the right BOTTOM Place text at the bottom

Fig. 14.8 | Positioning constants (static members of interface SwingConstants).

14.6 Text Fields and an Introduction to Event Handling with Nested Classes 411

being typed as the user enters them, but hides the actual characters with an echo character,
assuming that they represent a password that should remain known only to the user.

When the user types in a JTextField or a JPasswordField, then presses Enter, an
event occurs. Our next example demonstrates how a program can perform a task in
response to that event. The techniques shown here are applicable to all GUI components
that generate events.

The application of Figs. 14.9–14.10 uses classes JTextField and JPasswordField to
create and manipulate four text fields. When the user types in one of the text fields, then
presses Enter, the application displays a message dialog box containing the text the user
typed. You can type only in the text field that’s “in focus.” When you click a component,
it receives the focus. This is important, because the text field with the focus is the one that
generates an event when you press Enter. In this example, you press Enter in the JPass-

wordField, the password is revealed. We begin by discussing the setup of the GUI, then
discuss the event-handling code.

Lines 3–9 import the classes and interfaces we use in this example. Class TextField-
Frame extends JFrame and declares three JTextField variables and a JPasswordField vari-
able (lines 13–16). Each of the corresponding text fields is instantiated and attached to the
TextFieldFrame in the constructor (lines 19–47).

1 // Fig. 14.9: TextFieldFrame.java
2 // Demonstrating the JTextField class.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JTextField;
8 import javax.swing.JPasswordField;
9 import javax.swing.JOptionPane;

10
11 public class TextFieldFrame extends JFrame
12 {
13 private JTextField textField1; // text field with set size
14 private JTextField textField2; // text field constructed with text
15 private JTextField textField3; // text field with text and size
16 private JPasswordField passwordField; // password field with text
17
18 // TextFieldFrame constructor adds JTextFields to JFrame
19 public TextFieldFrame()
20 {
21 super("Testing JTextField and JPasswordField");
22 setLayout(new FlowLayout()); // set frame layout
23
24
25
26 add(textField1); // add textField1 to JFrame
27
28
29
30 add(textField2); // add textField2 to JFrame

Fig. 14.9 | JTextFields and JPasswordFields. (Part 1 of 2.)

// construct textfield with 10 columns
textField1 = new JTextField(10);

// construct textfield with default text
textField2 = new JTextField("Enter text here");

412 Chapter 14 GUI Components: Part 1

31
32
33
34
35 add(textField3); // add textField3 to JFrame
36
37 // construct passwordfield with default text
38
39 add(passwordField); // add passwordField to JFrame
40
41 // register event handlers
42
43
44
45
46
47 } // end TextFieldFrame constructor
48
49 // private inner class for event handling
50
51 {
52 // process text field events
53
54 {
55 String string = ""; // declare string to display
56
57 // user pressed Enter in JTextField textField1
58 if ()
59 string = String.format("textField1: %s",
60);
61
62 // user pressed Enter in JTextField textField2
63 else if ()
64 string = String.format("textField2: %s",
65);
66
67 // user pressed Enter in JTextField textField3
68 else if ()
69 string = String.format("textField3: %s",
70);
71
72 // user pressed Enter in JTextField passwordField
73 else if ()
74 string = String.format("passwordField: %s",
75);
76
77 // display JTextField content
78 JOptionPane.showMessageDialog(null, string);
79 } // end method actionPerformed
80 } // end private inner class TextFieldHandler
81 } // end class TextFieldFrame

Fig. 14.9 | JTextFields and JPasswordFields. (Part 2 of 2.)

// construct textfield with default text and 21 columns
textField3 = new JTextField("Uneditable text field", 21);
textField3.setEditable(false); // disable editing

passwordField = new JPasswordField("Hidden text");

TextFieldHandler handler = new TextFieldHandler();
textField1.addActionListener(handler);
textField2.addActionListener(handler);
textField3.addActionListener(handler);
passwordField.addActionListener(handler);

private class TextFieldHandler implements ActionListener

public void actionPerformed(ActionEvent event)

event.getSource() == textField1

event.getActionCommand()

event.getSource() == textField2

event.getActionCommand()

event.getSource() == textField3

event.getActionCommand()

event.getSource() == passwordField

event.getActionCommand()

14.6 Text Fields and an Introduction to Event Handling with Nested Classes 413

Creating the GUI
Line 22 sets the TextFieldFrame’s layout to FlowLayout. Line 25 creates textField1 with
10 columns of text. A text column’s width in pixels is determined by the average width of
a character in the text field’s current font. When text is displayed in a text field and the
text is wider than the field itself, a portion of the text at the right side is not visible. If you’re
typing in a text field and the cursor reaches the right edge, the text at the left edge is pushed
off the left side of the field and is no longer visible. Users can use the left and right arrow
keys to move through the complete text. Line 26 adds textField1 to the JFrame.

Line 29 creates textField2 with the initial text "Enter text here" to display in the
text field. The width of the field is determined by the width of the default text specified in
the constructor. Line 30 adds textField2 to the JFrame.

Line 33 creates textField3 and calls the JTextField constructor with two argu-
ments—the default text "Uneditable text field" to display and the text field’s width in
columns (21). Line 34 uses method setEditable (inherited by JTextField from class
JTextComponent) to make the text field uneditable—i.e., the user cannot modify the text
in the field. Line 35 adds textField3 to the JFrame.

Line 38 creates passwordField with the text "Hidden text" to display in the text
field. The width of the field is determined by the width of the default text. When you exe-
cute the application, notice that the text is displayed as a string of asterisks. Line 39 adds
passwordField to the JFrame.

Steps Required to Set Up Event Handling for a GUI Component
This example should display a message dialog containing the text from a text field when
the user presses Enter in that text field. Before an application can respond to an event for
a particular GUI component, you must:

1. Create a class that represents the event handler and implements an appropriate
interface—known as an event-listener interface.

2. Indicate that an object of the class from Step 1 should be notified when the event
occurs—known as registering the event handler.

Using a Nested Class to Implement an Event Handler
All the classes discussed so far were so-called top-level classes—that is, they were not de-
clared inside another class. Java allows you to declare classes inside other classes—these are
called nested classes. Nested classes can be static or non-static. Non-static nested
classes are called inner classes and are frequently used to implement event handlers.

An inner-class object must be created by an object of the top-level class that contains
the inner class. Each inner-class object implicitly has a reference to an object of its top-level
class. The inner-class object is allowed to use this implicit reference to directly access all
the variables and methods of the top-level class. A nested class that’s static does not
require an object of its top-level class and does not implicitly have a reference to an object
of the top-level class. As you’ll see in Chapter 15, Graphics and Java 2D, the Java 2D
graphics API uses static nested classes extensively.

Inner Class TextFieldHandler
The event handling in this example is performed by an object of the private inner class
TextFieldHandler (lines 50–80). This class is private because it will be used only to cre-

414 Chapter 14 GUI Components: Part 1

ate event handlers for the text fields in top-level class TextFieldFrame. As with other class
members, inner classes can be declared public, protected or private. Since event han-
dlers tend to be specific to the application in which they’re defined, they’re often imple-
mented as private inner classes or as anonymous inner classes (Section 14.11).

GUI components can generate many events in response to user interactions. Each
event is represented by a class and can be processed only by the appropriate type of event
handler. Normally, a component’s supported events are described in the Java API docu-
mentation for that component’s class and its superclasses. When the user presses Enter in
a JTextField or JPasswordField, an ActionEvent (package java.awt.event) occurs.
Such an event is processed by an object that implements the interface ActionListener

(package java.awt.event). The information discussed here is available in the Java API
documentation for classes JTextField and ActionEvent. Since JPasswordField is a sub-
class of JTextField, JPasswordField supports the same events.

To prepare to handle the events in this example, inner class TextFieldHandler

implements interface ActionListener and declares the only method in that interface—
actionPerformed (lines 53–79). This method specifies the tasks to perform when an
ActionEvent occurs. So, inner class TextFieldHandler satisfies Step 1 listed earlier in this
section. We’ll discuss the details of method actionPerformed shortly.

Registering the Event Handler for Each Text Field
In the TextFieldFrame constructor, line 42 creates a TextFieldHandler object and as-
signs it to variable handler. This object’s actionPerformed method will be called auto-
matically when the user presses Enter in any of the GUI’s text fields. However, before this
can occur, the program must register this object as the event handler for each text field.
Lines 43–46 are the event-registration statements that specify handler as the event handler
for the three JTextFields and the JPasswordField. The application calls JTextField

method addActionListener to register the event handler for each component. This meth-
od receives as its argument an ActionListener object, which can be an object of any class
that implements ActionListener. The object handler is an ActionListener, because
class TextFieldHandler implements ActionListener. After lines 43–46 execute, the ob-
ject handler listens for events. Now, when the user presses Enter in any of these four text
fields, method actionPerformed (line 53–79) in class TextFieldHandler is called to han-
dle the event. If an event handler is not registered for a particular text field, the event that
occurs when the user presses Enter in that text field is consumed—i.e., it’s simply ignored
by the application.

Details of Class TextFieldHandler’s actionPerformed Method
In this example, we’re using one event-handling object’s actionPerformed method (lines
53–79) to handle the events generated by four text fields. Since we’d like to output the

Software Engineering Observation 14.1
The event listener for an event must implement the appropriate event-listener interface.

Common Programming Error 14.2
Forgetting to register an event-handler object for a particular GUI component’s event type
causes events of that type to be ignored.

14.6 Text Fields and an Introduction to Event Handling with Nested Classes 415

name of each text field’s instance variable for demonstration purposes, we must determine
which text field generated the event each time actionPerformed is called. The event
source is the GUI component with which the user interacted. When the user presses Enter
while one of the text fields or the password field has the focus, the system creates a unique
ActionEvent object that contains information about the event that just occurred, such as
the event source and the text in the text field. The system passes this ActionEvent object
to the event listener’s actionPerformed method. Line 55 declares the String that will be
displayed. The variable is initialized with the empty string—a String containing no char-
acters. The compiler requires the variable to be initialized in case none of the branches of
the nested if in lines 58–75 executes.

ActionEvent method getSource (called in lines 58, 63, 68 and 73) returns a reference
to the event source. The condition in line 58 asks, “Is the event source textField1?” This
condition compares references with the == operator to determine if they refer to the same
object. If they both refer to textField1, the user pressed Enter in textField1. Then, lines
59–60 create a String containing the message that line 78 displays in a message dialog.
Line 60 uses ActionEvent method getActionCommand to obtain the text the user typed in
the text field that generated the event.

In this example, we display the text of the password in the JPasswordField when the
user presses Enter in that field. Sometimes it’s necessary to programatically process the
characters in a password. Class JPasswordField method getPassword returns the pass-
word’s characters as an array of type char.

Class TextFieldTest
Class TextFieldTest (Fig. 14.10) contains the main method that executes this application
and displays an object of class TextFieldFrame. When you execute the application, even
the uneditable JTextField (textField3) can generate an ActionEvent. To test this, click
the text field to give it the focus, then press Enter. Also, the actual text of the password is
displayed when you press Enter in the JPasswordField. Of course, you would normally
not display the password!

This application used a single object of class TextFieldHandler as the event listener
for four text fields. Starting in Section 14.10, you’ll see that it’s possible to declare several
event-listener objects of the same type and register each object for a separate GUI compo-
nent’s event. This technique enables us to eliminate the if…else logic used in this
example’s event handler by providing separate event handlers for each component’s events.

1 // Fig. 14.10: TextFieldTest.java
2 // Testing TextFieldFrame.
3 import javax.swing.JFrame;
4
5 public class TextFieldTest
6 {
7 public static void main(String[] args)
8 {
9 TextFieldFrame textFieldFrame = new TextFieldFrame();

10 textFieldFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textFieldFrame.setSize(350, 100); // set frame size

Fig. 14.10 | Test class for TextFieldFrame. (Part 1 of 2.)

416 Chapter 14 GUI Components: Part 1

14.7 Common GUI Event Types and Listener Interfaces
In Section 14.6, you learned that information about the event that occurs when the user
presses Enter in a text field is stored in an ActionEvent object. Many different types of
events can occur when the user interacts with a GUI. The event information is stored in
an object of a class that extends AWTEvent (from package java.awt). Figure 14.11 illus-
trates a hierarchy containing many event classes from the package java.awt.event. Some
of these are discussed in this chapter and Chapter 22. These event types are used with both
AWT and Swing components. Additional event types that are specific to Swing GUI com-
ponents are declared in package javax.swing.event.

Let’s summarize the three parts to the event-handling mechanism that you saw in
Section 14.6—the event source, the event object and the event listener. The event source is

12 textFieldFrame.setVisible(true); // display frame
13 } // end main
14 } // end class TextFieldTest

Fig. 14.10 | Test class for TextFieldFrame. (Part 2 of 2.)

14.7 Common GUI Event Types and Listener Interfaces 417

the GUI component with which the user interacts. The event object encapsulates infor-
mation about the event that occurred, such as a reference to the event source and any
event-specific information that may be required by the event listener for it to handle the
event. The event listener is an object that’s notified by the event source when an event
occurs; in effect, it “listens” for an event, and one of its methods executes in response to
the event. A method of the event listener receives an event object when the event listener
is notified of the event. The event listener then uses the event object to respond to the
event. This event-handling model is known as the delegation event model—an event’s
processing is delegated to an object (the event listener) in the application.

For each event-object type, there’s typically a corresponding event-listener interface.
An event listener for a GUI event is an object of a class that implements one or more of
the event-listener interfaces from packages java.awt.event and javax.swing.event.
Many of the event-listener types are common to both Swing and AWT components. Such
types are declared in package java.awt.event, and some of them are shown in Fig. 14.12.
Additional event-listener types that are specific to Swing components are declared in
package javax.swing.event.

Each event-listener interface specifies one or more event-handling methods that must
be declared in the class that implements the interface. Recall from Section 10.7 that any
class which implements an interface must declare all the abstract methods of that inter-
face; otherwise, the class is an abstract class and cannot be used to create objects.

Fig. 14.11 | Some event classes of package java.awt.event.

Object

EventObject

AWTEvent

ContainerEvent

FocusEvent

PaintEvent

WindowEvent

InputEvent

ActionEvent

AdjustmentEvent

ItemEvent

TextEvent

ComponentEvent

MouseEventKeyEvent

MouseWheelEvent

418 Chapter 14 GUI Components: Part 1

When an event occurs, the GUI component with which the user interacted notifies
its registered listeners by calling each listener’s appropriate event-handling method. For
example, when the user presses the Enter key in a JTextField, the registered listener’s
actionPerformed method is called. How did the event handler get registered? How does
the GUI component know to call actionPerformed rather than another event-handling
method? We answer these questions and diagram the interaction in the next section.

14.8 How Event Handling Works
Let’s illustrate how the event-handling mechanism works, using textField1 from the ex-
ample of Fig. 14.9. We have two remaining open questions from Section 14.7:

1. How did the event handler get registered?

2. How does the GUI component know to call actionPerformed rather than some
other event-handling method?

The first question is answered by the event registration performed in lines 43–46 of
Fig. 14.9. Figure 14.13 diagrams JTextField variable textField1, TextFieldHandler

variable handler and the objects to which they refer.

Registering Events
Every JComponent has an instance variable called listenerList that refers to an object of
class EventListenerList (package javax.swing.event). Each object of a JComponent

subclass maintains references to its registered listeners in the listenerList. For simplicity,
we’ve diagramed listenerList as an array below the JTextField object in Fig. 14.13.

When line 43 of Fig. 14.9

Fig. 14.12 | Some common event-listener interfaces of package java.awt.event.

textField1.addActionListener(handler);

«interface»
ActionListener

«interface»
ComponentListener

«interface»
ContainerListener

«interface»
FocusListener

«interface»
ItemListener

«interface»
KeyListener

«interface»
MouseListener

«interface»
MouseMotionListener

«interface»
TextListener

«interface»
WindowListener

«interface»
java.util.EventListener

«interface»
AdjustmentListener

14.8 How Event Handling Works 419

executes, a new entry containing a reference to the TextFieldHandler object is placed in
textField1’s listenerList. Although not shown in the diagram, this new entry also in-
cludes the listener’s type (in this case, ActionListener). Using this mechanism, each light-
weight Swing GUI component maintains its own list of listeners that were registered to
handle the component’s events.

Event-Handler Invocation
The event-listener type is important in answering the second question: How does the GUI
component know to call actionPerformed rather than another method? Every GUI com-
ponent supports several event types, including mouse events, key events and others. When
an event occurs, the event is dispatched only to the event listeners of the appropriate type.
Dispatching is simply the process by which the GUI component calls an event-handling
method on each of its listeners that are registered for the event type that occurred.

Each event type has one or more corresponding event-listener interfaces. For example,
ActionEvents are handled by ActionListeners, MouseEvents by MouseListeners and
MouseMotionListeners, and KeyEvents by KeyListeners. When an event occurs, the
GUI component receives (from the JVM) a unique event ID specifying the event type.
The GUI component uses the event ID to decide the listener type to which the event
should be dispatched and to decide which method to call on each listener object. For an
ActionEvent, the event is dispatched to every registered ActionListener’s actionPer-

formed method (the only method in interface ActionListener). For a MouseEvent, the
event is dispatched to every registered MouseListener or MouseMotionListener,
depending on the mouse event that occurs. The MouseEvent’s event ID determines which
of the several mouse event-handling methods are called. All these decisions are handled for
you by the GUI components. All you need to do is register an event handler for the par-
ticular event type that your application requires, and the GUI component will ensure that
the event handler’s appropriate method gets called when the event occurs. We discuss

Fig. 14.13 | Event registration for JTextField textField1.

This reference is created by the statement
textField1.addActionListener(handler);

public void actionPerformed(
ActionEvent event)

{
// event handled here

}

listenerList

TextFieldHandler objectJTextField object

textField1 handler

...

420 Chapter 14 GUI Components: Part 1

other event types and event-listener interfaces as they’re needed with each new component
we introduce.

14.9 JButton
A button is a component the user clicks to trigger a specific action. A Java application can
use several types of buttons, including command buttons, checkboxes, toggle buttons and
radio buttons. Figure 14.14 shows the inheritance hierarchy of the Swing buttons we cov-
er in this chapter. As you can see, all the button types are subclasses of AbstractButton
(package javax.swing), which declares the common features of Swing buttons. In this
section, we concentrate on buttons that are typically used to initiate a command.

A command button (see Fig. 14.16’s output) generates an ActionEvent when the user
clicks it. Command buttons are created with class JButton. The text on the face of a
JButton is called a button label. A GUI can have many JButtons, but each button label
should be unique in the portion of the GUI that’s currently displayed.

The application of Figs. 14.15 and 14.16 creates two JButtons and demonstrates that
JButtons support the display of Icons. Event handling for the buttons is performed by a
single instance of inner class ButtonHandler (lines 39–47).

Lines 14–15 declare JButton variables plainJButton and fancyJButton. The corre-
sponding objects are instantiated in the constructor. Line 23 creates plainJButton with
the button label "Plain Button". Line 24 adds the JButton to the JFrame.

A JButton can display an Icon. To provide the user with an extra level of visual inter-
action with the GUI, a JButton can also have a rollover Icon—an Icon that’s displayed

Fig. 14.14 | Swing button hierarchy.

Look-and-Feel Observation 14.8
The text on buttons typically uses book-title capitalization.

Look-and-Feel Observation 14.9
Having more than one JButton with the same label makes the JButtons ambiguous to
the user. Provide a unique label for each button.

JComponent

AbstractButton

JButton JToggleButton

JCheckBox JRadioButton

14.9 JButton 421

when the user positions the mouse over the JButton. The icon on the JButton changes as
the mouse moves in and out of the JButton’s area on the screen. Lines 26–27 (Fig. 14.15)
create two ImageIcon objects that represent the default Icon and rollover Icon for the

1 // Fig. 14.15: ButtonFrame.java
2 // Creating JButtons.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JButton;
8 import javax.swing.Icon;
9 import javax.swing.ImageIcon;

10 import javax.swing.JOptionPane;
11
12 public class ButtonFrame extends JFrame
13 {
14
15
16
17 // ButtonFrame adds JButtons to JFrame
18 public ButtonFrame()
19 {
20 super("Testing Buttons");
21 setLayout(new FlowLayout()); // set frame layout
22
23
24 add(plainJButton); // add plainJButton to JFrame
25
26
27
28
29
30 add(fancyJButton); // add fancyJButton to JFrame
31
32
33
34
35
36 } // end ButtonFrame constructor
37
38 // inner class for button event handling
39
40 {
41 // handle button event
42 public void actionPerformed(ActionEvent event)
43 {
44 JOptionPane.showMessageDialog(, String.format(
45 "You pressed: %s",));
46 } // end method actionPerformed
47 } // end private inner class ButtonHandler
48 } // end class ButtonFrame

Fig. 14.15 | Command buttons and action events.

private JButton plainJButton; // button with just text
private JButton fancyJButton; // button with icons

plainJButton = new JButton("Plain Button"); // button with text

Icon bug1 = new ImageIcon(getClass().getResource("bug1.gif"));
Icon bug2 = new ImageIcon(getClass().getResource("bug2.gif"));
fancyJButton = new JButton("Fancy Button", bug1); // set image
fancyJButton.setRolloverIcon(bug2); // set rollover image

// create new ButtonHandler for button event handling
ButtonHandler handler = new ButtonHandler();
fancyJButton.addActionListener(handler);
plainJButton.addActionListener(handler);

private class ButtonHandler implements ActionListener

ButtonFrame.this
event.getActionCommand()

422 Chapter 14 GUI Components: Part 1

JButton created at line 28. Both statements assume that the image files are stored in the
same directory as the application. Images are commonly placed in the same directory as
the application or a subdirectory like images). These image files have been provided for
you with the example.

Line 28 creates fancyButton with the text "Fancy Button" and the icon bug1. By
default, the text is displayed to the right of the icon. Line 29 uses setRolloverIcon (inher-
ited from class AbstractButton) to specify the image displayed on the JButton when the
user positions the mouse over it. Line 30 adds the JButton to the JFrame.

1 // Fig. 14.16: ButtonTest.java
2 // Testing ButtonFrame.
3 import javax.swing.JFrame;
4
5 public class ButtonTest
6 {
7 public static void main(String[] args)
8 {
9 ButtonFrame buttonFrame = new ButtonFrame(); // create ButtonFrame

10 buttonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 buttonFrame.setSize(275, 110); // set frame size
12 buttonFrame.setVisible(true); // display frame
13 } // end main
14 } // end class ButtonTest

Fig. 14.16 | Test class for ButtonFrame.

14.10 Buttons That Maintain State 423

JButtons, like JTextFields, generate ActionEvents that can be processed by any
ActionListener object. Lines 33–35 create an object of private inner class ButtonHan-
dler and use addActionListener to register it as the event handler for each JButton. Class
ButtonHandler (lines 39–47) declares actionPerformed to display a message dialog box
containing the label for the button the user pressed. For a JButton event, ActionEvent
method getActionCommand returns the label on the JButton.

Accessing the this Reference in an Object of a Top-Level Class From an Inner Class
When you execute this application and click one of its buttons, notice that the message
dialog that appears is centered over the application’s window. This occurs because the call
to JOptionPane method showMessageDialog (lines 44–45 of Fig. 14.15) uses Button-

Frame.this rather than null as the first argument. When this argument is not null, it
represents the so-called parent GUI component of the message dialog (in this case the ap-
plication window is the parent component) and enables the dialog to be centered over that
component when the dialog is displayed. ButtonFrame.this represents the this reference
of the object of top-level class ButtonFrame.

14.10 Buttons That Maintain State
The Swing GUI components contain three types of state buttons—JToggleButton,
JCheckBox and JRadioButton—that have on/off or true/false values. Classes JCheckBox

and JRadioButton are subclasses of JToggleButton (Fig. 14.14). A JRadioButton is dif-
ferent from a JCheckBox in that normally several JRadioButtons are grouped together and
are mutually exclusive—only one in the group can be selected at any time, just like the
buttons on a car radio. We first discuss class JCheckBox.

14.10.1 JCheckBox

The application of Figs. 14.17–14.18 uses two JCheckBoxes to select the desired font style
of the text displayed in a JTextField. When selected, one applies a bold style and the other
an italic style. If both are selected, the style is bold and italic. When the application initially
executes, neither JCheckBox is checked (i.e., they’re both false), so the font is plain. Class
CheckBoxTest (Fig. 14.18) contains the main method that executes this application.

Look-and-Feel Observation 14.10
Because class AbstractButton supports displaying text and images on a button, all sub-
classes of AbstractButton also support displaying text and images.

Look-and-Feel Observation 14.11
Using rollover icons for JButtons provides users with visual feedback indicating that when
they click the mouse while the cursor is positioned over the JButton, an action will occur.

Software Engineering Observation 14.2
When used in an inner class, keyword this refers to the current inner-class object being
manipulated. An inner-class method can use its outer-class object’s this by preceding this
with the outer-class name and a dot, as in ButtonFrame.this.

424 Chapter 14 GUI Components: Part 1

1 // Fig. 14.17: CheckBoxFrame.java
2 // Creating JCheckBox buttons.
3 import java.awt.FlowLayout;
4 import java.awt.Font;
5 import java.awt.event.ItemListener;
6 import java.awt.event.ItemEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JTextField;
9 import javax.swing.JCheckBox;

10
11 public class CheckBoxFrame extends JFrame
12 {
13 private JTextField textField; // displays text in changing fonts
14
15
16
17 // CheckBoxFrame constructor adds JCheckBoxes to JFrame
18 public CheckBoxFrame()
19 {
20 super("JCheckBox Test");
21 setLayout(new FlowLayout()); // set frame layout
22
23 // set up JTextField and set its font
24 textField = new JTextField("Watch the font style change", 20);
25
26 add(textField); // add textField to JFrame
27
28
29
30 add(boldJCheckBox); // add bold checkbox to JFrame
31 add(italicJCheckBox); // add italic checkbox to JFrame
32
33
34
35
36
37 } // end CheckBoxFrame constructor
38
39 // private inner class for ItemListener event handling
40
41 {
42 // respond to checkbox events
43
44 {
45 Font font = null; // stores the new Font
46
47 // determine which CheckBoxes are checked and create Font
48 if ()
49 font = new Font("Serif", Font.BOLD + Font.ITALIC, 14);
50 else if ()
51 font = new Font("Serif", Font.BOLD, 14);
52 else if ()
53 font = new Font("Serif", Font.ITALIC, 14);

Fig. 14.17 | JCheckBox buttons and item events. (Part 1 of 2.)

private JCheckBox boldJCheckBox; // to select/deselect bold
private JCheckBox italicJCheckBox; // to select/deselect italic

textField.setFont(new Font("Serif", Font.PLAIN, 14));

boldJCheckBox = new JCheckBox("Bold"); // create bold checkbox
italicJCheckBox = new JCheckBox("Italic"); // create italic

// register listeners for JCheckBoxes
CheckBoxHandler handler = new CheckBoxHandler();
boldJCheckBox.addItemListener(handler);
italicJCheckBox.addItemListener(handler);

private class CheckBoxHandler implements ItemListener

public void itemStateChanged(ItemEvent event)

boldJCheckBox.isSelected() && italicJCheckBox.isSelected()

boldJCheckBox.isSelected()

italicJCheckBox.isSelected()

14.10 Buttons That Maintain State 425

After the JTextField is created and initialized (Fig. 14.17, line 24), line 25 uses
method setFont (inherited by JTextField indirectly from class Component) to set the font
of the JTextField to a new object of class Font (package java.awt). The new Font is ini-
tialized with "Serif" (a generic font name that represents a font such as Times and is sup-
ported on all Java platforms), Font.PLAIN style and 14-point size. Next, lines 28–29 create
two JCheckBox objects. The String passed to the JCheckBox constructor is the checkbox
label that appears to the right of the JCheckBox by default.

When the user clicks a JCheckBox, an ItemEvent occurs. This event can be handled
by an ItemListener object, which must implement method itemStateChanged. In this
example, the event handling is performed by an instance of private inner class CheckBox-
Handler (lines 40–59). Lines 34–36 create an instance of class CheckBoxHandler and reg-
ister it with method addItemListener as the listener for both the JCheckBox objects.

CheckBoxHandler method itemStateChanged (lines 43–58) is called when the user
clicks the boldJCheckBox or the italicJCheckBox. In this example, we don’t need to

54 else

55 font = new Font("Serif", Font.PLAIN, 14);
56
57 textField.setFont(font); // set textField's font
58 } // end method itemStateChanged
59 } // end private inner class CheckBoxHandler
60 } // end class CheckBoxFrame

1 // Fig. 14.18: CheckBoxTest.java
2 // Testing CheckBoxFrame.
3 import javax.swing.JFrame;
4
5 public class CheckBoxTest
6 {
7 public static void main(String[] args)
8 {
9 CheckBoxFrame checkBoxFrame = new CheckBoxFrame();

10 checkBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 checkBoxFrame.setSize(275, 100); // set frame size
12 checkBoxFrame.setVisible(true); // display frame
13 } // end main
14 } // end class CheckBoxTest

Fig. 14.18 | Test class for CheckBoxFrame.

Fig. 14.17 | JCheckBox buttons and item events. (Part 2 of 2.)

426 Chapter 14 GUI Components: Part 1

know which of the two JCheckBoxes was clicked, just whether or not each one is checked.
Line 48 uses JCheckBox method isSelected to determine if both JCheckBoxes are
selected. If so, line 49 creates a bold italic font by adding the Font constants Font.BOLD
and Font.ITALIC for the font-style argument of the Font constructor. Line 50 determines
whether the boldJCheckBox is selected, and if so line 51 creates a bold font. Line 52 deter-
mines whether the italicJCheckBox is selected, and if so line 53 creates an italic font. If
none of the preceding conditions are true, line 55 creates a plain font using the Font con-
stant Font.PLAIN. Finally, line 57 sets textField’s new font, which changes the font in
the JTextField on the screen.

Relationship Between an Inner Class and Its Top-Level Class
Class CheckBoxHandler used variables boldJCheckBox (Fig. 14.17, lines 48 and 50),
italicJCheckBox (lines 48 and 52) and textField (line 57) even though they are not de-
clared in the inner class. Recall that an inner class has a special relationship with its top-
level class—it’s allowed to access all the variables and methods of the top-level class.
CheckBoxHandler method itemStateChanged (line 43–58) uses this relationship to deter-
mine which JCheckBoxes are checked and to set the font on the JTextField. Notice that
none of the code in inner class CheckBoxHandler requires an explicit reference to the top-
level class object.

14.10.2 JRadioButton

Radio buttons (declared with class JRadioButton) are similar to checkboxes in that they
have two states—selected and not selected (also called deselected). However, radio buttons
normally appear as a group in which only one button can be selected at a time (see the
output of Fig. 14.20). Selecting a different radio button forces all others to be deselected.
Radio buttons are used to represent mutually exclusive options (i.e., multiple options in
the group cannot be selected at the same time). The logical relationship between radio but-
tons is maintained by a ButtonGroup object (package javax.swing), which itself is not a
GUI component. A ButtonGroup object organizes a group of buttons and is not itself dis-
played in a user interface. Rather, the individual JRadioButton objects from the group are
displayed in the GUI.

The application of Figs. 14.19–14.20 is similar to that of Figs. 14.17–14.18. The user
can alter the font style of a JTextField’s text. The application uses radio buttons that
permit only a single font style in the group to be selected at a time. Class RadioButtonTest
(Fig. 14.20) contains the main method that executes this application.

Common Programming Error 14.3
Adding a ButtonGroup object (or an object of any other class that does not derive from
Component) to a container results in a compilation error.

1 // Fig. 14.19: RadioButtonFrame.java
2 // Creating radio buttons using ButtonGroup and JRadioButton.
3 import java.awt.FlowLayout;
4 import java.awt.Font;

Fig. 14.19 | JRadioButtons and ButtonGroups. (Part 1 of 3.)

14.10 Buttons That Maintain State 427

5 import java.awt.event.ItemListener;
6 import java.awt.event.ItemEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JTextField;
9 import javax.swing.JRadioButton;

10 import javax.swing.ButtonGroup;
11
12 public class RadioButtonFrame extends JFrame
13 {
14 private JTextField textField; // used to display font changes
15 private Font plainFont; // font for plain text
16 private Font boldFont; // font for bold text
17 private Font italicFont; // font for italic text
18 private Font boldItalicFont; // font for bold and italic text
19
20
21
22
23
24
25 // RadioButtonFrame constructor adds JRadioButtons to JFrame
26 public RadioButtonFrame()
27 {
28 super("RadioButton Test");
29 setLayout(new FlowLayout()); // set frame layout
30
31 textField = new JTextField("Watch the font style change", 25);
32 add(textField); // add textField to JFrame
33
34 // create radio buttons
35
36
37
38
39 add(plainJRadioButton); // add plain button to JFrame
40 add(boldJRadioButton); // add bold button to JFrame
41 add(italicJRadioButton); // add italic button to JFrame
42 add(boldItalicJRadioButton); // add bold and italic button
43
44
45
46
47
48
49
50
51 // create font objects
52 plainFont = new Font("Serif", Font.PLAIN, 14);
53 boldFont = new Font("Serif", Font.BOLD, 14);
54 italicFont = new Font("Serif", Font.ITALIC, 14);
55 boldItalicFont = new Font("Serif", Font.BOLD + Font.ITALIC, 14);
56 textField.setFont(plainFont); // set initial font to plain
57

Fig. 14.19 | JRadioButtons and ButtonGroups. (Part 2 of 3.)

private JRadioButton plainJRadioButton; // selects plain text
private JRadioButton boldJRadioButton; // selects bold text
private JRadioButton italicJRadioButton; // selects italic text
private JRadioButton boldItalicJRadioButton; // bold and italic
private ButtonGroup radioGroup; // buttongroup to hold radio buttons

plainJRadioButton = new JRadioButton("Plain", true);
boldJRadioButton = new JRadioButton("Bold", false);
italicJRadioButton = new JRadioButton("Italic", false);
boldItalicJRadioButton = new JRadioButton("Bold/Italic", false);

// create logical relationship between JRadioButtons
radioGroup = new ButtonGroup(); // create ButtonGroup
radioGroup.add(plainJRadioButton); // add plain to group
radioGroup.add(boldJRadioButton); // add bold to group
radioGroup.add(italicJRadioButton); // add italic to group
radioGroup.add(boldItalicJRadioButton); // add bold and italic

428 Chapter 14 GUI Components: Part 1

58
59
60
61
62
63
64
65
66
67 } // end RadioButtonFrame constructor
68
69 // private inner class to handle radio button events
70
71 {
72 private Font font; // font associated with this listener
73
74
75 {
76 font = f; // set the font of this listener
77 } // end constructor RadioButtonHandler
78
79 // handle radio button events
80 public void itemStateChanged(ItemEvent event)
81 {
82 textField.setFont(font); // set font of textField
83 } // end method itemStateChanged
84 } // end private inner class RadioButtonHandler
85 } // end class RadioButtonFrame

1 // Fig. 14.20: RadioButtonTest.java
2 // Testing RadioButtonFrame.
3 import javax.swing.JFrame;
4
5 public class RadioButtonTest
6 {
7 public static void main(String[] args)
8 {
9 RadioButtonFrame radioButtonFrame = new RadioButtonFrame();

10 radioButtonFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 radioButtonFrame.setSize(300, 100); // set frame size
12 radioButtonFrame.setVisible(true); // display frame
13 } // end main
14 } // end class RadioButtonTest

Fig. 14.20 | Test class for RadioButtonFrame. (Part 1 of 2.)

Fig. 14.19 | JRadioButtons and ButtonGroups. (Part 3 of 3.)

// register events for JRadioButtons
plainJRadioButton.addItemListener(

new RadioButtonHandler(plainFont));
boldJRadioButton.addItemListener(

new RadioButtonHandler(boldFont));
italicJRadioButton.addItemListener(

new RadioButtonHandler(italicFont));
boldItalicJRadioButton.addItemListener(

new RadioButtonHandler(boldItalicFont));

private class RadioButtonHandler implements ItemListener

public RadioButtonHandler(Font f)

14.11 JComboBox; Using an Anonymous Inner Class for Event Handling 429

Lines 35–42 in the constructor (Fig. 14.19) create four JRadioButton objects and add
them to the JFrame. Each JRadioButton is created with a constructor call like that in line
35. This constructor specifies the label that appears to the right of the JRadioButton by
default and the initial state of the JRadioButton. A true second argument indicates that
the JRadioButton should appear selected when it’s displayed.

Line 45 instantiates ButtonGroup object radioGroup. This object is the “glue” that
forms the logical relationship between the four JRadioButton objects and allows only one
of the four to be selected at a time. It’s possible that no JRadioButtons in a ButtonGroup

are selected, but this can occur only if no preselected JRadioButtons are added to the But-
tonGroup and the user has not selected a JRadioButton yet. Lines 46–49 use ButtonGroup
method add to associate each of the JRadioButtons with radioGroup. If more than one
selected JRadioButton object is added to the group, the selected one that was added first
will be selected when the GUI is displayed.

JRadioButtons, like JCheckBoxes, generate ItemEvents when they’re clicked. Lines
59–66 create four instances of inner class RadioButtonHandler (declared at lines 70–84).
In this example, each event-listener object is registered to handle the ItemEvent generated
when the user clicks a particular JRadioButton. Notice that each RadioButtonHandler

object is initialized with a particular Font object (created in lines 52–55).
Class RadioButtonHandler (line 70–84) implements interface ItemListener so it can

handle ItemEvents generated by the JRadioButtons. The constructor stores the Font

object it receives as an argument in the event-listener object’s instance variable font

(declared at line 72). When the user clicks a JRadioButton, radioGroup turns off the pre-
viously selected JRadioButton, and method itemStateChanged (line 80–83) sets the font
in the JTextField to the Font stored in the JRadioButton’s corresponding event-listener
object. Notice that line 82 of inner class RadioButtonHandler uses the top-level class’s
textField instance variable to set the font.

14.11 JComboBox; Using an Anonymous Inner Class for
Event Handling
A combo box (sometimes called a drop-down list) enables the user to select one item from
a list (Fig. 14.22). Combo boxes are implemented with class JComboBox, which extends
class JComponent. JComboBoxes generate ItemEvents just as JCheckBoxes and JRadioBut-

tons do. This example also demonstrates a special form of inner class that’s used frequently
in event handling. The application (Figs. 14.21–14.22) uses a JComboBox to provide a list
of four image-file names from which the user can select one image to display. When the
user selects a name, the application displays the corresponding image as an Icon on a JLa-
bel. Class ComboBoxTest (Fig. 14.22) contains the main method that executes this appli-

Fig. 14.20 | Test class for RadioButtonFrame. (Part 2 of 2.)

430 Chapter 14 GUI Components: Part 1

cation. The screen captures for this application show the JComboBox list after the selection
was made to illustrate which image-file name was selected.

Lines 19–23 (Fig. 14.21) declare and initialize array icons with four new ImageIcon

objects. String array names (lines 17–18) contains the names of the four image files that
are stored in the same directory as the application.

1 // Fig. 14.21: ComboBoxFrame.java
2 // JComboBox that displays a list of image names.
3 import java.awt.FlowLayout;
4 import java.awt.event.ItemListener;
5 import java.awt.event.ItemEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JLabel;
8 import javax.swing.JComboBox;
9 import javax.swing.Icon;

10 import javax.swing.ImageIcon;
11
12 public class ComboBoxFrame extends JFrame
13 {
14
15 private JLabel label; // label to display selected icon
16
17 private static final String[] names =
18 { "bug1.gif", "bug2.gif", "travelbug.gif", "buganim.gif" };
19 private Icon[] icons = {
20 new ImageIcon(getClass().getResource(names[0])),
21 new ImageIcon(getClass().getResource(names[1])),
22 new ImageIcon(getClass().getResource(names[2])),
23 new ImageIcon(getClass().getResource(names[3])) };
24
25 // ComboBoxFrame constructor adds JComboBox to JFrame
26 public ComboBoxFrame()
27 {
28 super("Testing JComboBox");
29 setLayout(new FlowLayout()); // set frame layout
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

Fig. 14.21 | JComboBox that displays a list of image names. (Part 1 of 2.)

private JComboBox imagesJComboBox; // combobox to hold names of icons

imagesJComboBox = new JComboBox(names); // set up JComboBox
imagesJComboBox.setMaximumRowCount(3); // display three rows

imagesJComboBox.addItemListener(
new ItemListener() // anonymous inner class
{

// handle JComboBox event
public void itemStateChanged(ItemEvent event)
{

// determine whether item selected
if (event.getStateChange() == ItemEvent.SELECTED)

label.setIcon(icons[
imagesJComboBox.getSelectedIndex()]);

} // end method itemStateChanged
} // end anonymous inner class

); // end call to addItemListener

14.11 JComboBox; Using an Anonymous Inner Class for Event Handling 431

At line 31, the constructor initializes a JComboBox object with the Strings in array
names as the elements in the list. Each item in the list has an index. The first item is added
at index 0, the next at index 1 and so forth. The first item added to a JComboBox appears
as the currently selected item when the JComboBox is displayed. Other items are selected
by clicking the JComboBox, then selecting an item from the list that appears.

47
48 add(imagesJComboBox); // add combobox to JFrame
49 label = new JLabel(icons[0]); // display first icon
50 add(label); // add label to JFrame
51 } // end ComboBoxFrame constructor
52 } // end class ComboBoxFrame

1 // Fig. 14.22: ComboBoxTest.java
2 // Testing ComboBoxFrame.
3 import javax.swing.JFrame;
4
5 public class ComboBoxTest
6 {
7 public static void main(String[] args)
8 {
9 ComboBoxFrame comboBoxFrame = new ComboBoxFrame();

10 comboBoxFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 comboBoxFrame.setSize(350, 150); // set frame size
12 comboBoxFrame.setVisible(true); // display frame
13 } // end main
14 } // end class ComboBoxTest

Fig. 14.22 | Testing ComboBoxFrame.

Fig. 14.21 | JComboBox that displays a list of image names. (Part 2 of 2.)

Scrollbar to scroll through the
items in the list

Scroll arrowsScroll box

432 Chapter 14 GUI Components: Part 1

Line 32 uses JComboBox method setMaximumRowCount to set the maximum number
of elements that are displayed when the user clicks the JComboBox. If there are additional
items, the JComboBox provides a scrollbar (see the first screen) that allows the user to scroll
through all the elements in the list. The user can click the scroll arrows at the top and
bottom of the scrollbar to move up and down through the list one element at a time, or
else drag the scroll box in the middle of the scrollbar up and down. To drag the scroll box,
position the mouse cursor on it, hold the mouse button down and move the mouse. In
this example, the drop-down list is too short to drag the scroll box, so you can click the up
and down arrows or use your mouse’s wheel to scroll through the four items in the list.

Line 48 attaches the JComboBox to the ComboBoxFrame’s FlowLayout (set in line 29).
Line 49 creates the JLabel that displays ImageIcons and initializes it with the first Image-
Icon in array icons. Line 50 attaches the JLabel to the ComboBoxFrame’s FlowLayout.

Using an Anonymous Inner Class for Event Handling
Lines 34–46 are one statement that declares the event listener’s class, creates an object of
that class and registers it as the listener for imagesJComboBox’s ItemEvents. This event-lis-
tener object is an instance of an anonymous inner class—an inner class that’s declared
without a name and typically appears inside a method declaration. As with other inner class-
es, an anonymous inner class can access its top-level class’s members. However, an anonymous
inner class has limited access to the local variables of the method in which it’s declared.
Since an anonymous inner class has no name, one object of the class must be created at the
point where the class is declared (starting at line 35).

Lines 34–46 are a call to imagesJComboBox’s addItemListener method. The argu-
ment to this method must be an object that is an ItemListener (i.e., any object of a class
that implements ItemListener). Lines 35–45 are a class-instance creation expression that
declares an anonymous inner class and creates one object of that class. A reference to that
object is then passed as the argument to addItemListener. The syntax ItemListener()

after new begins the declaration of an anonymous inner class that implements interface
ItemListener. This is similar to beginning a class declaration with

The opening left brace at 36 and the closing right brace at line 45 delimit the body of
the anonymous inner class. Lines 38–44 declare the ItemListener’s itemStateChanged
method. When the user makes a selection from imagesJComboBox, this method sets
label’s Icon. The Icon is selected from array icons by determining the index of the
selected item in the JComboBox with method getSelectedIndex in line 43. For each item
selected from a JComboBox, another item is first deselected—so two ItemEvents occur

Look-and-Feel Observation 14.12
Set the maximum row count for a JComboBox to a number of rows that prevents the list
from expanding outside the bounds of the window in which it’s used.

Software Engineering Observation 14.3
An anonymous inner class declared in a method can access the instance variables and
methods of the top-level class object that declared it, as well as the method’s final local
variables, but cannot access the method’s non-final local variables.

public class MyHandler implements ItemListener

14.12 JList 433

when an item is selected. We wish to display only the icon for the item the user just
selected. For this reason, line 41 determines whether ItemEvent method getStateChange

returns ItemEvent.SELECTED. If so, lines 42–43 set label’s icon.

The syntax shown in lines 35–45 for creating an event handler with an anonymous
inner class is similar to the code that would be generated by a Java integrated development
environment (IDE). Typically, an IDE enables you to design a GUI visually, then it gen-
erates code that implements the GUI. You simply insert statements in the event-handling
methods that declare how to handle each event.

14.12 JList
A list displays a series of items from which the user may select one or more items (see the
output of Fig. 14.24). Lists are created with class JList, which directly extends class JCom-
ponent. Class JList supports single-selection lists (which allow only one item to be se-
lected at a time) and multiple-selection lists (which allow any number of items to be
selected). In this section, we discuss single-selection lists.

The application of Figs. 14.23–14.24 creates a JList containing 13 color names.
When a color name is clicked in the JList, a ListSelectionEvent occurs and the appli-
cation changes the background color of the application window to the selected color. Class
ListTest (Fig. 14.24) contains the main method that executes this application.

Software Engineering Observation 14.4
Like any other class, when an anonymous inner class implements an interface, the class
must implement every method in the interface.

1 // Fig. 14.23: ListFrame.java
2 // JList that displays a list of colors.
3 import java.awt.FlowLayout;
4 import java.awt.Color;
5 import javax.swing.JFrame;
6 import javax.swing.JList;
7 import javax.swing.JScrollPane;
8 import javax.swing.event.ListSelectionListener;
9 import javax.swing.event.ListSelectionEvent;

10 import javax.swing.ListSelectionModel;
11
12 public class ListFrame extends JFrame
13 {
14
15 private static final String[] colorNames = { "Black", "Blue", "Cyan",
16 "Dark Gray", "Gray", "Green", "Light Gray", "Magenta",
17 "Orange", "Pink", "Red", "White", "Yellow" };
18 private static final Color[] colors = { Color.BLACK, Color.BLUE,
19 Color.CYAN, Color.DARK_GRAY, Color.GRAY, Color.GREEN,
20 Color.LIGHT_GRAY, Color.MAGENTA, Color.ORANGE, Color.PINK,
21 Color.RED, Color.WHITE, Color.YELLOW };
22

Fig. 14.23 | JList that displays a list of colors. (Part 1 of 2.)

private JList colorJList; // list to display colors

434 Chapter 14 GUI Components: Part 1

23 // ListFrame constructor add JScrollPane containing JList to JFrame
24 public ListFrame()
25 {
26 super("List Test");
27 setLayout(new FlowLayout()); // set frame layout
28
29
30
31
32
33
34
35
36
37
38 colorJList.addListSelectionListener(
39 new ListSelectionListener() // anonymous inner class
40 {
41 // handle list selection events
42 public void valueChanged(ListSelectionEvent event)
43 {
44 getContentPane().setBackground(
45 colors[]);
46 } // end method valueChanged
47 } // end anonymous inner class
48); // end call to addListSelectionListener
49 } // end ListFrame constructor
50 } // end class ListFrame

1 // Fig. 14.24: ListTest.java
2 // Selecting colors from a JList.
3 import javax.swing.JFrame;
4
5 public class ListTest
6 {
7 public static void main(String[] args)
8 {
9 ListFrame listFrame = new ListFrame(); // create ListFrame

10 listFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 listFrame.setSize(350, 150); // set frame size
12 listFrame.setVisible(true); // display frame
13 } // end main
14 } // end class ListTest

Fig. 14.24 | Test class for ListFrame.

Fig. 14.23 | JList that displays a list of colors. (Part 2 of 2.)

colorJList = new JList(colorNames); // create with colorNames
colorJList.setVisibleRowCount(5); // display five rows at once

// do not allow multiple selections
colorJList.setSelectionMode(ListSelectionModel.SINGLE_SELECTION);

// add a JScrollPane containing JList to frame
add(new JScrollPane(colorJList));

colorJList.getSelectedIndex()

14.13 Multiple-Selection Lists 435

Line 29 (Fig. 14.23) creates JList object colorJList. The argument to the JList

constructor is the array of Objects (in this case Strings) to display in the list. Line 30 uses
JList method setVisibleRowCount to determine the number of items visible in the list.

Line 33 uses JList method setSelectionMode to specify the list’s selection mode.
Class ListSelectionModel (of package javax.swing) declares three constants that specify
a JList’s selection mode—SINGLE_SELECTION (which allows only one item to be selected
at a time), SINGLE_INTERVAL_SELECTION (for a multiple-selection list that allows selection
of several contiguous items) and MULTIPLE_INTERVAL_SELECTION (for a multiple-selection
list that does not restrict the items that can be selected).

Unlike a JComboBox, a JList does not provide a scrollbar if there are more items in the
list than the number of visible rows. In this case, a JScrollPane object is used to provide
the scrolling capability. Line 36 adds a new instance of class JScrollPane to the JFrame.
The JScrollPane constructor receives as its argument the JComponent that needs scrolling
functionality (in this case, colorJList). Notice in the screen captures that a scrollbar cre-
ated by the JScrollPane appears at the right side of the JList. By default, the scrollbar
appears only when the number of items in the JList exceeds the number of visible items.

Lines 38–48 use JList method addListSelectionListener to register an object that
implements ListSelectionListener (package javax.swing.event) as the listener for the
JList’s selection events. Once again, we use an instance of an anonymous inner class (lines
39–47) as the listener. In this example, when the user makes a selection from colorJList,
method valueChanged (line 42–46) should change the background color of the List-

Frame to the selected color. This is accomplished in lines 44–45. Note the use of JFrame
method getContentPane in line 44. Each JFrame actually consists of three layers—the
background, the content pane and the glass pane. The content pane appears in front of the
background and is where the GUI components in the JFrame are displayed. The glass pane
is used to display tool tips and other items that should appear in front of the GUI compo-
nents on the screen. The content pane completely hides the background of the JFrame;
thus, to change the background color behind the GUI components, you must change the
content pane’s background color. Method getContentPane returns a reference to the
JFrame’s content pane (an object of class Container). In line 44, we then use that reference
to call method setBackground, which sets the content pane’s background color to an ele-
ment in the colors array. The color is selected from the array by using the selected item’s
index. JList method getSelectedIndex returns the selected item’s index. As with arrays
and JComboBoxes, JList indexing is zero based.

14.13 Multiple-Selection Lists
A multiple-selection list enables the user to select many items from a JList (see the output
of Fig. 14.26). A SINGLE_INTERVAL_SELECTION list allows selecting a contiguous range of
items. To do so, click the first item, then press and hold the Shift key while clicking the
last item in the range. A MULTIPLE_INTERVAL_SELECTION list (the default) allows continu-
ous range selection as described for a SINGLE_INTERVAL_SELECTION list. Such a list also al-
lows miscellaneous items to be selected by pressing and holding the Ctrl key while clicking
each item to select. To deselect an item, press and hold the Ctrl key while clicking the item
a second time.

The application of Figs. 14.25–14.26 uses multiple-selection lists to copy items from
one JList to another. One list is a MULTIPLE_INTERVAL_SELECTION list and the other is a

436 Chapter 14 GUI Components: Part 1

SINGLE_INTERVAL_SELECTION list. When you execute the application, try using the selec-
tion techniques described previously to select items in both lists.

1 // Fig. 14.25: MultipleSelectionFrame.java
2 // Copying items from one List to another.
3 import java.awt.FlowLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JList;
8 import javax.swing.JButton;
9 import javax.swing.JScrollPane;

10 import javax.swing.ListSelectionModel;
11
12 public class MultipleSelectionFrame extends JFrame
13 {
14 private JList colorJList; // list to hold color names
15 private JList copyJList; // list to copy color names into
16 private JButton copyJButton; // button to copy selected names
17 private static final String[] colorNames = { "Black", "Blue", "Cyan",
18 "Dark Gray", "Gray", "Green", "Light Gray", "Magenta", "Orange",
19 "Pink", "Red", "White", "Yellow" };
20
21 // MultipleSelectionFrame constructor
22 public MultipleSelectionFrame()
23 {
24 super("Multiple Selection Lists");
25 setLayout(new FlowLayout()); // set frame layout
26
27 colorJList = new JList(colorNames); // holds names of all colors
28 colorJList.setVisibleRowCount(5); // show five rows
29
30
31 add(new JScrollPane(colorJList)); // add list with scrollpane
32
33 copyJButton = new JButton("Copy >>>"); // create copy button
34 copyJButton.addActionListener(
35
36 new ActionListener() // anonymous inner class
37 {
38 // handle button event
39 public void actionPerformed(ActionEvent event)
40 {
41 // place selected values in copyJList
42
43 } // end method actionPerformed
44 } // end anonymous inner class
45); // end call to addActionListener
46
47 add(copyJButton); // add copy button to JFrame
48
49 copyJList = new JList(); // create list to hold copied color names

Fig. 14.25 | JList that allows multiple selections. (Part 1 of 2.)

colorJList.setSelectionMode(
ListSelectionModel.MULTIPLE_INTERVAL_SELECTION);

copyJList.setListData(colorJList.getSelectedValues());

14.13 Multiple-Selection Lists 437

Line 27 of Fig. 14.25 creates JList colorJList and initializes it with the Strings in
the array colorNames. Line 28 sets the number of visible rows in colorJList to 5. Lines
29–30 specify that colorJList is a MULTIPLE_INTERVAL_SELECTION list. Line 31 adds a
new JScrollPane containing colorJList to the JFrame. Lines 49–55 perform similar
tasks for copyJList, which is declared as a SINGLE_INTERVAL_SELECTION list. If a JList

does not contain items, it will not diplay in a FlowLayout. For this reason, lines 51–52 use
JList methods setFixedCellWidth and setFixedCellHeight to set copyJList’s width
to 100 pixels and the height of each item in the JList to 15 pixels, respectively.

Normally, an event generated by another GUI component (known as an external
event) specifies when the multiple selections in a JList should be processed. In this
example, the user clicks the JButton called copyJButton to trigger the event that copies
the selected items in colorJList to copyJList.

50 copyJList.setVisibleRowCount(5); // show 5 rows
51
52
53
54
55 add(new JScrollPane(copyJList)); // add list with scrollpane
56 } // end MultipleSelectionFrame constructor
57 } // end class MultipleSelectionFrame

1 // Fig. 14.26: MultipleSelectionTest.java
2 // Testing MultipleSelectionFrame.
3 import javax.swing.JFrame;
4
5 public class MultipleSelectionTest
6 {
7 public static void main(String[] args)
8 {
9 MultipleSelectionFrame multipleSelectionFrame =

10 new MultipleSelectionFrame();
11 multipleSelectionFrame.setDefaultCloseOperation(
12 JFrame.EXIT_ON_CLOSE);
13 multipleSelectionFrame.setSize(350, 150); // set frame size
14 multipleSelectionFrame.setVisible(true); // display frame
15 } // end main
16 } // end class MultipleSelectionTest

Fig. 14.26 | Test class for MultipleSelectionFrame.

Fig. 14.25 | JList that allows multiple selections. (Part 2 of 2.)

copyJList.setFixedCellWidth(100); // set width
copyJList.setFixedCellHeight(15); // set height
copyJList.setSelectionMode(

ListSelectionModel.SINGLE_INTERVAL_SELECTION);

438 Chapter 14 GUI Components: Part 1

Lines 34–45 declare, create and register an ActionListener for the copyJButton.
When the user clicks copyJButton, method actionPerformed (lines 39–43) uses JList
method setListData to set the items displayed in copyJList. Line 42 calls colorJList’s
method getSelectedValues, which returns an array of Objects representing the selected
items in colorJList. In this example, the returned array is passed as the argument to
copyJList’s setListData method.

You might be wondering why copyJList can be used in line 42 even though the
application does not create the object to which it refers until line 49. Remember that
method actionPerformed (lines 39–43) does not execute until the user presses the copy-

JButton, which cannot occur until after the constructor completes execution and the
application displays the GUI. At that point in the application’s execution, copyJList is
already initialized with a new JList object.

14.14 Mouse Event Handling
This section presents the MouseListener and MouseMotionListener event-listener inter-
faces for handling mouse events. Mouse events can be processed for any GUI component
that derives from java.awt.Component. The methods of interfaces MouseListener and
MouseMotionListener are summarized in Figure 14.27. Package javax.swing.event

contains interface MouseInputListener, which extends interfaces MouseListener and
MouseMotionListener to create a single interface containing all the MouseListener and
MouseMotionListener methods. The MouseListener and MouseMotionListener meth-
ods are called when the mouse interacts with a Component if appropriate event-listener ob-
jects are registered for that Component.

Each of the mouse event-handling methods receives as an argument a MouseEvent

object that contains information about the mouse event that occurred, including the x-
and y-coordinates of its location. These coordinates are measured from the upper-left
corner of the GUI component on which the event occurred. The x-coordinates start at 0
and increase from left to right. The y-coordinates start at 0 and increase from top to
bottom. The methods and constants of class InputEvent (MouseEvent’s superclass) enable
you to determine which mouse button the user clicked.

MouseListener and MouseMotionListener interface methods

Methods of interface MouseListener

public void mousePressed(MouseEvent event)

Called when a mouse button is pressed while the mouse cursor is on a component.

public void mouseClicked(MouseEvent event)

Called when a mouse button is pressed and released while the mouse cursor remains sta-
tionary on a component. This event is always preceded by a call to mousePressed.

public void mouseReleased(MouseEvent event)

Called when a mouse button is released after being pressed. This event is always preceded
by a call to mousePressed and one or more calls to mouseDragged.

Fig. 14.27 | MouseListener and MouseMotionListener interface methods. (Part 1 of 2.)

14.14 Mouse Event Handling 439

Java also provides interface MouseWheelListener to enable applications to respond to
the rotation of a mouse wheel. This interface declares method mouseWheelMoved, which
receives a MouseWheelEvent as its argument. Class MouseWheelEvent (a subclass of Mouse-
Event) contains methods that enable the event handler to obtain information about the
amount of wheel rotation.

Tracking Mouse Events on a JPanel

The MouseTracker application (Figs. 14.28–14.29) demonstrates the MouseListener and
MouseMotionListener interface methods. The event-handler class (lines 36–90) imple-
ments both interfaces. You must declare all seven methods from these two interfaces when
your class implements them both. Each mouse event in this example displays a String in
the JLabel called statusBar that is attached to the bottom of the window.

public void mouseEntered(MouseEvent event)

Called when the mouse cursor enters the bounds of a component.

public void mouseExited(MouseEvent event)

Called when the mouse cursor leaves the bounds of a component.

Methods of interface MouseMotionListener

public void mouseDragged(MouseEvent event)

Called when the mouse button is pressed while the mouse cursor is on a component and
the mouse is moved while the mouse button remains pressed. This event is always preceded
by a call to mousePressed. All drag events are sent to the component on which the user
began to drag the mouse.

public void mouseMoved(MouseEvent event)

Called when the mouse is moved (with no mouse buttons pressed) when the mouse cursor
is on a component. All move events are sent to the component over which the mouse is
currently positioned.

Software Engineering Observation 14.5
Calls to mouseDragged are sent to the MouseMotionListener for the Component on which
the drag started. Similarly, the mouseReleased call at the end of a drag operation is sent
to the MouseListener for the Component on which the drag operation started.

1 // Fig. 14.28: MouseTrackerFrame.java
2 // Demonstrating mouse events.
3 import java.awt.Color;
4 import java.awt.BorderLayout;
5 import java.awt.event.MouseListener;
6 import java.awt.event.MouseMotionListener;
7 import java.awt.event.MouseEvent;

Fig. 14.28 | Mouse event handling. (Part 1 of 3.)

MouseListener and MouseMotionListener interface methods

Fig. 14.27 | MouseListener and MouseMotionListener interface methods. (Part 2 of 2.)

440 Chapter 14 GUI Components: Part 1

8 import javax.swing.JFrame;
9 import javax.swing.JLabel;

10 import javax.swing.JPanel;
11
12 public class MouseTrackerFrame extends JFrame
13 {
14 private JPanel mousePanel; // panel in which mouse events will occur
15 private JLabel statusBar; // label that displays event information
16
17 // MouseTrackerFrame constructor sets up GUI and
18 // registers mouse event handlers
19 public MouseTrackerFrame()
20 {
21 super("Demonstrating Mouse Events");
22
23
24
25
26
27
28
29
30
31
32
33
34 } // end MouseTrackerFrame constructor
35
36
37
38 {
39 // MouseListener event handlers
40 // handle event when mouse released immediately after press
41
42 {
43 statusBar.setText(String.format("Clicked at [%d, %d]",
44 ,));
45 } // end method mouseClicked
46
47 // handle event when mouse pressed
48
49 {
50 statusBar.setText(String.format("Pressed at [%d, %d]",
51 ,));
52 } // end method mousePressed
53
54 // handle event when mouse released
55
56 {
57 statusBar.setText(String.format("Released at [%d, %d]",
58 ,));
59 } // end method mouseReleased
60

Fig. 14.28 | Mouse event handling. (Part 2 of 3.)

mousePanel = new JPanel(); // create panel
mousePanel.setBackground(Color.WHITE); // set background color
add(mousePanel, BorderLayout.CENTER); // add panel to JFrame

statusBar = new JLabel("Mouse outside JPanel");
add(statusBar, BorderLayout.SOUTH); // add label to JFrame

// create and register listener for mouse and mouse motion events
MouseHandler handler = new MouseHandler();
mousePanel.addMouseListener(handler);
mousePanel.addMouseMotionListener(handler);

private class MouseHandler implements MouseListener,
MouseMotionListener

public void mouseClicked(MouseEvent event)

event.getX() event.getY()

public void mousePressed(MouseEvent event)

event.getX() event.getY()

public void mouseReleased(MouseEvent event)

event.getX() event.getY()

14.14 Mouse Event Handling 441

Line 23 in Fig. 14.28 creates JPanel mousePanel. This JPanel’s mouse events will be
tracked by the application. Line 24 sets mousePanel’s background color to white. When
the user moves the mouse into the mousePanel, the application will change mousePanel’s
background color to green. When the user moves the mouse out of the mousePanel, the
application will change the background color back to white. Line 25 attaches mousePanel
to the JFrame. As you learned in Section 14.5, you typically must specify the layout of the
GUI components in a JFrame. In that section, we introduced the layout manager Flow-
Layout. Here we use the default layout of a JFrame’s content pane—BorderLayout. This
layout manager arranges components into five regions: NORTH, SOUTH, EAST, WEST and
CENTER. NORTH corresponds to the top of the container. This example uses the CENTER and
SOUTH regions. Line 25 uses a two-argument version of method add to place mousePanel

in the CENTER region. The BorderLayout automatically sizes the component in the CENTER
to use all the space in the JFrame that is not occupied by components in the other regions.
Section 14.18.2 discusses BorderLayout in more detail.

Lines 27–28 in the constructor declare JLabel statusBar and attach it to the
JFrame’s SOUTH region. This JLabel occupies the width of the JFrame. The region’s height
is determined by the JLabel.

61 // handle event when mouse enters area
62
63 {
64 statusBar.setText(String.format("Mouse entered at [%d, %d]",
65 ,));
66
67 } // end method mouseEntered
68
69 // handle event when mouse exits area
70
71 {
72 statusBar.setText("Mouse outside JPanel");
73
74 } // end method mouseExited
75
76 // MouseMotionListener event handlers
77 // handle event when user drags mouse with button pressed
78
79 {
80 statusBar.setText(String.format("Dragged at [%d, %d]",
81 ,));
82 } // end method mouseDragged
83
84 // handle event when user moves mouse
85
86 {
87 statusBar.setText(String.format("Moved at [%d, %d]",
88 ,));
89 } // end method mouseMoved
90 } // end inner class MouseHandler
91 } // end class MouseTrackerFrame

Fig. 14.28 | Mouse event handling. (Part 3 of 3.)

public void mouseEntered(MouseEvent event)

event.getX() event.getY()
mousePanel.setBackground(Color.GREEN);

public void mouseExited(MouseEvent event)

mousePanel.setBackground(Color.WHITE);

public void mouseDragged(MouseEvent event)

event.getX() event.getY()

public void mouseMoved(MouseEvent event)

event.getX() event.getY()

442 Chapter 14 GUI Components: Part 1

Line 31 creates an instance of inner class MouseHandler (lines 36–90) called handler

that responds to mouse events. Lines 32–33 register handler as the listener for mouse-

Panel’s mouse events. Methods addMouseListener and addMouseMotionListener are
inherited indirectly from class Component and can be used to register MouseListeners and
MouseMotionListeners, respectively. A MouseHandler object is a MouseListener and is a
MouseMotionListener because the class implements both interfaces. We chose to imple-
ment both interfaces here to demonstrate a class that implements more than one interface,
but we could have implemented interface MouseInputListener instead.]

When the mouse enters and exits mousePanel’s area, methods mouseEntered (lines
62–67) and mouseExited (lines 70–74) are called, respectively. Method mouseEntered

displays a message in the statusBar indicating that the mouse entered the JPanel and
changes the background color to green. Method mouseExited displays a message in the
statusBar indicating that the mouse is outside the JPanel (see the first sample output
window) and changes the background color to white.

The other five events display a string in the statusBar that includes the event and the
coordinates at which it occurred. MouseEvent methods getX and getY return the x- and y-
coordinates, respectively, of the mouse at the time the event occurred.

1 // Fig. 14.29: MouseTrackerFrame.java
2 // Testing MouseTrackerFrame.
3 import javax.swing.JFrame;
4
5 public class MouseTracker
6 {
7 public static void main(String[] args)
8 {
9 MouseTrackerFrame mouseTrackerFrame = new MouseTrackerFrame();

10 mouseTrackerFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseTrackerFrame.setSize(300, 100); // set frame size
12 mouseTrackerFrame.setVisible(true); // display frame
13 } // end main
14 } // end class MouseTracker

Fig. 14.29 | Test class for MouseTrackerFrame.

14.15 Adapter Classes 443

14.15 Adapter Classes
Many event-listener interfaces, such as MouseListener and MouseMotionListener, con-
tain multiple methods. It’s not always desirable to declare every method in an event-listen-
er interface. For instance, an application may need only the mouseClicked handler from
MouseListener or the mouseDragged handler from MouseMotionListener. Interface Win-
dowListener specifies seven window event-handling methods. For many of the listener in-
terfaces that have multiple methods, packages java.awt.event and javax.swing.event

provide event-listener adapter classes. An adapter class implements an interface and pro-
vides a default implementation (with an empty method body) of each method in the in-
terface. Figure 14.30 shows several java.awt.event adapter classes and the interfaces they
implement. You can extend an adapter class to inherit the default implementation of every
method and subsequently override only the method(s) you need for event handling.

Extending MouseAdapter
The application of Figs. 14.31–14.32 demonstrates how to determine the number of
mouse clicks (i.e., the click count) and how to distinguish between the different mouse
buttons. The event listener in this application is an object of inner class MouseClickHan-
dler (lines 25–45) that extends MouseAdapter, so we can declare just the mouseClicked

method we need in this example.

Software Engineering Observation 14.6
When a class implements an interface, the class has an is-a relationship with that
interface. All direct and indirect subclasses of that class inherit this interface. Thus, an
object of a class that extends an event-adapter class is an object of the corresponding event-
listener type (e.g., an object of a subclass of MouseAdapter is a MouseListener).

Event-adapter class in java.awt.event Implements interface

ComponentAdapter ComponentListener

ContainerAdapter ContainerListener

FocusAdapter FocusListener

KeyAdapter KeyListener

MouseAdapter MouseListener

MouseMotionAdapter MouseMotionListener

WindowAdapter WindowListener

Fig. 14.30 | Event-adapter classes and the interfaces they implement in
package java.awt.event.

1 // Fig. 14.31: MouseDetailsFrame.java
2 // Demonstrating mouse clicks and distinguishing between mouse buttons.
3 import java.awt.BorderLayout;
4 import java.awt.event.MouseAdapter;

Fig. 14.31 | Left, center and right mouse-button clicks. (Part 1 of 2.)

444 Chapter 14 GUI Components: Part 1

5 import java.awt.event.MouseEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JLabel;
8
9 public class MouseDetailsFrame extends JFrame

10 {
11 private String details; // String that is displayed in the statusBar
12 private JLabel statusBar; // JLabel that appears at bottom of window
13
14 // constructor sets title bar String and register mouse listener
15 public MouseDetailsFrame()
16 {
17 super("Mouse clicks and buttons");
18
19 statusBar = new JLabel("Click the mouse");
20 add(statusBar, BorderLayout.SOUTH);
21
22 } // end MouseDetailsFrame constructor
23
24 // inner class to handle mouse events
25 private class MouseClickHandler extends MouseAdapter
26 {
27 // handle mouse-click event and determine which button was pressed
28 public void mouseClicked(MouseEvent event)
29 {
30 int xPos = event.getX(); // get x-position of mouse
31 int yPos = event.getY(); // get y-position of mouse
32
33 details = String.format("Clicked %d time(s)",
34);
35
36 if () // right mouse button
37 details += " with right mouse button";
38 else if () // middle mouse button
39 details += " with center mouse button";
40 else // left mouse button
41 details += " with left mouse button";
42
43 statusBar.setText(details); // display message in statusBar
44 } // end method mouseClicked
45 } // end private inner class MouseClickHandler
46 } // end class MouseDetailsFrame

1 // Fig. 14.32: MouseDetails.java
2 // Testing MouseDetailsFrame.
3 import javax.swing.JFrame;
4
5 public class MouseDetails
6 {

Fig. 14.32 | Test class for MouseDetailsFrame. (Part 1 of 2.)

Fig. 14.31 | Left, center and right mouse-button clicks. (Part 2 of 2.)

addMouseListener(new MouseClickHandler()); // add handler

event.getClickCount()

event.isMetaDown()

event.isAltDown()

14.15 Adapter Classes 445

A user of a Java application may be on a system with a one-, two- or three-button mouse.
Java provides a mechanism to distinguish among mouse buttons. Class MouseEvent inherits
several methods from class InputEvent that can distinguish among mouse buttons on a mul-
tibutton mouse or can mimic a multibutton mouse with a combined keystroke and mouse-
button click. Figure 14.33 shows the InputEvent methods used to distinguish among
mouse-button clicks. Java assumes that every mouse contains a left mouse button. Thus, it’s
simple to test for a left-mouse-button click. However, users with a one- or two-button mouse
must use a combination of keystrokes and mouse-button clicks at the same time to simulate
the missing buttons on the mouse. In the case of a one- or two-button mouse, a Java appli-
cation assumes that the center mouse button is clicked if the user holds down the Alt key and
clicks the left mouse button on a two-button mouse or the only mouse button on a one-
button mouse. In the case of a one-button mouse, a Java application assumes that the right
mouse button is clicked if the user holds down the Meta key (sometimes called the Command
key or the “Apple” key on a Mac) and clicks the mouse button.

7 public static void main(String[] args)
8 {
9 MouseDetailsFrame mouseDetailsFrame = new MouseDetailsFrame();

10 mouseDetailsFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 mouseDetailsFrame.setSize(400, 150); // set frame size
12 mouseDetailsFrame.setVisible(true); // display frame
13 } // end main
14 } // end class MouseDetails

Common Programming Error 14.4
If you extend an adapter class and misspell the name of the method you’re overriding, your
method simply becomes another method in the class. This is a logic error that is difficult
to detect, since the program will call the empty version of the method inherited from the
adapter class.

Fig. 14.32 | Test class for MouseDetailsFrame. (Part 2 of 2.)

446 Chapter 14 GUI Components: Part 1

Line 21 of Fig. 14.31 registers a MouseListener for the MouseDetailsFrame. The
event listener is an object of class MouseClickHandler, which extends MouseAdapter. This
enables us to declare only method mouseClicked (lines 28–44). This method first captures
the coordinates where the event occurred and stores them in local variables xPos and yPos

(lines 30–31). Lines 33–34 create a String called details containing the number of con-
secutive mouse clicks, which is returned by MouseEvent method getClickCount at line 34.
Lines 36–41 use methods isMetaDown and isAltDown to determine which mouse button
the user clicked and append an appropriate String to details in each case. The resulting
String is displayed in the statusBar. Class MouseDetails (Fig. 14.32) contains the main
method that executes the application. Try clicking with each of your mouse’s buttons
repeatedly to see the click count increment.

14.16 JPanel Subclass for Drawing with the Mouse
Section 14.14 showed how to track mouse events in a JPanel. In this section, we use a
JPanel as a dedicated drawing area in which the user can draw by dragging the mouse. In
addition, this section demonstrates an event listener that extends an adapter class.

Method paintComponent

Lightweight Swing components that extend class JComponent (such as JPanel) contain
method paintComponent, which is called when a lightweight Swing component is dis-
played. By overriding this method, you can specify how to draw shapes using Java’s graph-
ics capabilities. When customizing a JPanel for use as a dedicated drawing area, the
subclass should override method paintComponent and call the superclass version of paint-
Component as the first statement in the body of the overridden method to ensure that the
component displays correctly. The reason is that subclasses of JComponent support trans-
parency. To display a component correctly, the program must determine whether the
component is transparent. The code that determines this is in superclass JComponent’s
paintComponent implementation. When a component is transparent, paintComponent
will not clear its background when the program displays the component. When a compo-
nent is opaque, paintComponent clears the component’s background before the compo-
nent is displayed. The transparency of a Swing lightweight component can be set with
method setOpaque (a false argument indicates that the component is transparent).

InputEvent method Description

isMetaDown() Returns true when the user clicks the right mouse button on a
mouse with two or three buttons. To simulate a right-mouse-
button click on a one-button mouse, the user can hold down
the Meta key on the keyboard and click the mouse button.

isAltDown() Returns true when the user clicks the middle mouse button on a
mouse with three buttons. To simulate a middle-mouse-button
click on a one- or two-button mouse, the user can press the Alt
key and click the only or left mouse button, respectively.

Fig. 14.33 | InputEvent methods that help determine whether the right or center mouse
button was clicked.

14.16 JPanel Subclass for Drawing with the Mouse 447

Defining the Custom Drawing Area
The Painter application of Figs. 14.34–14.35 demonstrates a customized subclass of
JPanel that is used to create a dedicated drawing area. The application uses the mouse-

Dragged event handler to create a simple drawing application. The user can draw pictures
by dragging the mouse on the JPanel. This example does not use method mouseMoved, so
our event-listener class (the anonymous inner class at lines 22–34) extends Mouse-

MotionAdapter. Since this class already declares both mouseMoved and mouseDragged, we
can simply override mouseDragged to provide the event handling this application requires.

Error-Prevention Tip 14.1
In a JComponent subclass’s paintComponent method, the first statement should always
call the superclass’s paintComponent method to ensure that an object of the subclass dis-
plays correctly.

Common Programming Error 14.5
If an overridden paintComponent method does not call the superclass’s version, the sub-
class component may not display properly. If an overridden paintComponent method calls
the superclass’s version after other drawing is performed, the drawing will be erased.

1 // Fig. 14.34: PaintPanel.java
2 // Using class MouseMotionAdapter.
3 import java.awt.Point;
4 import java.awt.Graphics;
5 import java.awt.event.MouseEvent;
6 import java.awt.event.MouseMotionAdapter;
7 import javax.swing.JPanel;
8
9 public class PaintPanel extends JPanel

10 {
11 private int pointCount = 0; // count number of points
12
13
14
15
16 // set up GUI and register mouse event handler
17 public PaintPanel()
18 {
19 // handle frame mouse motion event
20 addMouseMotionListener(
21
22 // anonymous inner class
23 {
24
25
26
27
28

Fig. 14.34 | Adapter class used to implement event handlers. (Part 1 of 2.)

// array of 10000 java.awt.Point references
private Point[] points = new Point[10000];

new MouseMotionAdapter()

// store drag coordinates and repaint
public void mouseDragged(MouseEvent event)
{

if (pointCount < points.length)
{

448 Chapter 14 GUI Components: Part 1

Class PaintPanel (Fig. 14.34) extends JPanel to create the dedicated drawing area.
Lines 3–7 import the classes used in class PaintPanel. Class Point (package java.awt)
represents an x-y coordinate. We use objects of this class to store the coordinates of each
mouse drag event. Class Graphics is used to draw.

In this example, we use an array of 10,000 Points (line 14) to store the location at
which each mouse drag event occurs. As you’ll see, method paintComponent uses these
Points to draw. Instance variable pointCount (line 11) maintains the total number of
Points captured from mouse drag events so far.

Lines 20–35 register a MouseMotionListener to listen for the PaintPanel’s mouse
motion events. Lines 22–34 create an object of an anonymous inner class that extends the
adapter class MouseMotionAdapter. Recall that MouseMotionAdapter implements Mouse-
MotionListener, so the anonymous inner class object is a MouseMotionListener. The
anonymous inner class inherits default mouseMoved and mouseDragged implementations,
so it already implements all the interface’s methods. However, the default methods do
nothing when they’re called. So, we override method mouseDragged at lines 25–33 to cap-
ture the coordinates of a mouse drag event and store them as a Point object. Line 27
ensures that we store the event’s coordinates only if there are still empty elements in the
array. If so, line 29 invokes the MouseEvent’s getPoint method to obtain the Point where
the event occurred and stores it in the array at index pointCount. Line 30 increments the
pointCount, and line 31 calls method repaint (inherited indirectly from class Component)
to indicate that the PaintPanel should be refreshed on the screen as soon as possible with
a call to the PaintPanel’s paintComponent method.

Method paintComponent (lines 39–46), which receives a Graphics parameter, is
called automatically any time the PaintPanel needs to be displayed on the screen—such
as when the GUI is first displayed—or refreshed on the screen—such as when method
repaint is called or when the GUI component has been hidden by another window on
the screen and subsequently becomes visible again.

29
30
31
32
33
34 } // end anonymous inner class
35); // end call to addMouseMotionListener
36 } // end PaintPanel constructor
37
38 // draw ovals in a 4-by-4 bounding box at specified locations on window
39 public void paintComponent(Graphics g)
40 {
41 super.paintComponent(g); // clears drawing area
42
43 // draw all points in array
44 for (int i = 0; i < pointCount; i++)
45 g.fillOval(, , 4, 4);
46 } // end method paintComponent
47 } // end class PaintPanel

Fig. 14.34 | Adapter class used to implement event handlers. (Part 2 of 2.)

points[pointCount] = event.getPoint(); // find point
++pointCount; // increment number of points in array
repaint(); // repaint JFrame

} // end if
} // end method mouseDragged

points[i].x points[i].y

14.16 JPanel Subclass for Drawing with the Mouse 449

Line 41 invokes the superclass version of paintComponent to clear the PaintPanel’s
background (JPanels are opaque by default). Lines 44–45 draw an oval at the location
specified by each Point in the array (up to the pointCount). Graphics method fillOval

draws a solid oval. The method’s four parameters represent a rectangular area (called the
bounding box) in which the oval is displayed. The first two parameters are the upper-left
x-coordinate and the upper-left y-coordinate of the rectangular area. The last two coordi-
nates represent the rectangular area’s width and height. Method fillOval draws the oval
so it touches the middle of each side of the rectangular area. In line 45, the first two argu-
ments are specified by using class Point’s two public instance variables—x and y. The
loop terminates when pointCount points have been displayed. You’ll learn more Graphics
features in Chapter 15.

Using the Custom JPanel in an Application
Class Painter (Fig. 14.35) contains the main method that executes this application. Line
14 creates a PaintPanel object on which the user can drag the mouse to draw. Line 15
attaches the PaintPanel to the JFrame.

Look-and-Feel Observation 14.13
Calling repaint for a Swing GUI component indicates that the component should be re-
freshed on the screen as soon as possible. The component’s background is cleared only if
the component is opaque. JComponent method setOpaque can be passed a boolean argu-
ment indicating whether the component is opaque (true) or transparent (false).

Look-and-Feel Observation 14.14
Drawing on any GUI component is performed with coordinates that are measured from
the upper-left corner (0, 0) of that GUI component, not the upper-left corner of the screen.

1 // Fig. 14.35: Painter.java
2 // Testing PaintPanel.
3 import java.awt.BorderLayout;
4 import javax.swing.JFrame;
5 import javax.swing.JLabel;
6
7 public class Painter
8 {
9 public static void main(String[] args)

10 {
11 // create JFrame
12 JFrame application = new JFrame("A simple paint program");
13
14
15 application.add(paintPanel, BorderLayout.CENTER); // in center
16
17 // create a label and place it in SOUTH of BorderLayout
18 application.add(new JLabel("Drag the mouse to draw"),
19 BorderLayout.SOUTH);
20
21 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Fig. 14.35 | Test class for PaintPanel. (Part 1 of 2.)

PaintPanel paintPanel = new PaintPanel(); // create paint panel

450 Chapter 14 GUI Components: Part 1

14.17 Key Event Handling
This section presents the KeyListener interface for handling key events. Key events are
generated when keys on the keyboard are pressed and released. A class that implements
KeyListener must provide declarations for methods keyPressed, keyReleased and key-

Typed, each of which receives a KeyEvent as its argument. Class KeyEvent is a subclass of
InputEvent. Method keyPressed is called in response to pressing any key. Method key-

Typed is called in response to pressing any key that is not an action key. (The action keys
are any arrow key, Home, End, Page Up, Page Down, any function key, etc.) Method key-

Released is called when the key is released after any keyPressed or keyTyped event.
The application of Figs. 14.36–14.37 demonstrates the KeyListener methods. Class

KeyDemoFrame implements the KeyListener interface, so all three methods are declared in
the application. The constructor (Fig. 14.36, lines 17–28) registers the application to
handle its own key events by using method addKeyListener at line 27. Method addKey-

Listener is declared in class Component, so every subclass of Component can notify Key-

Listener objects of key events for that Component.

22 application.setSize(400, 200); // set frame size
23 application.setVisible(true); // display frame
24 } // end main
25 } // end class Painter

1 // Fig. 14.36: KeyDemoFrame.java
2 // Demonstrating keystroke events.
3 import java.awt.Color;
4 import java.awt.event.KeyListener;
5 import java.awt.event.KeyEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JTextArea;
8
9 public class KeyDemoFrame extends JFrame

10 {
11 private String line1 = ""; // first line of textarea
12 private String line2 = ""; // second line of textarea
13 private String line3 = ""; // third line of textarea
14 private JTextArea textArea; // textarea to display output
15

Fig. 14.36 | Key event handling. (Part 1 of 2.)

Fig. 14.35 | Test class for PaintPanel. (Part 2 of 2.)

implements KeyListener

14.17 Key Event Handling 451

16 // KeyDemoFrame constructor
17 public KeyDemoFrame()
18 {
19 super("Demonstrating Keystroke Events");
20
21 textArea = new JTextArea(10, 15); // set up JTextArea
22 textArea.setText("Press any key on the keyboard...");
23 textArea.setEnabled(false); // disable textarea
24
25 add(textArea); // add textarea to JFrame
26
27
28 } // end KeyDemoFrame constructor
29
30 // handle press of any key
31
32 {
33 line1 = String.format("Key pressed: %s",
34); // show pressed key
35 setLines2and3(event); // set output lines two and three
36 } // end method keyPressed
37
38 // handle release of any key
39
40 {
41 line1 = String.format("Key released: %s",
42); // show released key
43 setLines2and3(event); // set output lines two and three
44 } // end method keyReleased
45
46 // handle press of an action key
47
48 {
49 line1 = String.format("Key typed: %s",);
50 setLines2and3(event); // set output lines two and three
51 } // end method keyTyped
52
53 // set second and third lines of output
54 private void setLines2and3(KeyEvent event)
55 {
56 line2 = String.format("This key is %san action key",
57 (? "" : "not "));
58
59
60
61 line3 = String.format("Modifier keys pressed: %s",
62 (temp.equals("") ? "none" : temp)); // output modifiers
63
64 textArea.setText(String.format("%s\n%s\n%s\n",
65 line1, line2, line3)); // output three lines of text
66 } // end method setLines2and3
67 } // end class KeyDemoFrame

Fig. 14.36 | Key event handling. (Part 2 of 2.)

textArea.setDisabledTextColor(Color.BLACK); // set text color

addKeyListener(this); // allow frame to process key events

public void keyPressed(KeyEvent event)

KeyEvent.getKeyText(event.getKeyCode())

public void keyReleased(KeyEvent event)

KeyEvent.getKeyText(event.getKeyCode())

public void keyTyped(KeyEvent event)

event.getKeyChar()

event.isActionKey()

String temp = KeyEvent.getKeyModifiersText(event.getModifiers());

452 Chapter 14 GUI Components: Part 1

At line 25, the constructor adds the JTextArea textArea (where the application’s
output is displayed) to the JFrame. A JTextArea is a multiline area in which you can dis-
play text. (We discuss JTextAreas in more detail in Section 14.20.) Notice in the screen
captures that textArea occupies the entire window. This is due to the JFrame’s default
BorderLayout (discussed in Section 14.18.2 and demonstrated in Fig. 14.41). When a
single Component is added to a BorderLayout, the Component occupies the entire Con-

tainer. Line 23 disables the JTextArea so the user cannot type in it. This causes the text
in the JTextArea to become gray. Line 24 uses method setDisabledTextColor to change
the text color in the JTextArea to black for readability.

Methods keyPressed (lines 31–36) and keyReleased (lines 39–44) use KeyEvent

method getKeyCode to get the virtual key code of the pressed key. Class KeyEvent con-
tains virtual key-code constants that represent every key on the keyboard. These constants

1 // Fig. 14.37: KeyDemo.java
2 // Testing KeyDemoFrame.
3 import javax.swing.JFrame;
4
5 public class KeyDemo
6 {
7 public static void main(String[] args)
8 {
9 KeyDemoFrame keyDemoFrame = new KeyDemoFrame();

10 keyDemoFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 keyDemoFrame.setSize(350, 100); // set frame size
12 keyDemoFrame.setVisible(true); // display frame
13 } // end main
14 } // end class KeyDemo

Fig. 14.37 | Test class for KeyDemoFrame.

14.18 Introduction to Layout Managers 453

can be compared with getKeyCode’s return value to test for individual keys on the key-
board. The value returned by getKeyCode is passed to static KeyEvent method getKey-

Text, which returns a string containing the name of the key that was pressed. For a
complete list of virtual key constants, see the on-line documentation for class KeyEvent

(package java.awt.event). Method keyTyped (lines 47–51) uses KeyEvent method get-

KeyChar (which returns a char) to get the Unicode value of the character typed.
All three event-handling methods finish by calling method setLines2and3 (lines 54–

66) and passing it the KeyEvent object. This method uses KeyEvent method isActionKey

(line 57) to determine whether the key in the event was an action key. Also, InputEvent
method getModifiers is called (line 59) to determine whether any modifier keys (such as
Shift, Alt and Ctrl) were pressed when the key event occurred. The result of this method is
passed to static KeyEvent method getKeyModifiersText, which produces a string con-
taining the names of the pressed modifier keys.

[Note: If you need to test for a specific key on the keyboard, class KeyEvent provides
a key constant for each one. These constants can be used from the key event handlers to
determine whether a particular key was pressed. Also, to determine whether the Alt, Ctrl,
Meta and Shift keys are pressed individually, InputEvent methods isAltDown, isCon-
trolDown, isMetaDown and isShiftDown each return a boolean indicating whether the
particular key was pressed during the key event.]

14.18 Introduction to Layout Managers
Layout managers arrange GUI components in a container for presentation purposes. You
can use the layout managers for basic layout capabilities instead of determining every GUI
component’s exact position and size. This functionality enables you to concentrate on the
basic look-and-feel and lets the layout managers process most of the layout details. All lay-
out managers implement the interface LayoutManager (in package java.awt). Class Con-
tainer’s setLayout method takes an object that implements the LayoutManager interface
as an argument. There are basically three ways for you to arrange components in a GUI:

1. Absolute positioning: This provides the greatest level of control over a GUI’s ap-
pearance. By setting a Container’s layout to null, you can specify the absolute
position of each GUI component with respect to the upper-left corner of the Con-
tainer by using Component methods setSize and setLocation or setBounds. If
you do this, you also must specify each GUI component’s size. Programming a
GUI with absolute positioning can be tedious, unless you have an integrated de-
velopment environment (IDE) that can generate the code for you.

2. Layout managers: Using layout managers to position elements can be simpler and
faster than creating a GUI with absolute positioning, but you lose some control
over the size and the precise positioning of GUI components.

3. Visual programming in an IDE: IDEs provide tools that make it easy to create
GUIs. Each IDE typically provides a GUI design tool that allows you to drag and
drop GUI components from a tool box onto a design area. You can then position,
size and align GUI components as you like. The IDE generates the Java code that
creates the GUI. In addition, you can typically add event-handling code for a par-
ticular component by double-clicking the component. Some design tools also al-
low you to use the layout managers described in this chapter and in Chapter 22.

454 Chapter 14 GUI Components: Part 1

Figure 14.38 summarizes the layout managers presented in this chapter. Others are
discussed in Chapter 22, and the powerful GroupLayout layout manager is discussed in
Appendix H.

14.18.1 FlowLayout

FlowLayout is the simplest layout manager. GUI components are placed on a container
from left to right in the order in which they’re added to the container. When the edge of
the container is reached, components continue to display on the next line. Class FlowLay-
out allows GUI components to be left aligned, centered (the default) and right aligned.

The application of Figs. 14.39–14.40 creates three JButton objects and adds them to
the application, using a FlowLayout layout manager. The components are center aligned
by default. When the user clicks Left, the alignment for the layout manager is changed to
a left-aligned FlowLayout. When the user clicks Right, the alignment for the layout man-
ager is changed to a right-aligned FlowLayout. When the user clicks Center, the alignment
for the layout manager is changed to a center-aligned FlowLayout. Each button has its own
event handler that’s declared with an anonymous inner class that implements ActionLis-
tener. The sample output windows show each of the FlowLayout alignments. Also, the
last sample output window shows the centered alignment after the window has been
resized to a smaller width. Notice that the button Right flows onto a new line.

As seen previously, a container’s layout is set with method setLayout of class Con-

tainer. Line 25 sets the layout manager to the FlowLayout declared at line 23. Normally,
the layout is set before any GUI components are added to a container.

Look-and-Feel Observation 14.15
Most Java IDEs provide GUI design tools for visually designing a GUI; the tools then
write Java code that creates the GUI. Such tools often provide greater control over the size,
position and alignment of GUI components than do the built-in layout managers.

Look-and-Feel Observation 14.16
It’s possible to set a Container’s layout to null, which indicates that no layout manager
should be used. In a Container without a layout manager, you must position and size the
components in the given container and take care that, on resize events, all components are
repositioned as necessary. A component’s resize events can be processed by a Component-

Listener.

Layout manager Description

FlowLayout Default for javax.swing.JPanel. Places components sequentially (left
to right) in the order they were added. It’s also possible to specify the
order of the components by using the Container method add, which
takes a Component and an integer index position as arguments.

BorderLayout Default for JFrames (and other windows). Arranges the components
into five areas: NORTH, SOUTH, EAST, WEST and CENTER.

GridLayout Arranges the components into rows and columns.

Fig. 14.38 | Layout managers.

14.18 Introduction to Layout Managers 455

Look-and-Feel Observation 14.17
Each individual container can have only one layout manager, but multiple containers in
the same application can each use different layout managers.

1 // Fig. 14.39: FlowLayoutFrame.java
2 // Demonstrating FlowLayout alignments.
3 import java.awt.FlowLayout;
4 import java.awt.Container;
5 import java.awt.event.ActionListener;
6 import java.awt.event.ActionEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JButton;
9

10 public class FlowLayoutFrame extends JFrame
11 {
12 private JButton leftJButton; // button to set alignment left
13 private JButton centerJButton; // button to set alignment center
14 private JButton rightJButton; // button to set alignment right
15 private FlowLayout layout; // layout object
16 private Container container; // container to set layout
17
18 // set up GUI and register button listeners
19 public FlowLayoutFrame()
20 {
21 super("FlowLayout Demo");
22
23
24 container = getContentPane(); // get container to layout
25
26
27 // set up leftJButton and register listener
28 leftJButton = new JButton("Left"); // create Left button
29
30 leftJButton.addActionListener(
31
32 new ActionListener() // anonymous inner class
33 {
34 // process leftJButton event
35 public void actionPerformed(ActionEvent event)
36 {
37
38
39 // realign attached components
40
41 } // end method actionPerformed
42 } // end anonymous inner class
43); // end call to addActionListener
44
45 // set up centerJButton and register listener
46 centerJButton = new JButton("Center"); // create Center button
47

Fig. 14.39 | FlowLayout allows components to flow over multiple lines. (Part 1 of 2.)

layout = new FlowLayout(); // create FlowLayout

setLayout(layout); // set frame layout

add(leftJButton); // add Left button to frame

layout.setAlignment(FlowLayout.LEFT);

layout.layoutContainer(container);

add(centerJButton); // add Center button to frame

456 Chapter 14 GUI Components: Part 1

48 centerJButton.addActionListener(
49
50 new ActionListener() // anonymous inner class
51 {
52 // process centerJButton event
53 public void actionPerformed(ActionEvent event)
54 {
55
56
57 // realign attached components
58
59 } // end method actionPerformed
60 } // end anonymous inner class
61); // end call to addActionListener
62
63 // set up rightJButton and register listener
64 rightJButton = new JButton("Right"); // create Right button
65
66 rightJButton.addActionListener(
67
68 new ActionListener() // anonymous inner class
69 {
70 // process rightJButton event
71 public void actionPerformed(ActionEvent event)
72 {
73
74
75 // realign attached components
76
77 } // end method actionPerformed
78 } // end anonymous inner class
79); // end call to addActionListener
80 } // end FlowLayoutFrame constructor
81 } // end class FlowLayoutFrame

1 // Fig. 14.40: FlowLayoutDemo.java
2 // Testing FlowLayoutFrame.
3 import javax.swing.JFrame;
4
5 public class FlowLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 FlowLayoutFrame flowLayoutFrame = new FlowLayoutFrame();

10 flowLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 flowLayoutFrame.setSize(300, 75); // set frame size
12 flowLayoutFrame.setVisible(true); // display frame
13 } // end main
14 } // end class FlowLayoutDemo

Fig. 14.40 | Test class for FlowLayoutFrame. (Part 1 of 2.)

Fig. 14.39 | FlowLayout allows components to flow over multiple lines. (Part 2 of 2.)

layout.setAlignment(FlowLayout.CENTER);

layout.layoutContainer(container);

add(rightJButton); // add Right button to frame

layout.setAlignment(FlowLayout.RIGHT);

layout.layoutContainer(container);

14.18 Introduction to Layout Managers 457

Each button’s event handler is specified with a separate anonymous inner-class object
(Fig. 14.39, lines 30–43, 48–61 and 66–79, respectively), and method actionPerformed

in each case executes two statements. For example, line 37 in the event handler for
leftJButton uses FlowLayout method setAlignment to change the alignment for the
FlowLayout to a left-aligned (FlowLayout.LEFT) FlowLayout. Line 40 uses LayoutMan-

ager interface method layoutContainer (which is inherited by all layout managers) to
specify that the JFrame should be rearranged based on the adjusted layout. According to
which button was clicked, the actionPerformed method for each button sets the Flow-

Layout’s alignment to FlowLayout.LEFT (line 37), FlowLayout.CENTER (line 55) or Flow-
Layout.RIGHT (line 73).

14.18.2 BorderLayout

The BorderLayout layout manager (the default layout manager for a JFrame) arranges
components into five regions: NORTH, SOUTH, EAST, WEST and CENTER. NORTH corresponds to
the top of the container. Class BorderLayout extends Object and implements interface
LayoutManager2 (a subinterface of LayoutManager that adds several methods for en-
hanced layout processing).

A BorderLayout limits a Container to containing at most five components—one in
each region. The component placed in each region can be a container to which other com-
ponents are attached. The components placed in the NORTH and SOUTH regions extend hor-
izontally to the sides of the container and are as tall as the components placed in those
regions. The EAST and WEST regions expand vertically between the NORTH and SOUTH

regions and are as wide as the components placed in those regions. The component placed
in the CENTER region expands to fill all remaining space in the layout (which is the reason
the JTextArea in Fig. 14.37 occupies the entire window). If all five regions are occupied,
the entire container’s space is covered by GUI components. If the NORTH or SOUTH region
is not occupied, the GUI components in the EAST, CENTER and WEST regions expand ver-
tically to fill the remaining space. If the EAST or WEST region is not occupied, the GUI com-
ponent in the CENTER region expands horizontally to fill the remaining space. If the CENTER
region is not occupied, the area is left empty—the other GUI components do not expand

Fig. 14.40 | Test class for FlowLayoutFrame. (Part 2 of 2.)

458 Chapter 14 GUI Components: Part 1

to fill the remaining space. The application of Figs. 14.41–14.42 demonstrates the Bor-

derLayout layout manager by using five JButtons.

1 // Fig. 14.41: BorderLayoutFrame.java
2 // Demonstrating BorderLayout.
3 import java.awt.BorderLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import javax.swing.JFrame;
7 import javax.swing.JButton;
8
9 public class BorderLayoutFrame extends JFrame implements ActionListener

10 {
11 private JButton[] buttons; // array of buttons to hide portions
12 private static final String[] names = { "Hide North", "Hide South",
13 "Hide East", "Hide West", "Hide Center" };
14
15
16 // set up GUI and event handling
17 public BorderLayoutFrame()
18 {
19 super("BorderLayout Demo");
20
21
22
23 buttons = new JButton[names.length]; // set size of array
24
25 // create JButtons and register listeners for them
26 for (int count = 0; count < names.length; count++)
27 {
28 buttons[count] = new JButton(names[count]);
29
30 } // end for
31
32
33
34
35
36
37 } // end BorderLayoutFrame constructor
38
39 // handle button events
40 public void actionPerformed(ActionEvent event)
41 {
42 // check event source and lay out content pane correspondingly
43 for (JButton button : buttons)
44 {
45 if (event.getSource() == button)
46
47 else

48
49 } // end for

Fig. 14.41 | BorderLayout containing five buttons. (Part 1 of 2.)

private BorderLayout layout; // borderlayout object

layout = new BorderLayout(5, 5); // 5 pixel gaps
setLayout(layout); // set frame layout

buttons[count].addActionListener(this);

add(buttons[0], BorderLayout.NORTH); // add button to north
add(buttons[1], BorderLayout.SOUTH); // add button to south
add(buttons[2], BorderLayout.EAST); // add button to east
add(buttons[3], BorderLayout.WEST); // add button to west
add(buttons[4], BorderLayout.CENTER); // add button to center

button.setVisible(false); // hide button clicked

button.setVisible(true); // show other buttons

14.18 Introduction to Layout Managers 459

50
51
52 } // end method actionPerformed
53 } // end class BorderLayoutFrame

1 // Fig. 14.42: BorderLayoutDemo.java
2 // Testing BorderLayoutFrame.
3 import javax.swing.JFrame;
4
5 public class BorderLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 BorderLayoutFrame borderLayoutFrame = new BorderLayoutFrame();

10 borderLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 borderLayoutFrame.setSize(300, 200); // set frame size
12 borderLayoutFrame.setVisible(true); // display frame
13 } // end main
14 } // end class BorderLayoutDemo

Fig. 14.42 | Test class for BorderLayoutFrame.

Fig. 14.41 | BorderLayout containing five buttons. (Part 2 of 2.)

layout.layoutContainer(getContentPane()); // lay out content pane

horizontal
gap

vertical
gap

460 Chapter 14 GUI Components: Part 1

Line 21 of Fig. 14.41 creates a BorderLayout. The constructor arguments specify the
number of pixels between components that are arranged horizontally (horizontal gap
space) and between components that are arranged vertically (vertical gap space), respec-
tively. The default is one pixel of gap space horizontally and vertically. Line 22 uses
method setLayout to set the content pane’s layout to layout.

We add Components to a BorderLayout with another version of Container method
add that takes two arguments—the Component to add and the region in which the Compo-
nent should appear. For example, line 32 specifies that buttons[0] should appear in the
NORTH region. The components can be added in any order, but only one component
should be added to each region.

Class BorderLayoutFrame implements ActionListener directly in this example, so the
BorderLayoutFrame will handle the events of the JButtons. For this reason, line 29 passes
the this reference to the addActionListener method of each JButton. When the user clicks
a particular JButton in the layout, method actionPerformed (lines 40–52) executes. The
enhanced for statement at lines 43–49 uses an if…else to hide the particular JButton that
generated the event. Method setVisible (inherited into JButton from class Component) is
called with a false argument (line 46) to hide the JButton. If the current JButton in the
array is not the one that generated the event, method setVisible is called with a true argu-
ment (line 48) to ensure that the JButton is displayed on the screen. Line 51 uses Layout-
Manager method layoutContainer to recalculate the layout of the content pane. Notice in
the screen captures of Fig. 14.42 that certain regions in the BorderLayout change shape as
JButtons are hidden and displayed in other regions. Try resizing the application window to
see how the various regions resize based on the window’s width and height. For more complex
layouts, group components in JPanels, each with a separate layout manager. Place the JPanels
on the JFrame using either the default BorderLayout or some other layout.

14.18.3 GridLayout

The GridLayout layout manager divides the container into a grid so that components can
be placed in rows and columns. Class GridLayout inherits directly from class Object and
implements interface LayoutManager. Every Component in a GridLayout has the same
width and height. Components are added to a GridLayout starting at the top-left cell of
the grid and proceeding left to right until the row is full. Then the process continues left
to right on the next row of the grid, and so on. The application of Figs. 14.43–14.44 dem-
onstrates the GridLayout layout manager by using six JButtons.

Lines 24–25 create two GridLayout objects. The GridLayout constructor used at line
24 specifies a GridLayout with 2 rows, 3 columns, 5 pixels of horizontal-gap space between
Components in the grid and 5 pixels of vertical-gap space between Components in the grid.

Look-and-Feel Observation 14.18
If no region is specified when adding a Component to a BorderLayout, the layout manager
assumes that the Component should be added to region BorderLayout.CENTER.

Common Programming Error 14.6
When more than one component is added to a region in a BorderLayout, only the last
component added to that region will be displayed. There’s no error that indicates this
problem.

14.18 Introduction to Layout Managers 461

The GridLayout constructor used at line 25 specifies a GridLayout with 3 rows and 2 col-
umns that uses the default gap space (1 pixel).

1 // Fig. 14.43: GridLayoutFrame.java
2 // Demonstrating GridLayout.
3 import java.awt.GridLayout;
4 import java.awt.Container;
5 import java.awt.event.ActionListener;
6 import java.awt.event.ActionEvent;
7 import javax.swing.JFrame;
8 import javax.swing.JButton;
9

10 public class GridLayoutFrame extends JFrame implements ActionListener
11 {
12 private JButton[] buttons; // array of buttons
13 private static final String[] names =
14 { "one", "two", "three", "four", "five", "six" };
15 private boolean toggle = true; // toggle between two layouts
16 private Container container; // frame container
17
18
19
20 // no-argument constructor
21 public GridLayoutFrame()
22 {
23 super("GridLayout Demo");
24
25
26 container = getContentPane(); // get content pane
27
28 buttons = new JButton[names.length]; // create array of JButtons
29
30 for (int count = 0; count < names.length; count++)
31 {
32 buttons[count] = new JButton(names[count]);
33 buttons[count].addActionListener(this); // register listener
34
35 } // end for
36 } // end GridLayoutFrame constructor
37
38 // handle button events by toggling between layouts
39 public void actionPerformed(ActionEvent event)
40 {
41 if (toggle)
42
43 else

44
45
46 toggle = !toggle; // set toggle to opposite value
47
48 } // end method actionPerformed
49 } // end class GridLayoutFrame

Fig. 14.43 | GridLayout containing six buttons.

private GridLayout gridLayout1; // first gridlayout
private GridLayout gridLayout2; // second gridlayout

gridLayout1 = new GridLayout(2, 3, 5, 5); // 2 by 3; gaps of 5
gridLayout2 = new GridLayout(3, 2); // 3 by 2; no gaps

setLayout(gridLayout1); // set JFrame layout

add(buttons[count]); // add button to JFrame

container.setLayout(gridLayout2); // set layout to second

container.setLayout(gridLayout1); // set layout to first

container.validate(); // re-lay out container

462 Chapter 14 GUI Components: Part 1

The JButton objects in this example initially are arranged using gridLayout1 (set for
the content pane at line 27 with method setLayout). The first component is added to the
first column of the first row. The next component is added to the second column of the
first row, and so on. When a JButton is pressed, method actionPerformed (lines 39–48)
is called. Every call to actionPerformed toggles the layout between gridLayout2 and
gridLayout1, using boolean variable toggle to determine the next layout to set.

Line 47 shows another way to reformat a container for which the layout has changed.
Container method validate recomputes the container’s layout based on the current
layout manager for the Container and the current set of displayed GUI components.

14.19 Using Panels to Manage More Complex Layouts
Complex GUIs (like Fig. 14.1) require that each component be placed in an exact loca-
tion. They often consist of multiple panels, with each panel’s components arranged in a
specific layout. Class JPanel extends JComponent and JComponent extends class Contain-
er, so every JPanel is a Container. Thus, every JPanel may have components, including
other panels, attached to it with Container method add. The application of Figs. 14.45–
14.46 demonstrates how a JPanel can be used to create a more complex layout in which
several JButtons are placed in the SOUTH region of a BorderLayout.

After JPanel buttonJPanel is declared (line 11) and created (line 19), line 20 sets
buttonJPanel’s layout to a GridLayout of one row and five columns (there are five JBut-
tons in array buttons). Lines 23–27 add the JButtons in the array to the JPanel. Line 26
adds the buttons directly to the JPanel—class JPanel does not have a content pane, unlike
a JFrame. Line 29 uses the JFrame’s default BorderLayout to add buttonJPanel to the
SOUTH region. The SOUTH region is as tall as the buttons on buttonJPanel. A JPanel is sized

1 // Fig. 14.44: GridLayoutDemo.java
2 // Testing GridLayoutFrame.
3 import javax.swing.JFrame;
4
5 public class GridLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 GridLayoutFrame gridLayoutFrame = new GridLayoutFrame();

10 gridLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 gridLayoutFrame.setSize(300, 200); // set frame size
12 gridLayoutFrame.setVisible(true); // display frame
13 } // end main
14 } // end class GridLayoutDemo

Fig. 14.44 | Test class for GridLayoutFrame.

14.19 Using Panels to Manage More Complex Layouts 463

to the components it contains. As more components are added, the JPanel grows
(according to the restrictions of its layout manager) to accommodate the components.
Resize the window to see how the layout manager affects the size of the JButtons.

1 // Fig. 14.45: PanelFrame.java
2 // Using a JPanel to help lay out components.
3 import java.awt.GridLayout;
4 import java.awt.BorderLayout;
5 import javax.swing.JFrame;
6 import javax.swing.JPanel;
7 import javax.swing.JButton;
8
9 public class PanelFrame extends JFrame

10 {
11
12 private JButton[] buttons; // array of buttons
13
14 // no-argument constructor
15 public PanelFrame()
16 {
17 super("Panel Demo");
18 buttons = new JButton[5]; // create buttons array
19
20
21
22 // create and add buttons
23 for (int count = 0; count < buttons.length; count++)
24 {
25 buttons[count] = new JButton("Button " + (count + 1));
26
27 } // end for
28
29
30 } // end PanelFrame constructor
31 } // end class PanelFrame

Fig. 14.45 | JPanel with five JButtons in a GridLayout attached to the SOUTH region of a
BorderLayout.

1 // Fig. 14.46: PanelDemo.java
2 // Testing PanelFrame.
3 import javax.swing.JFrame;
4
5 public class PanelDemo extends JFrame
6 {
7 public static void main(String[] args)
8 {
9 PanelFrame panelFrame = new PanelFrame();

10 panelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 panelFrame.setSize(450, 200); // set frame size

Fig. 14.46 | Test class for PanelFrame. (Part 1 of 2.)

private JPanel buttonJPanel; // panel to hold buttons

buttonJPanel = new JPanel(); // set up panel
buttonJPanel.setLayout(new GridLayout(1, buttons.length));

buttonJPanel.add(buttons[count]); // add button to panel

add(buttonJPanel, BorderLayout.SOUTH); // add panel to JFrame

464 Chapter 14 GUI Components: Part 1

14.20 JTextArea
A JTextArea provides an area for manipulating multiple lines of text. Like class JTextField,
JTextArea is a subclass of JTextComponent, which declares common methods for JText-
Fields, JTextAreas and several other text-based GUI components.

The application in Figs. 14.47–14.48 demonstrates JTextAreas. One JTextArea dis-
plays text that the user can select. The other is uneditable and is used to display the text
the user selected in the first JTextArea. Unlike JTextFields, JTextAreas do not have
action events—when you press Enter while typing in a JTextArea, the cursor simply
moves to the next line. As with multiple-selection JLists (Section 14.13), an external
event from another GUI component indicates when to process the text in a JTextArea.
For example, when typing an e-mail message, you normally click a Send button to send
the text of the message to the recipient. Similarly, when editing a document in a word pro-
cessor, you normally save the file by selecting a Save or Save As… menu item. In this pro-
gram, the button Copy >>> generates the external event that copies the selected text in the
left JTextArea and displays it in the right JTextArea.

12 panelFrame.setVisible(true); // display frame
13 } // end main
14 } // end class PanelDemo

1 // Fig. 14.47: TextAreaFrame.java
2 // Copying selected text from one textarea to another.
3 import java.awt.event.ActionListener;
4 import java.awt.event.ActionEvent;
5 import javax.swing.Box;
6 import javax.swing.JFrame;
7
8 import javax.swing.JButton;
9

10
11 public class TextAreaFrame extends JFrame
12 {
13
14
15 private JButton copyJButton; // initiates copying of text
16

Fig. 14.47 | Copying selected text from one JTextArea to another. (Part 1 of 2.)

Fig. 14.46 | Test class for PanelFrame. (Part 2 of 2.)

import javax.swing.JTextArea;

import javax.swing.JScrollPane;

private JTextArea textArea1; // displays demo string
private JTextArea textArea2; // highlighted text is copied here

14.20 JTextArea 465

17 // no-argument constructor
18 public TextAreaFrame()
19 {
20 super("TextArea Demo");
21
22 String demo = "This is a demo string to\n" +
23 "illustrate copying text\nfrom one textarea to \n" +
24 "another textarea using an\nexternal event\n";
25
26
27
28
29 copyJButton = new JButton("Copy >>>"); // create copy button
30
31 copyJButton.addActionListener(
32
33 new ActionListener() // anonymous inner class
34 {
35 // set text in textArea2 to selected text from textArea1
36 public void actionPerformed(ActionEvent event)
37 {
38
39 } // end method actionPerformed
40 } // end anonymous inner class
41); // end call to addActionListener
42
43
44
45
46
47 add(box); // add box to frame
48 } // end TextAreaFrame constructor
49 } // end class TextAreaFrame

1 // Fig. 14.48: TextAreaDemo.java
2 // Copying selected text from one textarea to another.
3 import javax.swing.JFrame;
4
5 public class TextAreaDemo
6 {
7 public static void main(String[] args)
8 {
9 TextAreaFrame textAreaFrame = new TextAreaFrame();

10 textAreaFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 textAreaFrame.setSize(425, 200); // set frame size
12 textAreaFrame.setVisible(true); // display frame
13 } // end main
14 } // end class TextAreaDemo

Fig. 14.48 | Test class for TextAreaFrame. (Part 1 of 2.)

Fig. 14.47 | Copying selected text from one JTextArea to another. (Part 2 of 2.)

Box box = Box.createHorizontalBox(); // create box

textArea1 = new JTextArea(demo, 10, 15); // create textArea1
box.add(new JScrollPane(textArea1)); // add scrollpane

box.add(copyJButton); // add copy button to box

textArea2.setText(textArea1.getSelectedText());

textArea2 = new JTextArea(10, 15); // create second textarea
textArea2.setEditable(false); // disable editing
box.add(new JScrollPane(textArea2)); // add scrollpane

466 Chapter 14 GUI Components: Part 1

In the constructor (lines 18–48), line 21 creates a Box container (package
javax.swing) to organize the GUI components. Box is a subclass of Container that uses
a BoxLayout layout manager (discussed in detail in Section 22.9) to arrange the GUI com-
ponents either horizontally or vertically. Box’s static method createHorizontalBox cre-
ates a Box that arranges components from left to right in the order that they’re attached.

Lines 26 and 43 create JTextAreas textArea1 and textArea2. Line 26 uses JText-
Area’s three-argument constructor, which takes a String representing the initial text and
two ints specifying that the JTextArea has 10 rows and 15 columns. Line 43 uses JText-
Area’s two-argument constructor, specifying that the JTextArea has 10 rows and 15 col-
umns. Line 26 specifies that demo should be displayed as the default JTextArea content.
A JTextArea does not provide scrollbars if it cannot display its complete contents. So, line
27 creates a JScrollPane object, initializes it with textArea1 and attaches it to container
box. By default, horizontal and vertical scrollbars appear as necessary in a JScrollPane.

Lines 29–41 create JButton object copyJButton with the label "Copy >>>", add copy-

JButton to container box and register the event handler for copyJButton’s ActionEvent.
This button provides the external event that determines when the program should copy
the selected text in textArea1 to textArea2. When the user clicks copyJButton, line 38
in actionPerformed indicates that method getSelectedText (inherited into JTextArea

from JTextComponent) should return the selected text from textArea1. The user selects
text by dragging the mouse over the desired text to highlight it. Method setText changes
the text in textArea2 to the string returned by getSelectedText.

Lines 43–45 create textArea2, set its editable property to false and add it to con-
tainer box. Line 47 adds box to the JFrame. Recall from Section 14.18 that the default
layout of a JFrame is a BorderLayout and that the add method by default attaches its argu-
ment to the CENTER of the BorderLayout.

When text reaches the right edge of a JTextArea the text can wrap to the next line.
This is referred to as line wrapping. By default, JTextArea does not wrap lines.

JScrollPane Scrollbar Policies
This example uses a JScrollPane to provide scrolling for a JTextArea. By default,
JScrollPane displays scrollbars only if they’re required. You can set the horizontal and
vertical scrollbar policies of a JScrollPane when it’s constructed. If a program has a ref-

Look-and-Feel Observation 14.19
To provide line wrapping functionality for a JTextArea, invoke JTextArea method set-

LineWrap with a true argument.

Fig. 14.48 | Test class for TextAreaFrame. (Part 2 of 2.)

14.21 Wrap-Up 467

erence to a JScrollPane, the program can use JScrollPane methods setHorizontal-

ScrollBarPolicy and setVerticalScrollBarPolicy to change the scrollbar policies at
any time. Class JScrollPane declares the constants

to indicate that a scrollbar should always appear, constants

to indicate that a scrollbar should appear only if necessary (the defaults) and constants

to indicate that a scrollbar should never appear. If the horizontal scrollbar policy is set to
JScrollPane.HORIZONTAL_SCROLLBAR_NEVER, a JTextArea attached to the JScrollPane

will automatically wrap lines.

14.21 Wrap-Up
In this chapter, you learned many GUI components and how to implement event han-
dling. You also learned about nested classes, inner classes and anonymous inner classes.
You saw the special relationship between an inner-class object and an object of its top-level
class. You learned how to use JOptionPane dialogs to obtain text input from the user and
how to display messages to the user. You also learned how to create applications that exe-
cute in their own windows. We discussed class JFrame and components that enable a user
to interact with an application. We also showed you how to display text and images to the
user. You learned how to customize JPanels to create custom drawing areas, which you’ll
use extensively in the next chapter. You saw how to organize components on a window
using layout managers and how to creating more complex GUIs by using JPanels to or-
ganize components. Finally, you learned about the JTextArea component in which a user
can enter text and an application can display text. In Chapter 22, you’ll learn about more
advanced GUI components, such as sliders, menus and more complex layout managers.
In the next chapter, you’ll learn how to add graphics to your GUI application. Graphics
allow you to draw shapes and text with colors and styles.

JScrollPane.VERTICAL_SCROLLBAR_ALWAYS

JScrollPane.HORIZONTAL_SCROLLBAR_ALWAYS

JScrollPane.VERTICAL_SCROLLBAR_AS_NEEDED

JScrollPane.HORIZONTAL_SCROLLBAR_AS_NEEDED

JScrollPane.VERTICAL_SCROLLBAR_NEVER

JScrollPane.HORIZONTAL_SCROLLBAR_NEVER

15
Graphics and Java 2D

O b j e c t i v e s
In this chapter you’ll learn:

� To understand graphics contexts and graphics objects.

� To manipulate colors and fonts.

� To use methods of class Graphics to draw various shapes.

� To use methods of class Graphics2D from the Java 2D
API to draw various shapes.

� To specify Paint and Stroke characteristics of shapes
displayed with Graphics2D.

One picture is worth ten
thousand words.
—Chinese proverb

Treat nature in terms of the
cylinder, the sphere, the
cone, all in perspective.
—Paul Cézanne

Colors, like features, follow
the changes of the emotions.
—Pablo Picasso

Nothing ever becomes real
till it is experienced—even
a proverb is no proverb to
you till your life has
illustrated it.
—John Keats

15.1 Introduction 469

15.1 Introduction
In this chapter, we overview several of Java’s capabilities for drawing two-dimensional
shapes, controlling colors and controlling fonts. Part of Java’s initial appeal was its support
for graphics that enabled programmers to visually enhance their applications. Java now
contains many more sophisticated drawing capabilities as part of the Java 2D API. This
chapter begins by introducing many of Java’s original drawing capabilities. Next we pres-
ent several of the more powerful Java 2D capabilities, such as controlling the style of lines
used to draw shapes and the way shapes are filled with colors and patterns. The classes that
were part of Java’s original graphics capabilities are now considered to be part of the Java
2D API.

Figure 15.1 shows a portion of the Java class hierarchy that includes several of the
basic graphics classes and Java 2D API classes and interfaces covered in this chapter. Class
Color contains methods and constants for manipulating colors. Class JComponent con-
tains method paintComponent, which is used to draw graphics on a component. Class
Font contains methods and constants for manipulating fonts. Class FontMetrics contains
methods for obtaining font information. Class Graphics contains methods for drawing
strings, lines, rectangles and other shapes. Class Graphics2D, which extends class
Graphics, is used for drawing with the Java 2D API. Class Polygon contains methods for
creating polygons. The bottom half of the figure lists several classes and interfaces from the
Java 2D API. Class BasicStroke helps specify the drawing characteristics of lines. Classes
GradientPaint and TexturePaint help specify the characteristics for filling shapes with
colors or patterns. Classes GeneralPath, Line2D, Arc2D, Ellipse2D, Rectangle2D and
RoundRectangle2D represent several Java 2D shapes.

To begin drawing in Java, we must first understand Java’s coordinate system
(Fig. 15.2), which is a scheme for identifying every point on the screen. By default, the
upper-left corner of a GUI component (e.g., a window) has the coordinates (0, 0). A coor-
dinate pair is composed of an x-coordinate (the horizontal coordinate) and a y-coordinate
(the vertical coordinate). The x-coordinate is the horizontal distance moving right from
the left of the screen. The y-coordinate is the vertical distance moving down from the top
of the screen. The x-axis describes every horizontal coordinate, and the y-axis every vertical
coordinate. The coordinates are used to indicate where graphics should be displayed on a
screen. Coordinate units are measured in pixels (which stands for “picture element”). A
pixel is a display monitor’s smallest unit of resolution.

15.1 Introduction

15.2 Graphics Contexts and Graphics
Objects

15.3 Color Control

15.4 Manipulating Fonts

15.5 Drawing Lines, Rectangles and Ovals

15.6 Drawing Arcs

15.7 Drawing Polygons and Polylines

15.8 Java 2D API

15.9 Wrap-Up

470 Chapter 15 Graphics and Java 2D

Portability Tip 15.1
Different display monitors have different resolutions (i.e., the density of the pixels varies).
This can cause graphics to appear in different sizes on different monitors or on the same
monitor with different settings.

Fig. 15.1 | Classes and interfaces used in this chapter from Java’s original graphics
capabilities and from the Java 2D API.

java.awt.Color

java.lang.Object

java.awt.Component

java.awt.Font

java.awt.FontMetrics

java.awt.Graphics

java.awt.Polygon

java.awt.geom.Arc2D

java.awt.geom.Ellipse2D

java.awt.geom.Rectangle2D

java.awt.geom.RoundRectangle2D

java.awt.Graphics2D

java.awt.Container javax.swing.JComponent

«interface»
java.awt.Paint

«interface»
java.awt.Shape

«interface»
java.awt.Stroke

java.awt.BasicStroke

java.awt.GradientPaint

java.awt.TexturePaint

java.awt.geom.GeneralPath

java.awt.geom.Line2D

java.awt.geom.RectangularShape

15.2 Graphics Contexts and Graphics Objects 471

15.2 Graphics Contexts and Graphics Objects
A graphics context enables drawing on the screen. A Graphics object manages a graphics
context and draws pixels on the screen that represent text and other graphical objects (e.g.,
lines, ellipses, rectangles and other polygons). Graphics objects contain methods for draw-
ing, font manipulation, color manipulation and the like.

Class Graphics is an abstract class (i.e., Graphics objects cannot be instantiated).
This contributes to Java’s portability. Because drawing is performed differently on every
platform that supports Java, there cannot be only one implementation of the drawing
capabilities across all systems. For example, the graphics capabilities that enable a PC run-
ning Microsoft Windows to draw a rectangle are different from those that enable a Linux
workstation to draw a rectangle—and they’re both different from the graphics capabilities
that enable a Macintosh to draw a rectangle. When Java is implemented on each platform,
a subclass of Graphics is created that implements the drawing capabilities. This imple-
mentation is hidden by class Graphics, which supplies the interface that enables us to use
graphics in a platform-independent manner.

Recall from Chapter 14 that class Component is the superclass for many of the classes
in package java.awt. Class JComponent (package javax.swing), which inherits indirectly
from class Component, contains a paintComponent method that can be used to draw
graphics. Method paintComponent takes a Graphics object as an argument. This object is
passed to the paintComponent method by the system when a lightweight Swing compo-
nent needs to be repainted. The header for the paintComponent method is

Parameter g receives a reference to an instance of the system-specific subclass that Graph-
ics extends. The preceding method header should look familiar to you—it’s the same one
we used in some of the applications in Chapter 14. Actually, class JComponent is a super-
class of JPanel. Many capabilities of class JPanel are inherited from class JComponent.

You seldom call method paintComponent directly, because drawing graphics is an
event-driven process. As we mentioned in Chapter 11, Java uses a multithreaded model of
program execution. Each thread is a parallel activity. Each program can have many
threads. When you create a GUI-based application, one of those threads is known as the
event-dispatch thread (EDT)—it’s used to process all GUI events. All drawing and
manipulation of GUI components should be performed in that thread. When a GUI
application executes, the application container calls method paintComponent (in the
event-dispatch thread) for each lightweight component as the GUI is displayed. For

Fig. 15.2 | Java coordinate system. Units are measured in pixels.

public void paintComponent(Graphics g)

(0, 0)

(x, y)

+y

+x

y-axis

x-axis

472 Chapter 15 Graphics and Java 2D

paintComponent to be called again, an event must occur (such as covering and uncovering
the component with another window).

If you need paintComponent to execute (i.e., if you want to update the graphics drawn
on a Swing component), you can call method repaint, which is inherited by all JCompo-
nents indirectly from class Component (package java.awt). The header for repaint is

15.3 Color Control
Class Color declares methods and constants for manipulating colors in a Java program.
The predeclared color constants are summarized in Fig. 15.3, and several color methods
and constructors are summarized in Fig. 15.4. Two of the methods in Fig. 15.4 are Graph-
ics methods that are specific to colors.

public void repaint()

Color constant RGB value

public final static Color RED 255, 0, 0

public final static Color GREEN 0, 255, 0

public final static Color BLUE 0, 0, 255

public final static Color ORANGE 255, 200, 0

public final static Color PINK 255, 175, 175

public final static Color CYAN 0, 255, 255

public final static Color MAGENTA 255, 0, 255

public final static Color YELLOW 255, 255, 0

public final static Color BLACK 0, 0, 0

public final static Color WHITE 255, 255, 255

public final static Color GRAY 128, 128, 128

public final static Color LIGHT_GRAY 192, 192, 192

public final static Color DARK_GRAY 64, 64, 64

Fig. 15.3 | Color constants and their RGB values.

Method Description

Color constructors and methods
public Color(int r, int g, int b)

Creates a color based on red, green and blue components expressed as integers
from 0 to 255.

public Color(float r, float g, float b)

Creates a color based on red, green and blue components expressed as floating-
point values from 0.0 to 1.0.

Fig. 15.4 | Color methods and color-related Graphics methods. (Part 1 of 2.)

15.3 Color Control 473

Every color is created from a red, a green and a blue component. Together these com-
ponents are called RGB values. All three RGB components can be integers from 0 to 255,
or all three can be floating-point values from 0.0 to 1.0. The first RGB component specifies
the amount of red, the second the amount of green and the third the amount of blue. The
larger the RGB value, the greater the amount of that particular color. Java enables you to
choose from 256 × 256 × 256 (approximately 16.7 million) colors. Not all computers are
capable of displaying all these colors. The computer will display the closest color it can.

Two of class Color’s constructors are shown in Fig. 15.4—one that takes three int

arguments and one that takes three float arguments, with each argument specifying the
amount of red, green and blue. The int values must be in the range 0–255 and the float
values in the range 0.0–1.0. The new Color object will have the specified amounts of red,
green and blue. Color methods getRed, getGreen and getBlue return integer values from
0 to 255 representing the amounts of red, green and blue, respectively. Graphics method
getColor returns a Color object representing the current drawing color. Graphics method
setColor sets the current drawing color.

Drawing in Different Colors
Figures 15.5–15.6 demonstrate several methods from Fig. 15.4 by drawing filled rectan-
gles and Strings in several different colors. When the application begins execution, class
ColorJPanel’s paintComponent method (lines 10–37 of Fig. 15.5) is called to paint the
window. Line 17 uses Graphics method setColor to set the drawing color. Method set-

Color receives a Color object. The expression new Color(255, 0, 0) creates a new Color

object that represents red (red value 255, and 0 for the green and blue values). Line 18 uses
Graphics method fillRect to draw a filled rectangle in the current color. Method fill-

Rect draws a rectangle based on its four arguments. The first two integer values represent
the upper-left x-coordinate and upper-left y-coordinate, where the Graphics object begins
drawing the rectangle. The third and fourth arguments are nonnegative integers that
represent the width and the height of the rectangle in pixels, respectively. A rectangle
drawn using method fillRect is filled by the current color of the Graphics object.

public int getRed()

Returns a value between 0 and 255 representing the red content.
public int getGreen()

Returns a value between 0 and 255 representing the green content.
public int getBlue()

Returns a value between 0 and 255 representing the blue content.

Graphics methods for manipulating Colors
public Color getColor()

Returns Color object representing current color for the graphics context.
public void setColor(Color c)

Sets the current color for drawing with the graphics context.

Method Description

Fig. 15.4 | Color methods and color-related Graphics methods. (Part 2 of 2.)

474 Chapter 15 Graphics and Java 2D

1 // Fig. 15.5: ColorJPanel.java
2 // Demonstrating Colors.
3 import java.awt.Graphics;
4
5 import javax.swing.JPanel;
6
7 public class ColorJPanel extends JPanel
8 {
9 // draw rectangles and Strings in different colors

10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g); // call superclass's paintComponent
13
14 this.setBackground(Color.WHITE);
15
16 // set new drawing color using integers
17
18
19 g.drawString("Current RGB: " + , 130, 40);
20
21 // set new drawing color using floats
22
23 g.fillRect(15, 50, 100, 20);
24 g.drawString("Current RGB: " + , 130, 65);
25
26 // set new drawing color using static Color objects
27
28 g.fillRect(15, 75, 100, 20);
29 g.drawString("Current RGB: " + g.getColor(), 130, 90);
30
31 // display individual RGB values
32
33
34 g.fillRect(15, 100, 100, 20);
35 g.drawString("RGB values: " + + ", " +
36 + ", " + , 130, 115);
37 } // end method paintComponent
38 } // end class ColorJPanel

Fig. 15.5 | Color changed for drawing.

1 // Fig. 15.6: ShowColors.java
2 // Demonstrating Colors.
3 import javax.swing.JFrame;
4
5 public class ShowColors
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ColorJPanel
11 JFrame frame = new JFrame("Using colors");

Fig. 15.6 | Creating JFrame to display colors on JPanel. (Part 1 of 2.)

import java.awt.Color;

g.setColor(new Color(255, 0, 0));
g.fillRect(15, 25, 100, 20);

g.getColor()

g.setColor(new Color(0.50f, 0.75f, 0.0f));

g.getColor()

g.setColor(Color.BLUE);

Color color = Color.MAGENTA;
g.setColor(color);

color.getRed()
color.getGreen() color.getBlue()

15.3 Color Control 475

Line 19 (Fig. 15.5) uses Graphics method drawString to draw a String in the cur-
rent color. The expression g.getColor() retrieves the current color from the Graphics

object. We then concatenate the Color with string "Current RGB: ", resulting in an
implicit call to class Color’s toString method. The String representation of a Color con-
tains the class name and package (java.awt.Color) and the red, green and blue values.

Lines 22–24 and 27–29 perform the same tasks again. Line 22 uses the Color con-
structor with three float arguments to create a dark green color (0.50f for red, 0.75f for
green and 0.0f for blue). Note the syntax of the values. The letter f appended to a
floating-point literal indicates that the literal should be treated as type float. Recall that
by default, floating-point literals are treated as type double.

Line 27 sets the current drawing color to one of the predeclared Color constants
(Color.BLUE). The Color constants are static, so they’re created when class Color is
loaded into memory at execution time.

The statement in lines 35–36 makes calls to Color methods getRed, getGreen and
getBlue on the predeclared Color.MAGENTA constant. Method main of class ShowColors
(lines 8–18 of Fig. 15.6) creates the JFrame that will contain a ColorJPanel object where
the colors will be displayed.

12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 ColorJPanel colorJPanel = new ColorJPanel(); // create ColorJPanel
15 frame.add(colorJPanel); // add colorJPanel to frame
16 frame.setSize(400, 180); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class ShowColors

Look-and-Feel Observation 15.1
People perceive colors differently. Choose your colors carefully to ensure that your applica-
tion is readable, both for people who can perceive color and for those who are color blind.
Try to avoid using many different colors in close proximity.

Software Engineering Observation 15.1
To change the color, you must create a new Color object (or use one of the predeclared
Color constants). Like String objects, Color objects are immutable (not modifiable).

Fig. 15.6 | Creating JFrame to display colors on JPanel. (Part 2 of 2.)

476 Chapter 15 Graphics and Java 2D

Package javax.swing provides the JColorChooser GUI component that enables appli-
cation users to select colors. Figures 15.7–15.8 demonstrates a JColorChooser dialog. When
you click the Change Color button, a JColorChooser dialog appears. When you select a color
and press the dialog’s OK button, the background color of the application window changes.

1 // Fig. 15.7: ShowColors2JFrame.java
2 // Choosing colors with JColorChooser.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9

10 import javax.swing.JPanel;
11
12 public class ShowColors2JFrame extends JFrame
13 {
14 private JButton changeColorJButton;
15 private Color color = Color.LIGHT_GRAY;
16 private JPanel colorJPanel;
17
18 // set up GUI
19 public ShowColors2JFrame()
20 {
21 super("Using JColorChooser");
22
23 // create JPanel for display color
24 colorJPanel = new JPanel();
25 colorJPanel.setBackground(color);
26
27 // set up changeColorJButton and register its event handler
28 changeColorJButton = new JButton("Change Color");
29 changeColorJButton.addActionListener(
30
31 new ActionListener() // anonymous inner class
32 {
33 // display JColorChooser when user clicks button
34 public void actionPerformed(ActionEvent event)
35 {
36
37
38
39 // set default color, if no color is returned
40 if (color == null)
41 color = Color.LIGHT_GRAY;
42
43 // change content pane's background color
44
45 } // end method actionPerformed
46 } // end anonymous inner class
47); // end call to addActionListener

Fig. 15.7 | JColorChooser dialog. (Part 1 of 2.)

import javax.swing.JColorChooser;

color = JColorChooser.showDialog(
ShowColors2JFrame.this, "Choose a color", color);

colorJPanel.setBackground(color);

15.3 Color Control 477

Class JColorChooser provides static method showDialog, which creates a JColor-

Chooser object, attaches it to a dialog box and displays the dialog. Lines 36–37 of Fig. 15.7
invoke this method to display the color chooser dialog. Method showDialog returns the

48
49 add(colorJPanel, BorderLayout.CENTER); // add colorJPanel
50 add(changeColorJButton, BorderLayout.SOUTH); // add button
51
52 setSize(400, 130); // set frame size
53 setVisible(true); // display frame
54 } // end ShowColor2JFrame constructor
55 } // end class ShowColors2JFrame

1 // Fig. 15.8: ShowColors2.java
2 // Choosing colors with JColorChooser.
3 import javax.swing.JFrame;
4
5 public class ShowColors2
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 ShowColors2JFrame application = new ShowColors2JFrame();
11 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
12 } // end main
13 } // end class ShowColors2

Fig. 15.8 | Choosing colors with JColorChooser.

Fig. 15.7 | JColorChooser dialog. (Part 2 of 2.)

Select a color from
one of the color

swatches

(a) Initial application window (b) JColorChooser window

(c) Application window after changing JPanel’s
background color

478 Chapter 15 Graphics and Java 2D

selected Color object, or null if the user presses Cancel or closes the dialog without
pressing OK. The method takes three arguments—a reference to its parent Component, a
String to display in the title bar of the dialog and the initial selected Color for the dialog.
The parent component is a reference to the window from which the dialog is displayed (in
this case the JFrame, with the reference name frame). The dialog will be centered on the
parent. If the parent is null, the dialog is centered on the screen. While the color chooser
dialog is on the screen, the user cannot interact with the parent component until the dialog
is dismissed. This type of dialog is called a modal dialog.

After the user selects a color, lines 40–41 determine whether color is null, and, if so,
set color to Color.LIGHT_GRAY. Line 44 invokes method setBackground to change the
background color of the JPanel. Method setBackground is one of the many Component

methods that can be used on most GUI components. The user can continue to use the
Change Color button to change the background color of the application. Figure 15.8 con-
tains method main, which executes the program.

JColorChooser’s Tabs
Figure 15.8(b) shows the default JColorChooser dialog that allows the user to select a col-
or from a variety of color swatches. There are three tabs across the top of the dialog—
Swatches, HSB and RGB. These represent three different ways to select a color. The HSB
tab allows you to select a color based on hue, saturation and brightness—values that are
used to define the amount of light in a color. We do not discuss HSB values. For more
information on them, visit en.wikipedia.org/wiki/HSL_and_HSV. The RGB tab allows
you to select a color by using sliders to select the red, green and blue components. The
HSB and RGB tabs are shown in Fig. 15.9.

Fig. 15.9 | HSB and RGB tabs of the JColorChooser dialog.l

15.4 Manipulating Fonts 479

15.4 Manipulating Fonts
This section introduces methods and constants for manipulating fonts. Most font meth-
ods and font constants are part of class Font. Some methods of class Font and class Graph-
ics are summarized in Fig. 15.10.

Method or constant Description

Font constants, constructors and methods

public final static int PLAIN A constant representing a plain font style.

public final static int BOLD A constant representing a bold font style.

public final static int ITALIC A constant representing an italic font style.

public Font(String name,

int style, int size)

Creates a Font object with the specified font name,
style and size.

public int getStyle() Returns an int indicating the current font style.

public int getSize() Returns an int indicating the current font size.

public String getName() Returns the current font name as a string.

public String getFamily() Returns the font’s family name as a string.

public boolean isPlain() Returns true if the font is plain, else false.

public boolean isBold() Returns true if the font is bold, else false.

public boolean isItalic() Returns true if the font is italic, else false.

Fig. 15.10 | Font-related methods and constants. (Part 1 of 2.)

Fig. 15.9 | HSB and RGB tabs of the JColorChooser dialog.l

Sliders to select
the red, green
and blue color

components

480 Chapter 15 Graphics and Java 2D

Class Font’s constructor takes three arguments—the font name, font style and font
size. The font name is any font currently supported by the system on which the program
is running, such as standard Java fonts Monospaced, SansSerif and Serif. The font style
is Font.PLAIN, Font.ITALIC or Font.BOLD (each is a static field of class Font). Font styles
can be used in combination (e.g., Font.ITALIC + Font.BOLD). The font size is measured
in points. A point is 1/72 of an inch. Graphics method setFont sets the current drawing
font—the font in which text will be displayed—to its Font argument.

The application of Figs. 15.11–15.12 displays text in four different fonts, with each
font in a different size. Figure 15.11 uses the Font constructor to initialize Font objects (in
lines 16, 20, 24 and 29) that are each passed to Graphics method setFont to change the
drawing font. Each call to the Font constructor passes a font name (Serif, Monospaced or
SansSerif) as a string, a font style (Font.PLAIN, Font.ITALIC or Font.BOLD) and a font
size. Once Graphics method setFont is invoked, all text displayed following the call will
appear in the new font until the font is changed. Each font’s information is displayed in
lines 17, 21, 25 and 30–31 using method drawString. The coordinates passed to draw-

String corresponds to the lower-left corner of the baseline of the font. Line 28 changes
the drawing color to red, so the next string displayed appears in red. Lines 30–31 display
information about the final Font object. Method getFont of class Graphics returns a Font
object representing the current font. Method getName returns the current font name as a
string. Method getSize returns the font size in points.

Figure 15.12 contains the main method, which creates a JFrame to display a Font-

JPanel. We add a FontJPanel object to this JFrame (line 15), which displays the graphics
created in Fig. 15.11.

Graphics methods for manipulating Fonts

public Font getFont() Returns a Font object reference representing the
current font.

public void setFont(Font f) Sets the current font to the font, style and size
specified by the Font object reference f.

Portability Tip 15.2
The number of fonts varies across systems. Java provides five font names—Serif, Mono-
spaced, SansSerif, Dialog and DialogInput—that can be used on all Java platforms.
The Java runtime environment (JRE) on each platform maps these logical font names to
actual fonts installed on the platform. The actual fonts used may vary by platform.

Software Engineering Observation 15.2
To change the font, you must create a new Font object. Font objects are immutable—class
Font has no set methods to change the characteristics of the current font.

Method or constant Description

Fig. 15.10 | Font-related methods and constants. (Part 2 of 2.)

15.4 Manipulating Fonts 481

1 // Fig. 15.11: FontJPanel.java
2 // Display strings in different fonts and colors.
3
4 import java.awt.Color;
5 import java.awt.Graphics;
6 import javax.swing.JPanel;
7
8 public class FontJPanel extends JPanel
9 {

10 // display Strings in different fonts and colors
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g); // call superclass's paintComponent
14
15 // set font to Serif (Times), bold, 12pt and draw a string
16
17 g.drawString("Serif 12 point bold.", 20, 30);
18
19 // set font to Monospaced (Courier), italic, 24pt and draw a string
20
21 g.drawString("Monospaced 24 point italic.", 20, 50);
22
23 // set font to SansSerif (Helvetica), plain, 14pt and draw a string
24
25 g.drawString("SansSerif 14 point plain.", 20, 70);
26
27 // set font to Serif (Times), bold/italic, 18pt and draw a string
28 g.setColor(Color.RED);
29
30 g.drawString(+ " " + +
31 " point bold italic.", 20, 90);
32 } // end method paintComponent
33 } // end class FontJPanel

Fig. 15.11 | Graphics method setFont changes the drawing font.

1 // Fig. 15.12: Fonts.java
2 // Using fonts.
3 import javax.swing.JFrame;
4
5 public class Fonts
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for FontJPanel
11 JFrame frame = new JFrame("Using fonts");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 FontJPanel fontJPanel = new FontJPanel(); // create FontJPanel
15 frame.add(fontJPanel); // add fontJPanel to frame

Fig. 15.12 | Creating a JFrame to display fonts. (Part 1 of 2.)

import java.awt.Font;

g.setFont(new Font("Serif", Font.BOLD, 12));

g.setFont(new Font("Monospaced", Font.ITALIC, 24));

g.setFont(new Font("SansSerif", Font.PLAIN, 14));

g.setFont(new Font("Serif", Font.BOLD + Font.ITALIC, 18));
g.getFont().getName() g.getFont().getSize()

482 Chapter 15 Graphics and Java 2D

Font Metrics
Sometimes it’s necessary to get information about the current drawing font, such as its
name, style and size. Several Font methods used to get font information are summarized
in Fig. 15.10. Method getStyle returns an integer value representing the current style.
The integer value returned is either Font.PLAIN, Font.ITALIC, Font.BOLD or the combi-
nation of Font.ITALIC and Font.BOLD. Method getFamily returns the name of the font
family to which the current font belongs. The name of the font family is platform specific.
Font methods are also available to test the style of the current font, and these too are sum-
marized in Fig. 15.10. Methods isPlain, isBold and isItalic return true if the current
font style is plain, bold or italic, respectively.

Figure 15.13 illustrates some of the common font metrics, which provide precise
information about a font, such as height, descent (the amount a character dips below the
baseline), ascent (the amount a character rises above the baseline) and leading (the differ-
ence between the descent of one line of text and the ascent of the line of text below it—
that is, the interline spacing).

Class FontMetrics declares several methods for obtaining font metrics. These
methods and Graphics method getFontMetrics are summarized in Fig. 15.14. The
application of Figs. 15.15–15.16 uses the methods of Fig. 15.14 to obtain font metric
information for two fonts.

16 frame.setSize(420, 150); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class Fonts

Fig. 15.13 | Font metrics.

Fig. 15.12 | Creating a JFrame to display fonts. (Part 2 of 2.)

ascentheight

leading

descent
baseline

15.4 Manipulating Fonts 483

Method Description

FontMetrics methods

public int getAscent() Returns the ascent of a font in points.

public int getDescent() Returns the descent of a font in points.

public int getLeading() Returns the leading of a font in points.

public int getHeight() Returns the height of a font in points.

Graphics methods for getting a Font’s FontMetrics

public FontMetrics getFontMetrics()

Returns the FontMetrics object for the current drawing Font.

public FontMetrics getFontMetrics(Font f)

Returns the FontMetrics object for the specified Font argument.

Fig. 15.14 | FontMetrics and Graphics methods for obtaining font metrics.

1 // Fig. 15.15: MetricsJPanel.java
2 // FontMetrics and Graphics methods useful for obtaining font metrics.
3 import java.awt.Font;
4
5 import java.awt.Graphics;
6 import javax.swing.JPanel;
7
8 public class MetricsJPanel extends JPanel
9 {

10 // display font metrics
11 public void paintComponent(Graphics g)
12 {
13 super.paintComponent(g); // call superclass's paintComponent
14
15 g.setFont(new Font("SansSerif", Font.BOLD, 12));
16
17 g.drawString("Current font: " + , 10, 30);
18 g.drawString("Ascent: " + , 10, 45);
19 g.drawString("Descent: " + , 10, 60);
20 g.drawString("Height: " + , 10, 75);
21 g.drawString("Leading: " + , 10, 90);
22
23 Font font = new Font("Serif", Font.ITALIC, 14);
24
25 g.setFont(font);
26 g.drawString("Current font: " + font, 10, 120);
27 g.drawString("Ascent: " + , 10, 135);
28 g.drawString("Descent: " + , 10, 150);
29 g.drawString("Height: " + , 10, 165);
30 g.drawString("Leading: " + , 10, 180);
31 } // end method paintComponent
32 } // end class MetricsJPanel

Fig. 15.15 | Font metrics.

import java.awt.FontMetrics;

FontMetrics metrics = g.getFontMetrics();
g.getFont()

metrics.getAscent()
metrics.getDescent()

metrics.getHeight()
metrics.getLeading()

metrics = g.getFontMetrics(font);

metrics.getAscent()
metrics.getDescent()

metrics.getHeight()
metrics.getLeading()

484 Chapter 15 Graphics and Java 2D

Line 15 of Fig. 15.15 creates and sets the current drawing font to a SansSerif, bold,
12-point font. Line 16 uses Graphics method getFontMetrics to obtain the FontMetrics
object for the current font. Line 17 outputs the String representation of the Font returned
by g.getFont(). Lines 18–21 use FontMetric methods to obtain the ascent, descent,
height and leading for the font.

Line 23 creates a new Serif, italic, 14-point font. Line 24 uses a second version of
Graphics method getFontMetrics, which accepts a Font argument and returns a corre-
sponding FontMetrics object. Lines 27–30 obtain the ascent, descent, height and leading
for the font. The font metrics are slightly different for the two fonts.

15.5 Drawing Lines, Rectangles and Ovals
This section presents Graphics methods for drawing lines, rectangles and ovals. The meth-
ods and their parameters are summarized in Fig. 15.17. For each drawing method that re-
quires a width and height parameter, the width and height must be nonnegative values.
Otherwise, the shape will not display.

1 // Fig. 15.16: Metrics.java
2 // Displaying font metrics.
3 import javax.swing.JFrame;
4
5 public class Metrics
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for MetricsJPanel
11 JFrame frame = new JFrame("Demonstrating FontMetrics");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 MetricsJPanel metricsJPanel = new MetricsJPanel();
15 frame.add(metricsJPanel); // add metricsJPanel to frame
16 frame.setSize(510, 240); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class Metrics

Fig. 15.16 | Creating JFrame to display font metric information.

15.5 Drawing Lines, Rectangles and Ovals 485

Method Description

public void drawLine(int x1, int y1, int x2, int y2)

Draws a line between the point (x1, y1) and the point (x2, y2).
public void drawRect(int x, int y, int width, int height)

Draws a rectangle of the specified width and height. The rectangle’s top-left cor-
ner is located at (x, y). Only the outline of the rectangle is drawn using the Graph-

ics object’s color—the body of the rectangle is not filled with this color.

public void fillRect(int x, int y, int width, int height)

Draws a filled rectangle in the current color with the specified width and height.
The rectangle’s top-left corner is located at (x, y).

public void clearRect(int x, int y, int width, int height)

Draws a filled rectangle with the specified width and height in the current back-
ground color. The rectangle’s top-left corner is located at (x, y). This method is
useful if you want to remove a portion of an image.

public void drawRoundRect(int x, int y, int width, int height, int arcWidth,

int arcHeight)

Draws a rectangle with rounded corners in the current color with the specified
width and height. The arcWidth and arcHeight determine the rounding of the
corners (see Fig. 15.20). Only the outline of the shape is drawn.

public void fillRoundRect(int x, int y, int width, int height, int arcWidth,

int arcHeight)

Draws a filled rectangle in the current color with rounded corners with the speci-
fied width and height. The arcWidth and arcHeight determine the rounding of
the corners (see Fig. 15.20).

public void draw3DRect(int x, int y, int width, int height, boolean b)

Draws a three-dimensional rectangle in the current color with the specified width

and height. The rectangle’s top-left corner is located at (x, y). The rectangle
appears raised when b is true and lowered when b is false. Only the outline of the
shape is drawn.

public void fill3DRect(int x, int y, int width, int height, boolean b)

Draws a filled three-dimensional rectangle in the current color with the specified
width and height. The rectangle’s top-left corner is located at (x, y). The rectan-
gle appears raised when b is true and lowered when b is false.

public void drawOval(int x, int y, int width, int height)

Draws an oval in the current color with the specified width and height. The
bounding rectangle’s top-left corner is located at (x, y). The oval touches all four
sides of the bounding rectangle at the center of each side (see Fig. 15.21). Only
the outline of the shape is drawn.

public void fillOval(int x, int y, int width, int height)

Draws a filled oval in the current color with the specified width and height. The
bounding rectangle’s top-left corner is located at (x, y). The oval touches the cen-
ter of all four sides of the bounding rectangle (see Fig. 15.21).

Fig. 15.17 | Graphics methods that draw lines, rectangles and ovals.

486 Chapter 15 Graphics and Java 2D

The application of Figs. 15.18–15.19 demonstrates drawing a variety of lines, rectan-
gles, three-dimensional rectangles, rounded rectangles and ovals. In Fig. 15.18, line 17
draws a red line, line 20 draws an empty blue rectangle and line 21 draws a filled blue rect-
angle. Methods fillRoundRect (line 24) and drawRoundRect (line 25) draw rectangles
with rounded corners. Their first two arguments specify the coordinates of the upper-left
corner of the bounding rectangle—the area in which the rounded rectangle will be drawn.
The upper-left corner coordinates are not the edge of the rounded rectangle, but the coor-
dinates where the edge would be if the rectangle had square corners. The third and fourth
arguments specify the width and height of the rectangle. The last two arguments deter-
mine the horizontal and vertical diameters of the arc (i.e., the arc width and arc height)
used to represent the corners.

Figure 15.20 labels the arc width, arc height, width and height of a rounded rectangle.
Using the same value for the arc width and arc height produces a quarter-circle at each

1 // Fig. 15.18: LinesRectsOvalsJPanel.java
2 // Drawing lines, rectangles and ovals.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class LinesRectsOvalsJPanel extends JPanel
8 {
9 // display various lines, rectangles and ovals

10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g); // call superclass's paint method
13
14 this.setBackground(Color.WHITE);
15
16 g.setColor(Color.RED);
17
18
19 g.setColor(Color.BLUE);
20
21
22
23 g.setColor(Color.CYAN);
24
25
26
27 g.setColor(Color.GREEN);
28
29
30
31 g.setColor(Color.MAGENTA);
32
33
34 } // end method paintComponent
35 } // end class LinesRectsOvalsJPanel

Fig. 15.18 | Drawing lines, rectangles and ovals.

g.drawLine(5, 30, 380, 30);

g.drawRect(5, 40, 90, 55);
g.fillRect(100, 40, 90, 55);

g.fillRoundRect(195, 40, 90, 55, 50, 50);
g.drawRoundRect(290, 40, 90, 55, 20, 20);

g.draw3DRect(5, 100, 90, 55, true);
g.fill3DRect(100, 100, 90, 55, false);

g.drawOval(195, 100, 90, 55);
g.fillOval(290, 100, 90, 55);

15.5 Drawing Lines, Rectangles and Ovals 487

1 // Fig. 15.19: LinesRectsOvals.java
2 // Drawing lines, rectangles and ovals.
3 import java.awt.Color;
4 import javax.swing.JFrame;
5
6 public class LinesRectsOvals
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // create frame for LinesRectsOvalsJPanel
12 JFrame frame =
13 new JFrame("Drawing lines, rectangles and ovals");
14 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
15
16 LinesRectsOvalsJPanel linesRectsOvalsJPanel =
17 new LinesRectsOvalsJPanel();
18 linesRectsOvalsJPanel.setBackground(Color.WHITE);
19 frame.add(linesRectsOvalsJPanel); // add panel to frame
20 frame.setSize(400, 210); // set frame size
21 frame.setVisible(true); // display frame
22 } // end main
23 } // end class LinesRectsOvals

Fig. 15.19 | Creating JFrame to display lines, rectangles and ovals.

Fig. 15.20 | Arc width and arc height for rounded rectangles.

drawRect

drawLine

fillRect

draw3DRect

fill3DRect

fillRoundRect

drawRoundRect

drawOval

fillOval

width

(x, y)

arc height

arc width
height

488 Chapter 15 Graphics and Java 2D

corner. When the arc width, arc height, width and height have the same values, the result
is a circle. If the values for width and height are the same and the values of arcWidth and
arcHeight are 0, the result is a square.

Methods draw3DRect (line 28) and fill3DRect (line 29) take the same arguments.
The first two specify the top-left corner of the rectangle. The next two arguments specify
the width and height of the rectangle, respectively. The last argument determines whether
the rectangle is raised (true) or lowered (false). The three-dimensional effect of
draw3DRect appears as two edges of the rectangle in the original color and two edges in a
slightly darker color. The three-dimensional effect of fill3DRect appears as two edges of
the rectangle in the original drawing color and the fill and other two edges in a slightly
darker color. Raised rectangles have the original drawing color edges at the top and left of
the rectangle. Lowered rectangles have the original drawing color edges at the bottom and
right of the rectangle. The three-dimensional effect is difficult to see in some colors.

Methods drawOval and fillOval (Fig. 15.18, lines 32–33) take the same four argu-
ments. The first two specify the top-left coordinate of the bounding rectangle that con-
tains the oval. The last two specify the width and height of the bounding rectangle,
respectively. Figure 15.21 shows an oval bounded by a rectangle. The oval touches the
center of all four sides of the bounding rectangle. (The bounding rectangle is not displayed
on the screen.)

15.6 Drawing Arcs
An arc is drawn as a portion of an oval. Arc angles are measured in degrees. Arcs sweep
(i.e., move along a curve) from a starting angle through the number of degrees specified
by their arc angle. The starting angle indicates in degrees where the arc begins. The arc
angle specifies the total number of degrees through which the arc sweeps. Figure 15.22 il-
lustrates two arcs. The left set of axes shows an arc sweeping from zero degrees to approx-
imately 110 degrees. Arcs that sweep in a counterclockwise direction are measured in
positive degrees. The set of axes on the right shows an arc sweeping from zero degrees to
approximately –110 degrees. Arcs that sweep in a clockwise direction are measured in neg-
ative degrees. Note the dashed boxes around the arcs in Fig. 15.22. When drawing an arc,
we specify a bounding rectangle for an oval. The arc will sweep along part of the oval.
Graphics methods drawArc and fillArc for drawing arcs are summarized in Fig. 15.23.

Fig. 15.21 | Oval bounded by a rectangle.

(x,y)

width

height

15.6 Drawing Arcs 489

Figures 15.24–15.25 demonstrate the arc methods of Fig. 15.23. The application
draws six arcs (three unfilled and three filled). To illustrate the bounding rectangle that
helps determine where the arc appears, the first three arcs are displayed inside a red rect-
angle that has the same x, y, width and height arguments as the arcs.

Fig. 15.22 | Positive and negative arc angles.

Method Description

public void drawArc(int x, int y, int width, int height, int startAngle,

int arcAngle)

Draws an arc relative to the bounding rectangle’s top-left x- and y-coordi-
nates with the specified width and height. The arc segment is drawn starting
at startAngle and sweeps arcAngle degrees.

public void fillArc(int x, int y, int width, int height, int startAngle,

int arcAngle)

Draws a filled arc (i.e., a sector) relative to the bounding rectangle’s top-left
x- and y-coordinates with the specified width and height. The arc segment is
drawn starting at startAngle and sweeps arcAngle degrees.

Fig. 15.23 | Graphics methods for drawing arcs.

1 // Fig. 15.24: ArcsJPanel.java
2 // Drawing arcs.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import javax.swing.JPanel;
6
7 public class ArcsJPanel extends JPanel
8 {
9 // draw rectangles and arcs

10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g); // call superclass's paintComponent
13

Fig. 15.24 | Arcs displayed with drawArc and fillArc. (Part 1 of 2.)

90º

270º

Positive angles

180º 0º

90º

270º

Negative angles

180º 0º

490 Chapter 15 Graphics and Java 2D

14 // start at 0 and sweep 360 degrees
15 g.setColor(Color.RED);
16 g.drawRect(15, 35, 80, 80);
17 g.setColor(Color.BLACK);
18
19
20 // start at 0 and sweep 110 degrees
21 g.setColor(Color.RED);
22 g.drawRect(100, 35, 80, 80);
23 g.setColor(Color.BLACK);
24
25
26 // start at 0 and sweep -270 degrees
27 g.setColor(Color.RED);
28 g.drawRect(185, 35, 80, 80);
29 g.setColor(Color.BLACK);
30
31
32 // start at 0 and sweep 360 degrees
33
34
35 // start at 270 and sweep -90 degrees
36
37
38 // start at 0 and sweep -270 degrees
39
40 } // end method paintComponent
41 } // end class ArcsJPanel

1 // Fig. 15.25: DrawArcs.java
2 // Drawing arcs.
3 import javax.swing.JFrame;
4
5 public class DrawArcs
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ArcsJPanel
11 JFrame frame = new JFrame("Drawing Arcs");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 ArcsJPanel arcsJPanel = new ArcsJPanel(); // create ArcsJPanel
15 frame.add(arcsJPanel); // add arcsJPanel to frame
16 frame.setSize(300, 210); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class DrawArcs

Fig. 15.25 | Creating JFrame to display arcs. (Part 1 of 2.)

Fig. 15.24 | Arcs displayed with drawArc and fillArc. (Part 2 of 2.)

g.drawArc(15, 35, 80, 80, 0, 360);

g.drawArc(100, 35, 80, 80, 0, 110);

g.drawArc(185, 35, 80, 80, 0, -270);

g.fillArc(15, 120, 80, 40, 0, 360);

g.fillArc(100, 120, 80, 40, 270, -90);

g.fillArc(185, 120, 80, 40, 0, -270);

15.7 Drawing Polygons and Polylines 491

15.7 Drawing Polygons and Polylines
Polygons are closed multisided shapes composed of straight-line segments. Polylines are
sequences of connected points. Figure 15.26 discusses methods for drawing polygons and
polylines. Some methods require a Polygon object (package java.awt). Class Polygon’s
constructors are also described in Fig. 15.26. The application of Figs. 15.27–15.28 draws
polygons and polylines.

Method Description

Graphics methods for drawing polygons

public void drawPolygon(int[] xPoints, int[] yPoints, int points)

Draws a polygon. The x-coordinate of each point is specified in the xPoints

array and the y-coordinate of each point in the yPoints array. The last argu-
ment specifies the number of points. This method draws a closed polygon.
If the last point is different from the first, the polygon is closed by a line that
connects the last point to the first.

public void drawPolyline(int[] xPoints, int[] yPoints, int points)

Draws a sequence of connected lines. The x-coordinate of each point is spec-
ified in the xPoints array and the y-coordinate of each point in the yPoints

array. The last argument specifies the number of points. If the last point is
different from the first, the polyline is not closed.

public void drawPolygon(Polygon p)

Draws the specified polygon.

public void fillPolygon(int[] xPoints, int[] yPoints, int points)

Draws a filled polygon. The x-coordinate of each point is specified in the
xPoints array and the y-coordinate of each point in the yPoints array. The
last argument specifies the number of points. This method draws a closed
polygon. If the last point is different from the first, the polygon is closed by a
line that connects the last point to the first.

public void fillPolygon(Polygon p)

Draws the specified filled polygon. The polygon is closed.

Fig. 15.26 | Graphics methods for polygons and class Polygon methods. (Part 1 of 2.)

Fig. 15.25 | Creating JFrame to display arcs. (Part 2 of 2.)

492 Chapter 15 Graphics and Java 2D

Polygon constructors and methods

public Polygon()

Constructs a new polygon object. The polygon does not contain any points.

public Polygon(int[] xValues, int[] yValues, int numberOfPoints)

Constructs a new polygon object. The polygon has numberOfPoints sides,
with each point consisting of an x-coordinate from xValues and a y-coordi-
nate from yValues.

public void addPoint(int x, int y)

Adds pairs of x- and y-coordinates to the Polygon.

1 // Fig. 15.27: PolygonsJPanel.java
2 // Drawing polygons.
3 import java.awt.Graphics;
4
5 import javax.swing.JPanel;
6
7 public class PolygonsJPanel extends JPanel
8 {
9 // draw polygons and polylines

10 public void paintComponent(Graphics g)
11 {
12 super.paintComponent(g); // call superclass's paintComponent
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

Fig. 15.27 | Polygons displayed with drawPolygon and fillPolygon. (Part 1 of 2.)

Method Description

Fig. 15.26 | Graphics methods for polygons and class Polygon methods. (Part 2 of 2.)

import java.awt.Polygon;

// draw polygon with Polygon object
int[] xValues = { 20, 40, 50, 30, 20, 15 };
int[] yValues = { 50, 50, 60, 80, 80, 60 };
Polygon polygon1 = new Polygon(xValues, yValues, 6);
g.drawPolygon(polygon1);

// draw polylines with two arrays
int[] xValues2 = { 70, 90, 100, 80, 70, 65, 60 };
int[] yValues2 = { 100, 100, 110, 110, 130, 110, 90 };
g.drawPolyline(xValues2, yValues2, 7);

// fill polygon with two arrays
int[] xValues3 = { 120, 140, 150, 190 };
int[] yValues3 = { 40, 70, 80, 60 };
g.fillPolygon(xValues3, yValues3, 4);

// draw filled polygon with Polygon object
Polygon polygon2 = new Polygon();
polygon2.addPoint(165, 135);
polygon2.addPoint(175, 150);
polygon2.addPoint(270, 200);

15.7 Drawing Polygons and Polylines 493

Lines 15–16 of Fig. 15.27 create two int arrays and use them to specify the points for
Polygon polygon1. The Polygon constructor call in line 17 receives array xValues, which
contains the x-coordinate of each point; array yValues, which contains the y-coordinate
of each point; and 6 (the number of points in the polygon). Line 18 displays polygon1 by
passing it as an argument to Graphics method drawPolygon.

Lines 21–22 create two int arrays and use them to specify the points for a series of
connected lines. Array xValues2 contains the x-coordinate of each point and array
yValues2 the y-coordinate of each point. Line 23 uses Graphics method drawPolyline to

35
36
37
38 } // end method paintComponent
39 } // end class PolygonsJPanel

1 // Fig. 15.28: DrawPolygons.java
2 // Drawing polygons.
3 import javax.swing.JFrame;
4
5 public class DrawPolygons
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for PolygonsJPanel
11 JFrame frame = new JFrame("Drawing Polygons");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 PolygonsJPanel polygonsJPanel = new PolygonsJPanel();
15 frame.add(polygonsJPanel); // add polygonsJPanel to frame
16 frame.setSize(280, 270); // set frame size
17 frame.setVisible(true); // display frame
18 } // end main
19 } // end class DrawPolygons

Fig. 15.28 | Creating JFrame to display polygons.

Fig. 15.27 | Polygons displayed with drawPolygon and fillPolygon. (Part 2 of 2.)

polygon2.addPoint(200, 220);
polygon2.addPoint(130, 180);
g.fillPolygon(polygon2);

Result of line 18

Result of line 23

Result of line 28

Result of line 37

494 Chapter 15 Graphics and Java 2D

display the series of connected lines specified with the arguments xValues2, yValues2 and
7 (the number of points).

Lines 26–27 create two int arrays and use them to specify the points of a polygon.
Array xValues3 contains the x-coordinate of each point and array yValues3 the y-coordi-
nate of each point. Line 28 displays a polygon by passing to Graphics method fill-

Polygon the two arrays (xValues3 and yValues3) and the number of points to draw (4).

Line 31 creates Polygon polygon2 with no points. Lines 32–36 use Polygon method
addPoint to add pairs of x- and y-coordinates to the Polygon. Line 37 displays Polygon
polygon2 by passing it to Graphics method fillPolygon.

15.8 Java 2D API
The Java 2D API provides advanced two-dimensional graphics capabilities for program-
mers who require detailed and complex graphical manipulations. The API includes fea-
tures for processing line art, text and images in packages java.awt, java.awt.image,
java.awt.color, java.awt.font, java.awt.geom, java.awt.print and java.awt.im-

age.renderable. The capabilities of the API are far too broad to cover in this textbook.
For an overview, see the Java 2D demo (discussed in Chapter 20, Applets and Java Web
Start) or visit download.oracle.com/javase/6/docs/technotes/guides/2d/. In this
section, we overview several Java 2D capabilities.

Drawing with the Java 2D API is accomplished with a Graphics2D reference (package
java.awt). Graphics2D is an abstract subclass of class Graphics, so it has all the graphics
capabilities demonstrated earlier in this chapter. In fact, the actual object used to draw in
every paintComponent method is an instance of a subclass of Graphics2D that is passed to
method paintComponent and accessed via the superclass Graphics. To access Graphics2D
capabilities, we must cast the Graphics reference (g) passed to paintComponent into a
Graphics2D reference with a statement such as

The next two examples use this technique.

Lines, Rectangles, Round Rectangles, Arcs and Ellipses
This example demonstrates several Java 2D shapes from package java.awt.geom, includ-
ing Line2D.Double, Rectangle2D.Double, RoundRectangle2D.Double, Arc2D.Double

and Ellipse2D.Double. Note the syntax of each class name. Each class represents a shape
with dimensions specified as double values. There’s a separate version of each represented
with float values (e.g., Ellipse2D.Float). In each case, Double is a public static nested
class of the class specified to the left of the dot (e.g., Ellipse2D). To use the static nested
class, we simply qualify its name with the outer class name.

In Figs. 15.29–15.30, we draw Java 2D shapes and modify their drawing characteris-
tics, such as changing line thickness, filling shapes with patterns and drawing dashed lines.
These are just a few of the many capabilities provided by Java 2D.

Common Programming Error 15.1
An ArrayIndexOutOfBoundsException is thrown if the number of points specified in the
third argument to method drawPolygon or method fillPolygon is greater than the num-
ber of elements in the arrays of coordinates that specify the polygon to display.

Graphics2D g2d = (Graphics2D) g;

15.8 Java 2D API 495

Line 25 of Fig. 15.29 casts the Graphics reference received by paintComponent to a
Graphics2D reference and assigns it to g2d to allow access to the Java 2D features.

1 // Fig. 15.29: ShapesJPanel.java
2 // Demonstrating some Java 2D shapes.
3 import java.awt.Color;
4 import java.awt.Graphics;
5
6
7
8 import java.awt.Rectangle;
9

10
11
12
13
14
15
16 import javax.swing.JPanel;
17
18 public class ShapesJPanel extends JPanel
19 {
20 // draw shapes with Java 2D API
21 public void paintComponent(Graphics g)
22 {
23 super.paintComponent(g); // call superclass's paintComponent
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41 // obtain Graphics2D from buffImage and draw on it
42
43 gg.setColor(Color.YELLOW); // draw in yellow
44 gg.fillRect(0, 0, 10, 10); // draw a filled rectangle
45 gg.setColor(Color.BLACK); // draw in black
46 gg.drawRect(1, 1, 6, 6); // draw a rectangle
47 gg.setColor(Color.BLUE); // draw in blue
48 gg.fillRect(1, 1, 3, 3); // draw a filled rectangle
49 gg.setColor(Color.RED); // draw in red

Fig. 15.29 | Java 2D shapes. (Part 1 of 2.)

import java.awt.BasicStroke;
import java.awt.GradientPaint;
import java.awt.TexturePaint;

import java.awt.Graphics2D;
import java.awt.geom.Ellipse2D;
import java.awt.geom.Rectangle2D;
import java.awt.geom.RoundRectangle2D;
import java.awt.geom.Arc2D;
import java.awt.geom.Line2D;
import java.awt.image.BufferedImage;

Graphics2D g2d = (Graphics2D) g; // cast g to Graphics2D

// draw 2D ellipse filled with a blue-yellow gradient
g2d.setPaint(new GradientPaint(5, 30, Color.BLUE, 35, 100,

Color.YELLOW, true));
g2d.fill(new Ellipse2D.Double(5, 30, 65, 100));

// draw 2D rectangle in red
g2d.setPaint(Color.RED);
g2d.setStroke(new BasicStroke(10.0f));
g2d.draw(new Rectangle2D.Double(80, 30, 65, 100));

// draw 2D rounded rectangle with a buffered background
BufferedImage buffImage = new BufferedImage(10, 10,

BufferedImage.TYPE_INT_RGB);

Graphics2D gg = buffImage.createGraphics();

496 Chapter 15 Graphics and Java 2D

50 gg.fillRect(4, 4, 3, 3); // draw a filled rectangle
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74 } // end method paintComponent
75 } // end class ShapesJPanel

1 // Fig. 15.30: Shapes.java
2 // Demonstrating some Java 2D shapes.
3 import javax.swing.JFrame;
4
5 public class Shapes
6 {
7 // execute application
8 public static void main(String[] args)
9 {

10 // create frame for ShapesJPanel
11 JFrame frame = new JFrame("Drawing 2D shapes");
12 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
13
14 // create ShapesJPanel
15 ShapesJPanel shapesJPanel = new ShapesJPanel();
16
17 frame.add(shapesJPanel); // add shapesJPanel to frame
18 frame.setSize(425, 200); // set frame size
19 frame.setVisible(true); // display frame
20 } // end main
21 } // end class Shapes

Fig. 15.30 | Creating JFrame to display shapes. (Part 1 of 2.)

Fig. 15.29 | Java 2D shapes. (Part 2 of 2.)

// paint buffImage onto the JFrame
g2d.setPaint(new TexturePaint(buffImage,

new Rectangle(10, 10)));
g2d.fill(

new RoundRectangle2D.Double(155, 30, 75, 100, 50, 50));

// draw 2D pie-shaped arc in white
g2d.setPaint(Color.WHITE);
g2d.setStroke(new BasicStroke(6.0f));
g2d.draw(

new Arc2D.Double(240, 30, 75, 100, 0, 270, Arc2D.PIE));

// draw 2D lines in green and yellow
g2d.setPaint(Color.GREEN);
g2d.draw(new Line2D.Double(395, 30, 320, 150));

// draw 2D line using stroke
float[] dashes = { 10 }; // specify dash pattern
g2d.setPaint(Color.YELLOW);
g2d.setStroke(new BasicStroke(4, BasicStroke.CAP_ROUND,

BasicStroke.JOIN_ROUND, 10, dashes, 0));
g2d.draw(new Line2D.Double(320, 30, 395, 150));

15.8 Java 2D API 497

Ovals, Gradient Fills and Paint Objects
The first shape we draw is an oval filled with gradually changing colors. Lines 28–29 in-
voke Graphics2D method setPaint to set the Paint object that determines the color for
the shape to display. A Paint object implements interface java.awt.Paint. It can be
something as simple as one of the predeclared Color objects introduced in Section 15.3
(class Color implements Paint), or it can be an instance of the Java 2D API’s Gradient-
Paint, SystemColor, TexturePaint, LinearGradientPaint or RadialGradientPaint

classes. In this case, we use a GradientPaint object.
Class GradientPaint helps draw a shape in gradually changing colors—called a gra-

dient. The GradientPaint constructor used here requires seven arguments. The first two
specify the starting coordinate for the gradient. The third specifies the starting Color for
the gradient. The fourth and fifth specify the ending coordinate for the gradient. The sixth
specifies the ending Color for the gradient. The last argument specifies whether the gra-
dient is cyclic (true) or acyclic (false). The two sets of coordinates determine the direc-
tion of the gradient. Because the second coordinate (35, 100) is down and to the right of
the first coordinate (5, 30), the gradient goes down and to the right at an angle. Because
this gradient is cyclic (true), the color starts with blue, gradually becomes yellow, then
gradually returns to blue. If the gradient is acyclic, the color transitions from the first color
specified (e.g., blue) to the second color (e.g., yellow).

Line 30 uses Graphics2D method fill to draw a filled Shape object—an object that
implements interface Shape (package java.awt). In this case, we display an
Ellipse2D.Double object. The Ellipse2D.Double constructor receives four arguments
specifying the bounding rectangle for the ellipse to display.

Rectangles, Strokes
Next we draw a red rectangle with a thick border. Line 33 invokes setPaint to set the
Paint object to Color.RED. Line 34 uses Graphics2D method setStroke to set the char-
acteristics of the rectangle’s border (or the lines for any other shape). Method setStroke

requires as its argument an object that implements interface Stroke (package java.awt).
In this case, we use an instance of class BasicStroke. Class BasicStroke provides several
constructors to specify the width of the line, how the line ends (called the end caps), how
lines join together (called line joins) and the dash attributes of the line (if it’s a dashed
line). The constructor here specifies that the line should be 10 pixels wide.

Line 35 uses Graphics2D method draw to draw a Shape object—in this case, a
Rectangle2D.Double. The Rectangle2D.Double constructor receives arguments speci-
fying the rectangle’s upper-left x-coordinate, upper-left y-coordinate, width and height.

Fig. 15.30 | Creating JFrame to display shapes. (Part 2 of 2.)

498 Chapter 15 Graphics and Java 2D

Rounded Rectangles, BufferedImages and TexturePaint Objects
Next we draw a rounded rectangle filled with a pattern created in a BufferedImage (pack-
age java.awt.image) object. Lines 38–39 create the BufferedImage object. Class Buff-
eredImage can be used to produce images in color and grayscale. This particular
BufferedImage is 10 pixels wide and 10 pixels tall (as specified by the first two arguments
of the constructor). The third argument BufferedImage.TYPE_INT_RGB indicates that the
image is stored in color using the RGB color scheme.

To create the rounded rectangle’s fill pattern, we must first draw into the Buffered-

Image. Line 42 creates a Graphics2D object (by calling BufferedImage method create-

Graphics) that can be used to draw into the BufferedImage. Lines 43–50 use methods
setColor, fillRect and drawRect to create the pattern.

Lines 53–54 set the Paint object to a new TexturePaint (package java.awt) object.
A TexturePaint object uses the image stored in its associated BufferedImage (the first
constructor argument) as the fill texture for a filled-in shape. The second argument spec-
ifies the Rectangle area from the BufferedImage that will be replicated through the tex-
ture. In this case, the Rectangle is the same size as the BufferedImage. However, a smaller
portion of the BufferedImage can be used.

Lines 55–56 use Graphics2D method fill to draw a filled Shape object—in this case,
a RoundRectangle2D.Double. The constructor for class RoundRectangle2D.Double

receives six arguments specifying the rectangle dimensions and the arc width and arc
height used to determine the rounding of the corners.

Arcs
Next we draw a pie-shaped arc with a thick white line. Line 59 sets the Paint object to
Color.WHITE. Line 60 sets the Stroke object to a new BasicStroke for a line 6 pixels wide.
Lines 61–62 use Graphics2D method draw to draw a Shape object—in this case, an
Arc2D.Double. The Arc2D.Double constructor’s first four arguments specify the upper-left
x-coordinate, upper-left y-coordinate, width and height of the bounding rectangle for the
arc. The fifth argument specifies the start angle. The sixth argument specifies the arc angle.
The last argument specifies how the arc is closed. Constant Arc2D.PIE indicates that the
arc is closed by drawing two lines—one line from the arc’s starting point to the center of
the bounding rectangle and one line from the center of the bounding rectangle to the end-
ing point. Class Arc2D provides two other static constants for specifying how the arc is
closed. Constant Arc2D.CHORD draws a line from the starting point to the ending point.
Constant Arc2D.OPEN specifies that the arc should not be closed.

Lines
Finally, we draw two lines using Line2D objects—one solid and one dashed. Line 65 sets
the Paint object to Color.GREEN. Line 66 uses Graphics2D method draw to draw a Shape
object—in this case, an instance of class Line2D.Double. The Line2D.Double construc-
tor’s arguments specify the starting coordinates and ending coordinates of the line.

Line 69 declares a one-element float array containing the value 10. This array
describes the dashes in the dashed line. In this case, each dash will be 10 pixels long. To
create dashes of different lengths in a pattern, simply provide the length of each dash as an
element in the array. Line 70 sets the Paint object to Color.YELLOW. Lines 71–72 set the
Stroke object to a new BasicStroke. The line will be 4 pixels wide and will have rounded

15.8 Java 2D API 499

ends (BasicStroke.CAP_ROUND). If lines join together (as in a rectangle at the corners),
their joining will be rounded (BasicStroke.JOIN_ROUND). The dashes argument specifies
the dash lengths for the line. The last argument indicates the starting index in the dashes

array for the first dash in the pattern. Line 73 then draws a line with the current Stroke.

Creating Your Own Shapes with General Paths
Next we present a general path—a shape constructed from straight lines and complex
curves. A general path is represented with an object of class GeneralPath (package ja-

va.awt.geom). The application of Figs. 15.31 and 15.32 demonstrates drawing a general
path in the shape of a five-pointed star.

1 // Fig. 15.31: Shapes2JPanel.java
2 // Demonstrating a general path.
3 import java.awt.Color;
4 import java.awt.Graphics;
5 import java.awt.Graphics2D;
6 import java.awt.geom.GeneralPath;
7 import java.util.Random;
8 import javax.swing.JPanel;
9

10 public class Shapes2JPanel extends JPanel
11 {
12 // draw general paths
13 public void paintComponent(Graphics g)
14 {
15 super.paintComponent(g); // call superclass's paintComponent
16 Random random = new Random(); // get random number generator
17
18
19
20
21 Graphics2D g2d = (Graphics2D) g;
22
23
24
25
26
27 // create the star--this does not draw the star
28 for (int count = 1; count < xPoints.length; count++)
29
30
31
32
33
34
35 // rotate around origin and draw stars in random colors
36 for (int count = 1; count <= 20; count++)
37 {
38
39

Fig. 15.31 | Java 2D general paths. (Part 1 of 2.)

int[] xPoints = { 55, 67, 109, 73, 83, 55, 27, 37, 1, 43 };
int[] yPoints = { 0, 36, 36, 54, 96, 72, 96, 54, 36, 36 };

GeneralPath star = new GeneralPath(); // create GeneralPath object

// set the initial coordinate of the General Path
star.moveTo(xPoints[0], yPoints[0]);

star.lineTo(xPoints[count], yPoints[count]);

star.closePath(); // close the shape

g2d.translate(150, 150); // translate the origin to (150, 150)

g2d.rotate(Math.PI / 10.0); // rotate coordinate system

500 Chapter 15 Graphics and Java 2D

Lines 18–19 declare two int arrays representing the x- and y-coordinates of the points
in the star. Line 22 creates GeneralPath object star. Line 25 uses GeneralPath method
moveTo to specify the first point in the star. The for statement in lines 28–29 uses Gen-
eralPath method lineTo to draw a line to the next point in the star. Each new call to

40 // set random drawing color
41 g2d.setColor(new Color(random.nextInt(256),
42 random.nextInt(256), random.nextInt(256)));
43
44
45 } // end for
46 } // end method paintComponent
47 } // end class Shapes2JPanel

1 // Fig. 15.32: Shapes2.java
2 // Demonstrating a general path.
3 import java.awt.Color;
4 import javax.swing.JFrame;
5
6 public class Shapes2
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // create frame for Shapes2JPanel
12 JFrame frame = new JFrame("Drawing 2D Shapes");
13 frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14
15 Shapes2JPanel shapes2JPanel = new Shapes2JPanel();
16 frame.add(shapes2JPanel); // add shapes2JPanel to frame
17 frame.setBackground(Color.WHITE); // set frame background color
18 frame.setSize(315, 330); // set frame size
19 frame.setVisible(true); // display frame
20 } // end main
21 } // end class Shapes2

Fig. 15.32 | Creating JFrame to display stars.

Fig. 15.31 | Java 2D general paths. (Part 2 of 2.)

g2d.fill(star); // draw filled star

15.9 Wrap-Up 501

lineTo draws a line from the previous point to the current point. Line 31 uses General-
Path method closePath to draw a line from the last point to the point specified in the last
call to moveTo. This completes the general path.

Line 33 uses Graphics2D method translate to move the drawing origin to location
(150, 150). All drawing operations now use location (150, 150) as (0, 0).

The for statement in lines 36–45 draws the star 20 times by rotating it around the
new origin point. Line 38 uses Graphics2D method rotate to rotate the next displayed
shape. The argument specifies the rotation angle in radians (with 360° = 2π radians). Line
44 uses Graphics2D method fill to draw a filled version of the star.

15.9 Wrap-Up
In this chapter, you learned how to use Java’s graphics capabilities to produce colorful
drawings. You learned how to specify the location of an object using Java’s coordinate sys-
tem, and how to draw on a window using the paintComponent method. You were intro-
duced to class Color, and you learned how to use this class to specify different colors using
their RGB components. You used the JColorChooser dialog to allow users to select colors
in a program. You then learned how to work with fonts when drawing text on a window.
You learned how to create a Font object from a font name, style and size, as well as how
to access the metrics of a font. From there, you learned how to draw various shapes on a
window, such as rectangles (regular, rounded and 3D), ovals and polygons, as well as lines
and arcs. You then used the Java 2D API to create more complex shapes and to fill them
with gradients or patterns. The chapter concluded with a discussion of general paths, used
to construct shapes from straight lines and complex curves. In the next chapter, we discuss
class String and its methods. We introduce regular expressions for pattern matching in
strings and demonstrate how to validate user input with regular expressions.

16
Strings, Characters and
Regular Expressions

O b j e c t i v e s
In this chapter you’ll learn:

� To create and manipulate immutable character-string
objects of class String.

� To create and manipulate mutable character-string objects
of class StringBuilder.

� To create and manipulate objects of class Character.

� To break a String object into tokens using String
method split.

� To use regular expressions to validate String data entered
into an application.

The chief defect of
Henry King
Was chewing little
bits of string.
—Hilaire Belloc

Vigorous writing is concise.
A sentence should contain
no unnecessary words, a
paragraph no unnecessary
sentences.
—William Strunk, Jr.

I have made this letter
longer than usual, because I
lack the time to make it
short.
—Blaise Pascal

16.1 Introduction 503

16.1 Introduction
This chapter introduces Java’s string- and character-processing capabilities. The tech-
niques discussed here are appropriate for validating program input, displaying information
to users and other text-based manipulations. They’re also appropriate for developing text
editors, word processors, page-layout software, computerized typesetting systems and oth-
er kinds of text-processing software. We’ve presented several string-processing capabilities
in earlier chapters. This chapter discusses in detail the capabilities of classes String,
StringBuilder and Character from the java.lang package. These classes provide the
foundation for string and character manipulation in Java.

The chapter also discusses regular expressions that provide applications with the capa-
bility to validate input. The functionality is located in the String class along with classes
Matcher and Pattern located in the java.util.regex package.

16.2 Fundamentals of Characters and Strings
Characters are the fundamental building blocks of Java source programs. Every program is
composed of a sequence of characters that—when grouped together meaningfully—are in-
terpreted by the Java compiler as a series of instructions used to accomplish a task. A program
may contain character literals. A character literal is an integer value represented as a character
in single quotes. For example, 'z' represents the integer value of z, and '\n' represents the
integer value of newline. The value of a character literal is the integer value of the character
in the Unicode character set. Appendix B presents the integer equivalents of the characters
in the ASCII character set, which is a subset of Unicode.

Recall from Section 2.2 that a string is a sequence of characters treated as a single unit.
A string may include letters, digits and various special characters, such as +, -, *, / and $.
A string is an object of class String. String literals (stored in memory as String objects)
are written as a sequence of characters in double quotation marks, as in:

16.1 Introduction
16.2 Fundamentals of Characters and

Strings
16.3 Class String

16.3.1 String Constructors
16.3.2 String Methods length, charAt

and getChars
16.3.3 Comparing Strings
16.3.4 Locating Characters and Substrings in

Strings
16.3.5 Extracting Substrings from Strings
16.3.6 Concatenating Strings
16.3.7 Miscellaneous String Methods
16.3.8 String Method valueOf

16.4 Class StringBuilder
16.4.1 StringBuilder Constructors
16.4.2 StringBuilder Methods length,

capacity, setLength and
ensureCapacity

16.4.3 StringBuilder Methods charAt,
setCharAt, getChars and
reverse

16.4.4 StringBuilder append Methods
16.4.5 StringBuilder Insertion and

Deletion Methods
16.5 Class Character
16.6 Tokenizing Strings
16.7 Regular Expressions, Class Pattern

and Class Matcher
16.8 Wrap-Up

504 Chapter 16 Strings, Characters and Regular Expressions

A string may be assigned to a String reference. The declaration

initializes String variable color to refer to a String object that contains the string "blue".

16.3 Class String
Class String is used to represent strings in Java. The next several subsections cover many
of class String’s capabilities.

16.3.1 String Constructors
Class String provides constructors for initializing String objects in a variety of ways. Four
of the constructors are demonstrated in the main method of Fig. 16.1.

"John Q. Doe" (a name)
"9999 Main Street" (a street address)
"Waltham, Massachusetts" (a city and state)
"(201) 555-1212" (a telephone number)

String color = "blue";

Performance Tip 16.1
To conserve memory, Java treats all string literals with the same contents as a single
String object that has many references to it.

1 // Fig. 16.1: StringConstructors.java
2 // String class constructors.
3
4 public class StringConstructors
5 {
6 public static void main(String[] args)
7 {
8 char[] charArray = { 'b', 'i', 'r', 't', 'h', ' ', 'd', 'a', 'y' };
9 String s = new String("hello");

10
11
12
13
14
15
16
17 System.out.printf(
18 "s1 = %s\ns2 = %s\ns3 = %s\ns4 = %s\n",
19 s1, s2, s3, s4); // display strings
20 } // end main
21 } // end class StringConstructors

s1 =
s2 = hello
s3 = birth day
s4 = day

Fig. 16.1 | String class constructors.

// use String constructors
String s1 = new String();
String s2 = new String(s);
String s3 = new String(charArray);
String s4 = new String(charArray, 6, 3);

16.3 Class String 505

Line 12 instantiates a new String using class String’s no-argument constructor and
assigns its reference to s1. The new String object contains no characters (i.e., the empty
string, which can also be represented as "") and has a length of 0. Line 13 instantiates a
new String object using class String’s constructor that takes a String object as an argu-
ment and assigns its reference to s2. The new String object contains the same sequence
of characters as the String object s that’s passed as an argument to the constructor.

Line 14 instantiates a new String object and assigns its reference to s3 using class
String’s constructor that takes a char array as an argument. The new String object con-
tains a copy of the characters in the array.

Line 15 instantiates a new String object and assigns its reference to s4 using class
String’s constructor that takes a char array and two integers as arguments. The second
argument specifies the starting position (the offset) from which characters in the array are
accessed. Remember that the first character is at position 0. The third argument specifies
the number of characters (the count) to access in the array. The new String object is
formed from the accessed characters. If the offset or the count specified as an argument
results in accessing an element outside the bounds of the character array, a StringIndex-

OutOfBoundsException is thrown.

16.3.2 String Methods length, charAt and getChars

String methods length, charAt and getChars return the length of a String, obtain the
character at a specific location in a String and retrieve a set of characters from a String

as a char array, respectively. Figure 16.2 demonstrates each of these methods.

Software Engineering Observation 16.1
It’s not necessary to copy an existing String object. String objects are immutable—their
character contents cannot be changed after they’re created, because class String does not
provide methods that allow the contents of a String object to be modified.

Common Programming Error 16.1
Accessing a character outside the bounds of a String (i.e., an index less than 0 or an index
greater than or equal to the String’s length) results in a StringIndexOutOfBounds-

Exception.

1 // Fig. 16.2: StringMiscellaneous.java
2 // This application demonstrates the length, charAt and getChars
3 // methods of the String class.
4
5 public class StringMiscellaneous
6 {
7 public static void main(String[] args)
8 {
9 String s1 = "hello there";

10 char[] charArray = new char[5];
11
12 System.out.printf("s1: %s", s1);
13

Fig. 16.2 | String methods length, charAt and getChars. (Part 1 of 2.)

506 Chapter 16 Strings, Characters and Regular Expressions

Line 15 uses String method length to determine the number of characters in String

s1. Like arrays, strings know their own length. However, unlike arrays, you access a
String’s length via class String’s length method.

Lines 20–21 print the characters of the String s1 in reverse order (and separated by
spaces). String method charAt (line 21) returns the character at a specific position in the
String. Method charAt receives an integer argument that’s used as the index and returns
the character at that position. Like arrays, the first element of a String is at position 0.

Line 24 uses String method getChars to copy the characters of a String into a char-
acter array. The first argument is the starting index from which characters are to be copied.
The second argument is the index that’s one past the last character to be copied from the
String. The third argument is the character array into which the characters are to be copied.
The last argument is the starting index where the copied characters are placed in the target
character array. Next, lines 27–28 print the char array contents one character at a time.

16.3.3 Comparing Strings
Chapter 19 discusses sorting and searching arrays. Frequently, the information being sort-
ed or searched consists of Strings that must be compared to place them into order or to
determine whether a string appears in an array (or other collection). Class String provides
methods for comparing strings, as demonstrated in the next two examples.

To understand what it means for one string to be greater than or less than another,
consider the process of alphabetizing a series of last names. No doubt, you’d place “Jones”
before “Smith” because the first letter of “Jones” comes before the first letter of “Smith”

14 // test length method
15 System.out.printf("\nLength of s1: %d",);
16
17 // loop through characters in s1 with charAt and display reversed
18 System.out.print("\nThe string reversed is: ");
19
20 for (int count = s1.length() - 1; count >= 0; count--)
21 System.out.printf("%c ",);
22
23 // copy characters from string into charArray
24
25 System.out.print("\nThe character array is: ");
26
27 for (char character : charArray)
28 System.out.print(character);
29
30 System.out.println();
31 } // end main
32 } // end class StringMiscellaneous

s1: hello there
Length of s1: 11
The string reversed is: e r e h t o l l e h
The character array is: hello

Fig. 16.2 | String methods length, charAt and getChars. (Part 2 of 2.)

s1.length()

s1.charAt(count)

s1.getChars(0, 5, charArray, 0);

16.3 Class String 507

in the alphabet. But the alphabet is more than just a list of 26 letters—it’s an ordered set
of characters. Each letter occurs in a specific position within the set. Z is more than just a
letter of the alphabet—it’s specifically the twenty-sixth letter of the alphabet.

How does the computer know that one letter “comes before” another? All characters
are represented in the computer as numeric codes (see Appendix B). When the computer
compares Strings, it actually compares the numeric codes of the characters in the Strings.

Figure 16.3 demonstrates String methods equals, equalsIgnoreCase, compareTo
and regionMatches and using the equality operator == to compare String objects.

1 // Fig. 16.3: StringCompare.java
2 // String methods equals, equalsIgnoreCase, compareTo and regionMatches.
3
4 public class StringCompare
5 {
6 public static void main(String[] args)
7 {
8 String s1 = new String("hello"); // s1 is a copy of "hello"
9 String s2 = "goodbye";

10 String s3 = "Happy Birthday";
11 String s4 = "happy birthday";
12
13 System.out.printf(
14 "s1 = %s\ns2 = %s\ns3 = %s\ns4 = %s\n\n", s1, s2, s3, s4);
15
16 // test for equality
17 if () // true
18 System.out.println("s1 equals \"hello\"");
19 else

20 System.out.println("s1 does not equal \"hello\"");
21
22 // test for equality with ==
23 if () // false; they are not the same object
24 System.out.println("s1 is the same object as \"hello\"");
25 else

26 System.out.println("s1 is not the same object as \"hello\"");
27
28 // test for equality (ignore case)
29 if () // true
30 System.out.printf("%s equals %s with case ignored\n", s3, s4);
31 else

32 System.out.println("s3 does not equal s4");
33
34 // test compareTo
35 System.out.printf(
36 "\ns1.compareTo(s2) is %d",);
37 System.out.printf(
38 "\ns2.compareTo(s1) is %d",);
39 System.out.printf(
40 "\ns1.compareTo(s1) is %d",);

Fig. 16.3 | String methods equals, equalsIgnoreCase, compareTo and regionMatches.
(Part 1 of 2.)

s1.equals("hello")

s1 == "hello"

s3.equalsIgnoreCase(s4)

s1.compareTo(s2)

s2.compareTo(s1)

s1.compareTo(s1)

508 Chapter 16 Strings, Characters and Regular Expressions

String Method equals

The condition at line 17 uses method equals to compare String s1 and the String literal
"hello" for equality. Method equals (a method of class Object overridden in String)
tests any two objects for equality—the strings contained in the two objects are identical.
The method returns true if the contents of the objects are equal, and false otherwise.
The preceding condition is true because String s1 was initialized with the string literal
"hello". Method equals uses a lexicographical comparison—it compares the integer
Unicode values that represent each character in each String. Thus, if the String "hello"
is compared with the string "HELLO", the result is false, because the integer representation
of a lowercase letter is different from that of the corresponding uppercase letter.

41 System.out.printf(
42 "\ns3.compareTo(s4) is %d",);
43 System.out.printf(
44 "\ns4.compareTo(s3) is %d\n\n",);
45
46 // test regionMatches (case sensitive)
47 if ()
48 System.out.println("First 5 characters of s3 and s4 match");
49 else

50 System.out.println(
51 "First 5 characters of s3 and s4 do not match");
52
53 // test regionMatches (ignore case)
54 if ()
55 System.out.println(
56 "First 5 characters of s3 and s4 match with case ignored");
57 else

58 System.out.println(
59 "First 5 characters of s3 and s4 do not match");
60 } // end main
61 } // end class StringCompare

s1 = hello
s2 = goodbye
s3 = Happy Birthday
s4 = happy birthday

s1 equals "hello"
s1 is not the same object as "hello"
Happy Birthday equals happy birthday with case ignored

s1.compareTo(s2) is 1
s2.compareTo(s1) is -1
s1.compareTo(s1) is 0
s3.compareTo(s4) is -32
s4.compareTo(s3) is 32

First 5 characters of s3 and s4 do not match
First 5 characters of s3 and s4 match with case ignored

Fig. 16.3 | String methods equals, equalsIgnoreCase, compareTo and regionMatches.
(Part 2 of 2.)

s3.compareTo(s4)

s4.compareTo(s3)

s3.regionMatches(0, s4, 0, 5)

s3.regionMatches(true, 0, s4, 0, 5)

16.3 Class String 509

Comparing Strings with the == Operator
The condition at line 23 uses the equality operator == to compare String s1 for equality
with the String literal "hello". When primitive-type values are compared with ==, the
result is true if both values are identical. When references are compared with ==, the result
is true if both references refer to the same object in memory. To compare the actual contents
(or state information) of objects for equality, a method must be invoked. In the case of
Strings, that method is equals. The preceding condition evaluates to false at line 23 be-
cause the reference s1 was initialized with the statement

which creates a new String object with a copy of string literal "hello" and assigns the new
object to variable s1. If s1 had been initialized with the statement

which directly assigns the string literal "hello" to variable s1, the condition would be
true. Remember that Java treats all string literal objects with the same contents as one
String object to which there can be many references. Thus, lines 8, 17 and 23 all refer to
the same String object "hello" in memory.

String Method equalsIgnoreCase

If you’re sorting Strings, you may compare them for equality with method equals-

IgnoreCase, which ignores whether the letters in each String are uppercase or lowercase
when performing the comparison. Thus, "hello" and "HELLO" compare as equal. Line 29
uses String method equalsIgnoreCase to compare String s3—Happy Birthday—for
equality with String s4—happy birthday. The result of this comparison is true because
the comparison ignores case sensitivity.

String Method compareTo

Lines 35–44 use method compareTo to compare Strings. Method compareTo is declared
in the Comparable interface and implemented in the String class. Line 36 compares
String s1 to String s2. Method compareTo returns 0 if the Strings are equal, a negative
number if the String that invokes compareTo is less than the String that’s passed as an
argument and a positive number if the String that invokes compareTo is greater than the
String that’s passed as an argument. Method compareTo uses a lexicographical compari-
son—it compares the numeric values of corresponding characters in each String.

String Method regionMatches

The condition at line 47 uses String method regionMatches to compare portions of two
Strings for equality. The first argument is the starting index in the String that invokes
the method. The second argument is a comparison String. The third argument is the

s1 = new String("hello");

s1 = "hello";

Common Programming Error 16.2
Comparing references with == can lead to logic errors, because == compares the references
to determine whether they refer to the same object, not whether two objects have the
same contents. When two identical (but separate) objects are compared with ==, the re-
sult will be false. When comparing objects to determine whether they have the same con-
tents, use method equals.

510 Chapter 16 Strings, Characters and Regular Expressions

starting index in the comparison String. The last argument is the number of characters
to compare between the two Strings. The method returns true only if the specified num-
ber of characters are lexicographically equal.

Finally, the condition at line 54 uses a five-argument version of String method
regionMatches to compare portions of two Strings for equality. When the first argument
is true, the method ignores the case of the characters being compared. The remaining
arguments are identical to those described for the four-argument regionMatches method.

String Methods startsWith and endsWith

The next example (Fig. 16.4) demonstrates String methods startsWith and endsWith.
Method main creates array strings containing "started", "starting", "ended" and "end-

ing". The remainder of method main consists of three for statements that test the elements
of the array to determine whether they start with or end with a particular set of characters.

1 // Fig. 16.4: StringStartEnd.java
2 // String methods startsWith and endsWith.
3
4 public class StringStartEnd
5 {
6 public static void main(String[] args)
7 {
8 String[] strings = { "started", "starting", "ended", "ending" };
9

10 // test method startsWith
11 for (String string : strings)
12 {
13 if ()
14 System.out.printf("\"%s\" starts with \"st\"\n", string);
15 } // end for
16
17 System.out.println();
18
19 // test method startsWith starting from position 2 of string
20 for (String string : strings)
21 {
22 if ()
23 System.out.printf(
24 "\"%s\" starts with \"art\" at position 2\n", string);
25 } // end for
26
27 System.out.println();
28
29 // test method endsWith
30 for (String string : strings)
31 {
32 if ()
33 System.out.printf("\"%s\" ends with \"ed\"\n", string);
34 } // end for
35 } // end main
36 } // end class StringStartEnd

Fig. 16.4 | String methods startsWith and endsWith. (Part 1 of 2.)

string.startsWith("st")

string.startsWith("art", 2)

string.endsWith("ed")

16.3 Class String 511

Lines 11–15 use the version of method startsWith that takes a String argument.
The condition in the if statement (line 13) determines whether each String in the array
starts with the characters "st". If so, the method returns true and the application prints
that String. Otherwise, the method returns false and nothing happens.

Lines 20–25 use the startsWith method that takes a String and an integer as argu-
ments. The integer specifies the index at which the comparison should begin in the
String. The condition in the if statement (line 22) determines whether each String in
the array has the characters "art" beginning with the third character in each String. If so,
the method returns true and the application prints the String.

The third for statement (lines 30–34) uses method endsWith, which takes a String

argument. The condition at line 32 determines whether each String in the array ends with
the characters "ed". If so, the method returns true and the application prints the String.

16.3.4 Locating Characters and Substrings in Strings
Often it’s useful to search a string for a character or set of characters. For example, if you’re
creating your own word processor, you might want to provide a capability for searching
through documents. Figure 16.5 demonstrates the many versions of String methods
indexOf and lastIndexOf that search for a specified character or substring in a String.

"started" starts with "st"
"starting" starts with "st"

"started" starts with "art" at position 2
"starting" starts with "art" at position 2

"started" ends with "ed"
"ended" ends with "ed"

1 // Fig. 16.5: StringIndexMethods.java
2 // String searching methods indexOf and lastIndexOf.
3
4 public class StringIndexMethods
5 {
6 public static void main(String[] args)
7 {
8 String letters = "abcdefghijklmabcdefghijklm";
9

10 // test indexOf to locate a character in a string
11 System.out.printf(
12 "'c' is located at index %d\n",);
13 System.out.printf(
14 "'a' is located at index %d\n",);
15 System.out.printf(
16 "'$' is located at index %d\n\n",);
17

Fig. 16.5 | String-searching methods indexOf and lastIndexOf. (Part 1 of 2.)

Fig. 16.4 | String methods startsWith and endsWith. (Part 2 of 2.)

letters.indexOf('c')

letters.indexOf('a', 1)

letters.indexOf('$')

512 Chapter 16 Strings, Characters and Regular Expressions

All the searches in this example are performed on the String letters (initialized with
"abcdefghijklmabcdefghijklm"). Lines 11–16 use method indexOf to locate the first
occurrence of a character in a String. If the method finds the character, it returns the char-
acter’s index in the String—otherwise, it returns –1. There are two versions of indexOf
that search for characters in a String. The expression in line 12 uses the version of method
indexOf that takes an integer representation of the character to find. The expression at line
14 uses another version of method indexOf, which takes two integer arguments—the
character and the starting index at which the search of the String should begin.

Lines 19–24 use method lastIndexOf to locate the last occurrence of a character in a
String. The method searches from the end of the String toward the beginning. If it finds

18 // test lastIndexOf to find a character in a string
19 System.out.printf("Last 'c' is located at index %d\n",
20);
21 System.out.printf("Last 'a' is located at index %d\n",
22);
23 System.out.printf("Last '$' is located at index %d\n\n",
24);
25
26 // test indexOf to locate a substring in a string
27 System.out.printf("\"def\" is located at index %d\n",
28);
29 System.out.printf("\"def\" is located at index %d\n",
30);
31 System.out.printf("\"hello\" is located at index %d\n\n",
32);
33
34 // test lastIndexOf to find a substring in a string
35 System.out.printf("Last \"def\" is located at index %d\n",
36);
37 System.out.printf("Last \"def\" is located at index %d\n",
38);
39 System.out.printf("Last \"hello\" is located at index %d\n",
40);
41 } // end main
42 } // end class StringIndexMethods

'c' is located at index 2
'a' is located at index 13
'$' is located at index -1

Last 'c' is located at index 15
Last 'a' is located at index 13
Last '$' is located at index -1

"def" is located at index 3
"def" is located at index 16
"hello" is located at index -1

Last "def" is located at index 16
Last "def" is located at index 16
Last "hello" is located at index -1

Fig. 16.5 | String-searching methods indexOf and lastIndexOf. (Part 2 of 2.)

letters.lastIndexOf('c')

letters.lastIndexOf('a', 25)

letters.lastIndexOf('$')

letters.indexOf("def")

letters.indexOf("def", 7)

letters.indexOf("hello")

letters.lastIndexOf("def")

letters.lastIndexOf("def", 25)

letters.lastIndexOf("hello")

16.3 Class String 513

the character, it returns the character’s index in the String—otherwise, it returns –1.
There are two versions of lastIndexOf that search for characters in a String. The expres-
sion at line 20 uses the version that takes the integer representation of the character. The
expression at line 22 uses the version that takes two integer arguments—the integer repre-
sentation of the character and the index from which to begin searching backward.

Lines 27–40 demonstrate versions of methods indexOf and lastIndexOf that each
take a String as the first argument. These versions perform identically to those described
earlier except that they search for sequences of characters (or substrings) that are specified
by their String arguments. If the substring is found, these methods return the index in
the String of the first character in the substring.

16.3.5 Extracting Substrings from Strings
Class String provides two substring methods to enable a new String object to be created
by copying part of an existing String object. Each method returns a new String object.
Both methods are demonstrated in Fig. 16.6.

The expression letters.substring(20) at line 12 uses the substring method that
takes one integer argument. The argument specifies the starting index in the original
String letters from which characters are to be copied. The substring returned contains
a copy of the characters from the starting index to the end of the String. Specifying an
index outside the bounds of the String causes a StringIndexOutOfBoundsException.

Line 15 uses the substring method that takes two integer arguments—the starting
index from which to copy characters in the original String and the index one beyond the
last character to copy (i.e., copy up to, but not including, that index in the String). The
substring returned contains a copy of the specified characters from the original String. An
index outside the bounds of the String causes a StringIndexOutOfBoundsException.

1 // Fig. 16.6: SubString.java
2 // String class substring methods.
3
4 public class SubString
5 {
6 public static void main(String[] args)
7 {
8 String letters = "abcdefghijklmabcdefghijklm";
9

10 // test substring methods
11 System.out.printf("Substring from index 20 to end is \"%s\"\n",
12);
13 System.out.printf("%s \"%s\"\n",
14 "Substring from index 3 up to, but not including 6 is",
15);
16 } // end main
17 } // end class SubString

Substring from index 20 to end is "hijklm"
Substring from index 3 up to, but not including 6 is "def"

Fig. 16.6 | String class substring methods.

letters.substring(20)

letters.substring(3, 6)

514 Chapter 16 Strings, Characters and Regular Expressions

16.3.6 Concatenating Strings
String method concat (Fig. 16.7) concatenates two String objects and returns a new
String object containing the characters from both original Strings. The expression
s1.concat(s2) at line 13 forms a String by appending the characters in s2 to the char-
acters in s1. The original Strings to which s1 and s2 refer are not modified.

16.3.7 Miscellaneous String Methods
Class String provides several methods that return modified copies of Strings or that re-
turn character arrays. These methods are demonstrated in the application in Fig. 16.8.

Line 16 uses String method replace to return a new String object in which every
occurrence in s1 of character 'l' (lowercase el) is replaced with character 'L'. Method
replace leaves the original String unchanged. If there are no occurrences of the first argu-
ment in the String, method replace returns the original String. An overloaded version
of method replace enables you to replace substrings rather than individual characters.

1 // Fig. 16.7: StringConcatenation.java
2 // String method concat.
3
4 public class StringConcatenation
5 {
6 public static void main(String[] args)
7 {
8 String s1 = "Happy ";
9 String s2 = "Birthday";

10
11 System.out.printf("s1 = %s\ns2 = %s\n\n",s1, s2);
12 System.out.printf(
13 "Result of s1.concat(s2) = %s\n",);
14 System.out.printf("s1 after concatenation = %s\n", s1);
15 } // end main
16 } // end class StringConcatenation

s1 = Happy
s2 = Birthday

Result of s1.concat(s2) = Happy Birthday
s1 after concatenation = Happy

Fig. 16.7 | String method concat.

1 // Fig. 16.8: StringMiscellaneous2.java
2 // String methods replace, toLowerCase, toUpperCase, trim and toCharArray.
3
4 public class StringMiscellaneous2
5 {
6 public static void main(String[] args)
7 {

Fig. 16.8 | String methods replace, toLowerCase, toUpperCase, trim and toCharArray.
(Part 1 of 2.)

s1.concat(s2)

16.3 Class String 515

Line 19 uses String method toUpperCase to generate a new String with uppercase
letters where corresponding lowercase letters exist in s1. The method returns a new String

object containing the converted String and leaves the original String unchanged. If there
are no characters to convert, method toUpperCase returns the original String.

Line 20 uses String method toLowerCase to return a new String object with lower-
case letters where corresponding uppercase letters exist in s2. The original String remains
unchanged. If there are no characters in the original String to convert, toLowerCase
returns the original String.

8 String s1 = "hello";
9 String s2 = "GOODBYE";

10 String s3 = " spaces ";
11
12 System.out.printf("s1 = %s\ns2 = %s\ns3 = %s\n\n", s1, s2, s3);
13
14 // test method replace
15 System.out.printf(
16 "Replace 'l' with 'L' in s1: %s\n\n",);
17
18 // test toLowerCase and toUpperCase
19 System.out.printf("s1.toUpperCase() = %s\n",);
20 System.out.printf("s2.toLowerCase() = %s\n\n",);
21
22 // test trim method
23 System.out.printf("s3 after trim = \"%s\"\n\n",);
24
25 // test toCharArray method
26
27 System.out.print("s1 as a character array = ");
28
29 for (char character : charArray)
30 System.out.print(character);
31
32 System.out.println();
33 } // end main
34 } // end class StringMiscellaneous2

s1 = hello
s2 = GOODBYE
s3 = spaces

Replace 'l' with 'L' in s1: heLLo

s1.toUpperCase() = HELLO
s2.toLowerCase() = goodbye

s3 after trim = "spaces"

s1 as a character array = hello

Fig. 16.8 | String methods replace, toLowerCase, toUpperCase, trim and toCharArray.
(Part 2 of 2.)

s1.replace('l', 'L')

s1.toUpperCase()
s2.toLowerCase()

s3.trim()

char[] charArray = s1.toCharArray();

516 Chapter 16 Strings, Characters and Regular Expressions

Line 23 uses String method trim to generate a new String object that removes all
white-space characters that appear at the beginning and/or end of the String on which
trim operates. The method returns a new String object containing the String without
leading or trailing white space. The original String remains unchanged. If there are no
whitespace characters at the beginning and/or end, trim returns the original String.

Line 26 uses String method toCharArray to create a new character array containing
a copy of the characters in s1. Lines 29–30 output each char in the array.

16.3.8 String Method valueOf

As we’ve seen, every object in Java has a toString method that enables a program to obtain
the object’s string representation. Unfortunately, this technique cannot be used with
primitive types because they do not have methods. Class String provides static methods
that take an argument of any type and convert it to a String object. Figure 16.9 demon-
strates the String class valueOf methods.

The expression String.valueOf(charArray) at line 18 uses the character array char-

Array to create a new String object. The expression String.valueOf(charArray, 3, 3)

at line 20 uses a portion of the character array charArray to create a new String object.
The second argument specifies the starting index from which the characters are used. The
third argument specifies the number of characters to be used.

1 // Fig. 16.9: StringValueOf.java
2 // String valueOf methods.
3
4 public class StringValueOf
5 {
6 public static void main(String[] args)
7 {
8 char[] charArray = { 'a', 'b', 'c', 'd', 'e', 'f' };
9 boolean booleanValue = true;

10 char characterValue = 'Z';
11 int integerValue = 7;
12
13
14 double doubleValue = 33.333; // no suffix, double is default
15 Object objectRef = "hello"; // assign string to an Object reference
16
17 System.out.printf(
18 "char array = %s\n",);
19 System.out.printf("part of char array = %s\n",
20);
21 System.out.printf(
22 "boolean = %s\n",);
23 System.out.printf(
24 "char = %s\n",);
25 System.out.printf("int = %s\n",);
26 System.out.printf("long = %s\n",);
27 System.out.printf("float = %s\n",);
28 System.out.printf(
29 "double = %s\n",);

Fig. 16.9 | String valueOf methods. (Part 1 of 2.)

long longValue = 10000000000L; // L suffix indicates long
float floatValue = 2.5f; // f indicates that 2.5 is a float

String.valueOf(charArray)

String.valueOf(charArray, 3, 3)

String.valueOf(booleanValue)

String.valueOf(characterValue)
String.valueOf(integerValue)
String.valueOf(longValue)
String.valueOf(floatValue)

String.valueOf(doubleValue)

16.4 Class StringBuilder 517

There are seven other versions of method valueOf, which take arguments of type
boolean, char, int, long, float, double and Object, respectively. These are demon-
strated in lines 21–30. The version of valueOf that takes an Object as an argument can
do so because all Objects can be converted to Strings with method toString.

[Note: Lines 12–13 use literal values 10000000000L and 2.5f as the initial values of
long variable longValue and float variable floatValue, respectively. By default, Java
treats integer literals as type int and floating-point literals as type double. Appending the
letter L to the literal 10000000000 and appending letter f to the literal 2.5 indicates to the
compiler that 10000000000 should be treated as a long and 2.5 as a float. An uppercase
L or lowercase l can be used to denote a variable of type long and an uppercase F or low-
ercase f can be used to denote a variable of type float.]

16.4 Class StringBuilder
We now discuss the features of class StringBuilder for creating and manipulating dynam-
ic string information—that is, modifiable strings. Every StringBuilder is capable of stor-
ing a number of characters specified by its capacity. If a StringBuilder’s capacity is
exceeded, the capacity expands to accommodate the additional characters.

30 System.out.printf("Object = %s",);
31 } // end main
32 } // end class StringValueOf

char array = abcdef
part of char array = def
boolean = true
char = Z
int = 7
long = 10000000000
float = 2.5
double = 33.333
Object = hello

Performance Tip 16.2
Java can perform certain optimizations involving String objects (such as referring to one
String object from multiple variables) because it knows these objects will not change.
Strings (not StringBuilders) should be used if the data will not change.

Performance Tip 16.3
In programs that frequently perform string concatenation, or other string modifications,
it’s often more efficient to implement the modifications with class StringBuilder.

Software Engineering Observation 16.2
StringBuilders are not thread safe. If multiple threads require access to the same
dynamic string information, use class StringBuffer in your code. Classes StringBuilder
and StringBuffer provide identical capabilities, but class StringBuffer is thread safe.
For more details on threading, see Chapter 23.

Fig. 16.9 | String valueOf methods. (Part 2 of 2.)

String.valueOf(objectRef)

518 Chapter 16 Strings, Characters and Regular Expressions

16.4.1 StringBuilder Constructors
Class StringBuilder provides four constructors. We demonstrate three of these in
Fig. 16.10. Line 8 uses the no-argument StringBuilder constructor to create a String-

Builder with no characters in it and an initial capacity of 16 characters (the default for a
StringBuilder). Line 9 uses the StringBuilder constructor that takes an integer argu-
ment to create a StringBuilder with no characters in it and the initial capacity specified
by the integer argument (i.e., 10). Line 10 uses the StringBuilder constructor that takes
a String argument to create a StringBuilder containing the characters in the String ar-
gument. The initial capacity is the number of characters in the String argument plus 16.

Lines 12–14 implicitly use the method toString of class StringBuilder to output
the StringBuilders with the printf method. In Section 16.4.4, we discuss how Java uses
StringBuilder objects to implement the + and += operators for string concatenation.

16.4.2 StringBuilder Methods length, capacity, setLength and
ensureCapacity

Class StringBuilder provides methods length and capacity to return the number of
characters currently in a StringBuilder and the number of characters that can be stored
in a StringBuilder without allocating more memory, respectively. Method ensure-

Capacity guarantees that a StringBuilder has at least the specified capacity. Method
setLength increases or decreases the length of a StringBuilder. Figure 16.11 demon-
strates these methods.

The application contains one StringBuilder called buffer. Line 8 uses the String-

Builder constructor that takes a String argument to initialize the StringBuilder with
"Hello, how are you?". Lines 10–11 print the contents, length and capacity of the
StringBuilder. Note in the output window that the capacity of the StringBuilder is

1 // Fig. 16.10: StringBuilderConstructors.java
2 // StringBuilder constructors.
3
4 public class StringBuilderConstructors
5 {
6 public static void main(String[] args)
7 {
8
9

10
11
12 System.out.printf("buffer1 = \"%s\"\n", buffer1);
13 System.out.printf("buffer2 = \"%s\"\n", buffer2);
14 System.out.printf("buffer3 = \"%s\"\n", buffer3);
15 } // end main
16 } // end class StringBuilderConstructors

buffer1 = ""
buffer2 = ""
buffer3 = "hello"

Fig. 16.10 | StringBuilder constructors.

StringBuilder buffer1 = new StringBuilder();
StringBuilder buffer2 = new StringBuilder(10);
StringBuilder buffer3 = new StringBuilder("hello");

16.4 Class StringBuilder 519

initially 35. Recall that the StringBuilder constructor that takes a String argument ini-
tializes the capacity to the length of the string passed as an argument plus 16.

Line 13 uses method ensureCapacity to expand the capacity of the StringBuilder

to a minimum of 75 characters. Actually, if the original capacity is less than the argument,
the method ensures a capacity that’s the greater of the number specified as an argument
and twice the original capacity plus 2. The StringBuilder’s current capacity remains
unchanged if it’s more than the specified capacity.

Line 16 uses method setLength to set the length of the StringBuilder to 10. If the
specified length is less than the current number of characters in the StringBuilder, the
buffer is truncated to the specified length (i.e., the characters in the StringBuilder after
the specified length are discarded). If the specified length is greater than the number of
characters currently in the StringBuilder, null characters (characters with the numeric

1 // Fig. 16.11: StringBuilderCapLen.java
2 // StringBuilder length, setLength, capacity and ensureCapacity methods.
3
4 public class StringBuilderCapLen
5 {
6 public static void main(String[] args)
7 {
8 StringBuilder buffer = new StringBuilder("Hello, how are you?");
9

10 System.out.printf("buffer = %s\nlength = %d\ncapacity = %d\n\n",
11 buffer.toString(), ,);
12
13
14 System.out.printf("New capacity = %d\n\n",);
15
16
17 System.out.printf("New length = %d\nbuffer = %s\n",
18 , buffer.toString());
19 } // end main
20 } // end class StringBuilderCapLen

buffer = Hello, how are you?
length = 19
capacity = 35

New capacity = 75

New length = 10
buffer = Hello, how

Fig. 16.11 | StringBuilder length, setLength, capacity and ensureCapacity methods.

Performance Tip 16.4
Dynamically increasing the capacity of a StringBuilder can take a relatively long time.
Executing a large number of these operations can degrade the performance of an applica-
tion. If a StringBuilder is going to increase greatly in size, possibly multiple times, setting
its capacity high at the beginning will increase performance.

buffer.length() buffer.capacity()

buffer.ensureCapacity(75);
buffer.capacity()

buffer.setLength(10);

buffer.length()

520 Chapter 16 Strings, Characters and Regular Expressions

representation 0) are appended until the total number of characters in the StringBuilder
is equal to the specified length.

16.4.3 StringBuilder Methods charAt, setCharAt, getChars and
reverse

Class StringBuilder provides methods charAt, setCharAt, getChars and reverse to
manipulate the characters in a StringBuilder (Fig. 16.12). Method charAt (line 12)
takes an integer argument and returns the character in the StringBuilder at that index.
Method getChars (line 15) copies characters from a StringBuilder into the character ar-
ray passed as an argument. This method takes four arguments—the starting index from
which characters should be copied in the StringBuilder, the index one past the last char-
acter to be copied from the StringBuilder, the character array into which the characters
are to be copied and the starting location in the character array where the first character
should be placed. Method setCharAt (lines 21 and 22) takes an integer and a character
argument and sets the character at the specified position in the StringBuilder to the char-
acter argument. Method reverse (line 25) reverses the contents of the StringBuilder.

Common Programming Error 16.3
Attempting to access a character that’s outside the bounds of a StringBuilder (i.e., with
an index less than 0 or greater than or equal to the StringBuilder’s length) results in a
StringIndexOutOfBoundsException.

1 // Fig. 16.12: StringBuilderChars.java
2 // StringBuilder methods charAt, setCharAt, getChars and reverse.
3
4 public class StringBuilderChars
5 {
6 public static void main(String[] args)
7 {
8 StringBuilder buffer = new StringBuilder("hello there");
9

10 System.out.printf("buffer = %s\n", buffer.toString());
11 System.out.printf("Character at 0: %s\nCharacter at 4: %s\n\n",
12 ,);
13
14 char[] charArray = new char[buffer.length()];
15
16 System.out.print("The characters are: ");
17
18 for (char character : charArray)
19 System.out.print(character);
20
21
22
23 System.out.printf("\n\nbuffer = %s", buffer.toString());
24
25

Fig. 16.12 | StringBuilder methods charAt, setCharAt, getChars and reverse. (Part 1
of 2.)

buffer.charAt(0) buffer.charAt(4)

buffer.getChars(0, buffer.length(), charArray, 0);

buffer.setCharAt(0, 'H');
buffer.setCharAt(6, 'T');

buffer.reverse();

16.4 Class StringBuilder 521

16.4.4 StringBuilder append Methods
Class StringBuilder provides overloaded append methods (Fig. 16.13) to allow values of
various types to be appended to the end of a StringBuilder. Versions are provided for
each of the primitive types, and for character arrays, Strings, Objects, and more. (Re-
member that method toString produces a string representation of any Object.) Each
method takes its argument, converts it to a string and appends it to the StringBuilder.

26 System.out.printf("\n\nbuffer = %s\n", buffer.toString());
27 } // end main
28 } // end class StringBuilderChars

buffer = hello there
Character at 0: h
Character at 4: o

The characters are: hello there

buffer = Hello There

buffer = erehT olleH

1 // Fig. 16.13: StringBuilderAppend.java
2 // StringBuilder append methods.
3
4 public class StringBuilderAppend
5 {
6 public static void main(String[] args)
7 {
8 Object objectRef = "hello";
9 String string = "goodbye";

10 char[] charArray = { 'a', 'b', 'c', 'd', 'e', 'f' };
11 boolean booleanValue = true;
12 char characterValue = 'Z';
13 int integerValue = 7;
14 long longValue = 10000000000L;
15 float floatValue = 2.5f;
16 double doubleValue = 33.333;
17
18 StringBuilder lastBuffer = new StringBuilder("last buffer");
19 StringBuilder buffer = new StringBuilder();
20
21
22
23
24
25
26

Fig. 16.13 | StringBuilder append methods. (Part 1 of 2.)

Fig. 16.12 | StringBuilder methods charAt, setCharAt, getChars and reverse. (Part 2
of 2.)

buffer.append(objectRef);
buffer.append("\n");
buffer.append(string);
buffer.append("\n");
buffer.append(charArray);
buffer.append("\n");

522 Chapter 16 Strings, Characters and Regular Expressions

Actually, a compiler can use StringBuilder (or StringBuffer) and the append

methods to implement the + and += String concatenation operators. For example,
assuming the declarations

the statement

concatenates "hello", "BC" and 22. The concatenation can be performed as follows:

First, the preceding statement creates an empty StringBuilder, then appends to it the
strings "hello" and "BC" and the integer 22. Next, StringBuilder’s toString method
converts the StringBuilder to a String object to be assigned to String s. The statement

27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43 System.out.printf("buffer contains %s\n", buffer.toString());
44 } // end main
45 } // end StringBuilderAppend

buffer contains hello
goodbye
abcdef
abc
true
Z
7
10000000000
2.5
33.333
last buffer

String string1 = "hello";
String string2 = "BC";
int value = 22;

String s = string1 + string2 + value;

String s = new StringBuilder().append("hello").append("BC").
append(22).toString();

s += "!";

Fig. 16.13 | StringBuilder append methods. (Part 2 of 2.)

buffer.append(charArray, 0, 3);
buffer.append("\n");
buffer.append(booleanValue);
buffer.append("\n");
buffer.append(characterValue);
buffer.append("\n");
buffer.append(integerValue);
buffer.append("\n");
buffer.append(longValue);
buffer.append("\n");
buffer.append(floatValue);
buffer.append("\n");
buffer.append(doubleValue);
buffer.append("\n");
buffer.append(lastBuffer);

16.4 Class StringBuilder 523

can be performed as follows (this may differ by compiler):

This creates an empty StringBuilder, then appends to it the current contents of s fol-
lowed by "!". Next, StringBuilder’s method toString (which must be called explicitly
here) returns the StringBuilder’s contents as a String, and the result is assigned to s.

16.4.5 StringBuilder Insertion and Deletion Methods
StringBuilder provides overloaded insert methods to insert values of various types at
any position in a StringBuilder. Versions are provided for the primitive types and for
character arrays, Strings, Objects and CharSequences. Each method takes its second ar-
gument and inserts it at the index specified by the first argument. If the first argument is
less than 0 or greater than the StringBuilder’s length, a StringIndexOutOfBounds-

Exception occurs. Class StringBuilder also provides methods delete and deleteCharAt

to delete characters at any position in a StringBuilder. Method delete takes two argu-
ments—the starting index and the index one past the end of the characters to delete. All
characters beginning at the starting index up to but not including the ending index are de-
leted. Method deleteCharAt takes one argument—the index of the character to delete.
Invalid indices cause both methods to throw a StringIndexOutOfBoundsException.
Figure 16.14 demonstrates methods insert, delete and deleteCharAt.

s = new StringBuilder().append(s).append("!").toString();

1 // Fig. 16.14: StringBuilderInsertDelete.java
2 // StringBuilder methods insert, delete and deleteCharAt.
3
4 public class StringBuilderInsertDelete
5 {
6 public static void main(String[] args)
7 {
8 Object objectRef = "hello";
9 String string = "goodbye";

10 char[] charArray = { 'a', 'b', 'c', 'd', 'e', 'f' };
11 boolean booleanValue = true;
12 char characterValue = 'K';
13 int integerValue = 7;
14 long longValue = 10000000;
15 float floatValue = 2.5f; // f suffix indicates that 2.5 is a float
16 double doubleValue = 33.333;
17
18 StringBuilder buffer = new StringBuilder();
19
20
21
22
23
24
25
26
27
28

Fig. 16.14 | StringBuilder methods insert, delete and deleteCharAt. (Part 1 of 2.)

buffer.insert(0, objectRef);
buffer.insert(0, " "); // each of these contains two spaces
buffer.insert(0, string);
buffer.insert(0, " ");
buffer.insert(0, charArray);
buffer.insert(0, " ");
buffer.insert(0, charArray, 3, 3);
buffer.insert(0, " ");
buffer.insert(0, booleanValue);

524 Chapter 16 Strings, Characters and Regular Expressions

16.5 Class Character
Java provides eight type-wrapper classes—Boolean, Character, Double, Float, Byte,
Short, Integer and Long—that enable primitive-type values to be treated as objects. In
this section, we present class Character—the type-wrapper class for primitive type char.

Most Character methods are static methods designed for convenience in processing
individual char values. These methods take at least a character argument and perform
either a test or a manipulation of the character. Class Character also contains a con-
structor that receives a char argument to initialize a Character object. Most of the
methods of class Character are presented in the next three examples. For more informa-
tion on class Character (and all the type-wrapper classes), see the java.lang package in
the Java API documentation.

Figure 16.15 demonstrates static methods that test characters to determine whether
they’re a specific character type and the static methods that perform case conversions on
characters. You can enter any character and apply the methods to the character.

Line 15 uses Character method isDefined to determine whether character c is
defined in the Unicode character set. If so, the method returns true; otherwise, it returns
false. Line 16 uses Character method isDigit to determine whether character c is a
defined Unicode digit. If so, the method returns true, and otherwise, false.

Line 18 uses Character method isJavaIdentifierStart to determine whether c is
a character that can be the first character of an identifier in Java—that is, a letter, an under-

29
30
31
32
33
34
35
36
37
38
39
40 System.out.printf(
41 "buffer after inserts:\n%s\n\n", buffer.toString());
42
43
44
45
46 System.out.printf(
47 "buffer after deletes:\n%s\n", buffer.toString());
48 } // end main
49 } // end class StringBuilderInsertDelete

buffer after inserts:
33.333 2.5 10000000 7 K true def abcdef goodbye hello

buffer after deletes:
33 2. 10000000 7 K true def abcdef goodbye hello

Fig. 16.14 | StringBuilder methods insert, delete and deleteCharAt. (Part 2 of 2.)

buffer.insert(0, " ");
buffer.insert(0, characterValue);
buffer.insert(0, " ");
buffer.insert(0, integerValue);
buffer.insert(0, " ");
buffer.insert(0, longValue);
buffer.insert(0, " ");
buffer.insert(0, floatValue);
buffer.insert(0, " ");
buffer.insert(0, doubleValue);

buffer.deleteCharAt(10); // delete 5 in 2.5
buffer.delete(2, 6); // delete .333 in 33.333

16.5 Class Character 525

score (_) or a dollar sign ($). If so, the method returns true, and otherwise, false. Line
20 uses Character method isJavaIdentifierPart to determine whether character c is a
character that can be used in an identifier in Java—that is, a digit, a letter, an underscore
(_) or a dollar sign ($). If so, the method returns true, and otherwise, false.

1 // Fig. 16.15: StaticCharMethods.java
2 // Character static methods for testing characters and converting case.
3 import java.util.Scanner;
4
5 public class StaticCharMethods
6 {
7 public static void main(String[] args)
8 {
9 Scanner scanner = new Scanner(System.in); // create scanner

10 System.out.println("Enter a character and press Enter");
11 String input = scanner.next();
12
13
14 // display character info
15 System.out.printf("is defined: %b\n",);
16 System.out.printf("is digit: %b\n",);
17 System.out.printf("is first character in a Java identifier: %b\n",
18);
19 System.out.printf("is part of a Java identifier: %b\n",
20);
21 System.out.printf("is letter: %b\n",);
22 System.out.printf(
23 "is letter or digit: %b\n",);
24 System.out.printf(
25 "is lower case: %b\n",);
26 System.out.printf(
27 "is upper case: %b\n",);
28 System.out.printf(
29 "to upper case: %s\n",);
30 System.out.printf(
31 "to lower case: %s\n",);
32 } // end main
33 } // end class StaticCharMethods

Enter a character and press Enter
A
is defined: true
is digit: false
is first character in a Java identifier: true
is part of a Java identifier: true
is letter: true
is letter or digit: true
is lower case: false
is upper case: true
to upper case: A
to lower case: a

Fig. 16.15 | Character static methods for testing characters and converting case. (Part 1 of 2.)

char c = input.charAt(0); // get input character

Character.isDefined(c)
Character.isDigit(c)

Character.isJavaIdentifierStart(c)

Character.isJavaIdentifierPart(c)
Character.isLetter(c)

Character.isLetterOrDigit(c)

Character.isLowerCase(c)

Character.isUpperCase(c)

Character.toUpperCase(c)

Character.toLowerCase(c)

526 Chapter 16 Strings, Characters and Regular Expressions

Line 21 uses Character method isLetter to determine whether character c is a letter.
If so, the method returns true, and otherwise, false. Line 23 uses Character method
isLetterOrDigit to determine whether character c is a letter or a digit. If so, the method
returns true, and otherwise, false.

Line 25 uses Character method isLowerCase to determine whether character c is a
lowercase letter. If so, the method returns true, and otherwise, false. Line 27 uses Char-
acter method isUpperCase to determine whether character c is an uppercase letter. If so,
the method returns true, and otherwise, false.

Line 29 uses Character method toUpperCase to convert the character c to its upper-
case equivalent. The method returns the converted character if the character has an upper-
case equivalent, and otherwise, the method returns its original argument. Line 31 uses
Character method toLowerCase to convert the character c to its lowercase equivalent.
The method returns the converted character if the character has a lowercase equivalent,
and otherwise, the method returns its original argument.

Figure 16.16 demonstrates static Character methods digit and forDigit, which
convert characters to digits and digits to characters, respectively, in different number sys-
tems. Common number systems include decimal (base 10), octal (base 8), hexadecimal
(base 16) and binary (base 2). The base of a number is also known as its radix. For more
information on conversions between number systems, see Appendix H.

Line 28 uses method forDigit to convert the integer digit into a character in the
number system specified by the integer radix (the base of the number). For example, the

Enter a character and press Enter
8
is defined: true
is digit: true
is first character in a Java identifier: false
is part of a Java identifier: true
is letter: false
is letter or digit: true
is lower case: false
is upper case: false
to upper case: 8
to lower case: 8

Enter a character and press Enter
$
is defined: true
is digit: false
is first character in a Java identifier: true
is part of a Java identifier: true
is letter: false
is letter or digit: false
is lower case: false
is upper case: false
to upper case: $
to lower case: $

Fig. 16.15 | Character static methods for testing characters and converting case. (Part 2 of 2.)

16.5 Class Character 527

decimal integer 13 in base 16 (the radix) has the character value 'd'. Lowercase and upper-
case letters represent the same value in number systems. Line 35 uses method digit to con-

1 // Fig. 16.16: StaticCharMethods2.java
2 // Character class static conversion methods.
3 import java.util.Scanner;
4
5 public class StaticCharMethods2
6 {
7 // executes application
8 public static void main(String[] args)
9 {

10 Scanner scanner = new Scanner(System.in);
11
12 // get radix
13 System.out.println("Please enter a radix:");
14 int radix = scanner.nextInt();
15
16 // get user choice
17 System.out.printf("Please choose one:\n1 -- %s\n2 -- %s\n",
18 "Convert digit to character", "Convert character to digit");
19 int choice = scanner.nextInt();
20
21 // process request
22 switch (choice)
23 {
24 case 1: // convert digit to character
25 System.out.println("Enter a digit:");
26 int digit = scanner.nextInt();
27 System.out.printf("Convert digit to character: %s\n",
28);
29 break;
30
31 case 2: // convert character to digit
32 System.out.println("Enter a character:");
33 char character = scanner.next().charAt(0);
34 System.out.printf("Convert character to digit: %s\n",
35);
36 break;
37 } // end switch
38 } // end main
39 } // end class StaticCharMethods2

Please enter a radix:
16
Please choose one:
1 -- Convert digit to character
2 -- Convert character to digit
2
Enter a character:
A
Convert character to digit: 10

Fig. 16.16 | Character class static conversion methods. (Part 1 of 2.)

Character.forDigit(digit, radix)

Character.digit(character, radix)

528 Chapter 16 Strings, Characters and Regular Expressions

vert variable character into an integer in the number system specified by the integer radix
(the base of the number). For example, the character 'A' is the base 16 (the radix) represen-
tation of the base 10 value 10. The radix must be between 2 and 36, inclusive.

Figure 16.17 demonstrates the constructor and several non-static methods of class
Character—charValue, toString and equals. Lines 7–8 instantiate two Character

objects by assigning the character constants 'A' and 'a', respectively, to the Character

variables. Java automatically converts these char literals into Character objects—a process
known as autoboxing that we discuss in more detail in Section 18.4. Line 11 uses Char-
acter method charValue to return the char value stored in Character object c1. Line 11
returns a string representation of Character object c2 using method toString. The con-
dition in line 13 uses method equals to determine whether the object c1 has the same con-
tents as the object c2 (i.e., the characters inside each object are equal).

Please enter a radix:
16
Please choose one:
1 -- Convert digit to character
2 -- Convert character to digit
1
Enter a digit:
13
Convert digit to character: d

1 // Fig. 16.17: OtherCharMethods.java
2 // Character class non-static methods.
3 public class OtherCharMethods
4 {
5 public static void main(String[] args)
6 {
7
8
9

10 System.out.printf(
11 "c1 = %s\nc2 = %s\n\n", ,);
12
13 if ()
14 System.out.println("c1 and c2 are equal\n");
15 else

16 System.out.println("c1 and c2 are not equal\n");
17 } // end main
18 } // end class OtherCharMethods

c1 = A
c2 = a

c1 and c2 are not equal

Fig. 16.17 | Character class non-static methods.

Fig. 16.16 | Character class static conversion methods. (Part 2 of 2.)

Character c1 = 'A';
Character c2 = 'a';

c1.charValue() c2.toString()

c1.equals(c2)

16.6 Tokenizing Strings 529

16.6 Tokenizing Strings
When you read a sentence, your mind breaks it into tokens—individual words and punc-
tuation marks that convey meaning to you. Compilers also perform tokenization. They
break up statements into individual pieces like keywords, identifiers, operators and other
programming-language elements. We now study class String’s split method, which
breaks a String into its component tokens. Tokens are separated from one another by de-
limiters, typically white-space characters such as space, tab, newline and carriage return.
Other characters can also be used as delimiters to separate tokens. The application in
Fig. 16.18 demonstrates String’s split method.

When the user presses the Enter key, the input sentence is stored in variable sentence.
Line 17 invokes String method split with the String argument " ", which returns an

1 // Fig. 16.18: TokenTest.java
2 // StringTokenizer object used to tokenize strings.
3 import java.util.Scanner;
4 import java.util.StringTokenizer;
5
6 public class TokenTest
7 {
8 // execute application
9 public static void main(String[] args)

10 {
11 // get sentence
12 Scanner scanner = new Scanner(System.in);
13 System.out.println("Enter a sentence and press Enter");
14 String sentence = scanner.nextLine();
15
16 // process user sentence
17
18 System.out.printf("Number of elements: %d\nThe tokens are:\n",
19 tokens.length);
20
21
22
23 } // end main
24 } // end class TokenTest

Enter a sentence and press Enter
This is a sentence with seven tokens
Number of elements: 7
The tokens are:
This
is
a
sentence
with
seven
tokens

Fig. 16.18 | StringTokenizer object used to tokenize strings.

String[] tokens = sentence.split(" ");

for (String token : tokens)
System.out.println(token);

530 Chapter 16 Strings, Characters and Regular Expressions

array of Strings. The space character in the argument String is the delimiter that method
split uses to locate the tokens in the String. As you’ll learn in the next section, the argu-
ment to method split can be a regular expression for more complex tokenizing. Line 19
displays the length of the array tokens—i.e., the number of tokens in sentence. Lines 21–
22 output each token on a separate line.

16.7 Regular Expressions, Class Pattern and Class
Matcher
A regular expression is a String that describes a search pattern for matching characters in
other Strings. Such expressions are useful for validating input and ensuring that data is in
a particular format. For example, a ZIP code must consist of five digits, and a last name
must contain only letters, spaces, apostrophes and hyphens. One application of regular ex-
pressions is to facilitate the construction of a compiler. Often, a large and complex regular
expression is used to validate the syntax of a program. If the program code does not match
the regular expression, the compiler knows that there’s a syntax error in the code.

Class String provides several methods for performing regular-expression operations,
the simplest of which is the matching operation. String method matches receives a
String that specifies the regular expression and matches the contents of the String object
on which it’s called to the regular expression. The method returns a boolean indicating
whether the match succeeded.

A regular expression consists of literal characters and special symbols. Figure 16.19
specifies some predefined character classes that can be used with regular expressions. A
character class is an escape sequence that represents a group of characters. A digit is any
numeric character. A word character is any letter (uppercase or lowercase), any digit or the
underscore character. A white-space character is a space, a tab, a carriage return, a newline
or a form feed. Each character class matches a single character in the String we’re
attempting to match with the regular expression.

Regular expressions are not limited to these predefined character classes. The expres-
sions employ various operators and other forms of notation to match complex patterns.
We examine several of these techniques in the application in Figs. 16.20 and 16.21, which
validates user input via regular expressions. [Note: This application is not designed to
match all possible valid user input.]

Figure 16.20 validates user input. Line 9 validates the first name. To match a set of char-
acters that does not have a predefined character class, use square brackets, []. For example,
the pattern "[aeiou]" matches a single character that’s a vowel. Character ranges are repre-

Character Matches Character Matches

\d any digit \D any nondigit

\w any word character \W any nonword character

\s any white-space character \S any nonwhite-space
character

Fig. 16.19 | Predefined character classes.

16.7 Regular Expressions, Class Pattern and Class Matcher 531

sented by placing a dash (-) between two characters. In the example, "[A-Z]" matches a
single uppercase letter. If the first character in the brackets is "^", the expression accepts any
character other than those indicated. However, "[^Z]" is not the same as "[A-Y]", which

1 // Fig. 16.20: ValidateInput.java
2 // Validate user information using regular expressions.
3
4 public class ValidateInput
5 {
6 // validate first name
7 public static boolean validateFirstName(String firstName)
8 {
9

10 } // end method validateFirstName
11
12 // validate last name
13 public static boolean validateLastName(String lastName)
14 {
15
16 } // end method validateLastName
17
18 // validate address
19 public static boolean validateAddress(String address)
20 {
21
22
23 } // end method validateAddress
24
25 // validate city
26 public static boolean validateCity(String city)
27 {
28
29 } // end method validateCity
30
31 // validate state
32 public static boolean validateState(String state)
33 {
34
35 } // end method validateState
36
37 // validate zip
38 public static boolean validateZip(String zip)
39 {
40
41 } // end method validateZip
42
43 // validate phone
44 public static boolean validatePhone(String phone)
45 {
46
47 } // end method validatePhone
48 } // end class ValidateInput

Fig. 16.20 | Validating user information using regular expressions.

return firstName.matches("[A-Z][a-zA-Z]*");

return lastName.matches("[a-zA-z]+(['-][a-zA-Z]+)*");

return address.matches(
"\\d+\\s+([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

return city.matches("([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)");

return state.matches("([a-zA-Z]+|[a-zA-Z]+\\s[a-zA-Z]+)") ;

return zip.matches("\\d{5}");

return phone.matches("[1-9]\\d{2}-[1-9]\\d{2}-\\d{4}");

532 Chapter 16 Strings, Characters and Regular Expressions

matches uppercase letters A–Y—"[^Z]" matches any character other than capital Z,
including lowercase letters and nonletters such as the newline character. Ranges in character
classes are determined by the letters’ integer values. In this example, "[A-Za-z]" matches all
uppercase and lowercase letters. The range "[A-z]"matches all letters and also matches those
characters (such as [and \) with an integer value between uppercase Z and lowercase a (for
more information on integer values of characters see Appendix B). Like predefined character
classes, character classes delimited by square brackets match a single character in the search
object.

1 // Fig. 16.21: Validate.java
2 // Validate user information using regular expressions.
3 import java.util.Scanner;
4
5 public class Validate
6 {
7 public static void main(String[] args)
8 {
9 // get user input

10 Scanner scanner = new Scanner(System.in);
11 System.out.println("Please enter first name:");
12 String firstName = scanner.nextLine();
13 System.out.println("Please enter last name:");
14 String lastName = scanner.nextLine();
15 System.out.println("Please enter address:");
16 String address = scanner.nextLine();
17 System.out.println("Please enter city:");
18 String city = scanner.nextLine();
19 System.out.println("Please enter state:");
20 String state = scanner.nextLine();
21 System.out.println("Please enter zip:");
22 String zip = scanner.nextLine();
23 System.out.println("Please enter phone:");
24 String phone = scanner.nextLine();
25
26 // validate user input and display error message
27 System.out.println("\nValidate Result:");
28
29 if (!ValidateInput.validateFirstName(firstName))
30 System.out.println("Invalid first name");
31 else if (!ValidateInput.validateLastName(lastName))
32 System.out.println("Invalid last name");
33 else if (!ValidateInput.validateAddress(address))
34 System.out.println("Invalid address");
35 else if (!ValidateInput.validateCity(city))
36 System.out.println("Invalid city");
37 else if (!ValidateInput.validateState(state))
38 System.out.println("Invalid state");
39 else if (!ValidateInput.validateZip(zip))
40 System.out.println("Invalid zip code");
41 else if (!ValidateInput.validatePhone(phone))
42 System.out.println("Invalid phone number");

Fig. 16.21 | Inputs and validates data from user using the ValidateInput class. (Part 1 of 2.)

16.7 Regular Expressions, Class Pattern and Class Matcher 533

In line 9, the asterisk after the second character class indicates that any number of let-
ters can be matched. In general, when the regular-expression operator "*" appears in a reg-
ular expression, the application attempts to match zero or more occurrences of the
subexpression immediately preceding the "*". Operator "+" attempts to match one or
more occurrences of the subexpression immediately preceding "+". So both "A*" and "A+"

will match "AAA" or "A", but only "A*" will match an empty string.
If method validateFirstName returns true (line 29 of Fig. 16.21), the application

attempts to validate the last name (line 31) by calling validateLastName (lines 13–16 of
Fig. 16.20). The regular expression to validate the last name matches any number of letters
split by spaces, apostrophes or hyphens.

43 else

44 System.out.println("Valid input. Thank you.");
45 } // end main
46 } // end class Validate

Please enter first name:
Jane
Please enter last name:
Doe
Please enter address:
123 Some Street
Please enter city:
Some City
Please enter state:
SS
Please enter zip:
123
Please enter phone:
123-456-7890

Validate Result:
Invalid zip code

Please enter first name:
Jane
Please enter last name:
Doe
Please enter address:
123 Some Street
Please enter city:
Some City
Please enter state:
SS
Please enter zip:
12345
Please enter phone:
123-456-7890

Validate Result:
Valid input. Thank you.

Fig. 16.21 | Inputs and validates data from user using the ValidateInput class. (Part 2 of 2.)

534 Chapter 16 Strings, Characters and Regular Expressions

Line 33 of Fig. 16.21 calls method validateAddress (lines 19–23 of Fig. 16.20) to
validate the address. The first character class matches any digit one or more times (\\d+).
Two \ characters are used, because \ normally starts an escape sequence in a string. So \\d

in a String represents the regular expression pattern \d. Then we match one or more
white-space characters (\\s+). The character "|" matches the expression to its left or to its
right. For example, "Hi (John|Jane)" matches both "Hi John" and "Hi Jane". The paren-
theses are used to group parts of the regular expression. In this example, the left side of |
matches a single word, and the right side matches two words separated by any amount of
white space. So the address must contain a number followed by one or two words. There-
fore, "10 Broadway" and "10 Main Street" are both valid addresses in this example. The
city (lines 26–29 of Fig. 16.20) and state (lines 32–35 of Fig. 16.20) methods also match
any word of at least one character or, alternatively, any two words of at least one character if
the words are separated by a single space, so both Waltham and West Newton would match.

Quantifiers
The asterisk (*) and plus (+) are formally called quantifiers. Figure 16.22 lists all the quan-
tifiers. We’ve already discussed how the asterisk (*) and plus (+) quantifiers work. All
quantifiers affect only the subexpression immediately preceding the quantifier. Quantifier
question mark (?) matches zero or one occurrences of the expression that it quantifies. A
set of braces containing one number ({n}) matches exactly n occurrences of the expression
it quantifies. We demonstrate this quantifier to validate the zip code in Fig. 16.20 at line
40. Including a comma after the number enclosed in braces matches at least n occurrences
of the quantified expression. The set of braces containing two numbers ({n,m}), matches
between n and m occurrences of the expression that it qualifies. Quantifiers may be applied
to patterns enclosed in parentheses to create more complex regular expressions.

All of the quantifiers are greedy. This means that they’ll match as many occurrences
as they can as long as the match is still successful. However, if any of these quantifiers is
followed by a question mark (?), the quantifier becomes reluctant (sometimes called lazy).
It then will match as few occurrences as possible as long as the match is still successful.

The zip code (line 40 in Fig. 16.20) matches a digit five times. This regular expression
uses the digit character class and a quantifier with the digit 5 between braces. The phone
number (line 46 in Fig. 16.20) matches three digits (the first one cannot be zero) followed
by a dash followed by three more digits (again the first one cannot be zero) followed by
four more digits.

Quantifier Matches

* Matches zero or more occurrences of the pattern.

+ Matches one or more occurrences of the pattern.

? Matches zero or one occurrences of the pattern.

{n} Matches exactly n occurrences.

{n,} Matches at least n occurrences.

{n,m} Matches between n and m (inclusive) occurrences.

Fig. 16.22 | Quantifiers used in regular expressions.

16.7 Regular Expressions, Class Pattern and Class Matcher 535

String method matches checks whether an entire String conforms to a regular
expression. For example, we want to accept "Smith" as a last name, but not "9@Smith#".
If only a substring matches the regular expression, method matches returns false.

Replacing Substrings and Splitting Strings
Sometimes it’s useful to replace parts of a string or to split a string into pieces. For this
purpose, class String provides methods replaceAll, replaceFirst and split. These
methods are demonstrated in Fig. 16.23.

1 // Fig. 16.23: RegexSubstitution.java
2 // String methods replaceFirst, replaceAll and split.
3 import java.util.Arrays;
4
5 public class RegexSubstitution
6 {
7 public static void main(String[] args)
8 {
9 String firstString = "This sentence ends in 5 stars *****";

10 String secondString = "1, 2, 3, 4, 5, 6, 7, 8";
11
12 System.out.printf("Original String 1: %s\n", firstString);
13
14 // replace '*' with '^'
15
16
17 System.out.printf("^ substituted for *: %s\n", firstString);
18
19 // replace 'stars' with 'carets'
20
21
22 System.out.printf(
23 "\"carets\" substituted for \"stars\": %s\n", firstString);
24
25 // replace words with 'word'
26 System.out.printf("Every word replaced by \"word\": %s\n\n",
27);
28
29 System.out.printf("Original String 2: %s\n", secondString);
30
31 // replace first three digits with 'digit'
32 for (int i = 0; i < 3; i++)
33
34
35 System.out.printf(
36 "First 3 digits replaced by \"digit\" : %s\n", secondString);
37
38 System.out.print("String split at commas: ");
39
40 System.out.println();
41 } // end main
42 } // end class RegexSubstitution

Fig. 16.23 | String methods replaceFirst, replaceAll and split. (Part 1 of 2.)

firstString = firstString.replaceAll("*", "^");

firstString = firstString.replaceAll("stars", "carets");

firstString.replaceAll("\\w+", "word")

secondString = secondString.replaceFirst("\\d", "digit");

String[] results = secondString.split(",\\s*"); // split on commas
Arrays.toString(results)

536 Chapter 16 Strings, Characters and Regular Expressions

Method replaceAll replaces text in a String with new text (the second argument)
wherever the original String matches a regular expression (the first argument). Line 15
replaces every instance of "*" in firstString with "^". The regular expression ("*")
precedes character * with two backslashes. Normally, * is a quantifier indicating that a reg-
ular expression should match any number of occurrences of a preceding pattern. However,
in line 15, we want to find all occurrences of the literal character *—to do this, we must
escape character * with character \. Escaping a special regular-expression character with \

instructs the matching engine to find the actual character. Since the expression is stored in
a Java String and \ is a special character in Java Strings, we must include an additional
\. So the Java String "*" represents the regular-expression pattern * which matches a
single * character in the search string. In line 20, every match for the regular expression
"stars" in firstString is replaced with "carets". Line 27 uses replaceAll to replace
all words in the string with "word".

Method replaceFirst (line 33) replaces the first occurrence of a pattern match. Java
Strings are immutable; therefore, method replaceFirst returns a new String in which
the appropriate characters have been replaced. This line takes the original String and
replaces it with the String returned by replaceFirst. By iterating three times we replace
the first three instances of a digit (\d) in secondString with the text "digit".

Method split divides a String into several substrings. The original is broken in any
location that matches a specified regular expression. Method split returns an array of
Strings containing the substrings between matches for the regular expression. In line 39,
we use method split to tokenize a String of comma-separated integers. The argument is
the regular expression that locates the delimiter. In this case, we use the regular expression
",\\s*" to separate the substrings wherever a comma occurs. By matching any white-
space characters, we eliminate extra spaces from the resulting substrings. The commas and
white-space characters are not returned as part of the substrings. Again, the Java String

",\\s*" represents the regular expression ,\s*. Line 40 uses Arrays method toString to
display the contents of array results in square brackets and separated by commas.

Classes Pattern and Matcher

In addition to the regular-expression capabilities of class String, Java provides other class-
es in package java.util.regex that help developers manipulate regular expressions. Class
Pattern represents a regular expression. Class Matcher contains both a regular-expression
pattern and a CharSequence in which to search for the pattern.

CharSequence (package java.lang) is an interface that allows read access to a
sequence of characters. The interface requires that the methods charAt, length, subSe-

Original String 1: This sentence ends in 5 stars *****
^ substituted for *: This sentence ends in 5 stars ^^^^^
"carets" substituted for "stars": This sentence ends in 5 carets ^^^^^
Every word replaced by "word": word word word word word word ^^^^^

Original String 2: 1, 2, 3, 4, 5, 6, 7, 8
First 3 digits replaced by "digit" : digit, digit, digit, 4, 5, 6, 7, 8
String split at commas: ["digit", "digit", "digit", "4", "5", "6", "7", "8"]

Fig. 16.23 | String methods replaceFirst, replaceAll and split. (Part 2 of 2.)

16.7 Regular Expressions, Class Pattern and Class Matcher 537

quence and toString be declared. Both String and StringBuilder implement interface
CharSequence, so an instance of either of these classes can be used with class Matcher.

If a regular expression will be used only once, static Pattern method matches can
be used. This method takes a String that specifies the regular expression and a CharSe-

quence on which to perform the match. This method returns a boolean indicating
whether the search object (the second argument) matches the regular expression.

If a regular expression will be used more than once (in a loop, for example), it’s more
efficient to use static Pattern method compile to create a specific Pattern object for
that regular expression. This method receives a String representing the pattern and
returns a new Pattern object, which can then be used to call method matcher. This
method receives a CharSequence to search and returns a Matcher object.

Matcher provides method matches, which performs the same task as Pattern method
matches, but receives no arguments—the search pattern and search object are encapsu-
lated in the Matcher object. Class Matcher provides other methods, including find,
lookingAt, replaceFirst and replaceAll.

Figure 16.24 presents a simple example that employs regular expressions. This pro-
gram matches birthdays against a regular expression. The expression matches only birth-
days that do not occur in April and that belong to people whose names begin with "J".

Lines 11–12 create a Pattern by invoking static Pattern method compile. The dot
character "." in the regular expression (line 12) matches any single character except a new-
line character.

Common Programming Error 16.4
A regular expression can be tested against an object of any class that implements interface
CharSequence, but the regular expression must be a String. Attempting to create a reg-
ular expression as a StringBuilder is an error.

1 // Fig. 16.24: RegexMatches.java
2 // Classes Pattern and Matcher.
3 import java.util.regex.Matcher;
4 import java.util.regex.Pattern;
5
6 public class RegexMatches
7 {
8 public static void main(String[] args)
9 {

10 // create regular expression
11
12
13
14 String string1 = "Jane's Birthday is 05-12-75\n" +
15 "Dave's Birthday is 11-04-68\n" +
16 "John's Birthday is 04-28-73\n" +
17 "Joe's Birthday is 12-17-77";
18
19 // match regular expression to string and print matches
20

Fig. 16.24 | Classes Pattern and Matcher. (Part 1 of 2.)

Pattern expression =
Pattern.compile("J.*\\d[0-35-9]-\\d\\d-\\d\\d");

Matcher matcher = expression.matcher(string1);

538 Chapter 16 Strings, Characters and Regular Expressions

Line 20 creates the Matcher object for the compiled regular expression and the
matching sequence (string1). Lines 22–23 use a while loop to iterate through the
String. Line 22 uses Matcher method find to attempt to match a piece of the search
object to the search pattern. Each call to this method starts at the point where the last call
ended, so multiple matches can be found. Matcher method lookingAt performs the same
way, except that it always starts from the beginning of the search object and will always
find the first match if there is one.

Line 23 uses Matcher method group, which returns the String from the search object
that matches the search pattern. The String that’s returned is the one that was last
matched by a call to find or lookingAt. The output in Fig. 16.24 shows the two matches
that were found in string1.

For more information on regular expressions, visit our Regular Expressions Resource
Center at www.deitel.com/regularexpressions/.

16.8 Wrap-Up
In this chapter, you learned about more String methods for selecting portions of Strings
and manipulating Strings. You learned about the Character class and some of the meth-
ods it declares to handle chars. The chapter also discussed the capabilities of the String-

Builder class for creating Strings. The end of the chapter discussed regular expressions,
which provide a powerful capability to search and match portions of Strings that fit a par-
ticular pattern. In the next chapter, you’ll learn about file processing, including how per-
sistent data is stored and and retrieved.

21
22
23
24 } // end main
25 } // end class RegexMatches

Jane's Birthday is 05-12-75
Joe's Birthday is 12-17-77

Common Programming Error 16.5
Method matches (from class String, Pattern or Matcher) will return true only if the
entire search object matches the regular expression. Methods find and lookingAt (from
class Matcher) will return true if a portion of the search object matches the regular ex-
pression.

Fig. 16.24 | Classes Pattern and Matcher. (Part 2 of 2.)

while (matcher.find())
System.out.println(matcher.group());

www.deitel.com/regularexpressions/

17
Files, Streams and
Object Serialization

O b j e c t i v e s
In this chapter you’ll learn:

� To create, read, write and update files.

� To retrieve information about files and directories.

� The Java input/output stream class hierarchy.

� The differences between text files and binary files.

� To use classes Scanner and Formatter to process text
files.

� To use classes FileInputStream and
FileOutputStream to read from and write to files.

� To use classes ObjectInputStream and
ObjectOutputStream to read objects from and write
objects to files.

� To use a JFileChooser dialog.

I can only assume that a
“Do Not File” document is
filed in a “Do Not File” file.
—Senator Frank Church
Senate Intelligence Subcommittee
Hearing, 1975

Consciousness … does not
appear to itself chopped up
in bits. … A “river” or a
“stream” are the metaphors
by which it is most
naturally described.
—William James

540 Chapter 17 Files, Streams and Object Serialization

17.1 Introduction
Data stored in variables and arrays is temporary—it’s lost when a local variable goes out of
scope or when the program terminates. For long-term retention of data, even after the
programs that create the data terminate, computers use files. You use files every day for
tasks such as writing a document or creating a spreadsheet. Computers store files on sec-
ondary storage devices such as hard disks, optical disks, flash drives and magnetic tapes.
Data maintained in files is persistent data—it exists beyond the duration of program ex-
ecution. In this chapter, we explain how Java programs create, update and process files.

We begin with a discussion of Java’s architecture for handling files programmatically.
Next we explain that data can be stored in text files and binary files—and we cover the
differences between them. We demonstrate retrieving information about files and directo-
ries using class File, then devote several sections to the different mechanisms for writing
data to and reading data from files. We show how to create and manipulate sequential-
access text files. Working with text files allows you to quickly and easily start manipulating
files. As you’ll learn, however, it’s difficult to read data from text files back into object
form. Fortunately, many object-oriented languages (including Java) provide ways to write
objects to and read objects from files (known as object serialization and deserialization).
To demonstrate this, we recreate some of our sequential-access programs that used text
files, this time by storing objects in binary files.

17.2 Files and Streams
Java views each file as a sequential stream of bytes (Fig. 17.1). Every operating system pro-
vides a mechanism to determine the end of a file, such as an end-of-file marker or a count
of the total bytes in the file that’s recorded in a system-maintained administrative data
structure. A Java program processing a stream of bytes simply receives an indication from
the operating system when it reaches the end of the stream—the program does not need

17.1 Introduction
17.2 Files and Streams
17.3 Class File
17.4 Sequential-Access Text Files

17.4.1 Creating a Sequential-Access Text File
17.4.2 Reading Data from a Sequential-

Access Text File
17.4.3 Case Study: A Credit-Inquiry Program
17.4.4 Updating Sequential-Access Files

17.5 Object Serialization

17.5.1 Creating a Sequential-Access File
Using Object Serialization

17.5.2 Reading and Deserializing Data from a
Sequential-Access File

17.6 Additional java.io Classes
17.6.1 Interfaces and Classes for Byte-Based

Input and Output
17.6.2 Interfaces and Classes for Character-

Based Input and Output
17.8 Opening Files with JFileChooser

17.8 Wrap-Up

Fig. 17.1 | Java’s view of a file of n bytes.

0 1 2 3 4 5 6 7 8 9 ...

...

n-1

end-of-file marker

17.2 Files and Streams 541

to know how the underlying platform represents files or streams. In some cases, the end-
of-file indication occurs as an exception. In other cases, the indication is a return value
from a method invoked on a stream-processing object.

Byte-Based and Character-Based Streams
File streams can be used to input and output data as bytes or characters. Byte-based
streams input and output data in its binary format. Character-based streams input and
output data as a sequence of characters. If the value 5 were being stored using a byte-based
stream, it would be stored in the binary format of the numeric value 5, or 101. If the value
5 were being stored using a character-based stream, it would be stored in the binary format
of the character 5, or 00000000 00110101 (this is the binary representation for the numeric
value 53, which indicates the Unicode® character 5). The difference between the two
forms is that the numeric value can be used as an integer in calculations, whereas the char-
acter 5 is simply a character that can be used in a string of text, as in "Sarah Miller is 15

years old". Files that are created using byte-based streams are referred to as binary files,
while files created using character-based streams are referred to as text files. Text files can
be read by text editors, while binary files are read by programs that understand the file’s
specific content and its ordering.

Standard Input, Standard Output and Standard Error Streams
A Java program opens a file by creating an object and associating a stream of bytes or char-
acters with it. The object’s constructor interacts with the operating system to open the file.
Java can also associate streams with different devices. When a Java program begins execut-
ing, in fact, it creates three stream objects that are associated with devices—System.in,
System.out and System.err. System.in (the standard input stream object) normally en-
ables a program to input bytes from the keyboard; object System.out (the standard output
stream object) normally enables a program to output character data to the screen; and ob-
ject System.err (the standard error stream object) normally enables a program to output
character-based error messages to the screen. Each stream can be redirected. For Sys-

tem.in, this capability enables the program to read bytes from a different source. For Sys-
tem.out and System.err, it enables the output to be sent to a different location, such as
a file on disk. Class System provides methods setIn, setOut and setErr to redirect the
standard input, output and error streams, respectively.

The java.io Package
Java programs perform file processing by using classes from package java.io. This pack-
age includes definitions for stream classes, such as FileInputStream (for byte-based input
from a file), FileOutputStream (for byte-based output to a file), FileReader (for charac-
ter-based input from a file) and FileWriter (for character-based output to a file), which
inherit from classes InputStream, OutputStream, Reader and Writer, respectively. Thus,
the methods of the these stream classes can also be applied to file streams.

Java contains classes that enable you to perform input and output of objects or vari-
ables of primitive data types. The data will still be stored as bytes or characters behind the
scenes, allowing you to read or write data in the form of ints, Strings, or other types
without having to worry about the details of converting such values to byte format. To per-
form such input and output, objects of classes ObjectInputStream and ObjectOutput-

Stream can be used together with the byte-based file stream classes FileInputStream and

542 Chapter 17 Files, Streams and Object Serialization

FileOutputStream (these classes will be discussed in more detail shortly). The complete
hierarchy of types in package java.io can be viewed in the online documentation at

As you can see in the hierarchy, Java offers many classes for performing input/output
operations. We use several of these classes in this chapter to implement file-processing pro-
grams that create and manipulate sequential-access files. In Chapter 24, we use stream
classes extensively to implement networking applications.

In addition to the java.io classes, character-based input and output can be per-
formed with classes Scanner and Formatter. Class Scanner is used extensively to input
data from the keyboard—it can also read data from a file. Class Formatter enables for-
matted data to be output to any text-based stream in a manner similar to method
System.out.printf. Appendix G presents the details of formatted output with printf.
All these features can be used to format text files as well.

17.3 Class File
This section presents class File, which is useful for retrieving information about files or
directories from disk. Objects of class File do not open files or provide any file-processing
capabilities. However, File objects are used frequently with objects of other java.io class-
es to specify files or directories to manipulate.

Creating File Objects
Class File provides four constructors. The one with a String argument specifies the name
of a file or directory to associate with the File object. The name can contain path infor-
mation as well as a file or directory name. A file or directory’s path specifies its location on
disk. The path includes some or all of the directories leading to the file or directory. An
absolute path contains all the directories, starting with the root directory, that lead to a
specific file or directory. Every file or directory on a particular disk drive has the same root
directory in its path. A relative path normally starts from the directory in which the appli-
cation began executing and is therefore “relative” to the current directory. The constructor
with two String arguments specifies an absolute or relative path as the first argument and
the file or directory to associate with the File object as the second argument. The con-
structor with File and String arguments uses an existing File object that specifies the
parent directory of the file or directory specified by the String argument. The fourth con-
structor uses a URI object to locate the file. A Uniform Resource Identifier (URI) is a more
general form of the Uniform Resource Locators (URLs) that are used to locate websites.
For example, http://www.deitel.com/ is the URL for the Deitel & Associates website.
URIs for locating files vary across operating systems. On Windows platforms, the URI

identifies the file data.txt stored in the root directory of the C: drive. On UNIX/Linux
platforms, the URI

identifies the file data.txt stored in the home directory of the user student.
Figure 17.2 lists some common File methods. The complete list can be viewed at

download.oracle.com/javase/6/docs/api/java/io/File.html.

download.oracle.com/javase/6/docs/api/java/io/package-tree.html

file://C:/data.txt

file:/home/student/data.txt

http://www.deitel.com/

17.3 Class File 543

Demonstrating Class File
Figure 17.3 prompts the user to enter the name of a file or directory, then uses class File
to output information about the file or directory.

Method Description

boolean canRead() Returns true if a file is readable by the current application;
false otherwise.

boolean canWrite() Returns true if a file is writable by the current application;
false otherwise.

boolean exists() Returns true if the file or directory represented by the File

object exists; false otherwise.

boolean isFile() Returns true if the name specified as the argument to the File

constructor is a file; false otherwise.

boolean isDirectory() Returns true if the name specified as the argument to the File

constructor is a directory; false otherwise.

boolean isAbsolute() Returns true if the arguments specified to the File constructor
indicate an absolute path to a file or directory; false otherwise.

String getAbsolutePath() Returns a String with the absolute path of the file or directory.

String getName() Returns a String with the name of the file or directory.

String getPath() Returns a String with the path of the file or directory.

String getParent() Returns a String with the parent directory of the file or direc-
tory (i.e., the directory in which the file or directory is located).

long length() Returns the length of the file, in bytes. If the File object repre-
sents a directory, an unspecified value is returned.

long lastModified() Returns a platform-dependent representation of the time at
which the file or directory was last modified. The value
returned is useful only for comparison with other values
returned by this method.

String[] list() Returns an array of Strings representing a directory’s contents.
Returns null if the File object does not represent a directory.

Fig. 17.2 | File methods.

1 // Fig. 17.3: FileDemonstration.java
2 // File class used to obtain file and directory information.
3
4 import java.util.Scanner;
5
6 public class FileDemonstration
7 {
8 public static void main(String[] args)
9 {

10 Scanner input = new Scanner(System.in);
11

Fig. 17.3 | File class used to obtain file and directory information. (Part 1 of 3.)

import java.io.File;

544 Chapter 17 Files, Streams and Object Serialization

12 System.out.print("Enter file or directory name: ");
13
14 } // end main
15
16 // display information about file user specifies
17 public static void analyzePath(String path)
18 {
19 // create File object based on user input
20
21
22 if () // if name exists, output information about it
23 {
24 // display file (or directory) information
25 System.out.printf(
26 "%s%s\n%s\n%s\n%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s",
27 , " exists",
28 (? "is a file" : "is not a file"),
29 (? "is a directory" :
30 "is not a directory"),
31 (? "is absolute path" :
32 "is not absolute path"), "Last modified: ",
33 , "Length: ", ,
34 "Path: ", , "Absolute path: ",
35 , "Parent: ",);
36
37 if () // output directory listing
38 {
39
40 System.out.println("\n\nDirectory contents:\n");
41
42 for (String directoryName : directory)
43 System.out.println(directoryName);
44 } // end if
45 } // end outer if
46 else // not file or directory, output error message
47 {
48 System.out.printf("%s %s", path, "does not exist.");
49 } // end else
50 } // end method analyzePath
51 } // end class FileDemonstration

Enter file or directory name: E:\Program Files\Java\jdk1.6.0_11\demo\jfc
jfc exists
is not a file
is a directory
is absolute path
Last modified: 1228404395024
Length: 4096
Path: E:\Program Files\Java\jdk1.6.0_11\demo\jfc
Absolute path: E:\Program Files\Java\jdk1.6.0_11\demo\jfc
Parent: E:\Program Files\Java\jdk1.6.0_11\demo

Fig. 17.3 | File class used to obtain file and directory information. (Part 2 of 3.)

analyzePath(input.nextLine());

File name = new File(path);

name.exists()

name.getName()
name.isFile()
name.isDirectory()

name.isAbsolute()

name.lastModified() name.length()
name.getPath()

name.getAbsolutePath() name.getParent()

name.isDirectory()

String[] directory = name.list();

17.3 Class File 545

The program begins by prompting the user for a file or directory (line 12). Line 13
inputs the file name or directory name and passes it to method analyzePath (lines 17–
50). The method creates a new File object (line 20) and assigns its reference to name. Line
22 invokes File method exists to determine whether the name input by the user exists
(either as a file or as a directory) on the disk. If the name does not exist, control proceeds
to lines 46–49 and displays a message to the screen containing the name the user typed,
followed by “does not exist.” Otherwise, the if statement (lines 22–45) executes. The
program outputs the name of the file or directory (line 27), followed by the results of
testing the File object with isFile (line 28), isDirectory (line 29) and isAbsolute (line
31). Next, the program displays the values returned by lastModified (line 33), length
(line 33), getPath (line 34), getAbsolutePath (line 35) and getParent (line 35). If the
File object represents a directory (line 37), the program obtains a list of the directory’s
contents as an array of Strings by using File method list (line 39) and displays the list
on the screen.

The first output of this program demonstrates a File object associated with the jfc

directory from the JDK. The second output demonstrates a File object associated with
the README.txt file from the Java 2D example that comes with the JDK. In both cases, we
specified an absolute path on our computer.

A separator character is used to separate directories and files in the path. On a Win-
dows computer, the separator character is a backslash (\). On a UNIX system, it’s a for-

Directory contents:

CodePointIM
FileChooserDemo
Font2DTest
Java2D
Laffy
Metalworks
Notepad
SampleTree
Stylepad
SwingApplet
SwingSet2
SwingSet3

Enter file or directory name: C:\Program Files\Java\jdk1.6.0_11\demo\jfc
\Java2D\README.txt
README.txt exists
is a file
is not a directory
is absolute path
Last modified: 1228404384270
Length: 7518
Path: E:\Program Files\Java\jdk1.6.0_11\demo\jfc\Java2D\README.txt
Absolute path: E:\Program Files\Java\jdk1.6.0_11\demo\jfc\Java2D\README.txt
Parent: E:\Program Files\Java\jdk1.6.0_11\demo\jfc\Java2D

Fig. 17.3 | File class used to obtain file and directory information. (Part 3 of 3.)

546 Chapter 17 Files, Streams and Object Serialization

ward slash (/). Java processes both characters identically in a path name. For example, if
we were to use the path

which employs each separator character, Java would still process the path properly. When
building Strings that represent path information, use File.separator to obtain the local
computer’s proper separator character rather than explicitly using / or \. This constant re-
turns a String consisting of one character—the proper separator for the system.

17.4 Sequential-Access Text Files
Next, we create and manipulate sequential-access files in which records are stored in order
by the record-key field. We begin with text files, enabling the reader to quickly create and
edit human-readable files. We discuss creating, writing data to, reading data from and up-
dating sequential-access text files. We also include a credit-inquiry program that retrieves
specific data from a file.

17.4.1 Creating a Sequential-Access Text File
Java imposes no structure on a file—notions such as records do not exist as part of the Java lan-
guage. Therefore, you must structure files to meet the requirements of your applications.
In the following example, we see how to impose a keyed record structure on a file.

The program in Figs. 17.4, 17.5 and 17.8 creates a simple sequential-access file that
might be used in an accounts receivable system to keep track of the amounts owed to a
company by its credit clients. For each client, the program obtains from the user an
account number and the client’s name and balance (i.e., the amount the client owes the
company for goods and services received). Each client’s data constitutes a “record” for that
client. This application uses the account number as the record key—the file will be created
and maintained in account-number order. The program assumes that the user enters the
records in account-number order. In a comprehensive accounts receivable system (based
on sequential-access files), a sorting capability would be provided so that the user could
enter the records in any order. The records would then be sorted and written to the file.

Class AccountRecord
Class AccountRecord (Fig. 17.4) encapsulates the client record information used by the
examples in this chapter. AccountRecord is declared in package com.deitel.ch17 (line 3),
so that it can be imported into several of this chapter’s examples for reuse. (Section 8.14
provides information on compiling and using your own packages.) Class AccountRecord
contains private instance variables account, firstName, lastName and balance (lines 7–
10) and set and get methods for accessing these fields. Though the set methods do not val-
idate the data in this example, they should do so in an “industrial-strength” system.

c:\Program Files\Java\jdk1.6.0_11\demo/jfc

Common Programming Error 17.1
Using \ as a directory separator rather than \\ in a string literal is a logic error. A single
\ indicates that the \ followed by the next character represents an escape sequence. Use \\
to insert a \ in a string literal.

17.4 Sequential-Access Text Files 547

1 // Fig. 17.4: AccountRecord.java
2 // AccountRecord class maintains information for one account.
3 package com.deitel.ch17; // packaged for reuse
4
5 public class AccountRecord
6 {
7 private int account;
8 private String firstName;
9 private String lastName;

10 private double balance;
11
12 // no-argument constructor calls other constructor with default values
13 public AccountRecord()
14 {
15 this(0, "", "", 0.0); // call four-argument constructor
16 } // end no-argument AccountRecord constructor
17
18 // initialize a record
19 public AccountRecord(int acct, String first, String last, double bal)
20 {
21 setAccount(acct);
22 setFirstName(first);
23 setLastName(last);
24 setBalance(bal);
25 } // end four-argument AccountRecord constructor
26
27 // set account number
28 public void setAccount(int acct)
29 {
30 account = acct;
31 } // end method setAccount
32
33 // get account number
34 public int getAccount()
35 {
36 return account;
37 } // end method getAccount
38
39 // set first name
40 public void setFirstName(String first)
41 {
42 firstName = first;
43 } // end method setFirstName
44
45 // get first name
46 public String getFirstName()
47 {
48 return firstName;
49 } // end method getFirstName
50
51 // set last name
52 public void setLastName(String last)
53 {

Fig. 17.4 | AccountRecord class maintains information for one account. (Part 1 of 2.)

548 Chapter 17 Files, Streams and Object Serialization

To compile class AccountRecord, open a command window, change directories to
this chapter’s fig17_05 directory (which contains AccountRecord.java), then type:

This places AccountRecord.class in its package directory structure and places the pack-
age in the ch17 folder that contains all the examples for this chapter. When you compile
class AccountRecord (or any other classes that will be reused in this chapter), you should
place them in a common directory. When you compile or execute classes that use class
AccountRecord (e.g., CreateTextFile in Fig. 17.5), you must specify the command-line
argument -classpath to both javac and java, as in

The current directory (specified with .) is included in the classpath to ensure that the com-
piler can locate other classes in the same directory as the class being compiled. The path
separator used in the preceding commands must be appropriate for your platform—a
semicolon (;) on Windows and a colon (:) on UNIX/Linux/Mac OS X. The preceding
commands assume that the package containing AccountRecord is located at in the direc-
tory C:\examples\ch17 on a Windows computer.

Class CreateTextFile
Now let’s examine class CreateTextFile (Fig. 17.5). Line 14 declares Formatter variable
output. As discussed in Section 17.2, a Formatter object outputs formatted Strings, us-
ing the same formatting capabilities as method System.out.printf. A Formatter object
can output to various locations, such as the screen or a file, as is done here. The Formatter

54 lastName = last;
55 } // end method setLastName
56
57 // get last name
58 public String getLastName()
59 {
60 return lastName;
61 } // end method getLastName
62
63 // set balance
64 public void setBalance(double bal)
65 {
66 balance = bal;
67 } // end method setBalance
68
69 // get balance
70 public double getBalance()
71 {
72 return balance;
73 } // end method getBalance
74 } // end class AccountRecord

javac -d .. AccountRecord.java

javac -classpath .;c:\examples\ch17 CreateTextFile.java
java -classpath .;c:\examples\ch17 CreateTextFile

Fig. 17.4 | AccountRecord class maintains information for one account. (Part 2 of 2.)

17.4 Sequential-Access Text Files 549

object is instantiated in line 21 in method openFile (lines 17–34). The constructor used
in line 21 takes one argument—a String containing the name of the file, including its
path. If a path is not specified, as is the case here, the JVM assumes that the file is in the
directory from which the program was executed. For text files, we use the .txt file exten-
sion. If the file does not exist, it will be created. If an existing file is opened, its contents
are truncated—all the data in the file is discarded. At this point the file is open for writing,
and the resulting Formatter object can be used to write data to the file.

1 // Fig. 17.5: CreateTextFile.java
2 // Writing data to a sequential text file with class Formatter.
3
4
5
6
7
8
9

10
11
12 public class CreateTextFile
13 {
14
15
16 // enable user to open file
17 public void openFile()
18 {
19 try

20 {
21
22 } // end try
23 catch (SecurityException securityException)
24 {
25 System.err.println(
26 "You do not have write access to this file.");
27 System.exit(1); // terminate the program
28 } // end catch
29 catch (FileNotFoundException fileNotFoundException)
30 {
31 System.err.println("Error opening or creating file.");
32 System.exit(1); // terminate the program
33 } // end catch
34 } // end method openFile
35
36 // add records to file
37 public void addRecords()
38 {
39 // object to be written to file
40
41
42
43

Fig. 17.5 | Writing data to a sequential text file with class Formatter. (Part 1 of 3.)

import java.io.FileNotFoundException;
import java.lang.SecurityException;
import java.util.Formatter;
import java.util.FormatterClosedException;
import java.util.NoSuchElementException;
import java.util.Scanner;

import com.deitel.ch17.AccountRecord;

private Formatter output; // object used to output text to file

output = new Formatter("clients.txt"); // open the file

AccountRecord record = new AccountRecord();

Scanner input = new Scanner(System.in);

550 Chapter 17 Files, Streams and Object Serialization

44 System.out.printf("%s\n%s\n%s\n%s\n\n",
45 "To terminate input, type the end-of-file indicator ",
46 "when you are prompted to enter input.",
47 "On UNIX/Linux/Mac OS X type <ctrl> d then press Enter",
48 "On Windows type <ctrl> z then press Enter");
49
50 System.out.printf("%s\n%s",
51 "Enter account number (> 0), first name, last name and balance.",
52 "? ");
53
54 while () // loop until end-of-file indicator
55 {
56 try // output values to file
57 {
58 // retrieve data to be output
59
60
61
62
63
64 if (record.getAccount() > 0)
65 {
66 // write new record
67
68
69
70 } // end if
71 else

72 {
73 System.out.println(
74 "Account number must be greater than 0.");
75 } // end else
76 } // end try
77 catch (FormatterClosedException formatterClosedException)
78 {
79 System.err.println("Error writing to file.");
80 return;
81 } // end catch
82 catch (NoSuchElementException elementException)
83 {
84 System.err.println("Invalid input. Please try again.");
85 input.nextLine(); // discard input so user can try again
86 } // end catch
87
88 System.out.printf("%s %s\n%s", "Enter account number (>0),",
89 "first name, last name and balance.", "? ");
90 } // end while
91 } // end method addRecords
92
93 // close file
94 public void closeFile()
95 {

Fig. 17.5 | Writing data to a sequential text file with class Formatter. (Part 2 of 3.)

input.hasNext()

record.setAccount(input.nextInt()); // read account number
record.setFirstName(input.next()); // read first name
record.setLastName(input.next()); // read last name
record.setBalance(input.nextDouble()); // read balance

output.format("%d %s %s %.2f\n", record.getAccount(),
record.getFirstName(), record.getLastName(),
record.getBalance());

17.4 Sequential-Access Text Files 551

Lines 23–28 handle the SecurityException, which occurs if the user does not have
permission to write data to the file. Lines 29–33 handle the FileNotFoundException,
which occurs if the file does not exist and a new file cannot be created. This exception may
also occur if there’s an error opening the file. In both exception handlers we call static
method System.exit and pass the value 1. This method terminates the application. An
argument of 0 to method exit indicates successful program termination. A nonzero value,
such as 1 in this example, normally indicates that an error has occurred. This value is
passed to the command window that executed the program. The argument is useful if the
program is executed from a batch file on Windows systems or a shell script on UNIX/
Linux/Mac OS X systems. Batch files and shell scripts offer a convenient way of executing
several programs in sequence. When the first program ends, the next program begins exe-
cution. It’s possible to use the argument to method exit in a batch file or shell script to
determine whether other programs should execute. For more information on batch files or
shell scripts, see your operating system’s documentation.

Method addRecords (lines 37–91) prompts the user to enter the various fields for each
record or to enter the end-of-file key sequence when data entry is complete. Figure 17.6 lists
the key combinations for entering end-of-file for various computer systems.

Line 40 creates an AccountRecord object, which will be used to store the values of the
current record entered by the user. Line 42 creates a Scanner object to read input from the
user at the keyboard. Lines 44–48 and 50–52 prompt the user for input.

Line 54 uses Scanner method hasNext to determine whether the end-of-file key com-
bination has been entered. The loop executes until hasNext encounters end-of-file.

Lines 59–62 read data from the user, storing the record information in the
AccountRecord object. Each statement throws a NoSuchElementException (handled in
lines 82–86) if the data is in the wrong format (e.g., a String when an int is expected) or
if there’s no more data to input. If the account number is greater than 0 (line 64), the
record’s information is written to clients.txt (lines 67–69) using method format, which
can perform identical formatting to the System.out.printf method used extensively in
earlier chapters. Method format outputs a formatted String to the output destination of
the Formatter object—the file clients.txt. The format string "%d %s %s %.2f\n" indi-
cates that the current record will be stored as an integer (the account number) followed by

96 if (output != null)
97
98 } // end method closeFile
99 } // end class CreateTextFile

Operating system Key combination

UNIX/Linux/Mac OS X <Enter> <Ctrl> d

Windows <Ctrl> z

Fig. 17.6 | End-of-file key combinations.

Fig. 17.5 | Writing data to a sequential text file with class Formatter. (Part 3 of 3.)

output.close();

552 Chapter 17 Files, Streams and Object Serialization

a String (the first name), another String (the last name) and a floating-point value (the
balance). Each piece of information is separated from the next by a space, and the double
value (the balance) is output with two digits to the right of the decimal point (as indicated
by the .2 in %.2f). The data in the text file can be viewed with a text editor or retrieved
later by a program designed to read the file (Section 17.4.2).

When lines 67–69 execute, if the Formatter object is closed, a FormatterClosedEx-

ception will be thrown. This exception is handled in lines 77–81. [Note: You can also
output data to a text file using class java.io.PrintWriter, which provides format and
printf methods for outputting formatted data.]

Lines 94–98 declare method closeFile, which closes the Formatter and the under-
lying output file. Line 97 closes the object by simply calling method close. If method
close is not called explicitly, the operating system normally will close the file when pro-
gram execution terminates—this is an example of operating-system “housekeeping.”
However, you should always explicitly close a file when it’s no longer needed.

Platform-Specific Line-Separator Characters
Lines 67–69 output a line of text followed by a newline (\n). If you use a text editor to
open the clients.txt file produced, each record might not display on a separate line. For
example, in Notepad (Microsoft Windows), users will see one continuous line of text. This
occurs because different platforms use different line-separator characters. On UNIX/
Linux/Mac OS X, the line separator is a newline (\n). On Windows, it’s a combination of
a carriage return and a line feed—represented as \r\n. You can use the %n format specifier
in a format control string to output a platform-specific line separator, thus ensuring that
the text file can be opened and viewed correctly in a text editor for the platform on which
the file was created. The method System.out.println outputs a platform-specific line
separator after its argument. Also, regardless of the line separator used in a text file, a Java
program can still recognize the lines of text and read them.

Class CreateTextFileTest
Figure 17.7 runs the program. Line 8 creates a CreateTextFile object, which is then used
to open, add records to and close the file (lines 10–12). The sample data for this applica-
tion is shown in Fig. 17.8. In the sample execution for this program, the user enters infor-
mation for five accounts, then enters end-of-file to signal that data entry is complete. The
sample execution does not show how the data records actually appear in the file. In the
next section, to verify that the file has been created successfully, we present a program that
reads the file and prints its contents. Because this is a text file, you can also verify the in-
formation simply by opening the file in a text editor.

1 // Fig. 17.7: CreateTextFileTest.java
2 // Testing the CreateTextFile class.
3
4 public class CreateTextFileTest
5 {
6 public static void main(String[] args)
7 {
8 CreateTextFile application = new CreateTextFile();

Fig. 17.7 | Testing the CreateTextFile class. (Part 1 of 2.)

17.4 Sequential-Access Text Files 553

17.4.2 Reading Data from a Sequential-Access Text File
Data is stored in files so that it may be retrieved for processing when needed.
Section 17.4.1 demonstrated how to create a file for sequential access. This section shows
how to read data sequentially from a text file. We demonstrate how class Scanner can be
used to input data from a file rather than the keyboard.

The application in Figs. 17.9 and 17.10 reads records from the file "clients.txt"

created by the application of Section 17.4.1 and displays the record contents. Line 13 of
Fig. 17.9 declares a Scanner that will be used to retrieve input from the file.

Method openFile (lines 16–27) opens the file for reading by instantiating a Scanner

object in line 20. We pass a File object to the constructor, which specifies that the
Scanner object will read from the file "clients.txt" located in the directory from which
the application executes. If the file cannot be found, a FileNotFoundException occurs.
The exception is handled in lines 22–26.

9
10 application.openFile();
11 application.addRecords();
12 application.closeFile();
13 } // end main
14 } // end class CreateTextFileTest

To terminate input, type the end-of-file indicator
when you are prompted to enter input.
On UNIX/Linux/Mac OS X type <ctrl> d then press Enter
On Windows type <ctrl> z then press Enter

Enter account number (> 0), first name, last name and balance.
? 100 Bob Jones 24.98
Enter account number (> 0), first name, last name and balance.
? 200 Steve Doe -345.67
Enter account number (> 0), first name, last name and balance.
? 300 Pam White 0.00
Enter account number (> 0), first name, last name and balance.
? 400 Sam Stone -42.16
Enter account number (> 0), first name, last name and balance.
? 500 Sue Rich 224.62
Enter account number (> 0), first name, last name and balance.
? ^Z

Sample data

100 Bob Jones 24.98

200 Steve Doe -345.67

300 Pam White 0.00

400 Sam Stone -42.16

500 Sue Rich 224.62

Fig. 17.8 | Sample data for the program in Figs. 17.5–17.7.

Fig. 17.7 | Testing the CreateTextFile class. (Part 2 of 2.)

554 Chapter 17 Files, Streams and Object Serialization

1 // Fig. 17.9: ReadTextFile.java
2 // This program reads a text file and displays each record.
3 import java.io.File;
4 import java.io.FileNotFoundException;
5 import java.lang.IllegalStateException;
6 import java.util.NoSuchElementException;
7 import java.util.Scanner;
8
9 import com.deitel.ch17.AccountRecord;

10
11 public class ReadTextFile
12 {
13 private Scanner input;
14
15 // enable user to open file
16 public void openFile()
17 {
18 try

19 {
20
21 } // end try
22 catch (FileNotFoundException fileNotFoundException)
23 {
24 System.err.println("Error opening file.");
25 System.exit(1);
26 } // end catch
27 } // end method openFile
28
29 // read record from file
30 public void readRecords()
31 {
32 // object to be written to screen
33
34
35 System.out.printf("%-10s%-12s%-12s%10s\n", "Account",
36 "First Name", "Last Name", "Balance");
37
38 try // read records from file using Scanner object
39 {
40 while ()
41 {
42
43
44
45
46
47
48
49
50
51 } // end while
52 } // end try

Fig. 17.9 | Sequential file reading using a Scanner. (Part 1 of 2.)

input = new Scanner(new File("clients.txt"));

AccountRecord record = new AccountRecord();

input.hasNext()

record.setAccount(input.nextInt()); // read account number
record.setFirstName(input.next()); // read first name
record.setLastName(input.next()); // read last name
record.setBalance(input.nextDouble()); // read balance

// display record contents
System.out.printf("%-10d%-12s%-12s%10.2f\n",

record.getAccount(), record.getFirstName(),
record.getLastName(), record.getBalance());

17.4 Sequential-Access Text Files 555

Method readRecords (lines 30–64) reads and displays records from the file. Line 33
creates AccountRecord object record to store the current record’s information. Lines 35–
36 display headers for the columns in the application’s output. Lines 40–51 read data from
the file until the end-of-file marker is reached (in which case, method hasNext will return
false at line 40). Lines 42–45 use Scanner methods nextInt, next and nextDouble to

53 catch (NoSuchElementException elementException)
54 {
55 System.err.println("File improperly formed.");
56 input.close();
57 System.exit(1);
58 } // end catch
59 catch (IllegalStateException stateException)
60 {
61 System.err.println("Error reading from file.");
62 System.exit(1);
63 } // end catch
64 } // end method readRecords
65
66 // close file and terminate application
67 public void closeFile()
68 {
69 if (input != null)
70
71 } // end method closeFile
72 } // end class ReadTextFile

1 // Fig. 17.10: ReadTextFileTest.java
2 // Testing the ReadTextFile class.
3
4 public class ReadTextFileTest
5 {
6 public static void main(String[] args)
7 {
8 ReadTextFile application = new ReadTextFile();
9

10 application.openFile();
11 application.readRecords();
12 application.closeFile();
13 } // end main
14 } // end class ReadTextFileTest

Account First Name Last Name Balance
100 Bob Jones 24.98
200 Steve Doe -345.67
300 Pam White 0.00
400 Sam Stone -42.16
500 Sue Rich 224.62

Fig. 17.10 | Testing the ReadTextFile class.

Fig. 17.9 | Sequential file reading using a Scanner. (Part 2 of 2.)

input.close(); // close file

556 Chapter 17 Files, Streams and Object Serialization

input an int (the account number), two Strings (the first and last names) and a double

value (the balance). Each record is one line of data in the file. The values are stored in
object record. If the information in the file is not properly formed (e.g., there’s a last name
where there should be a balance), a NoSuchElementException occurs when the record is
input. This exception is handled in lines 53–58. If the Scanner was closed before the data
was input, an IllegalStateException occurs (handled in lines 59–63). If no exceptions
occur, the record’s information is displayed on the screen (lines 48–50). Note in the
format string in line 48 that the account number, first name and last name are left justified,
while the balance is right justified and output with two digits of precision. Each iteration
of the loop inputs one line of text from the text file, which represents one record.

Lines 67–71 define method closeFile, which closes the Scanner. Method main is
defined in Fig. 17.10 in lines 6–13. Line 8 creates a ReadTextFile object, which is then
used to open, add records to and close the file (lines 10–12).

17.4.3 Case Study: A Credit-Inquiry Program
To retrieve data sequentially from a file, programs start from the beginning of the file and
read all the data consecutively until the desired information is found. It might be necessary
to process the file sequentially several times (from the beginning of the file) during the ex-
ecution of a program. Class Scanner does not allow repositioning to the beginning of the
file. If it’s necessary to read the file again, the program must close the file and reopen it.

The program in Figs. 17.11–17.13 allows a credit manager to obtain lists of cus-
tomers with zero balances (i.e., customers who do not owe any money), customers with
credit balances (i.e., customers to whom the company owes money) and customers with
debit balances (i.e., customers who owe the company money for goods and services
received). A credit balance is a negative amount, a debit balance a positive amount.

MenuOption Enumeration
We begin by creating an enum type (Fig. 17.11) to define the different menu options the
user will have. The options and their values are listed in lines 7–10. Method getValue

(lines 19–22) retrieves the value of a specific enum constant.

1 // Fig. 17.11: MenuOption.java
2 // Enumeration for the credit-inquiry program's options.
3
4 public enum MenuOption
5 {
6 // declare contents of enum type
7 ZERO_BALANCE(1),
8 CREDIT_BALANCE(2),
9 DEBIT_BALANCE(3),

10 END(4);
11
12 private final int value; // current menu option
13
14 // constructor
15 MenuOption(int valueOption)
16 {

Fig. 17.11 | Enumeration for the credit-inquiry program’s menu options. (Part 1 of 2.)

17.4 Sequential-Access Text Files 557

CreditInquiry Class
Figure 17.12 contains the functionality for the credit-inquiry program, and Fig. 17.13
contains the main method that executes the program. The program displays a text menu
and allows the credit manager to enter one of three options to obtain credit information.
Option 1 (ZERO_BALANCE) displays accounts with zero balances. Option 2 (CREDIT_BAL-
ANCE) displays accounts with credit balances. Option 3 (DEBIT_BALANCE) displays accounts
with debit balances. Option 4 (END) terminates program execution.

17 value = valueOption;
18 } // end MenuOptions enum constructor
19
20 // return the value of a constant
21 public int getValue()
22 {
23 return value;
24 } // end method getValue
25 } // end enum MenuOption

1 // Fig. 17.12: CreditInquiry.java
2 // This program reads a file sequentially and displays the
3 // contents based on the type of account the user requests
4 // (credit balance, debit balance or zero balance).
5 import java.io.File;
6 import java.io.FileNotFoundException;
7 import java.lang.IllegalStateException;
8 import java.util.NoSuchElementException;
9 import java.util.Scanner;

10
11 import com.deitel.ch17.AccountRecord;
12
13 public class CreditInquiry
14 {
15 private MenuOption accountType;
16
17 private final static MenuOption[] choices = { MenuOption.ZERO_BALANCE,
18 MenuOption.CREDIT_BALANCE, MenuOption.DEBIT_BALANCE,
19 MenuOption.END };
20
21 // read records from file and display only records of appropriate type
22 private void readRecords()
23 {
24 // object to store data that will be written to file
25
26
27 try // read records
28 {
29 // open file to read from beginning
30

Fig. 17.12 | Credit-inquiry program. (Part 1 of 4.)

Fig. 17.11 | Enumeration for the credit-inquiry program’s menu options. (Part 2 of 2.)

private Scanner input;

AccountRecord record = new AccountRecord();

input = new Scanner(new File("clients.txt"));

558 Chapter 17 Files, Streams and Object Serialization

31
32 while () // input the values from the file
33 {
34
35
36
37
38
39 // if proper acount type, display record
40
41
42
43
44 } // end while
45 } // end try
46 catch (NoSuchElementException elementException)
47 {
48 System.err.println("File improperly formed.");
49
50 System.exit(1);
51 } // end catch
52 catch (IllegalStateException stateException)
53 {
54 System.err.println("Error reading from file.");
55 System.exit(1);
56 } // end catch
57 catch (FileNotFoundException fileNotFoundException)
58 {
59 System.err.println("File cannot be found.");
60 System.exit(1);
61 } // end catch
62 finally

63 {
64 if (input != null)
65
66 } // end finally
67 } // end method readRecords
68
69 // use record type to determine if record should be displayed
70 private boolean shouldDisplay(double balance)
71 {
72 if ((accountType == MenuOption.CREDIT_BALANCE)
73 && (balance < 0))
74 return true;
75
76 else if ((accountType == MenuOption.DEBIT_BALANCE)
77 && (balance > 0))
78 return true;
79
80 else if ((accountType == MenuOption.ZERO_BALANCE)
81 && (balance == 0))
82 return true;
83

Fig. 17.12 | Credit-inquiry program. (Part 2 of 4.)

input.hasNext()

record.setAccount(input.nextInt()); // read account number
record.setFirstName(input.next()); // read first name
record.setLastName(input.next()); // read last name
record.setBalance(input.nextDouble()); // read balance

if (shouldDisplay(record.getBalance()))
System.out.printf("%-10d%-12s%-12s%10.2f\n",

record.getAccount(), record.getFirstName(),
record.getLastName(), record.getBalance());

input.close();

input.close(); // close the Scanner and the file

17.4 Sequential-Access Text Files 559

84 return false;
85 } // end method shouldDisplay
86
87 // obtain request from user
88 private MenuOption getRequest()
89 {
90 Scanner textIn = new Scanner(System.in);
91 int request = 1;
92
93 // display request options
94 System.out.printf("\n%s\n%s\n%s\n%s\n%s\n",
95 "Enter request", " 1 - List accounts with zero balances",
96 " 2 - List accounts with credit balances",
97 " 3 - List accounts with debit balances", " 4 - End of run");
98
99 try // attempt to input menu choice
100 {
101 do // input user request
102 {
103 System.out.print("\n? ");
104 request = textIn.nextInt();
105 } while ((request < 1) || (request > 4));
106 } // end try
107 catch (NoSuchElementException elementException)
108 {
109 System.err.println("Invalid input.");
110 System.exit(1);
111 } // end catch
112
113 return choices[request - 1]; // return enum value for option
114 } // end method getRequest
115
116 public void processRequests()
117 {
118 // get user's request (e.g., zero, credit or debit balance)
119 accountType = getRequest();
120
121 while (accountType != MenuOption.END)
122 {
123 switch (accountType)
124 {
125 case ZERO_BALANCE:
126 System.out.println("\nAccounts with zero balances:\n");
127 break;
128 case CREDIT_BALANCE:
129 System.out.println("\nAccounts with credit balances:\n");
130 break;
131 case DEBIT_BALANCE:
132 System.out.println("\nAccounts with debit balances:\n");
133 break;
134 } // end switch
135
136 readRecords();

Fig. 17.12 | Credit-inquiry program. (Part 3 of 4.)

560 Chapter 17 Files, Streams and Object Serialization

137 accountType = getRequest();
138 } // end while
139 } // end method processRequests
140 } // end class CreditInquiry

1 // Fig. 17.13: CreditInquiryTest.java
2 // This program tests class CreditInquiry.
3
4 public class CreditInquiryTest
5 {
6 public static void main(String[] args)
7 {
8 CreditInquiry application = new CreditInquiry();
9 application.processRequests();

10 } // end main
11 } // end class CreditInquiryTest

Fig. 17.13 | Testing the CreditInquiry class.

Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run

? 1

Accounts with zero balances:
300 Pam White 0.00

Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run

? 2

Accounts with credit balances:
200 Steve Doe -345.67
400 Sam Stone -42.16

Enter request
1 - List accounts with zero balances
2 - List accounts with credit balances
3 - List accounts with debit balances
4 - End of run

? 3

Fig. 17.14 | Sample output of the credit-inquiry program in Fig. 17.13. (Part 1 of 2.)

Fig. 17.12 | Credit-inquiry program. (Part 4 of 4.)

17.4 Sequential-Access Text Files 561

The record information is collected by reading through the file and determining if
each record satisfies the criteria for the selected account type. Method processRequests

(lines 116–139 of Fig. 17.12) calls method getRequest to display the menu options (line
119), translates the number typed by the user into a MenuOption and stores the result in
MenuOption variable accountType. Lines 121–138 loop until the user specifies that the
program should terminate. Lines 123–134 display a header for the current set of records
to be output to the screen. Line 136 calls method readRecords (lines 22–67), which loops
through the file and reads every record.

Line 30 of method readRecords opens the file for reading with a Scanner. The file
will be opened for reading with a new Scanner object each time this method is called, so
that we can again read from the beginning of the file. Lines 34–37 read a record. Line 40
calls method shouldDisplay (lines 70–85) to determine whether the current record satis-
fies the account type requested. If shouldDisplay returns true, the program displays the
account information. When the end-of-file marker is reached, the loop terminates and line
65 calls the Scanner’s close method to close the Scanner and the file. Notice that this
occurs in a finally block, which will execute whether or not the file was successfully read.
Once all the records have been read, control returns to method processRequests and
getRequest is again called (line 137) to retrieve the user’s next menu option. Figure 17.13
contains method main, and calls method processRequests in line 9.

17.4.4 Updating Sequential-Access Files
The data in many sequential files cannot be modified without the risk of destroying other
data in the file. For example, if the name “White” needs to be changed to “Worthington,”
the old name cannot simply be overwritten, because the new name requires more space.
The record for White was written to the file as

If the record is rewritten beginning at the same location in the file using the new name,
the record will be

The new record is larger (has more characters) than the original record. The characters be-
yond the second “o” in “Worthington” will overwrite the beginning of the next sequential
record in the file. The problem here is that fields in a text file—and hence records—can
vary in size. For example, 7, 14, –117, 2074 and 27383 are all ints stored in the same
number of bytes (4) internally, but they’re different-sized fields when displayed on the
screen or written to a file as text. Therefore, records in a sequential-access file are not usu-
ally updated in place. Instead, the entire file is usually rewritten. To make the preceding

Accounts with debit balances:
100 Bob Jones 24.98
500 Sue Rich 224.62

? 4

300 Pam White 0.00

300 Pam Worthington 0.00

Fig. 17.14 | Sample output of the credit-inquiry program in Fig. 17.13. (Part 2 of 2.)

562 Chapter 17 Files, Streams and Object Serialization

name change, the records before 300 Pam White 0.00 would be copied to a new file, the
new record (which can be of a different size than the one it replaces) would be written and
the records after 300 Pam White 0.00 would be copied to the new file. Rewriting the en-
tire file is uneconomical to update just one record, but reasonable if a substantial number
of records need to be updated.

17.5 Object Serialization
In Section 17.4, we demonstrated how to write the individual fields of an AccountRecord

object into a file as text, and how to read those fields from a file and place their values into
an AccountRecord object in memory. In the examples, AccountRecord was used to aggre-
gate the information for one record. When the instance variables for an AccountRecord

were output to a disk file, certain information was lost, such as the type of each value. For
instance, if the value "3" is read from a file, there’s no way to tell whether it came from an
int, a String or a double. We have only data, not type information, on a disk. If the pro-
gram that’s going to read this data “knows” what object type the data corresponds to, then
the data is simply read into objects of that type. For example, in Section 17.4.2, we know
that we’re inputting an int (the account number), followed by two Strings (the first and
last name) and a double (the balance). We also know that these values are separated by
spaces, with only one record on each line. Sometimes we’ll not know exactly how the data
is stored in a file. In such cases, we want to read or write an entire object from a file. Java
provides such a mechanism, called object serialization. A so-called serialized object is an
object represented as a sequence of bytes that includes the object’s data as well as informa-
tion about the object’s type and the types of data stored in the object. After a serialized
object has been written into a file, it can be read from the file and deserialized—that is,
the type information and bytes that represent the object and its data can be used to recreate
the object in memory.

Classes ObjectInputStream and ObjectOutputStream

Classes ObjectInputStream and ObjectOutputStream, which respectively implement the
ObjectInput and ObjectOutput interfaces, enable entire objects to be read from or written
to a stream (possibly a file). To use serialization with files, we initialize ObjectInput-

Stream and ObjectOutputStream objects with stream objects that read from and write to
files—objects of classes FileInputStream and FileOutputStream, respectively. Initializ-
ing stream objects with other stream objects in this manner is sometimes called wrap-
ping—the new stream object being created wraps the stream object specified as a
constructor argument. To wrap a FileInputStream in an ObjectInputStream, for in-
stance, we pass the FileInputStream object to the ObjectInputStream’s constructor.

Interfaces ObjectOutput and ObjectInput

The ObjectOutput interface contains method writeObject, which takes an Object as an
argument and writes its information to an OutputStream. A class that implements inter-

Software Engineering Observation 17.1
The serialization mechanism makes exact copies of objects. This makes it a simple way to
clone objects without having to override Object method clone.

17.5 Object Serialization 563

face ObjectOutput (such as ObjectOutputStream) declares this method and ensures that
the object being output implements interface Serializable (discussed shortly). Corre-
spondingly, the ObjectInput interface contains method readObject, which reads and re-
turns a reference to an Object from an InputStream. After an object has been read, its
reference can be cast to the object’s actual type. As you’ll see in Chapter 24, applications
that communicate via a network, such as the Internet, can also transmit entire objects
across the network.

17.5.1 Creating a Sequential-Access File Using Object Serialization
This section and Section 17.5.2 create and manipulate sequential-access files using object
serialization. The object serialization we show here is performed with byte-based streams,
so the sequential files created and manipulated will be binary files. Recall that binary files
typically cannot be viewed in standard text editors. For this reason, we write a separate ap-
plication that knows how to read and display serialized objects. We begin by creating and
writing serialized objects to a sequential-access file. The example is similar to the one in
Section 17.4, so we focus only on the new features.

Defining Class AccountRecordSerializable
Let’s begin by modifying our AccountRecord class so that objects of this class can be seri-
alized. Class AccountRecordSerializable (Fig. 17.15) implements interface Serializ-

able (line 7), which allows objects of AccountRecordSerializable to be serialized and
deserialized with ObjectOutputStreams and ObjectInputStreams, respectively. Interface
Serializable is a tagging interface. Such an interface does not contain methods. A class
that implements Serializable is tagged as being a Serializable object. This is impor-
tant, because an ObjectOutputStream will not output an object unless it is a Serializable
object, which is the case for any object of a class that implements Serializable.

1 // Fig. 17.15: AccountRecordSerializable.java
2 // AccountRecordSerializable class for serializable objects.
3
4
5
6
7
8 {
9 private int account;

10 private String firstName;
11 private String lastName;
12 private double balance;
13
14 // no-argument constructor calls other constructor with default values
15 public AccountRecordSerializable()
16 {
17 this(0, "", "", 0.0);
18 } // end no-argument AccountRecordSerializable constructor
19

Fig. 17.15 | AccountRecordSerializable class for serializable objects. (Part 1 of 3.)

package com.deitel.ch17; // packaged for reuse

import java.io.Serializable;

public class AccountRecordSerializable implements Serializable

564 Chapter 17 Files, Streams and Object Serialization

20 // four-argument constructor initializes a record
21 public AccountRecordSerializable(
22 int acct, String first, String last, double bal)
23 {
24 setAccount(acct);
25 setFirstName(first);
26 setLastName(last);
27 setBalance(bal);
28 } // end four-argument AccountRecordSerializable constructor
29
30 // set account number
31 public void setAccount(int acct)
32 {
33 account = acct;
34 } // end method setAccount
35
36 // get account number
37 public int getAccount()
38 {
39 return account;
40 } // end method getAccount
41
42 // set first name
43 public void setFirstName(String first)
44 {
45 firstName = first;
46 } // end method setFirstName
47
48 // get first name
49 public String getFirstName()
50 {
51 return firstName;
52 } // end method getFirstName
53
54 // set last name
55 public void setLastName(String last)
56 {
57 lastName = last;
58 } // end method setLastName
59
60 // get last name
61 public String getLastName()
62 {
63 return lastName;
64 } // end method getLastName
65
66 // set balance
67 public void setBalance(double bal)
68 {
69 balance = bal;
70 } // end method setBalance
71

Fig. 17.15 | AccountRecordSerializable class for serializable objects. (Part 2 of 3.)

17.5 Object Serialization 565

In a Serializable class, every instance variable must be Serializable. Non-Seri-
alizable instance variables must be declared transient to indicate that they should be
ignored during the serialization process. By default, all primitive-type variables are serializ-
able. For reference-type variables, you must check the class’s documentation (and possibly
its superclasses) to ensure that the type is Serializable. For example, Strings are Seri-

alizable. By default, arrays are serializable; however, in a reference-type array, the refer-
enced objects might not be. Class AccountRecordSerializable contains private data
members account, firstName, lastName and balance—all of which are Serializable.
This class also provides public get and set methods for accessing the private fields.

Writing Serialized Objects to a Sequential-Access File
Now let’s discuss the code that creates the sequential-access file (Figs. 17.16–17.17). We
concentrate only on new concepts here. As stated in Section 17.2, a program can open a
file by creating an object of stream class FileInputStream or FileOutputStream. In this
example, the file is to be opened for output, so the program creates a FileOutputStream

(line 21 of Fig. 17.16). The String argument that’s passed to the FileOutputStream’s
constructor represents the name and path of the file to be opened. Existing files that are
opened for output in this manner are truncated. We chose the .ser file extension for bi-
nary files that contain serialized objects, but this is not required.

72 // get balance
73 public double getBalance()
74 {
75 return balance;
76 } // end method getBalance
77 } // end class AccountRecordSerializable

Common Programming Error 17.2
It’s a logic error to open an existing file for output when, in fact, you wish to preserve the
file. Class FileOutputStream provides an overloaded constructor that enables you to open
a file and append data to the end of the file. This will preserve the file’s contents.

1 // Fig. 17.16: CreateSequentialFile.java
2 // Writing objects sequentially to a file with class ObjectOutputStream.
3
4
5
6
7
8
9

10
11 public class CreateSequentialFile
12 {
13 private ObjectOutputStream output; // outputs data to file

Fig. 17.16 | Sequential file created using ObjectOutputStream. (Part 1 of 3.)

Fig. 17.15 | AccountRecordSerializable class for serializable objects. (Part 3 of 3.)

import java.io.FileOutputStream;
import java.io.IOException;
import java.io.ObjectOutputStream;
import java.util.NoSuchElementException;
import java.util.Scanner;

import com.deitel.ch17.AccountRecordSerializable;

566 Chapter 17 Files, Streams and Object Serialization

14
15 // allow user to specify file name
16 public void openFile()
17 {
18 try // open file
19 {
20
21
22 } // end try
23 catch (IOException ioException)
24 {
25 System.err.println("Error opening file.");
26 } // end catch
27 } // end method openFile
28
29 // add records to file
30 public void addRecords()
31 {
32 AccountRecordSerializable record; // object to be written to file
33 int accountNumber = 0; // account number for record object
34 String firstName; // first name for record object
35 String lastName; // last name for record object
36 double balance; // balance for record object
37
38 Scanner input = new Scanner(System.in);
39
40 System.out.printf("%s\n%s\n%s\n%s\n\n",
41 "To terminate input, type the end-of-file indicator ",
42 "when you are prompted to enter input.",
43 "On UNIX/Linux/Mac OS X type <ctrl> d then press Enter",
44 "On Windows type <ctrl> z then press Enter");
45
46 System.out.printf("%s\n%s",
47 "Enter account number (> 0), first name, last name and balance.",
48 "? ");
49
50 while (input.hasNext()) // loop until end-of-file indicator
51 {
52 try // output values to file
53 {
54 accountNumber = input.nextInt(); // read account number
55 firstName = input.next(); // read first name
56 lastName = input.next(); // read last name
57 balance = input.nextDouble(); // read balance
58
59 if (accountNumber > 0)
60 {
61 // create new record
62
63
64
65 } // end if

Fig. 17.16 | Sequential file created using ObjectOutputStream. (Part 2 of 3.)

output = new ObjectOutputStream(
new FileOutputStream("clients.ser"));

record = new AccountRecordSerializable(accountNumber,
firstName, lastName, balance);

output.writeObject(record); // output record

17.5 Object Serialization 567

66 else

67 {
68 System.out.println(
69 "Account number must be greater than 0.");
70 } // end else
71 } // end try
72 catch (IOException ioException)
73 {
74 System.err.println("Error writing to file.");
75 return;
76 } // end catch
77 catch (NoSuchElementException elementException)
78 {
79 System.err.println("Invalid input. Please try again.");
80 input.nextLine(); // discard input so user can try again
81 } // end catch
82
83 System.out.printf("%s %s\n%s", "Enter account number (>0),",
84 "first name, last name and balance.", "? ");
85 } // end while
86 } // end method addRecords
87
88 // close file and terminate application
89 public void closeFile()
90 {
91 try // close file
92 {
93 if (output != null)
94 output.close();
95 } // end try
96 catch (IOException ioException)
97 {
98 System.err.println("Error closing file.");
99 System.exit(1);
100 } // end catch
101 } // end method closeFile
102 } // end class CreateSequentialFile

1 // Fig. 17.17: CreateSequentialFileTest.java
2 // Testing class CreateSequentialFile.
3
4 public class CreateSequentialFileTest
5 {
6 public static void main(String[] args)
7 {
8 CreateSequentialFile application = new CreateSequentialFile();
9

10 application.openFile();
11 application.addRecords();

Fig. 17.17 | Testing class CreateSequentialFile. (Part 1 of 2.)

Fig. 17.16 | Sequential file created using ObjectOutputStream. (Part 3 of 3.)

568 Chapter 17 Files, Streams and Object Serialization

Class FileOutputStream provides methods for writing byte arrays and individual
bytes to a file, but we wish to write objects to a file. For this reason, we wrap a FileOut-

putStream in an ObjectOutputStream by passing the new FileOutputStream object to
the ObjectOutputStream’s constructor (lines 20–21). The ObjectOutputStream object
uses the FileOutputStream object to write objects into the file. Lines 20–21 may throw
an IOException if a problem occurs while opening the file (e.g., when a file is opened for
writing on a drive with insufficient space or when a read-only file is opened for writing).
If so, the program displays an error message (lines 23–26). If no exception occurs, the file
is open, and variable output can be used to write objects to it.

This program assumes that data is input correctly and in the proper record-number
order. Method addRecords (lines 30–86) performs the write operation. Lines 62–63
create an AccountRecordSerializable object from the data entered by the user. Line 64
calls ObjectOutputStream method writeObject to write the record object to the output
file. Only one statement is required to write the entire object.

Method closeFile (lines 89–101) calls ObjectOutputStream method close on
output to close both the ObjectOutputStream and its underlying FileOutputStream (line
94). The call to method close is contained in a try block. Method close throws an IOEx-

ception if the file cannot be closed properly. In this case, it’s important to notify the user
that the information in the file might be corrupted. When using wrapped streams, closing
the outermost stream also closes the underlying file.

In the sample execution for the program in Fig. 17.17, we entered information for
five accounts—the same information shown in Fig. 17.8. The program does not show
how the data records actually appear in the file. Remember that now we’re using binary
files, which are not humanly readable. To verify that the file has been created successfully,
the next section presents a program to read the file’s contents.

12 application.closeFile();
13 } // end main
14 } // end class CreateSequentialFileTest

To terminate input, type the end-of-file indicator
when you are prompted to enter input.
On UNIX/Linux/Mac OS X type <ctrl> d then press Enter
On Windows type <ctrl> z then press Enter

Enter account number (> 0), first name, last name and balance.
? 100 Bob Jones 24.98
Enter account number (> 0), first name, last name and balance.
? 200 Steve Doe -345.67
Enter account number (> 0), first name, last name and balance.
? 300 Pam White 0.00
Enter account number (> 0), first name, last name and balance.
? 400 Sam Stone -42.16
Enter account number (> 0), first name, last name and balance.
? 500 Sue Rich 224.62
Enter account number (> 0), first name, last name and balance.
? ^Z

Fig. 17.17 | Testing class CreateSequentialFile. (Part 2 of 2.)

17.5 Object Serialization 569

17.5.2 Reading and Deserializing Data from a Sequential-Access File
The preceding section showed how to create a file for sequential access using object serial-
ization. In this section, we discuss how to read serialized data sequentially from a file.

The program in Figs. 17.18–17.19 reads records from a file created by the program
in Section 17.5.1 and displays the contents. The program opens the file for input by cre-
ating a FileInputStream object (line 21). The name of the file to open is specified as an
argument to the FileInputStream constructor. In Fig. 17.16, we wrote objects to the file,
using an ObjectOutputStream object. Data must be read from the file in the same format
in which it was written. Therefore, we use an ObjectInputStream wrapped around a
FileInputStream in this program (lines 20–21). If no exceptions occur when opening the
file, variable input can be used to read objects from the file.

1 // Fig. 17.18: ReadSequentialFile.java
2 // Reading a file of objects sequentially with ObjectInputStream
3 // and displaying each record.
4
5
6
7
8
9

10
11 public class ReadSequentialFile
12 {
13 private ObjectInputStream input;
14
15 // enable user to select file to open
16 public void openFile()
17 {
18 try // open file
19 {
20
21
22 } // end try
23 catch (IOException ioException)
24 {
25 System.err.println("Error opening file.");
26 } // end catch
27 } // end method openFile
28
29 // read record from file
30 public void readRecords()
31 {
32 AccountRecordSerializable record;
33 System.out.printf("%-10s%-12s%-12s%10s\n", "Account",
34 "First Name", "Last Name", "Balance");
35
36 try // input the values from the file
37 {

Fig. 17.18 | Reading a file of objects sequentially with ObjectInputStream and displaying
each record. (Part 1 of 2.)

import java.io.EOFException;
import java.io.FileInputStream;
import java.io.IOException;
import java.io.ObjectInputStream;

import com.deitel.ch17.AccountRecordSerializable;

input = new ObjectInputStream(
new FileInputStream("clients.ser"));

570 Chapter 17 Files, Streams and Object Serialization

The program reads records from the file in method readRecords (lines 30–60). Line
40 calls ObjectInputStream method readObject to read an Object from the file. To use
AccountRecordSerializable-specific methods, we downcast the returned Object to type
AccountRecordSerializable. Method readObject throws an EOFException (processed
at lines 48–51) if an attempt is made to read beyond the end of the file. Method readOb-

ject throws a ClassNotFoundException if the class for the object being read cannot be
located. This may occur if the file is accessed on a computer that does not have the class.
Figure 17.19 contains method main (lines 6–13), which opens the file, calls method read-

Records and closes the file.

38 while (true)
39 {
40
41
42 // display record contents
43
44
45
46 } // end while
47 } // end try
48 catch (EOFException endOfFileException)
49 {
50 return; // end of file was reached
51 } // end catch
52 catch (ClassNotFoundException classNotFoundException)
53 {
54 System.err.println("Unable to create object.");
55 } // end catch
56 catch (IOException ioException)
57 {
58 System.err.println("Error during read from file.");
59 } // end catch
60 } // end method readRecords
61
62 // close file and terminate application
63 public void closeFile()
64 {
65 try // close file and exit
66 {
67 if (input != null)
68
69 } // end try
70 catch (IOException ioException)
71 {
72 System.err.println("Error closing file.");
73 System.exit(1);
74 } // end catch
75 } // end method closeFile
76 } // end class ReadSequentialFile

Fig. 17.18 | Reading a file of objects sequentially with ObjectInputStream and displaying
each record. (Part 2 of 2.)

record = (AccountRecordSerializable) input.readObject();

System.out.printf("%-10d%-12s%-12s%10.2f\n",
record.getAccount(), record.getFirstName(),
record.getLastName(), record.getBalance());

input.close();

17.6 Additional java.io Classes 571

17.6 Additional java.io Classes
This section overviews additional interfaces and classes (from package java.io) for byte-
based input and output streams and character-based input and output streams.

17.6.1 Interfaces and Classes for Byte-Based Input and Output
InputStream and OutputStream are abstract classes that declare methods for performing
byte-based input and output, respectively. We used various concrete subclasses FileIn-
putStream InputStream and OutputStream to manipulate files in this chapter.

Pipe Streams
Pipes are synchronized communication channels between threads. We discuss threads in
Chapter 23. Java provides PipedOutputStream (a subclass of OutputStream) and Piped-

InputStream (a subclass of InputStream) to establish pipes between two threads in a pro-
gram. One thread sends data to another by writing to a PipedOutputStream. The target
thread reads information from the pipe via a PipedInputStream.

Filter Streams
A FilterInputStream filters an InputStream, and a FilterOutputStream filters an Out-

putStream. Filtering means simply that the filter stream provides additional functionality,
such as aggregating data bytes into meaningful primitive-type units. FilterInputStream
and FilterOutputStream are typically extended, so some of their filtering capabilities are
provided by their subclasses.

A PrintStream (a subclass of FilterOutputStream) performs text output to the spec-
ified stream. Actually, we’ve been using PrintStream output throughout the text to this
point—System.out and System.err are PrintStream objects.

1 // Fig. 17.19: ReadSequentialFileTest.java
2 // Testing class ReadSequentialFile.
3
4 public class ReadSequentialFileTest
5 {
6 public static void main(String[] args)
7 {
8 ReadSequentialFile application = new ReadSequentialFile();
9

10 application.openFile();
11 application.readRecords();
12 application.closeFile();
13 } // end main
14 } // end class ReadSequentialFileTest

Account First Name Last Name Balance
100 Bob Jones 24.98
200 Steve Doe -345.67
300 Pam White 0.00
400 Sam Stone -42.16
500 Sue Rich 224.62

Fig. 17.19 | Testing class ReadSequentialFile.

572 Chapter 17 Files, Streams and Object Serialization

Data Streams
Reading data as raw bytes is fast, but crude. Usually, programs read data as aggregates of
bytes that form ints, floats, doubles and so on. Java programs can use several classes to
input and output data in aggregate form.

Interface DataInput describes methods for reading primitive types from an input
stream. Classes DataInputStream and RandomAccessFile each implement this interface
to read sets of bytes and view them as primitive-type values. Interface DataInput includes
methods such as readBoolean, readByte, readChar, readDouble, readFloat, readFully
(for byte arrays), readInt, readLong, readShort, readUnsignedByte, readUnsigned-

Short, readUTF (for reading Unicode characters encoded by Java.
Interface DataOutput describes a set of methods for writing primitive types to an

output stream. Classes DataOutputStream (a subclass of FilterOutputStream) and Ran-

domAccessFile each implement this interface to write primitive-type values as bytes.
Interface DataOutput includes overloaded versions of method write (for a byte or for a
byte array) and methods writeBoolean, writeByte, writeBytes, writeChar, writeChars
(for Unicode Strings), writeDouble, writeFloat, writeInt, writeLong, writeShort

and writeUTF (to output text modified for Unicode).

Buffered Streams
Buffering is an I/O-performance-enhancement technique. With a BufferedOutput-

Stream (a subclass of class FilterOutputStream), each output statement does not neces-
sarily result in an actual physical transfer of data to the output device (which is a slow
operation compared to processor and main memory speeds). Rather, each output opera-
tion is directed to a region in memory called a buffer that’s large enough to hold the data
of many output operations. Then, actual transfer to the output device is performed in one
large physical output operation each time the buffer fills. The output operations directed
to the output buffer in memory are often called logical output operations. With a Buff-

eredOutputStream, a partially filled buffer can be forced out to the device at any time by
invoking the stream object’s flush method.

Using buffering can greatly increase the performance of an application. Typical I/O
operations are extremely slow compared with the speed of accessing data in computer
memory. Buffering reduces the number of I/O operations by first combining smaller out-
puts together in memory. The number of actual physical I/O operations is small compared
with the number of I/O requests issued by the program. Thus, the program that’s using
buffering is more efficient.

With a BufferedInputStream (a subclass of class FilterInputStream), many “log-
ical” chunks of data from a file are read as one large physical input operation into a
memory buffer. As a program requests each new chunk of data, it’s taken from the buffer.
(This procedure is sometimes referred to as a logical input operation.) When the buffer is
empty, the next actual physical input operation from the input device is performed to read
in the next group of “logical” chunks of data. Thus, the number of actual physical input
operations is small compared with the number of read requests issued by the program.

Performance Tip 17.1
Buffered I/O can yield significant performance improvements over unbuffered I/O.

17.6 Additional java.io Classes 573

Memory-Based byte Array Steams
Java stream I/O includes capabilities for inputting from byte arrays in memory and out-
putting to byte arrays in memory. A ByteArrayInputStream (a subclass of InputStream)
reads from a byte array in memory. A ByteArrayOutputStream (a subclass of Output-
Stream) outputs to a byte array in memory. One use of byte-array I/O is data validation.
A program can input an entire line at a time from the input stream into a byte array. Then
a validation routine can scrutinize the contents of the byte array and correct the data if
necessary. Finally, the program can proceed to input from the byte array, “knowing” that
the input data is in the proper format. Outputting to a byte array is a nice way to take
advantage of the powerful output-formatting capabilities of Java streams. For example,
data can be stored in a byte array, using the same formatting that will be displayed at a
later time, and the byte array can then be output to a file to preserve the formatting.

Sequencing Input from Multiple Streams
A SequenceInputStream (a subclass of InputStream) logically concatenates several Input-
Streams—the program sees the group as one continuous InputStream. When the program
reaches the end of one input stream, that stream closes, and the next stream in the se-
quence opens.

17.6.2 Interfaces and Classes for Character-Based Input and Output
In addition to the byte-based streams, Java provides the Reader and Writer abstract

classes, which are Unicode two-byte, character-based streams. Most of the byte-based
streams have corresponding character-based concrete Reader or Writer classes.

Character-Based Buffering Readers and Writers
Classes BufferedReader (a subclass of abstract class Reader) and BufferedWriter (a
subclass of abstract class Writer) enable buffering for character-based streams. Remem-
ber that character-based streams use Unicode characters—such streams can process data
in any language that the Unicode character set represents.

Memory-Based char Array Readers and Writers
Classes CharArrayReader and CharArrayWriter read and write, respectively, a stream of
characters to a char array. A LineNumberReader (a subclass of BufferedReader) is a buff-
ered character stream that keeps track of the number of lines read—newlines, returns and
carriage-return–line-feed combinations increment the line count. Keeping track of line
numbers can be useful if the program needs to inform the reader of an error on a specific
line.

Character-Based File, Pipe and String Readers and Writers
An InputStream can be converted to a Reader via class InputStreamReader. Similarly, an
OuputStream can be converted to a Writer via class OutputStreamWriter. Class File-

Reader (a subclass of InputStreamReader) and class FileWriter (a subclass of Output-
StreamWriter) read characters from and write characters to a file, respectively. Class
PipedReader and class PipedWriter implement piped-character streams for transfering
data between threads. Class StringReader and StringWriter read characters from and
write characters to Strings, respectively. A PrintWriter writes characters to a stream.

574 Chapter 17 Files, Streams and Object Serialization

17.7 Opening Files with JFileChooser
Class JFileChooser displays a dialog (known as the JFileChooser dialog) that enables the
user to easily select files or directories. To demonstrate this dialog, we enhance the example
in Section 17.3, as shown in Figs. 17.20–17.21. The example now contains a graphical
user interface, but still displays the same data as before. The constructor calls method an-

alyzePath in line 34. This method then calls method getFile in line 68 to retrieve the
File object.

1 // Fig. 17.20: FileDemonstration.java
2 // Demonstrating JFileChooser.
3 import java.awt.BorderLayout;
4 import java.awt.event.ActionEvent;
5 import java.awt.event.ActionListener;
6 import java.io.File;
7
8 import javax.swing.JFrame;
9 import javax.swing.JOptionPane;

10 import javax.swing.JScrollPane;
11 import javax.swing.JTextArea;
12 import javax.swing.JTextField;
13
14 public class FileDemonstration extends JFrame
15 {
16 private JTextArea outputArea; // used for output
17 private JScrollPane scrollPane; // used to provide scrolling to output
18
19 // set up GUI
20 public FileDemonstration()
21 {
22 super("Testing class File");
23
24 outputArea = new JTextArea();
25
26 // add outputArea to scrollPane
27 scrollPane = new JScrollPane(outputArea);
28
29 add(scrollPane, BorderLayout.CENTER); // add scrollPane to GUI
30
31 setSize(400, 400); // set GUI size
32 setVisible(true); // display GUI
33
34 analyzePath(); // create and analyze File object
35 } // end FileDemonstration constructor
36
37 // allow user to specify file or directory name
38 private File getFileOrDirectory()
39 {
40 // display file dialog, so user can choose file or directory to open
41
42
43

Fig. 17.20 | Demonstrating JFileChooser. (Part 1 of 3.)

import javax.swing.JFileChooser;

JFileChooser fileChooser = new JFileChooser();
fileChooser.setFileSelectionMode(

JFileChooser.FILES_AND_DIRECTORIES);

17.7 Opening Files with JFileChooser 575

44
45
46
47 // if user clicked Cancel button on dialog, return
48 if ()
49 System.exit(1);
50
51
52
53 // display error if invalid
54 if ((fileName == null) || (fileName.getName().equals("")))
55 {
56 JOptionPane.showMessageDialog(this, "Invalid Name",
57 "Invalid Name", JOptionPane.ERROR_MESSAGE);
58 System.exit(1);
59 } // end if
60
61 return fileName;
62 } // end method getFile
63
64 // display information about file or directory user specifies
65 public void analyzePath()
66 {
67 // create File object based on user input
68 File name = getFileOrDirectory();
69
70 if (name.exists()) // if name exists, output information about it
71 {
72 // display file (or directory) information
73 outputArea.setText(String.format(
74 "%s%s\n%s\n%s\n%s\n%s%s\n%s%s\n%s%s\n%s%s\n%s%s",
75 name.getName(), " exists",
76 (name.isFile() ? "is a file" : "is not a file"),
77 (name.isDirectory() ? "is a directory" :
78 "is not a directory"),
79 (name.isAbsolute() ? "is absolute path" :
80 "is not absolute path"), "Last modified: ",
81 name.lastModified(), "Length: ", name.length(),
82 "Path: ", name.getPath(), "Absolute path: ",
83 name.getAbsolutePath(), "Parent: ", name.getParent()));
84
85 if (name.isDirectory()) // output directory listing
86 {
87 String[] directory = name.list();
88 outputArea.append("\n\nDirectory contents:\n");
89
90 for (String directoryName : directory)
91 outputArea.append(directoryName + "\n");
92 } // end else
93 } // end outer if
94 else // not file or directory, output error message
95 {

Fig. 17.20 | Demonstrating JFileChooser. (Part 2 of 3.)

int result = fileChooser.showOpenDialog(this);

result == JFileChooser.CANCEL_OPTION

File fileName = fileChooser.getSelectedFile(); // get File

576 Chapter 17 Files, Streams and Object Serialization

96 JOptionPane.showMessageDialog(this, name +
97 " does not exist.", "ERROR", JOptionPane.ERROR_MESSAGE);
98 } // end else
99 } // end method analyzePath
100 } // end class FileDemonstration

1 // Fig. 17.21: FileDemonstrationTest.java
2 // Testing class FileDemonstration.
3 import javax.swing.JFrame;
4
5 public class FileDemonstrationTest
6 {
7 public static void main(String[] args)
8 {
9 FileDemonstration application = new FileDemonstration();

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 } // end main
12 } // end class FileDemonstrationTest

Fig. 17.21 | Testing class FileDemonstration.

Fig. 17.20 | Demonstrating JFileChooser. (Part 3 of 3.)

Files and directories
are displayed here

Select location
of file or

directory here

Click Open to
submit file or
directory name
to program

17.8 Wrap-Up 577

Method getFile is defined in lines 38–62 of Fig. 17.20. Line 41 creates a JFile-

Chooser and assigns its reference to fileChooser. Lines 42–43 call method setFile-

SelectionMode to specify what the user can select from the fileChooser. For this
program, we use JFileChooser static constant FILES_AND_DIRECTORIES to indicate that
files and directories can be selected. Other static constants include FILES_ONLY (the
default) and DIRECTORIES_ONLY.

Line 45 calls method showOpenDialog to display the JFileChooser dialog titled
Open. Argument this specifies the JFileChooser dialog’s parent window, which deter-
mines the position of the dialog on the screen. If null is passed, the dialog is displayed in
the center of the screen—otherwise, the dialog is centered over the application window
(specified by the argument this). A JFileChooser dialog is a modal dialog that does not
allow the user to interact with any other window in the program until the user closes the
JFileChooser by clicking the Open or Cancel button. The user selects the drive, directory
or file name, then clicks Open. Method showOpenDialog returns an integer specifying
which button (Open or Cancel) the user clicked to close the dialog. Line 48 tests whether
the user clicked Cancel by comparing the result with static constant CANCEL_OPTION. If
they’re equal, the program terminates. Line 51 retrieves the file the user selected by calling
JFileChooser method getSelectedFile. The program then displays information about
the selected file or directory.

17.8 Wrap-Up
In this chapter, you learned how to manipulate persistent data. We compared character-
based and byte-based streams, and introduced several file-processing classes from the
java.io package. You used class File to retrieve information about a file or directory. You
used sequential-access file processing to manipulate records that are stored in order by the
record-key field. You learned the differences between text-file processing and object seri-
alization, and used serialization to store and retrieve entire objects. The chapter concluded
with a small example of using a JFileChooser dialog to allow users to easily select files
from a GUI. The next two chapters continue our discussion of dynamic data structures
that can grow or shrink at execution time.

18
Generic Collections

O b j e c t i v e s
In this chapter you’ll learn:

� What collections are.

� To use class Arrays for array manipulations.

� The type-wrapper classes that enable programs to process
primitive data values as objects.

� To use the prebuilt generic data structures of the collections
framework.

� To use iterators to “walk through” a collection.

� To use persistent hash tables manipulated with objects of
class Properties.

� To use synchronization and modifiability wrappers.

I think this is the most
extraordinary collection of
talent, of human
knowledge, that has ever
been gathered together at
the White House—with the
possible exception of when
Thomas Jefferson dined
alone.
—John F. Kennedy

Journey over all the
universe in a map.
—Miguel de Cervantes

Not by age but by capacity
is wisdom acquired.
—Titus Maccius Plautus

18.1 Introduction 579

18.1 Introduction
In Section 7.14, we introducted the generic ArrayList collection—a dynamically resiz-
able array-like data structure that stores references to objects of a type that you specify
when you create the ArrayList. In this chapter, we continue our discussion of the Java
collections framework, which contains many other prebuilt generic data structures and
various methods for manipulating them.

Because you specify the type to store in a collection at compile time, generic collec-
tions provide compile-time type safety that allows the compiler to catch attempts to use
invalid types. For example, you cannot store Employees in a collection of Strings. Some
examples of collections are the cards you hold in a card game, your favorite songs stored
in your computer, the members of a sports team and the real-estate records in your local
registry of deeds (which map book numbers and page numbers to property owners).

We discuss the collections-framework interfaces that declare the capabilities of each
collection type, the implementation classes, the methods that process collection objects,
and the so-called iterators that “walk through” collections. This chapter provides an intro-
duction to the collections framework. For complete details, visit download.oracle.com/
javase/6/docs/technotes/guides/collections/index.html.

18.2 Collections Overview
A collection is a data structure—actually, an object—that can hold references to other ob-
jects. Usually, collections contain references to objects that are all of the same type. The
collections-framework interfaces declare the operations to be performed generically on
various types of collections. Figure 18.1 lists some of the interfaces of the collections
framework. Several implementations of these interfaces are provided within the frame-
work. You may also provide implementations specific to your own requirements.

18.1 Introduction
18.2 Collections Overview
18.3 Type-Wrapper Classes for Primitive

Types
18.4 Autoboxing and Auto-Unboxing
18.5 Interface Collection and Class

Collections

18.6 Lists
18.6.1 ArrayList and Iterator
18.6.2 LinkedList

18.7 Collections Methods
18.7.1 Method sort
18.7.2 Method shuffle
18.7.3 Methods reverse, fill, copy, max

and min
18.7.4 Method binarySearch
18.7.5 Methods addAll, frequency and

disjoint

18.8 Stack Class of Package java.util
18.9 Class PriorityQueue and

Interface Queue

18.10 Sets
18.11 Maps
18.12 Properties Class
18.13 Synchronized Collections
18.14 Unmodifiable Collections
18.15 Abstract Implementations
18.16 Wrap-Up

580 Chapter 18 Generic Collections

The classes and interfaces of the collections framework are members of package
java.util. In the next section, we begin our discussion by examining the collections-
framework capabilities for array manipulation. In earlier versions of Java, the classes in the
collections framework stored and manipulated Object references, enabling you to store
any object in a collection. One inconvenient aspect of this approach occurs when
retrieving Object references from a collection. A program normally needs to process spe-
cific types of objects. As a result, the Object references obtained from a collection typically
need to be cast to an appropriate type to allow the program to process the objects correctly.

In Java SE 5, the collections framework was enhanced with the generics capabilities we
introduced in Chapter 7 when discussing generic ArrayLists. This means that you can
specify the exact type that will be stored in a collection. You also receive the benefits of com-
pile-time type checking—the compiler ensures that you’re using appropriate types with your
collection and, if not, issues compile-time error messages. Also, once you specify the type
stored in a collection, any reference you retrieve from the collection will have the specified
type. This eliminates the need for explicit type casts that can throw ClassCastExceptions if
the referenced object is not of the appropriate type. In addition, the generic collections are
backward compatible with Java code that was written before generics were introduced.

18.3 Type-Wrapper Classes for Primitive Types
Each primitive type (listed in Appendix D) has a corresponding type-wrapper class (in pack-
age java.lang). These classes are called Boolean, Byte, Character, Double, Float, Integer,
Long and Short. These enable you to manipulate primitive-type values as objects. The data
structures that we reuse or develop in Chapters 18–22 manipulate and share objects—they
cannot manipulate variables of primitive types. However, they can manipulate objects of the
type-wrapper classes, because every class ultimately derives from Object.

Each of the numeric type-wrapper classes—Byte, Short, Integer, Long, Float and
Double—extends class Number. Also, the type-wrapper classes are final classes, so you
cannot extend them.

Primitive types do not have methods, so the methods related to a primitive type are
located in the corresponding type-wrapper class (e.g., method parseInt, which converts a
String to an int value, is located in class Integer). If you need to manipulate a primitive
value in your program, first refer to the documentation for the type-wrapper classes—the
method you need might already be declared.

Interface Description

Collection The root interface in the collections hierarchy from which interfaces Set,
Queue and List are derived.

Set A collection that does not contain duplicates.

List An ordered collection that can contain duplicate elements.

Map A collection that associates keys to values and cannot contain duplicate keys.

Queue Typically a first-in, first-out collection that models a waiting line; other
orders can be specified.

Fig. 18.1 | Some collections-framework interfaces.

18.4 Autoboxing and Auto-Unboxing 581

18.4 Autoboxing and Auto-Unboxing
Prior to Java SE 5, if you wanted to insert a primitive value into a data structure, you had
to create a new object of the corresponding type-wrapper class, then insert it in the collec-
tion. Similarly, if you wanted to retrieve an object of a type-wrapper class from a collection
and manipulate its primitive value, you had to invoke a method on the object to obtain its
corresponding primitive-type value. For example, suppose you wanted to add an int to an
array that stores only references to Integer objects. Prior to Java SE 5, you’d be required
to “wrap” an int value in an Integer object before adding the integer to the array and to
“unwrap” the int value to retrieve it from the array, as in

Notice that the int primitive value 10 is used to initialize an Integer object. This achieves
the desired result but requires extra code and is cumbersome. We then need to invoke
method intValue of class Integer to obtain the int value in the Integer object.

Java SE 5 introduced two new conversions—the boxing conversion and the unboxing
conversion—to simplify converting between primitive-type values and type-wrapper
objects with no additional coding on the part of the programmer. A boxing conversion
converts a value of a primitive type to an object of the corresponding type-wrapper class.
An unboxing conversion converts an object of a type-wrapper class to a value of the cor-
responding primitive type. These conversions can be performed automatically (called
autoboxing and auto-unboxing). For example, the previous statements can be rewritten as

In this case, autoboxing occurs when assigning an int value (10) to integerArray[0], be-
cause integerArray stores references to Integer objects, not int values. Auto-unboxing
occurs when assigning integerArray[0] to int variable value, because variable value

stores an int value, not a reference to an Integer object. Boxing conversions also occur in
conditions, which can evaluate to primitive boolean values or Boolean objects. Many of
the examples in Chapters 18–22 use these conversions to store primitive values in and re-
trieve them from data structures.

18.5 Interface Collection and Class Collections
Interface Collection is the root interface in the collection hierarchy from which interfaces
Set, Queue and List are derived. Interface Set defines a collection that does not contain
duplicates. Interface Queue defines a collection that represents a waiting line—typically,
insertions are made at the back of a queue and deletions from the front, though other or-
ders can be specified. We discuss Queue and Set in Sections 18.9–18.10. Interface Col-

lection contains bulk operations (i.e., operations performed on an entire collection) for
operations such as adding, clearing and comparing objects (or elements) in a collection. A
Collection can also be converted to an array. In addition, interface Collection provides

Integer[] integerArray = new Integer[5]; // create integerArray

// assign Integer 10 to integerArray[0]
integerArray[0] = new Integer(10);

// get int value of Integer
int value = integerArray[0].intValue();

Integer[] integerArray = new Integer[5]; // create integerArray
integerArray[0] = 10; // assign Integer 10 to integerArray[0]
int value = integerArray[0]; // get int value of Integer

582 Chapter 18 Generic Collections

a method that returns an Iterator object, which allows a program to walk through the
collection and remove elements from it during the iteration. We discuss class Iterator in
Section 18.6.1. Other methods of interface Collection enable a program to determine a
collection’s size and whether a collection is empty.

Class Collections provides static methods that search, sort and perform other
operations on collections. Section 18.7 discusses more about the methods that are avail-
able in class Collections. We also cover this class’s wrapper methods that enable you to
treat a collection as a synchronized collection (Section 18.13) or an unmodifiable collection
(Section 18.14). Unmodifiable collections are useful when clients of a class need to view a
collection’s elements, but they should not be allowed to modify the collection by adding
and removing elements. Synchronized collections are for use with multithreading (dis-
cussed in Chapter 23), which enables programs to perform operations in parallel. When
two or more threads of a program share a collection, problems might occur. As an analogy,
consider a traffic intersection. If all cars were allowed to access the intersection at the same
time, collisions might occur. For this reason, traffic lights are provided to control access to
the intersection. Similarly, we can synchronize access to a collection to ensure that only one
thread manipulates the collection at a time. The synchronization wrapper methods of class
Collections return synchronized versions of collections that can be shared among threads
in a program.

18.6 Lists
A List (sometimes called a sequence) is an ordered Collection that can contain duplicate
elements. Like array indices, List indices are zero based (i.e., the first element’s index is
zero). In addition to the methods inherited from Collection, List provides methods for
manipulating elements via their indices, manipulating a specified range of elements,
searching for elements and obtaining a ListIterator to access the elements.

Interface List is implemented by several classes, including ArrayList, LinkedList
and Vector. Autoboxing occurs when you add primitive-type values to objects of these
classes, because they store only references to objects. Class ArrayList and Vector are resiz-
able-array implementations of List. Inserting an element between existing elements of an
ArrayList or Vector is an inefficient operation—all elements after the new one must be
moved out of the way, which could be an expensive operation in a collection with a large
number of elements. A LinkedList enables efficient insertion (or removal) of elements in
the middle of a collection. We discuss the architecture of linked lists in Chapter 22.

ArrayList and Vector have nearly identical behaviors. Vectors are synchronized by
default, whereas ArrayLists are not. Also, class Vector is from Java 1.0, before the collec-

Software Engineering Observation 18.1
Collection is used commonly as a parameter type in methods to allow polymorphic
processing of all objects that implement interface Collection.

Software Engineering Observation 18.2
Most collection implementations provide a constructor that takes a Collection

argument, thereby allowing a new collection to be constructed containing the elements of
the specified collection.

18.6 Lists 583

tions framework was added to Java. As such, Vector has some methods that are not part of
interface List and are not implemented in class ArrayList but perform identical tasks. For
example, Vector methods addElement and add both append an element to a Vector, but
only method add is specified in interface List and implemented by ArrayList. Unsynchro-
nized collections provide better performance than synchronized ones. For this reason, ArrayList
is typically preferred over Vector in programs that do not share a collection among threads.
Separately, the Java collections API provides synchronization wrappers (Section 18.13) that
can be used to add synchronization to the unsynchronized collections, and several powerful
synchronized collections are available in the Java concurrency APIs.

The following three subsections demonstrate the List and Collection capabilities.
Section 18.6.1 removes elements from an ArrayList with an Iterator. Section 18.6.2
uses ListIterator and several List- and LinkedList-specific methods.

18.6.1 ArrayList and Iterator

Figure 18.2 uses an ArrayList (introduced in Section 7.14) to demonstrate several capa-
bilities of interface Collection. The program places two Color arrays in ArrayLists and
uses an Iterator to remove elements in the second ArrayList collection from the first.

Performance Tip 18.1
ArrayLists behave like Vectors without synchronization and therefore execute faster
than Vectors, because ArrayLists do not have the overhead of thread synchronization.

Software Engineering Observation 18.3
LinkedLists can be used to create stacks, queues and deques (double-ended queues,
pronounced “decks”). The collections framework provides implementations of some of
these data structures.

1 // Fig. 18.2: CollectionTest.java
2 // Collection interface demonstrated via an ArrayList object.
3 import java.util.List;
4 import java.util.ArrayList;
5 import java.util.Collection;
6 import java.util.Iterator;
7
8 public class CollectionTest
9 {

10 public static void main(String[] args)
11 {
12 // add elements in colors array to list
13 String[] colors = { "MAGENTA", "RED", "WHITE", "BLUE", "CYAN" };
14
15
16 for (String color : colors)
17
18
19 // add elements in removeColors array to removeList
20 String[] removeColors = { "RED", "WHITE", "BLUE" };

Fig. 18.2 | Collection interface demonstrated via an ArrayList object. (Part 1 of 2.)

List< String > list = new ArrayList< String >();

list.add(color); // adds color to end of list

584 Chapter 18 Generic Collections

Lines 13 and 20 declare and initialize String arrays colors and removeColors. Lines
14 and 21 create ArrayList<String> objects and assign their references to List<String>

variables list and removeList, respectively. Recall that ArrayList is a generic class, so we
can specify a type argument (String in this case) to indicate the type of the elements in
each list. We refer to the ArrayLists in this example via List variables. This makes our
code more flexible and easier to modify. If we later decide that LinkedLists would be
more appropriate, we’ll need to modify only lines 14 and 21 where we created the Array-

List objects.

21
22
23 for (String color : removeColors)
24
25
26 // output list contents
27 System.out.println("ArrayList: ");
28
29 for (int count = 0; count < ; count++)
30 System.out.printf("%s ",);
31
32 // remove from list the colors contained in removeList
33 removeColors(list, removeList);
34
35 // output list contents
36 System.out.println("\n\nArrayList after calling removeColors: ");
37
38 for (String color : list)
39 System.out.printf("%s ", color);
40 } // end main
41
42 // remove colors specified in collection2 from collection1
43 private static void removeColors(,
44)
45 {
46 // get iterator
47
48
49 // loop while collection has items
50 while ()
51 {
52
53
54 } // end while
55 } // end method removeColors
56 } // end class CollectionTest

ArrayList:
MAGENTA RED WHITE BLUE CYAN

ArrayList after calling removeColors:
MAGENTA CYAN

Fig. 18.2 | Collection interface demonstrated via an ArrayList object. (Part 2 of 2.)

List< String > removeList = new ArrayList< String >();

removeList.add(color);

list.size()
list.get(count)

Collection< String > collection1
Collection< String > collection2

Iterator< String > iterator = collection1.iterator();

iterator.hasNext()

if (collection2.contains(iterator.next()))
iterator.remove(); // remove current Color

18.6 Lists 585

Lines 16–17 populate list with Strings stored in array colors, and lines 23–24 pop-
ulate removeList with Strings stored in array removeColors using List method add.
Lines 29–30 output each element of list. Line 29 calls List method size to get the
number of elements in the ArrayList. Line 30 uses List method get to retrieve indi-
vidual element values. Lines 29–30 also could have used the enhanced for statement
(which we’ll demonstrate with collections in other examples).

Line 33 calls method removeColors (lines 43–55), passing list and removeList as
arguments. Method removeColors deletes the Strings in removeList from the Strings
in list. Lines 38–39 print list’s elements after removeColors completes its task.

Method removeColors declares two Collection<String> parameters (lines 43–44)
that allow any two Collections containing strings to be passed as arguments to this method.
The method accesses the elements of the first Collection (collection1) via an Iterator.
Line 47 calls Collection method iterator to get an Iterator for the Collection. Inter-
faces Collection and Iterator are generic types. The loop-continuation condition (line 50)
calls Iterator method hasNext to determine whether the Collection contains more ele-
ments. Method hasNext returns true if another element exists and false otherwise.

The if condition in line 52 calls Iterator method next to obtain a reference to the
next element, then uses method contains of the second Collection (collection2) to
determine whether collection2 contains the element returned by next. If so, line 53 calls
Iterator method remove to remove the element from the Collection collection1.

New in Java SE 7: Type Inference with the <> Notation
Lines 14 and 21 specify the type stored in the ArrayList (that is, String) on the left and
right sides of the initialization statements. Java SE 7 supports type inferencing with the <>
notation in statements that declare and create generic type variables and objects. For ex-
ample, line 14 can be written as:

In this case, Java uses the type in angle brackets on the left of the declaration (that is,
String) as the type stored int the ArrayList created on the right side of the declaration.

18.6.2 LinkedList

Figure 18.3 demonstrates various operations on LinkedLists. The program creates two
LinkedLists of Strings. The elements of one List are added to the other. Then all the
Strings are converted to uppercase, and a range of elements is deleted.

Common Programming Error 18.1
If a collection is modified by one of its methods after an iterator is created for that collec-
tion, the iterator immediately becomes invalid—operations performed with the iterator
after this point throw ConcurrentModificationExceptions. For this reason, iterators
are said to be “fail fast.”

List< String > list = new ArrayList<>();

1 // Fig. 18.3: ListTest.java
2 // Lists, LinkedLists and ListIterators.
3 import java.util.List;

Fig. 18.3 | Lists, LinkedLists and ListIterators. (Part 1 of 3.)

586 Chapter 18 Generic Collections

4 import java.util.LinkedList;
5 import java.util.ListIterator;
6
7 public class ListTest
8 {
9 public static void main(String[] args)

10 {
11 // add colors elements to list1
12 String[] colors =
13 { "black", "yellow", "green", "blue", "violet", "silver" };
14 List< String > list1 = new LinkedList< String >();
15
16 for (String color : colors)
17
18
19 // add colors2 elements to list2
20 String[] colors2 =
21 { "gold", "white", "brown", "blue", "gray", "silver" };
22 List< String > list2 = new LinkedList< String >();
23
24 for (String color : colors2)
25
26
27
28 list2 = null; // release resources
29 printList(list1); // print list1 elements
30
31 convertToUppercaseStrings(list1); // convert to uppercase string
32 printList(list1); // print list1 elements
33
34 System.out.print("\nDeleting elements 4 to 6...");
35 removeItems(list1, 4, 7); // remove items 4-6 from list
36 printList(list1); // print list1 elements
37 printReversedList(list1); // print list in reverse order
38 } // end main
39
40 // output List contents
41 private static void printList()
42 {
43 System.out.println("\nlist: ");
44
45 for (String color : list)
46 System.out.printf("%s ", color);
47
48 System.out.println();
49 } // end method printList
50
51 // locate String objects and convert to uppercase
52 private static void convertToUppercaseStrings()
53 {
54
55

Fig. 18.3 | Lists, LinkedLists and ListIterators. (Part 2 of 3.)

list1.add(color);

list2.add(color);

list1.addAll(list2); // concatenate lists

List< String > list

List< String > list

ListIterator< String > iterator = list.listIterator();

18.6 Lists 587

Lines 14 and 22 create LinkedLists list1 and list2 of type String. LinkedList is
a generic class that has one type parameter for which we specify the type argument String
in this example. Lines 16–17 and 24–25 call List method add to append elements from
arrays colors and colors2 to the end of list1 and list2, respectively.

Line 27 calls List method addAll to append all elements of list2 to the end of
list1. Line 28 sets list2 to null, so the LinkedList to which list2 referred can be gar-
bage collected. Line 29 calls method printList (lines 41–49) to output list1’s contents.
Line 31 calls method convertToUppercaseStrings (lines 52–61) to convert each String

element to uppercase, then line 32 calls printList again to display the modified Strings.
Line 35 calls method removeItems (lines 64–68) to remove the elements starting at index
4 up to, but not including, index 7 of the list. Line 37 calls method printReversedList

(lines 71–80) to print the list in reverse order.

56 while ()
57 {
58
59
60 } // end while
61 } // end method convertToUppercaseStrings
62
63 // obtain sublist and use clear method to delete sublist items
64 private static void removeItems(,
65 int start, int end)
66 {
67
68 } // end method removeItems
69
70 // print reversed list
71 private static void printReversedList()
72 {
73
74
75 System.out.println("\nReversed List:");
76
77 // print list in reverse order
78 while ()
79 System.out.printf("%s ",);
80 } // end method printReversedList
81 } // end class ListTest

list:
black yellow green blue violet silver gold white brown blue gray silver

list:
BLACK YELLOW GREEN BLUE VIOLET SILVER GOLD WHITE BROWN BLUE GRAY SILVER

Deleting elements 4 to 6...
list:
BLACK YELLOW GREEN BLUE WHITE BROWN BLUE GRAY SILVER

Reversed List:
SILVER GRAY BLUE BROWN WHITE BLUE GREEN YELLOW BLACK

Fig. 18.3 | Lists, LinkedLists and ListIterators. (Part 3 of 3.)

iterator.hasNext()

String color = iterator.next(); // get item
iterator.set(color.toUpperCase()); // convert to upper case

List< String > list

list.subList(start, end).clear(); // remove items

List< String > list

ListIterator< String > iterator = list.listIterator(list.size());

iterator.hasPrevious()
iterator.previous()

588 Chapter 18 Generic Collections

Method convertToUppercaseStrings

Method convertToUppercaseStrings (lines 52–61) changes lowercase String elements in
its List argument to uppercase Strings. Line 54 calls List method listIterator to get
the List’s bidirectional iterator (i.e., one that can traverse a List backward or forward).
ListIterator is also a generic class. In this example, the ListIterator references String
objects, because method listIterator is called on a List of Strings. Line 56 calls method
hasNext to determine whether the List contains another element. Line 58 gets the next
String in the List. Line 59 calls String method toUpperCase to get an uppercase version
of the String and calls ListIterator method set to replace the current String to which
iterator refers with the String returned by method toUpperCase. Like method toUpper-

Case, String method toLowerCase returns a lowercase version of the String.

Method removeItems

Method removeItems (lines 64–68) removes a range of items from the list. Line 67 calls
List method subList to obtain a portion of the List (called a sublist). This is a so-called
range-view method, which enables the program to view a portion of the list. The sublist
is simply a view into the List on which subList is called. Method subList takes as argu-
ments the beginning and ending index for the sublist. The ending index is not part of the
range of the sublist. In this example, line 35 passes 4 for the beginning index and 7 for the
ending index to subList. The sublist returned is the set of elements with indices 4 through
6. Next, the program calls List method clear on the sublist to remove the elements of
the sublist from the List. Any changes made to a sublist are also made to the original List.

Method printReversedList

Method printReversedList (lines 71–80) prints the list backward. Line 73 calls List

method listIterator with the starting position as an argument (in our case, the last ele-
ment in the list) to get a bidirectional iterator for the list. List method size returns the
number of items in the List. The while condition (line 78) calls ListIterator’s hasPre-

vious method to determine whether there are more elements while traversing the list
backward. Line 79 calls ListIterator’s previous method to get the previous element
from the list and outputs it to the standard output stream.

Views into Collections and Arrays Method asList

An important feature of the collections framework is the ability to manipulate the ele-
ments of one collection type (such as a set) through a different collection type (such as a
list), regardless of the collection’s internal implementation. The set of public methods
through which collections are manipulated is called a view.

Class Arrays provides static method asList to view an array (sometimes called the
backing array) as a List collection. A List view allows you to manipulate the array as if it
were a list. This is useful for adding the elements in an array to a collection and for sorting
array elements. The next example demonstrates how to create a LinkedList with a List

view of an array, because we cannot pass the array to a LinkedList constructor. Sorting
array elements with a List view is demonstrated in Fig. 18.7. Any modifications made
through the List view change the array, and any modifications made to the array change
the List view. The only operation permitted on the view returned by asList is set, which
changes the value of the view and the backing array. Any other attempts to change the view
(such as adding or removing elements) result in an UnsupportedOperationException.

18.6 Lists 589

Viewing Arrays as Lists and Converting Lists to Arrays
Figure 18.4 uses Arrays method asList to view an array as a List and uses List method
toArray to get an array from a LinkedList collection. The program calls method asList

to create a List view of an array, which is used to initialize a LinkedList object, then adds
a series of strings to the LinkedList and calls method toArray to obtain an array contain-
ing references to the Strings.

Lines 13–14 construct a LinkedList of Strings containing the elements of array
colors. Line 14 uses Arrays method asList to return a List view of the array, then uses
that to initialize the LinkedList with its constructor that receives a Collection as an argu-
ment (a List is a Collection). Line 16 calls LinkedList method addLast to add "red"

1 // Fig. 18.4: UsingToArray.java
2 // Viewing arrays as Lists and converting Lists to arrays.
3 import java.util.LinkedList;
4 import java.util.Arrays;
5
6 public class UsingToArray
7 {
8 // creates a LinkedList, adds elements and converts to array
9 public static void main(String[] args)

10 {
11 String[] colors = { "black", "blue", "yellow" };
12
13
14
15
16
17
18
19
20
21
22
23
24 System.out.println("colors: ");
25
26 for (String color : colors)
27 System.out.println(color);
28 } // end main
29 } // end class UsingToArray

colors:
cyan
black
blue
yellow
green
red
pink

Fig. 18.4 | Viewing arrays as Lists and converting Lists to arrays.

LinkedList< String > links =
new LinkedList< String >(Arrays.asList(colors));

links.addLast("red"); // add as last item
links.add("pink"); // add to the end
links.add(3, "green"); // add at 3rd index
links.addFirst("cyan"); // add as first item

// get LinkedList elements as an array
colors = links.toArray(new String[links.size()]);

590 Chapter 18 Generic Collections

to the end of links. Lines 17–18 call LinkedList method add to add "pink" as the last
element and "green" as the element at index 3 (i.e., the fourth element). Method addLast

(line 16) functions identically to method add (line 17). Line 19 calls LinkedList method
addFirst to add "cyan" as the new first item in the LinkedList. The add operations are
permitted because they operate on the LinkedList object, not the view returned by
asList. [Note: When "cyan" is added as the first element, "green" becomes the fifth ele-
ment in the LinkedList.]

Line 22 calls the List interface’s toArraymethod to get a String array from links. The
array is a copy of the list’s elements—modifying the array’s contents does not modify the list.
The array passed to method toArray is of the same type that you’d like method toArray to
return. If the number of elements in that array is greater than or equal to the number of ele-
ments in the LinkedList, toArray copies the list’s elements into its array argument and
returns that array. If the LinkedList has more elements than the number of elements in the
array passed to toArray, toArray allocates a new array of the same type it receives as an argu-
ment, copies the list’s elements into the new array and returns the new array.

18.7 Collections Methods
Class Collections provides several high-performance algorithms for manipulating collec-
tion elements. The algorithms (Fig. 18.5) are implemented as static methods. The meth-
ods sort, binarySearch, reverse, shuffle, fill and copy operate on Lists. Methods
min, max, addAll, frequency and disjoint operate on Collections.

Common Programming Error 18.2
Passing an array that contains data to toArray can cause logic errors. If the number of
elements in the array is smaller than the number of elements in the list on which toArray

is called, a new array is allocated to store the list’s elements—without preserving the ar-
ray argument’s elements. If the number of elements in the array is greater than the num-
ber of elements in the list, the elements of the array (starting at index zero) are overwritten
with the list’s elements. Array elements that are not overwritten retain their values.

Method Description

sort Sorts the elements of a List.
binarySearch Locates an object in a List.
reverse Reverses the elements of a List.
shuffle Randomly orders a List’s elements.
fill Sets every List element to refer to a specified object.
copy Copies references from one List into another.
min Returns the smallest element in a Collection.
max Returns the largest element in a Collection.
addAll Appends all elements in an array to a Collection.
frequency Calculates how many collection elements are equal to the specified element.
disjoint Determines whether two collections have no elements in common.

Fig. 18.5 | Collections methods.

18.7 Collections Methods 591

18.7.1 Method sort

Method sort sorts the elements of a List, which must implement the Comparable inter-
face. The order is determined by the natural order of the elements’ type as implemented
by a compareTo method. Method compareTo is declared in interface Comparable and is
sometimes called the natural comparison method. The sort call may specify as a second
argument a Comparator object that determines an alternative ordering of the elements.

Sorting in Ascending Order
Figure 18.6 uses Collections method sort to order the elements of a List in ascending
order (line 17). Recall that List is a generic type and accepts one type argument that spec-
ifies the list element type—line 14 creates list as a List of Strings. Lines 15 and 20 each
use an implicit call to the list’s toString method to output the list contents in the format
shown in the output.

Sorting in Descending Order
Figure 18.7 sorts the same list of strings used in Fig. 18.6 in descending order. The exam-
ple introduces the Comparator interface, which is used for sorting a Collection’s elements
in a different order. Line 18 calls Collections’s method sort to order the List in de-

Software Engineering Observation 18.4
The collections framework methods are polymorphic. That is, each can operate on objects
that implement specific interfaces, regardless of the underlying implementations.

1 // Fig. 18.6: Sort1.java
2 // Collections method sort.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6
7 public class Sort1
8 {
9 public static void main(String[] args)

10 {
11 String[] suits = { "Hearts", "Diamonds", "Clubs", "Spades" };
12
13 // Create and display a list containing the suits array elements
14 List< String > list = Arrays.asList(suits); // create List
15 System.out.printf("Unsorted array elements: %s\n", list);
16
17
18
19 // output list
20 System.out.printf("Sorted array elements: %s\n", list);
21 } // end main
22 } // end class Sort1

Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted array elements: [Clubs, Diamonds, Hearts, Spades]

Fig. 18.6 | Collections method sort.

Collections.sort(list); // sort ArrayList

592 Chapter 18 Generic Collections

scending order. The static Collections method reverseOrder returns a Comparator

object that orders the collection’s elements in reverse order.

Sorting with a Comparator

Figure 18.8 creates a custom Comparator class, named TimeComparator, that implements
interface Comparator to compare two Time2 objects. Class Time2, declared in Fig. 8.5, rep-
resents times with hours, minutes and seconds.

1 // Fig. 18.7: Sort2.java
2 // Using a Comparator object with method sort.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6
7 public class Sort2
8 {
9 public static void main(String[] args)

10 {
11 String[] suits = { "Hearts", "Diamonds", "Clubs", "Spades" };
12
13 // Create and display a list containing the suits array elements
14 List< String > list = Arrays.asList(suits); // create List
15 System.out.printf("Unsorted array elements: %s\n", list);
16
17
18
19
20 // output List elements
21 System.out.printf("Sorted list elements: %s\n", list);
22 } // end main
23 } // end class Sort2

Unsorted array elements: [Hearts, Diamonds, Clubs, Spades]
Sorted list elements: [Spades, Hearts, Diamonds, Clubs]

Fig. 18.7 | Collections method sort with a Comparator object.

1 // Fig. 18.8: TimeComparator.java
2 // Custom Comparator class that compares two Time2 objects.
3 import java.util.Comparator;
4
5 public class TimeComparator implements

6 {
7 public int compare(,)
8 {
9 int hourCompare = time1.getHour() - time2.getHour(); // compare hour

10
11 // test the hour first
12 if (hourCompare != 0)
13 return hourCompare;
14

Fig. 18.8 | Custom Comparator class that compares two Time2 objects. (Part 1 of 2.)

// sort in descending order using a comparator
Collections.sort(list, Collections.reverseOrder());

Comparator< Time2 >

Time2 time1 Time2 time2

18.7 Collections Methods 593

Class TimeComparator implements interface Comparator, a generic type that takes
one type argument (in this case Time2). A class that implements Comparator must declare
a compare method that receives two arguments and returns a negative integer if the first
argument is less than the second, 0 if the arguments are equal or a positive integer if the
first argument is greater than the second. Method compare (lines 7–26) performs compar-
isons between Time2 objects. Line 9 compares the two hours of the Time2 objects. If the
hours are different (line 12), then we return this value. If this value is positive, then the
first hour is greater than the second and the first time is greater than the second. If this
value is negative, then the first hour is less than the second and the first time is less than
the second. If this value is zero, the hours are the same and we must test the minutes (and
maybe the seconds) to determine which time is greater.

Figure 18.9 sorts a list using the custom Comparator class TimeComparator. Line 11
creates an ArrayList of Time2 objects. Recall that both ArrayList and List are generic
types and accept a type argument that specifies the element type of the collection. Lines
13–17 create five Time2 objects and add them to this list. Line 23 calls method sort,
passing it an object of our TimeComparator class (Fig. 18.8).

15 int minuteCompare =
16 time1.getMinute() - time2.getMinute(); // compare minute
17
18 // then test the minute
19 if (minuteCompare != 0)
20 return minuteCompare;
21
22 int secondCompare =
23 time1.getSecond() - time2.getSecond(); // compare second
24
25 return secondCompare; // return result of comparing seconds
26 } // end method compare
27 } // end class TimeComparator

1 // Fig. 18.9: Sort3.java
2 // Collections method sort with a custom Comparator object.
3 import java.util.List;
4 import java.util.ArrayList;
5 import java.util.Collections;
6
7 public class Sort3
8 {
9 public static void main(String[] args)

10 {
11 List< Time2 > list = new ArrayList< Time2 >(); // create List
12
13 list.add(new Time2(6, 24, 34));
14 list.add(new Time2(18, 14, 58));
15 list.add(new Time2(6, 05, 34));
16 list.add(new Time2(12, 14, 58));

Fig. 18.9 | Collections method sort with a custom Comparator object. (Part 1 of 2.)

Fig. 18.8 | Custom Comparator class that compares two Time2 objects. (Part 2 of 2.)

594 Chapter 18 Generic Collections

18.7.2 Method shuffle

Method shuffle randomly orders a List’s elements. Chapter 7 presented a card shuffling
and dealing simulation that shuffled a deck of cards with a loop. Figure 18.10 uses method
shuffle to shuffle a deck of Card objects that might be used in a card-game simulator.

Class Card (lines 8–41) represents a card in a deck of cards. Each Card has a face and
a suit. Lines 10–12 declare two enum types—Face and Suit—which represent the face and
the suit of the card, respectively. Method toString (lines 37–40) returns a String con-
taining the face and suit of the Card separated by the string " of ". When an enum con-
stant is converted to a string, the constant’s identifier is used as the string representation.
Normally we would use all uppercase letters for enum constants. In this example, we chose
to use capital letters for only the first letter of each enum constant because we want the card
to be displayed with initial capital letters for the face and the suit (e.g., "Ace of Spades").

17 list.add(new Time2(6, 24, 22));
18
19 // output List elements
20 System.out.printf("Unsorted array elements:\n%s\n", list);
21
22
23
24
25 // output List elements
26 System.out.printf("Sorted list elements:\n%s\n", list);
27 } // end main
28 } // end class Sort3

Unsorted array elements:
[6:24:34 AM, 6:14:58 PM, 6:05:34 AM, 12:14:58 PM, 6:24:22 AM]
Sorted list elements:
[6:05:34 AM, 6:24:22 AM, 6:24:34 AM, 12:14:58 PM, 6:14:58 PM]

1 // Fig. 18.10: DeckOfCards.java
2 // Card shuffling and dealing with Collections method shuffle.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6
7 // class to represent a Card in a deck of cards
8 class Card
9 {

10 public static enum Face { Ace, Deuce, Three, Four, Five, Six,
11 Seven, Eight, Nine, Ten, Jack, Queen, King };
12 public static enum Suit { Clubs, Diamonds, Hearts, Spades };
13
14 private final Face face; // face of card
15 private final Suit suit; // suit of card

Fig. 18.10 | Card shuffling and dealing with Collections method shuffle. (Part 1 of 3.)

Fig. 18.9 | Collections method sort with a custom Comparator object. (Part 2 of 2.)

// sort in order using a comparator
Collections.sort(list, new TimeComparator());

18.7 Collections Methods 595

16
17 // two-argument constructor
18 public Card(Face cardFace, Suit cardSuit)
19 {
20 face = cardFace; // initialize face of card
21 suit = cardSuit; // initialize suit of card
22 } // end two-argument Card constructor
23
24 // return face of the card
25 public Face getFace()
26 {
27 return face;
28 } // end method getFace
29
30 // return suit of Card
31 public Suit getSuit()
32 {
33 return suit;
34 } // end method getSuit
35
36 // return String representation of Card
37 public String toString()
38 {
39 return String.format("%s of %s", face, suit);
40 } // end method toString
41 } // end class Card
42
43 // class DeckOfCards declaration
44 public class DeckOfCards
45 {
46 private List< Card > list; // declare List that will store Cards
47
48 // set up deck of Cards and shuffle
49 public DeckOfCards()
50 {
51 Card[] deck = new Card[52];
52 int count = 0; // number of cards
53
54 // populate deck with Card objects
55 for (: Card.Suit.values())
56 {
57 for (: Card.Face.values())
58 {
59 deck[count] = new Card(face, suit);
60 ++count;
61 } // end for
62 } // end for
63
64
65
66 } // end DeckOfCards constructor
67

Fig. 18.10 | Card shuffling and dealing with Collections method shuffle. (Part 2 of 3.)

Card.Suit suit

Card.Face face

list = Arrays.asList(deck); // get List
Collections.shuffle(list); // shuffle deck

596 Chapter 18 Generic Collections

Lines 55–62 populate the deck array with cards that have unique face and suit com-
binations. Both Face and Suit are public static enum types of class Card. To use these
enum types outside of class Card, you must qualify each enum’s type name with the name
of the class in which it resides (i.e., Card) and a dot (.) separator. Hence, lines 55 and 57
use Card.Suit and Card.Face to declare the control variables of the for statements. Recall
that method values of an enum type returns an array that contains all the constants of the
enum type. Lines 55–62 use enhanced for statements to construct 52 new Cards.

The shuffling occurs in line 65, which calls static method shuffle of class
Collections to shuffle the elements of the array. Method shuffle requires a List argu-
ment, so we must obtain a List view of the array before we can shuffle it. Line 64 invokes
static method asList of class Arrays to get a List view of the deck array.

Method printCards (lines 69–75) displays the deck of cards in four columns. In each
iteration of the loop, lines 73–74 output a card left justified in a 19-character field followed
by either a newline or an empty string based on the number of cards output so far. If the
number of cards is divisible by 4, a newline is output; otherwise, the empty string is output.

18.7.3 Methods reverse, fill, copy, max and min

Class Collections provides methods for reversing, filling and copying Lists. Collec-
tions method reverse reverses the order of the elements in a List, and method fill

68 // output deck
69 public void printCards()
70 {
71 // display 52 cards in two columns
72 for (int i = 0; i < list.size(); i++)
73 System.out.printf("%-19s%s", list.get(i),
74 ((i + 1) % 4 == 0) ? "\n" : "");
75 } // end method printCards
76
77 public static void main(String[] args)
78 {
79 DeckOfCards cards = new DeckOfCards();
80 cards.printCards();
81 } // end main
82 } // end class DeckOfCards

Deuce of Clubs Six of Spades Nine of Diamonds Ten of Hearts
Three of Diamonds Five of Clubs Deuce of Diamonds Seven of Clubs
Three of Spades Six of Diamonds King of Clubs Jack of Hearts
Ten of Spades King of Diamonds Eight of Spades Six of Hearts
Nine of Clubs Ten of Diamonds Eight of Diamonds Eight of Hearts
Ten of Clubs Five of Hearts Ace of Clubs Deuce of Hearts
Queen of Diamonds Ace of Diamonds Four of Clubs Nine of Hearts
Ace of Spades Deuce of Spades Ace of Hearts Jack of Diamonds
Seven of Diamonds Three of Hearts Four of Spades Four of Diamonds
Seven of Spades King of Hearts Seven of Hearts Five of Diamonds
Eight of Clubs Three of Clubs Queen of Clubs Queen of Spades
Six of Clubs Nine of Spades Four of Hearts Jack of Clubs
Five of Spades King of Spades Jack of Spades Queen of Hearts

Fig. 18.10 | Card shuffling and dealing with Collections method shuffle. (Part 3 of 3.)

18.7 Collections Methods 597

overwrites elements in a List with a specified value. The fill operation is useful for re-
initializing a List. Method copy takes two arguments—a destination List and a source
List. Each source List element is copied to the destination List. The destination List

must be at least as long as the source List; otherwise, an IndexOutOfBoundsException oc-
curs. If the destination List is longer, the elements not overwritten are unchanged.

Each method we’ve seen so far operates on Lists. Methods min and max each operate
on any Collection. Method min returns the smallest element in a Collection, and
method max returns the largest element in a Collection. Both of these methods can be
called with a Comparator object as a second argument to perform custom comparisons of
objects, such as the TimeComparator in Fig. 18.9. Figure 18.11 demonstrates methods
reverse, fill, copy, max and min.

1 // Fig. 18.11: Algorithms1.java
2 // Collections methods reverse, fill, copy, max and min.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6
7 public class Algorithms1
8 {
9 public static void main(String[] args)

10 {
11 // create and display a List< Character >
12 Character[] letters = { 'P', 'C', 'M' };
13 List< Character > list = Arrays.asList(letters); // get List
14 System.out.println("list contains: ");
15 output(list);
16
17 // reverse and display the List< Character >
18
19 System.out.println("\nAfter calling reverse, list contains: ");
20 output(list);
21
22 // create copyList from an array of 3 Characters
23 Character[] lettersCopy = new Character[3];
24 List< Character > copyList = Arrays.asList(lettersCopy);
25
26 // copy the contents of list into copyList
27
28 System.out.println("\nAfter copying, copyList contains: ");
29 output(copyList);
30
31 // fill list with Rs
32
33 System.out.println("\nAfter calling fill, list contains: ");
34 output(list);
35 } // end main
36
37 // output List information
38 private static void output(List< Character > listRef)
39 {

Fig. 18.11 | Collections methods reverse, fill, copy, max and min. (Part 1 of 2.)

Collections.reverse(list); // reverse order the elements

Collections.copy(copyList, list);

Collections.fill(list, 'R');

598 Chapter 18 Generic Collections

Line 13 creates List<Character> variable list and initializes it with a List view of
the Character array letters. Lines 14–15 output the current contents of the List. Line
18 calls Collections method reverse to reverse the order of list. Method reverse takes
one List argument. Since list is a List view of array letters, the array’s elements are
now in reverse order. The reversed contents are output in lines 19–20. Line 27 uses Col-
lections method copy to copy list’s elements into copyList. Changes to copyList do
not change letters, because copyList is a separate List that is not a List view of the
array letters. Method copy requires two List arguments—the destination List and the
source List. Line 32 calls Collections method fill to place the character 'R' in each
list element. Because list is a List view of the array letters, this operation changes
each element in letters to 'R'. Method fill requires a List for the first argument and
an Object for the second argument—in this case, the Object is the boxed version of the
character 'R'. Lines 45–46 call Collections methods max and min to find the largest and
the smallest element of a Collection, respectively. Recall that interface List extends inter-
face Collection, so a List is a Collection.

18.7.4 Method binarySearch

In Section 19.2.2, we studied the high-speed binary search algorithm. This algorithm is
built into the Java collections framework as a static Collections method binarySearch,
which locates an object in a List (e.g., a LinkedList or an ArrayList). If the object is
found, its index is returned. If the object is not found, binarySearch returns a negative

40 System.out.print("The list is: ");
41
42 for (Character element : listRef)
43 System.out.printf("%s ", element);
44
45 System.out.printf("\nMax: %s",);
46 System.out.printf(" Min: %s\n",);
47 } // end method output
48 } // end class Algorithms1

list contains:
The list is: P C M
Max: P Min: C

After calling reverse, list contains:
The list is: M C P
Max: P Min: C

After copying, copyList contains:
The list is: M C P
Max: P Min: C

After calling fill, list contains:
The list is: R R R
Max: R Min: R

Fig. 18.11 | Collections methods reverse, fill, copy, max and min. (Part 2 of 2.)

Collections.max(listRef)
Collections.min(listRef)

18.7 Collections Methods 599

value. Method binarySearch determines this negative value by first calculating the inser-
tion point and making its sign negative. Then, binarySearch subtracts 1 from the inser-
tion point to obtain the return value, which guarantees that method binarySearch returns
positive numbers (>= 0) if and only if the object is found. If multiple elements in the list
match the search key, there’s no guarantee which one will be located first. Figure 18.12
uses method binarySearch to search for a series of strings in an ArrayList.

1 // Fig. 18.12: BinarySearchTest.java
2 // Collections method binarySearch.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.Collections;
6 import java.util.ArrayList;
7
8 public class BinarySearchTest
9 {

10 public static void main(String[] args)
11 {
12 // create an ArrayList< String > from the contents of colors array
13 String[] colors = { "red", "white", "blue", "black", "yellow",
14 "purple", "tan", "pink" };
15 List< String > list =
16 new ArrayList< String >(Arrays.asList(colors));
17
18
19 System.out.printf("Sorted ArrayList: %s\n", list);
20
21 // search list for various values
22 printSearchResults(list, colors[3]); // first item
23 printSearchResults(list, colors[0]); // middle item
24 printSearchResults(list, colors[7]); // last item
25 printSearchResults(list, "aqua"); // below lowest
26 printSearchResults(list, "gray"); // does not exist
27 printSearchResults(list, "teal"); // does not exist
28 } // end main
29
30 // perform search and display result
31 private static void printSearchResults(
32 List< String > list, String key)
33 {
34 int result = 0;
35
36 System.out.printf("\nSearching for: %s\n", key);
37
38
39 if (result >= 0)
40 System.out.printf("Found at index %d\n", result);
41 else

42 System.out.printf("Not Found (%d)\n",result);
43 } // end method printSearchResults
44 } // end class BinarySearchTest

Fig. 18.12 | Collections method binarySearch. (Part 1 of 2.)

Collections.sort(list); // sort the ArrayList

result = Collections.binarySearch(list, key);

600 Chapter 18 Generic Collections

Lines 15–16 initialize list with an ArrayList containing a copy of the elements in
array colors. Collections method binarySearch expects its List argument’s elements
to be sorted in ascending order, so line 18 uses Collections method sort to sort the list.
If the List argument’s elements are not sorted, the result of using binarySearch is unde-
fined. Line 19 outputs the sorted list. Lines 22–27 call method printSearchResults (lines
31–43) to perform searches and output the results. Line 37 calls Collections method
binarySearch to search list for the specified key. Method binarySearch takes a List as
the first argument and an Object as the second argument. Lines 39–42 output the results
of the search. An overloaded version of binarySearch takes a Comparator object as its
third argument, which specifies how binarySearch should compare the search key to the
List’s elements.

18.7.5 Methods addAll, frequency and disjoint

Class Collections also provides the methods addAll, frequency and disjoint. Collec-
tions method addAll takes two arguments—a Collection into which to insert the new
element(s) and an array that provides elements to be inserted. Collections method fre-

quency takes two arguments—a Collection to be searched and an Object to be searched
for in the collection. Method frequency returns the number of times that the second ar-
gument appears in the collection. Collections method disjoint takes two Collections
and returns true if they have no elements in common. Figure 18.13 demonstrates the use
of methods addAll, frequency and disjoint.

Sorted ArrayList: [black, blue, pink, purple, red, tan, white, yellow]

Searching for: black
Found at index 0

Searching for: red
Found at index 4

Searching for: pink
Found at index 2

Searching for: aqua
Not Found (-1)

Searching for: gray
Not Found (-3)

Searching for: teal
Not Found (-7)

1 // Fig. 18.13: Algorithms2.java
2 // Collections methods addAll, frequency and disjoint.
3 import java.util.ArrayList;
4 import java.util.List;
5 import java.util.Arrays;
6 import java.util.Collections;

Fig. 18.13 | Collections methods addAll, frequency and disjoint. (Part 1 of 2.)

Fig. 18.12 | Collections method binarySearch. (Part 2 of 2.)

18.7 Collections Methods 601

Line 14 initializes list1 with elements in array colors, and lines 17–19 add Strings
"black", "red" and "green" to list2. Line 27 invokes method addAll to add elements
in array colors to list2. Line 36 gets the frequency of String "red" in list2 using
method frequency. Line 41 invokes method disjoint to test whether Collections list1
and list2 have elements in common, which they do in this example.

7
8 public class Algorithms2
9 {

10 public static void main(String[] args)
11 {
12 // initialize list1 and list2
13 String[] colors = { "red", "white", "yellow", "blue" };
14 List< String > list1 = Arrays.asList(colors);
15 ArrayList< String > list2 = new ArrayList< String >();
16
17 list2.add("black"); // add "black" to the end of list2
18 list2.add("red"); // add "red" to the end of list2
19 list2.add("green"); // add "green" to the end of list2
20
21 System.out.print("Before addAll, list2 contains: ");
22
23 // display elements in list2
24 for (String s : list2)
25 System.out.printf("%s ", s);
26
27
28
29 System.out.print("\nAfter addAll, list2 contains: ");
30
31 // display elements in list2
32 for (String s : list2)
33 System.out.printf("%s ", s);
34
35
36
37
38
39
40
41
42
43 System.out.printf("list1 and list2 %s elements in common\n",
44 (disjoint ? "do not have" : "have"));
45 } // end main
46 } // end class Algorithms2

Before addAll, list2 contains: black red green
After addAll, list2 contains: black red green red white yellow blue
Frequency of red in list2: 2
list1 and list2 have elements in common

Fig. 18.13 | Collections methods addAll, frequency and disjoint. (Part 2 of 2.)

Collections.addAll(list2, colors); // add colors Strings to list2

// get frequency of "red"
int frequency = Collections.frequency(list2, "red");
System.out.printf(

"\nFrequency of red in list2: %d\n", frequency);

// check whether list1 and list2 have elements in common
boolean disjoint = Collections.disjoint(list1, list2);

602 Chapter 18 Generic Collections

18.8 Stack Class of Package java.util
In a world of software reuse, rather than building data structures as we need them, we can
often take advantage of existing data structures. In this section, we investigate class Stack
in the Java utilities package (java.util).

The Stack class extends the Vector class to implement a stack data structure. Because
class Stack extends class Vector, the entire public interface of class Vector is available to
clients of class Stack. Figure 18.14 demonstrates several of the Stack class’s methods. For
the details of class Stack, visit download.oracle.com/javase/6/docs/api/java/util/

Stack.html.

Error-Prevention Tip 18.1
Because Stack extends Vector, all public Vector methods can be called on Stack ob-
jects, even if the methods do not represent conventional stack operations. For example,
Vector method add can be used to insert an element anywhere in a stack—an operation
that could “corrupt” the stack. When manipulating a Stack, only methods push and pop

should be used to add elements to and remove elements from the Stack, respectively.

1 // Fig. 18.14: StackTest.java
2 // Stack class of package java.util.
3
4
5
6 public class StackTest
7 {
8 public static void main(String[] args)
9 {

10
11
12 // use push method
13
14 System.out.println("Pushed 12L");
15 printStack(stack);
16
17 System.out.println("Pushed 34567");
18 printStack(stack);
19
20 System.out.println("Pushed 1.0F");
21 printStack(stack);
22
23 System.out.println("Pushed 1234.5678 ");
24 printStack(stack);
25
26 // remove items from stack
27 try

28 {
29 Number removedObject = null;
30

Fig. 18.14 | Stack class of package java.util. (Part 1 of 2.)

import java.util.Stack;
import java.util.EmptyStackException;

Stack< Number > stack = new Stack< Number >(); // create a Stack

stack.push(12L); // push long value 12L

stack.push(34567); // push int value 34567

stack.push(1.0F); // push float value 1.0F

stack.push(1234.5678); // push double value 1234.5678

18.8 Stack Class of Package java.util 603

Line 10 creates an empty Stack of Numbers. Class Number (in package java.lang) is
the superclass of the type-wrapper classes for the primitive numeric types (e.g., Integer,
Double). By creating a Stack of Numbers, objects of any class that extends Number can be
pushed onto the Stack. Lines 13, 16, 19 and 22 each call Stack method push to add a
Number object to the top of the stack. Note the literals 12L (line 13) and 1.0F (line 19).
Any integer literal that has the suffix L is a long value. An integer literal without a suffix

31 // pop elements from stack
32 while (true)
33 {
34
35 System.out.printf("Popped %s\n", removedObject);
36 printStack(stack);
37 } // end while
38 } // end try
39 catch (EmptyStackException emptyStackException)
40 {
41 emptyStackException.printStackTrace();
42 } // end catch
43 } // end main
44
45 // display Stack contents
46 private static void printStack(Stack< Number > stack)
47 {
48 if ()
49 System.out.println("stack is empty\n"); // the stack is empty
50 else // stack is not empty
51 System.out.printf("stack contains: %s (top)\n", stack);
52 } // end method printStack
53 } // end class StackTest

Pushed 12L
stack contains: [12] (top)
Pushed 34567
stack contains: [12, 34567] (top)
Pushed 1.0F
stack contains: [12, 34567, 1.0] (top)
Pushed 1234.5678
stack contains: [12, 34567, 1.0, 1234.5678] (top)
Popped 1234.5678
stack contains: [12, 34567, 1.0] (top)
Popped 1.0
stack contains: [12, 34567] (top)
Popped 34567
stack contains: [12] (top)
Popped 12
stack is empty

java.util.EmptyStackException
at java.util.Stack.peek(Unknown Source)
at java.util.Stack.pop(Unknown Source)
at StackTest.main(StackTest.java:34)

Fig. 18.14 | Stack class of package java.util. (Part 2 of 2.)

removedObject = stack.pop(); // use pop method

stack.isEmpty()

604 Chapter 18 Generic Collections

is an int value. Similarly, any floating-point literal that has the suffix F is a float value.
A floating-point literal without a suffix is a double value. You can learn more about
numeric literals in the Java Language Specification at java.sun.com/docs/books/jls/

third_edition/html/expressions.html#15.8.1.
An infinite loop (lines 32–37) calls Stack method pop to remove the top element of

the stack. The method returns a Number reference to the removed element. If there are no
elements in the Stack, method pop throws an EmptyStackException, which terminates
the loop. Class Stack also declares method peek. This method returns the top element of
the stack without popping the element off the stack.

Method printStack (lines 46–52) displays the stack’s contents. The current top of
the stack (the last value pushed onto the stack) is the first value printed. Line 48 calls Stack
method isEmpty (inherited by Stack from class Vector) to determine whether the stack
is empty. If it’s empty, the method returns true; otherwise, false.

18.9 Class PriorityQueue and Interface Queue
Recall that a queue is a collection that represents a waiting line—typically, insertions are
made at the back of a queue and deletions are made from the front. In Section 22.6, we’ll
discuss and implement a queue data structure. In this section, we investigate Java’s Queue
interface and PriorityQueue class from package java.util. Interface Queue extends in-
terface Collection and provides additional operations for inserting, removing and in-
specting elements in a queue. PriorityQueue, which implements the Queue interface,
orders elements by their natural ordering as specified by Comparable elements’ compareTo
method or by a Comparator object that is supplied to the constructor.

Class PriorityQueue provides functionality that enables insertions in sorted order
into the underlying data structure and deletions from the front of the underlying data
structure. When adding elements to a PriorityQueue, the elements are inserted in priority
order such that the highest-priority element (i.e., the largest value) will be the first element
removed from the PriorityQueue.

The common PriorityQueue operations are offer to insert an element at the appro-
priate location based on priority order, poll to remove the highest-priority element of the
priority queue (i.e., the head of the queue), peek to get a reference to the highest-priority
element of the priority queue (without removing that element), clear to remove all ele-
ments in the priority queue and size to get the number of elements in the priority queue.
Figure 18.15 demonstrates the PriorityQueue class.

1 // Fig. 18.15: PriorityQueueTest.java
2 // PriorityQueue test program.
3 import java.util.PriorityQueue;
4
5 public class PriorityQueueTest
6 {
7 public static void main(String[] args)
8 {
9

10

Fig. 18.15 | PriorityQueue test program. (Part 1 of 2.)

// queue of capacity 11
PriorityQueue< Double > queue = new PriorityQueue< Double >();

18.10 Sets 605

Line 10 creates a PriorityQueue that stores Doubles with an initial capacity of 11 ele-
ments and orders the elements according to the object’s natural ordering (the defaults for
a PriorityQueue). PriorityQueue is a generic class. Line 10 instantiates a PriorityQueue
with a type argument Double. Class PriorityQueue provides five additional constructors.
One of these takes an int and a Comparator object to create a PriorityQueue with the
initial capacity specified by the int and the ordering by the Comparator. Lines 13–15 use
method offer to add elements to the priority queue. Method offer throws a NullPoin-

terException if the program attempts to add a null object to the queue. The loop in lines
20–24 uses method size to determine whether the priority queue is empty (line 20).
While there are more elements, line 22 uses PriorityQueue method peek to retrieve the
highest-priority element in the queue for output (without actually removing it from the
queue). Line 23 removes the highest-priority element in the queue with method poll,
which returns the removed element.

18.10 Sets
A Set is an unordered Collection of unique elements (i.e., no duplicate elements). The
collections framework contains several Set implementations, including HashSet and
TreeSet. HashSet stores its elements in a hash table, and TreeSet stores its elements in a
tree. Hash tables are presented in Section 18.11.

Figure 18.16 uses a HashSet to remove duplicate strings from a List. Recall that both
List and Collection are generic types, so line 16 creates a List that contains String

objects, and line 20 passes a Collection of Strings to method printNonDuplicates.
Method printNonDuplicates (lines 24–35) takes a Collection argument. Line 27

constructs a HashSet<String> from the Collection<String> argument. By definition,
Sets do not contain duplicates, so when the HashSet is constructed, it removes any dupli-
cates in the Collection. Lines 31–32 output elements in the Set.

11
12
13
14
15
16
17 System.out.print("Polling from queue: ");
18
19 // display elements in queue
20 while (> 0)
21 {
22 System.out.printf("%.1f ",); // view top element
23 // remove top element
24 } // end while
25 } // end main
26 } // end class PriorityQueueTest

Polling from queue: 3.2 5.4 9.8

Fig. 18.15 | PriorityQueue test program. (Part 2 of 2.)

// insert elements to queue
queue.offer(3.2);
queue.offer(9.8);
queue.offer(5.4);

queue.size()

queue.peek()
queue.poll();

606 Chapter 18 Generic Collections

Sorted Sets
The collections framework also includes the SortedSet interface (which extends Set) for
sets that maintain their elements in sorted order—either the elements’ natural order (e.g.,
numbers are in ascending order) or an order specified by a Comparator. Class TreeSet im-
plements SortedSet. The program in Fig. 18.17 places strings into a TreeSet. The strings
are sorted as they’re added to the TreeSet. This example also demonstrates range-view
methods, which enable a program to view a portion of a collection.

Lines 14–15 of create a TreeSet<String> that contains the elements of array colors,
then assigns the new TreeSet<String> to SortedSet<String> variable tree. Line 18

1 // Fig. 18.16: SetTest.java
2 // HashSet used to remove duplicate values from array of strings.
3 import java.util.List;
4 import java.util.Arrays;
5 import java.util.HashSet;
6 import java.util.Set;
7 import java.util.Collection;
8
9 public class SetTest

10 {
11 public static void main(String[] args)
12 {
13 // create and display a List< String >
14 String[] colors = { "red", "white", "blue", "green", "gray",
15 "orange", "tan", "white", "cyan", "peach", "gray", "orange" };
16
17 System.out.printf("List: %s\n", list);
18
19 // eliminate duplicates then print the unique values
20 printNonDuplicates(list);
21 } // end main
22
23 // create a Set from a Collection to eliminate duplicates
24 private static void printNonDuplicates()
25 {
26 // create a HashSet
27
28
29 System.out.print("\nNonduplicates are: ");
30
31 for (String value : set)
32 System.out.printf("%s ", value);
33
34 System.out.println();
35 } // end method printNonDuplicates
36 } // end class SetTest

List: [red, white, blue, green, gray, orange, tan, white, cyan, peach, gray,
orange]

Nonduplicates are: orange green white peach gray cyan red blue tan

Fig. 18.16 | HashSet used to remove duplicate values from an array of strings.

List< String > list = Arrays.asList(colors);

Collection< String > values

Set< String > set = new HashSet< String >(values);

18.10 Sets 607

outputs the initial set of strings using method printSet (lines 34–40), which we discuss
momentarily. Line 22 calls TreeSet method headSet to get a subset of the TreeSet in
which every element is less than "orange". The view returned from headSet is then output

1 // Fig. 18.17: SortedSetTest.java
2 // Using SortedSets and TreeSets.
3 import java.util.Arrays;
4 import java.util.SortedSet;
5 import java.util.TreeSet;
6
7 public class SortedSetTest
8 {
9 public static void main(String[] args)

10 {
11 // create TreeSet from array colors
12 String[] colors = { "yellow", "green", "black", "tan", "grey",
13 "white", "orange", "red", "green" };
14
15
16
17 System.out.print("sorted set: ");
18 printSet(tree); // output contents of tree
19
20 // get headSet based on "orange"
21 System.out.print("headSet (\"orange\"): ");
22 printSet();
23
24 // get tailSet based upon "orange"
25 System.out.print("tailSet (\"orange\"): ");
26 printSet();
27
28 // get first and last elements
29 System.out.printf("first: %s\n",);
30 System.out.printf("last : %s\n",);
31 } // end main
32
33 // output SortedSet using enhanced for statement
34 private static void printSet(SortedSet< String > set)
35 {
36 for (String s : set)
37 System.out.printf("%s ", s);
38
39 System.out.println();
40 } // end method printSet
41 } // end class SortedSetTest

sorted set: black green grey orange red tan white yellow
headSet ("orange"): black green grey
tailSet ("orange"): orange red tan white yellow
first: black
last : yellow

Fig. 18.17 | Using SortedSets and TreeSets.

SortedSet< String > tree =
new TreeSet< String >(Arrays.asList(colors));

tree.headSet("orange")

tree.tailSet("orange")

tree.first()
tree.last()

608 Chapter 18 Generic Collections

with printSet. If any changes are made to the subset, they’ll also be made to the original
TreeSet, because the subset returned by headSet is a view of the TreeSet.

Line 26 calls TreeSet method tailSet to get a subset in which each element is greater
than or equal to "orange", then outputs the result. Any changes made through the
tailSet view are made to the original TreeSet. Lines 29–30 call SortedSet methods
first and last to get the smallest and largest elements of the set, respectively.

Method printSet (lines 34–40) accepts a SortedSet as an argument and prints it.
Lines 36–37 print each element of the SortedSet using the enhanced for statement.

18.11 Maps
Maps associate keys to values. The keys in a Map must be unique, but the associated values
need not be. If a Map contains both unique keys and unique values, it’s said to implement
a one-to-one mapping. If only the keys are unique, the Map is said to implement a many-
to-one mapping—many keys can map to one value.

Maps differ from Sets in that Maps contain keys and values, whereas Sets contain only
values. Three of the several classes that implement interface Map are Hashtable, HashMap
and TreeMap. Hashtables and HashMaps store elements in hash tables, and TreeMaps store
elements in trees. This section discusses hash tables and provides an example that uses a
HashMap to store key/value pairs. Interface SortedMap extends Map and maintains its keys
in sorted order—either the elements’ natural order or an order specified by a Comparator.
Class TreeMap implements SortedMap.

Map Implementation with Hash Tables
When a program creates objects of new or existing types, it may need to store and retrieve
them efficiently. Storing and retrieving information with arrays is efficient if some aspect
of your data directly matches a numerical key value and if the keys are unique and tightly
packed. If you have 100 employees with nine-digit social security numbers and you want
to store and retrieve employee data by using the social security number as a key, the task
will require an array with over 700 million elements, because nine-digit Social Security
numbers must begin with 001–733 as per the Social Security Administration’s website

This is impractical for virtually all applications that use social security numbers as keys. A
program having an array that large could achieve high performance for both storing and
retrieving employee records by simply using the social security number as the array index.

Numerous applications have this problem—namely, that either the keys are of the
wrong type (e.g., not positive integers that correspond to array subscripts) or they’re of the
right type, but sparsely spread over a huge range. What is needed is a high-speed scheme for
converting keys such as social security numbers, inventory part numbers and the like into
unique array indices. Then, when an application needs to store something, the scheme could
convert the application’s key rapidly into an index, and the record could be stored at that slot
in the array. Retrieval is accomplished the same way: Once the application has a key for
which it wants to retrieve a data record, the application simply applies the conversion to the
key—this produces the array index where the data is stored and retrieved.

The scheme we describe here is the basis of a technique called hashing. Why the
name? When we convert a key into an array index, we literally scramble the bits, forming

www.socialsecurity.gov/employer/stateweb.htm

www.socialsecurity.gov/employer/stateweb.htm

18.11 Maps 609

a kind of “mishmashed,” or hashed, number. The number actually has no real significance
beyond its usefulness in storing and retrieving a particular data record.

A glitch in the scheme is called a collision—this occurs when two different keys “hash
into” the same cell (or element) in the array. We cannot store two values in the same space,
so we need to find an alternative home for all values beyond the first that hash to a partic-
ular array index. There are many schemes for doing this. One is to “hash again” (i.e., to
apply another hashing transformation to the key to provide a next candidate cell in the
array). The hashing process is designed to distribute the values throughout the table, so
the assumption is that an available cell will be found with just a few hashes.

Another scheme uses one hash to locate the first candidate cell. If that cell is occupied,
successive cells are searched in order until an available cell is found. Retrieval works the
same way: The key is hashed once to determine the initial location and check whether it
contains the desired data. If it does, the search is finished. If it does not, successive cells are
searched linearly until the desired data is found.

The most popular solution to hash-table collisions is to have each cell of the table be
a hash “bucket,” typically a linked list of all the key/value pairs that hash to that cell. This
is the solution that Java’s Hashtable and HashMap classes (from package java.util) imple-
ment. Both Hashtable and HashMap implement the Map interface. The primary differences
between them are that HashMap is unsynchronized (multiple threads should not modify a
HashMap concurrently) and allows null keys and null values.

A hash table’s load factor affects the performance of hashing schemes. The load factor
is the ratio of the number of occupied cells in the hash table to the total number of cells
in the hash table. The closer this ratio gets to 1.0, the greater the chance of collisions.

Hash tables are complex to program. Classes Hashtable and HashMap enable you to
use hashing without having to implement hash-table mechanisms. This concept is pro-
foundly important in our study of object-oriented programming. As discussed in earlier
chapters, classes encapsulate and hide complexity (i.e., implementation details) and offer
user-friendly interfaces. Properly crafting classes to exhibit such behavior is one of the most
valued skills in the field of object-oriented programming. Figure 18.18 uses a HashMap to
count the number of occurrences of each word in a string.

Performance Tip 18.2
The load factor in a hash table is a classic example of a memory-space/execution-time
trade-off: By increasing the load factor, we get better memory utilization, but the program
runs slower, due to increased hashing collisions. By decreasing the load factor, we get better
program speed, because of reduced hashing collisions, but we get poorer memory utiliza-
tion, because a larger portion of the hash table remains empty.

1 // Fig. 18.18: WordTypeCount.java
2 // Program counts the number of occurrences of each word in a String.
3 import java.util.Map;
4 import java.util.HashMap;
5 import java.util.Set;
6 import java.util.TreeSet;

Fig. 18.18 | Program counts the number of occurrences of each word in a String. (Part 1 of 3.)

610 Chapter 18 Generic Collections

7 import java.util.Scanner;
8
9 public class WordTypeCount

10 {
11 public static void main(String[] args)
12 {
13
14
15
16 createMap(myMap); // create map based on user input
17 displayMap(myMap); // display map content
18 } // end main
19
20 // create map from user input
21 private static void createMap(Map< String, Integer > map)
22 {
23 Scanner scanner = new Scanner(System.in); // create scanner
24 System.out.println("Enter a string:"); // prompt for user input
25 String input = scanner.nextLine();
26
27 // tokenize the input
28 String[] tokens = input.split(" ");
29
30 // processing input text
31 for (String token : tokens)
32 {
33 String word = token.toLowerCase(); // get lowercase word
34
35 // if the map contains the word
36 if () // is word in map
37 {
38
39
40 } // end if
41 else

42
43 } // end for
44 } // end method createMap
45
46 // display map content
47 private static void displayMap(Map< String, Integer > map)
48 {
49
50
51 // sort keys
52 TreeSet< String > sortedKeys = new TreeSet< String >(keys);
53
54 System.out.println("\nMap contains:\nKey\t\tValue");
55
56 // generate output for each key in map
57 for (String key : sortedKeys)
58 System.out.printf("%-10s%10s\n", key,);
59

Fig. 18.18 | Program counts the number of occurrences of each word in a String. (Part 2 of 3.)

// create HashMap to store String keys and Integer values
Map< String, Integer > myMap = new HashMap< String, Integer >();

map.containsKey(word)

int count = map.get(word); // get current count
map.put(word, count + 1); // increment count

map.put(word, 1); // add new word with a count of 1 to map

Set< String > keys = map.keySet(); // get keys

map.get(key)

18.11 Maps 611

Line 14 creates an empty HashMap with a default initial capacity (16 elements) and a
default load factor (0.75)—these defaults are built into the implementation of HashMap.
When the number of occupied slots in the HashMap becomes greater than the capacity
times the load factor, the capacity is doubled automatically. HashMap is a generic class that
takes two type arguments—the type of key (i.e., String) and the type of value (i.e.,
Integer). Recall that the type arguments passed to a generic class must be reference types,
hence the second type argument is Integer, not int.

Line 16 calls method createMap (lines 21–44), which uses a map to store the number
of occurrences of each word in the sentence. Line 25 obtains the user input, and line 28
tokenizes it. The loop in lines 31–43 converts the next token to lowercase letters (line 33),
then calls Map method containsKey (line 36) to determine whether the word is in the map
(and thus has occurred previously in the string). If the Map does not contain a mapping for
the word, line 42 uses Map method put to create a new entry in the map, with the word as
the key and an Integer object containing 1 as the value. Autoboxing occurs when the pro-
gram passes integer 1 to method put, because the map stores the number of occurrences
of the word as an Integer. If the word does exist in the map, line 38 uses Map method get

to obtain the key’s associated value (the count) in the map. Line 39 increments that value
and uses put to replace the key’s associated value in the map. Method put returns the key’s
prior associated value, or null if the key was not in the map.

Method displayMap (lines 47–62) displays all the entries in the map. It uses HashMap
method keySet (line 49) to get a set of the keys. The keys have type String in the map, so
method keySet returns a generic type Set with type parameter specified to be String. Line
52 creates a TreeSet of the keys, in which the keys are sorted. The loop in lines 57–58

60 System.out.printf(
61 "\nsize: %d\nisEmpty: %b\n", ,);
62 } // end method displayMap
63 } // end class WordTypeCount

Enter a string:
this is a sample sentence with several words this is another sample
sentence with several different words

Map contains:
Key Value
a 1
another 1
different 1
is 2
sample 2
sentence 2
several 2
this 2
with 2
words 2

size: 10
isEmpty: false

Fig. 18.18 | Program counts the number of occurrences of each word in a String. (Part 3 of 3.)

map.size() map.isEmpty()

612 Chapter 18 Generic Collections

accesses each key and its value in the map. Line 58 displays each key and its value using
format specifier %-10s to left justify each key and format specifier %10s to right justify each
value. The keys are displayed in ascending order. Line 61 calls Map method size to get the
number of key/value pairs in the Map. Line 61 also calls Map method isEmpty, which
returns a boolean indicating whether the Map is empty.

18.12 Properties Class
A Properties object is a persistent Hashtable that normally stores key/value pairs of
strings—assuming that you use methods setProperty and getProperty to manipulate
the table rather than inherited Hashtable methods put and get. By “persistent,” we mean
that the Properties object can be written to an output stream (possibly a file) and read
back in through an input stream. A common use of Properties objects in prior versions
of Java was to maintain application-configuration data or user preferences for applications.
[Note: The Preferences API (package java.util.prefs) is meant to replace this particular
use of class Properties but is beyond the scope of this book. To learn more, visit bit.ly/
JavaPreferences.]

Class Properties extends class Hashtable<Object, Object>. Figure 18.19 demon-
strates several methods of class Properties.

1 // Fig. 18.19: PropertiesTest.java
2 // Demonstrates class Properties of the java.util package.
3 import java.io.FileOutputStream;
4 import java.io.FileInputStream;
5 import java.io.IOException;
6 import java.util.Properties;
7 import java.util.Set;
8
9 public class PropertiesTest

10 {
11 public static void main(String[] args)
12 {
13
14
15
16
17
18
19 System.out.println("After setting properties");
20 listProperties(table); // display property values
21
22
23
24
25 System.out.println("After replacing properties");
26 listProperties(table); // display property values
27
28 saveProperties(table); // save properties
29

Fig. 18.19 | Properties class of package java.util. (Part 1 of 3.)

Properties table = new Properties(); // create Properties table

// set properties
table.setProperty("color", "blue");
table.setProperty("width", "200");

// replace property value
table.setProperty("color", "red");

18.12 Properties Class 613

30
31
32 System.out.println("After clearing properties");
33 listProperties(table); // display property values
34
35 loadProperties(table); // load properties
36
37
38
39
40 // check if value is in table
41 if (value != null)
42 System.out.printf("Property color's value is %s\n", value);
43 else

44 System.out.println("Property color is not in table");
45 } // end main
46
47 // save properties to a file
48 private static void saveProperties(Properties props)
49 {
50 // save contents of table
51 try

52 {
53 FileOutputStream output = new FileOutputStream("props.dat");
54
55 output.close();
56 System.out.println("After saving properties");
57 listProperties(props); // display property values
58 } // end try
59 catch (IOException ioException)
60 {
61 ioException.printStackTrace();
62 } // end catch
63 } // end method saveProperties
64
65 // load properties from a file
66 private static void loadProperties(Properties props)
67 {
68 // load contents of table
69 try

70 {
71 FileInputStream input = new FileInputStream("props.dat");
72
73 input.close();
74 System.out.println("After loading properties");
75 listProperties(props); // display property values
76 } // end try
77 catch (IOException ioException)
78 {
79 ioException.printStackTrace();
80 } // end catch
81 } // end method loadProperties
82

Fig. 18.19 | Properties class of package java.util. (Part 2 of 3.)

table.clear(); // empty table

// get value of property color
Object value = table.getProperty("color");

props.store(output, "Sample Properties"); // save properties

props.load(input); // load properties

614 Chapter 18 Generic Collections

Line 13 uses the no-argument constructor to create an empty Properties table with
no default properties. Class Properties also provides an overloaded constructor that
receives a reference to a Properties object containing default property values. Lines 16
and 17 each call Properties method setProperty to store a value for the specified key. If
the key does not exist in the table, setProperty returns null; otherwise, it returns the
previous value for that key.

Line 38 calls Properties method getProperty to locate the value associated with the
specified key. If the key is not found in this Properties object, getProperty returns null.
An overloaded version of this method receives a second argument that specifies the default
value to return if getProperty cannot locate the key.

Line 54 calls Properties method store to save the Properties object’s contents to
the OutputStream specified as the first argument (in this case, a FileOutputStream). The
second argument, a String, is a description written into the file. Properties method
list, which takes a PrintStream argument, is useful for displaying the list of properties.

Line 72 calls Properties method load to restore the contents of the Properties

object from the InputStream specified as the first argument (in this case, a FileInput-

Stream). Line 86 calls Properties method keySet to obtain a Set of the property names.

83 // output property values
84 private static void listProperties(Properties props)
85 {
86
87
88 // output name/value pairs
89 for (Object key : keys)
90 System.out.printf(
91 "%s\t%s\n", key,);
92
93 System.out.println();
94 } // end method listProperties
95 } // end class PropertiesTest

After setting properties
color blue
width 200

After replacing properties
color red
width 200

After saving properties
color red
width 200

After clearing properties

After loading properties
color red
width 200

Property color's value is red

Fig. 18.19 | Properties class of package java.util. (Part 3 of 3.)

Set< Object > keys = props.keySet(); // get property names

props.getProperty((String) key)

18.13 Synchronized Collections 615

Because class Properties stores its contents as Objects, a Set of Object references is
returned. Line 91 obtains the value of a property by passing a key to method getProperty.

18.13 Synchronized Collections
In Chapter 23, we discuss multithreading. Except for Vector and Hashtable, the collec-
tions in the collections framework are unsynchronized by default, so they can operate ef-
ficiently when multithreading is not required. Because they’re unsynchronized, however,
concurrent access to a Collection by multiple threads could cause indeterminate results
or fatal errors. To prevent potential threading problems, synchronization wrappers are
used for collections that might be accessed by multiple threads. A wrapper object receives
method calls, adds thread synchronization (to prevent concurrent access to the collection)
and delegates the calls to the wrapped collection object. The Collections API provides a
set of static methods for wrapping collections as synchronized versions. Method headers
for the synchronization wrappers are listed in Fig. 18.20. Details about these methods are
available at download.oracle.com/javase/6/docs/api/java/util/Collections.html.
All these methods take a generic type and return a synchronized view of the generic type.
For example, the following code creates a synchronized List (list2) that stores String
objects:

18.14 Unmodifiable Collections
The Collections class provides a set of static methods that create unmodifiable wrap-
pers for collections. Unmodifiable wrappers throw UnsupportedOperationExceptions if
attempts are made to modify the collection. Headers for these methods are listed in
Fig. 18.21. Details about these methods are available at download.oracle.com/javase/
6/docs/api/java/util/Collections.html. All these methods take a generic type and re-
turn an unmodifiable view of the generic type. For example, the following code creates an
unmodifiable List (list2) that stores String objects:

List< String > list1 = new ArrayList< String >();
List< String > list2 = Collections.synchronizedList(list1);

public static method headers

< T > Collection< T > synchronizedCollection(Collection< T > c)

< T > List< T > synchronizedList(List< T > aList)

< T > Set< T > synchronizedSet(Set< T > s)

< T > SortedSet< T > synchronizedSortedSet(SortedSet< T > s)

< K, V > Map< K, V > synchronizedMap(Map< K, V > m)

< K, V > SortedMap< K, V > synchronizedSortedMap(SortedMap< K, V > m)

Fig. 18.20 | Synchronization wrapper methods.

List< String > list1 = new ArrayList< String >();
List< String > list2 = Collections.unmodifiableList(list1);

616 Chapter 18 Generic Collections

18.15 Abstract Implementations
The collections framework provides various abstract implementations of Collection in-
terfaces from which you can quickly “flesh out” complete customized implementations.
These abstract implementations include a thin Collection implementation called an Ab-

stractCollection, a List implementation that allows random access to its elements
called an AbstractList, a Map implementation called an AbstractMap, a List implemen-
tation that allows sequential access to its elements called an AbstractSequentialList, a
Set implementation called an AbstractSet and a Queue implementation called Abstract-

Queue. You can learn more about these classes at download.oracle.com/javase/6/docs/
api/java/util/package-summary.html.

To write a custom implementation, you can extend the abstract implementation that
best meets your needs, and implement each of the class’s abstract methods. Then, if your
collection is to be modifiable, override any concrete methods that prevent modification.

18.16 Wrap-Up
This chapter introduced the Java collections framework. You learned the collection hier-
archy and how to use the collections-framework interfaces to program with collections
polymorphically. You used classes ArrayList and LinkedList, which both implement the
List interface. We presented Java’s built-in interfaces and classes for manipulating stacks
and queues. You used several predefined methods for manipulating collections. Next, you
learned how to use the Set interface and class HashSet to manipulate an unordered collec-
tion of unique values. We continued our presentation of sets with the SortedSet interface
and class TreeSet for manipulating a sorted collection of unique values. You then learned
about Java’s interfaces and classes for manipulating key/value pairs—Map, SortedMap,
Hashtable, HashMap and TreeMap. We discussed the specialized Properties class for ma-
nipulating key/value pairs of Strings that can be stored to a file and retrieved from a file.

public static method headers

< T > Collection< T > unmodifiableCollection(Collection< T > c)

< T > List< T > unmodifiableList(List< T > aList)

< T > Set< T > unmodifiableSet(Set< T > s)

< T > SortedSet< T > unmodifiableSortedSet(SortedSet< T > s)

< K, V > Map< K, V > unmodifiableMap(Map< K, V > m)

< K, V > SortedMap< K, V > unmodifiableSortedMap(SortedMap< K, V > m)

Fig. 18.21 | Unmodifiable wrapper methods.

Software Engineering Observation 18.5
You can use an unmodifiable wrapper to create a collection that offers read-only access to
others, while allowing read/write access to yourself. You do this simply by giving others a
reference to the unmodifiable wrapper while retaining for yourself a reference to the
original collection.

18.16 Wrap-Up 617

Finally, we discussed the Collections class’s static methods for obtaining unmodifiable
and synchronized views of collections. Chapter 19 demonstrates how to use Java’s generics
capabilities to implement your own generic methods and classes.

19
Generic Classes and
Methods

O b j e c t i v e s
In this chapter you’ll learn:

� To create generic methods that perform identical tasks on
arguments of different types.

� To create a generic Stack class that can be used to store
objects of any class or interface type.

� To understand how to overload generic methods with
nongeneric methods or with other generic methods.

� To understand raw types and how they help achieve
backward compatibility.

� To use wildcards when precise type information about a
parameter is not required in the method body.

Every man of genius sees the
world at a different angle
from his fellows.
—Havelock Ellis

…our special
individuality, as
distinguished from our
generic humanity.
—Oliver Wendell Holmes, Sr.

Born under one law, to
another bound.
—Lord Brooke

19.1 Introduction 619

19.1 Introduction
You’ve used existing generic methods and classes in Chapters 7 and 18. In this chapter,
you’ll learn how to write your own. You’ll also learn the relationships between generics and
other Java features, such as overloading and inheritance.

It would be nice if we could write a single sort method to sort the elements in an
Integer array, a String array or an array of any type that supports ordering (i.e., its ele-
ments can be compared). It would also be nice if we could write a single Stack class that
could be used as a Stack of integers, a Stack of floating-point numbers, a Stack of Strings
or a Stack of any other type. It would be even nicer if we could detect type mismatches at
compile time—known as compile-time type safety. For example, if a Stack stores only
integers, attempting to push a String onto that Stack should issue a compile-time error.

This chapter discusses generics, which provide the means to create the general models
mentioned above. Generic methods enable you to specify, with a single method declara-
tion, a set of related methods. Generic classes (and interfaces) enable you to specify, with
a single class (or interface) declaration, a set of related types, respectively. Generics also
provide compile-time type safety that allows you to catch invalid types at compile time.

We might write a generic method for sorting an array of objects, then invoke the
generic method with Integer arrays, Double arrays, String arrays and so on, to sort the
array elements. The compiler could perform type checking to ensure that the array passed
to the sorting method contains the same type elements. We might write a single generic
Stack class that manipulates a stack of objects, then instantiate Stack objects for a stack
of Integers, a stack of Doubles, a stack of Strings and so on. The compiler could perform
type checking to ensure that the Stack stores elements of the same type.

19.2 Motivation for Generic Methods
Overloaded methods are often used to perform similar operations on different types of
data. To motivate generic methods, let’s begin with an example (Fig. 19.1) containing
overloaded printArray methods (lines 21–28, 31–38 and 41–48) that print the String

representations of the elements of an Integer array, a Double array and a Character array,
respectively. We could have used arrays of primitive types int, double and char. We’re

19.1 Introduction
19.2 Motivation for Generic Methods
19.3 Generic Methods: Implementation

and Compile-Time Translation
19.4 Additional Compile-Time Translation

Issues: Methods That Use a Type
Parameter as the Return Type

19.5 Overloading Generic Methods

19.6 Generic Classes
19.7 Raw Types
19.8 Wildcards in Methods That Accept

Type Parameters
19.9 Generics and Inheritance: Notes

19.10 Wrap-Up

Software Engineering Observation 19.1
Generic methods and classes are among Java’s most powerful capabilities for software reuse
with compile-time type safety.

620 Chapter 19 Generic Classes and Methods

using arrays of the type-wrapper classes to set up our generic method example, because only
reference types can be used with generic methods and classes.

1 // Fig. 19.1: OverloadedMethods.java
2 // Printing array elements using overloaded methods.
3 public class OverloadedMethods
4 {
5 public static void main(String[] args)
6 {
7 // create arrays of Integer, Double and Character
8 Integer[] integerArray = { 1, 2, 3, 4, 5, 6 };
9 Double[] doubleArray = { 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7 };

10 Character[] characterArray = { 'H', 'E', 'L', 'L', 'O' };
11
12 System.out.println("Array integerArray contains:");
13
14 System.out.println("\nArray doubleArray contains:");
15
16 System.out.println("\nArray characterArray contains:");
17
18 } // end main
19
20 // method printArray to print Integer array
21
22 {
23 // display array elements
24 for (Integer element : inputArray)
25 System.out.printf("%s ", element);
26
27 System.out.println();
28 } // end method printArray
29
30 // method printArray to print Double array
31
32 {
33 // display array elements
34 for (Double element : inputArray)
35 System.out.printf("%s ", element);
36
37 System.out.println();
38 } // end method printArray
39
40 // method printArray to print Character array
41
42 {
43 // display array elements
44 for (Character element : inputArray)
45 System.out.printf("%s ", element);
46
47 System.out.println();
48 } // end method printArray
49 } // end class OverloadedMethods

Fig. 19.1 | Printing array elements using overloaded methods. (Part 1 of 2.)

printArray(integerArray); // pass an Integer array

printArray(doubleArray); // pass a Double array

printArray(characterArray); // pass a Character array

public static void printArray(Integer[] inputArray)

public static void printArray(Double[] inputArray)

public static void printArray(Character[] inputArray)

19.2 Motivation for Generic Methods 621

The program begins by declaring and initializing three arrays—six-element Integer
array integerArray (line 8), seven-element Double array doubleArray (line 9) and five-
element Character array characterArray (line 10). Then lines 12–17 display the con-
tents of each array.

When the compiler encounters a method call, it attempts to locate a method declara-
tion with the same name and parameters that match the argument types in the call. In this
example, each printArray call matches one of the printArray method declarations. For
example, line 13 calls printArray with integerArray as its argument. The compiler
determines the argument’s type (i.e., Integer[]) and attempts to locate a printArray

method that specifies an Integer[] parameter (lines 21–28), then sets up a call to that
method. Similarly, when the compiler encounters the call at line 15, it determines the
argument’s type (i.e., Double[]), then attempts to locate a printArray method that spec-
ifies a Double[] parameter (lines 31–38), then sets up a call to that method. Finally, when
the compiler encounters the call at line 17, it determines the argument’s type (i.e., Char-
acter[]), then attempts to locate a printArray method that specifies a Character[]

parameter (lines 41–48), then sets up a call to that method.
Study each printArray method. The array element type appears in each method’s

header (lines 21, 31 and 41) and for-statement header (lines 24, 34 and 44). If we were
to replace the element types in each method with a generic name—T by convention—then
all three methods would look like the one in Fig. 19.2. It appears that if we can replace the
array element type in each of the three methods with a single generic type, then we should
be able to declare one printArray method that can display the String representations of
the elements of any array that contains objects. The method in Fig. 19.2 is similar to the
generic printArray method declaration we discuss in Section 19.3.

Array integerArray contains:
1 2 3 4 5 6

Array doubleArray contains:
1.1 2.2 3.3 4.4 5.5 6.6 7.7

Array characterArray contains:
H E L L O

1 public static void printArray([] inputArray)
2 {
3 // display array elements
4 for (element : inputArray)
5 System.out.printf("%s ", element);
6
7 System.out.println();
8 } // end method printArray

Fig. 19.2 | printArray method in which actual type names are replaced by convention with
the generic name T.

Fig. 19.1 | Printing array elements using overloaded methods. (Part 2 of 2.)

T

T

622 Chapter 19 Generic Classes and Methods

19.3 Generic Methods: Implementation and Compile-
Time Translation
If the operations performed by several overloaded methods are identical for each argument
type, the overloaded methods can be more compactly and conveniently coded using a
generic method. You can write a single generic method declaration that can be called with
arguments of different types. Based on the types of the arguments passed to the generic
method, the compiler handles each method call appropriately.

Figure 19.3 reimplements the application of Fig. 19.1 using a generic printArray

method (lines 22–29). The printArray method calls in lines 14, 16 and 18 are identical
to those of Fig. 19.1 (lines 14, 16 and 18) and the outputs of the two applications are iden-
tical. This dramatically demonstrates the expressive power of generics.

1 // Fig. 19.3: GenericMethodTest.java
2 // Printing array elements using generic method printArray.
3
4 public class GenericMethodTest
5 {
6 public static void main(String[] args)
7 {
8 // create arrays of Integer, Double and Character
9 Integer[] intArray = { 1, 2, 3, 4, 5 };

10 Double[] doubleArray = { 1.1, 2.2, 3.3, 4.4, 5.5, 6.6, 7.7 };
11 Character[] charArray = { 'H', 'E', 'L', 'L', 'O' };
12
13 System.out.println("Array integerArray contains:");
14
15 System.out.println("\nArray doubleArray contains:");
16
17 System.out.println("\nArray characterArray contains:");
18
19 } // end main
20
21
22
23 {
24
25
26
27
28 System.out.println();
29 } // end method printArray
30 } // end class GenericMethodTest

Array integerArray contains:
1 2 3 4 5 6

Array doubleArray contains:
1.1 2.2 3.3 4.4 5.5 6.6 7.7

Array characterArray contains:
H E L L O

Fig. 19.3 | Printing array elements using generic method printArray.

printArray(integerArray); // pass an Integer array

printArray(doubleArray); // pass a Double array

printArray(characterArray); // pass a Character array

// generic method printArray
public static < T > void printArray(T[] inputArray)

// display array elements
for (T element : inputArray)

System.out.printf("%s ", element);

19.3 Generic Methods: Implementation and Compile-Time Translation 623

Line 22 begins method printArray’s declaration. All generic method declarations
have a type-parameter section delimited by angle brackets (< and >) that precedes the
method’s return type (< T > in this example). Each type-parameter section contains one or
more type parameters (also called formal type parameters), separated by commas. A type
parameter, also known as a type variable, is an identifier that specifies a generic type name.
The type parameters can be used to declare the return type, parameter types and local vari-
able types in a generic method declaration, and they act as placeholders for the types of the
arguments passed to the generic method, which are known as actual type arguments. A
generic method’s body is declared like that of any other method. Type parameters can rep-
resent only reference types—not primitive types (like int, double and char). Note, too, that
the type-parameter names throughout the method declaration must match those declared
in the type-parameter section. For example, line 25 declares element as type T, which
matches the type parameter (T) declared in line 22. Also, a type parameter can be declared
only once in the type-parameter section but can appear more than once in the method’s
parameter list. For example, the type-parameter name T appears twice in the following
method’s parameter list:

Type-parameter names need not be unique among different generic methods.

Method printArray’s type-parameter section declares type parameter T as the place-
holder for the array element type that printArray will output. T appears in the parameter
list as the array element type (line 22). The for-statement header (line 25) also uses T as
the element type. These are the same two locations where the overloaded printArray

methods of Fig. 19.1 specified Integer, Double or Character as the array element type.
The remainder of printArray is identical to the versions presented in Fig. 19.1.

As in Fig. 19.1, the program begins by declaring and initializing six-element Integer
array integerArray (line 9), seven-element Double array doubleArray (line 10) and five-
element Character array characterArray (line 11). Then the program outputs each array
by calling printArray (lines 14, 16 and 18)—once with argument integerArray, once
with argument doubleArray and once with argument characterArray.

When the compiler encounters line 14, it first determines argument integerArray’s
type (i.e., Integer[]) and attempts to locate a method named printArray that specifies a
single Integer[] parameter. There’s no such method in this example. Next, the compiler
determines whether there’s a generic method named printArray that specifies a single
array parameter and uses a type parameter to represent the array element type. The com-
piler determines that printArray (lines 22–29) is a match and sets up a call to the method.
The same process is repeated for the calls to method printArray at lines 16 and 18.

public static < T > void printTwoArrays(T[] array1, T[] array2)

Common Programming Error 19.1
When declaring a generic method, failing to place a type-parameter section before the re-
turn type of a method is a syntax error—the compiler will not understand the type-
parameter names when they’re encountered in the method.

Good Programming Practice 19.1
It’s recommended that type parameters be specified as individual capital letters. Typically,
a type parameter that represents an array element’s type (or other collection) is named T.

624 Chapter 19 Generic Classes and Methods

In addition to setting up the method calls, the compiler also determines whether the
operations in the method body can be applied to elements of the type stored in the array
argument. The only operation performed on the array elements in this example is to
output their String representation. Line 26 performs an implicit toString call on every
element. To work with generics, every element of the array must be an object of a class or inter-
face type. Since all objects have a toString method, the compiler is satisfied that line 26
performs a valid operation for any object in printArray’s array argument. The toString

methods of classes Integer, Double and Character return the String representation of
the underlying int, double or char value, respectively.

Erasure at Compilation Time
When the compiler translates generic method printArray into Java bytecodes, it removes
the type-parameter section and replaces the type parameters with actual types. This process is
known as erasure. By default all generic types are replaced with type Object. So the com-
piled version of method printArray appears as shown in Fig. 19.4—there’s only one copy
of this code, which is used for all printArray calls in the example. This is quite different
from other, similar mechanisms, such as C++’s templates, in which a separate copy of the
source code is generated and compiled for every type passed as an argument to the method.
As you’ll see in Section 19.4, the translation and compilation of generics is a bit more in-
volved than what we’ve discussed in this section.

By declaring printArray as a generic method in Fig. 19.3, we eliminated the need for
the overloaded methods of Fig. 19.1, saving 19 lines of code and creating a reusable
method that can output the String representations of the elements in any array that con-
tains objects. However, this particular example could have simply declared the printArray
method as shown in Fig. 19.4, using an Object array as the parameter. This would have
yielded the same results, because any Object can be output as a String. In a generic
method, the benefits become apparent when the method also uses a type parameter as the
method’s return type, as we demonstrate in the next section.

Common Programming Error 19.2
If the compiler cannot match a method call to a nongeneric or a generic method declara-
tion, a compilation error occurs.

Common Programming Error 19.3
If the compiler doesn’t find a method declaration that matches a method call exactly, but
does find two or more methods that can satisfy the method call, a compilation error occurs.

1 public static void printArray([] inputArray)
2 {
3 // display array elements
4 for (element : inputArray)
5 System.out.printf("%s ", element);
6
7 System.out.println();
8 } // end method printArray

Fig. 19.4 | Generic method printArray after erasure is performed by the compiler.

Object

Object

19.4 Methods That Use a Type Parameter as the Return Type 625

19.4 Additional Compile-Time Translation Issues:
Methods That Use a Type Parameter as the Return Type
Let’s consider a generic method example in which type parameters are used in the return
type and in the parameter list (Fig. 19.5). The application uses a generic method maximum

to determine and return the largest of its three arguments of the same type. Unfortunately,
the relational operator > cannot be used with reference types. However, it’s possible to com-
pare two objects of the same class if that class implements the generic interface Compara-

ble<T> (package java.lang). All the type-wrapper classes for primitive types implement
this interface. Like generic classes, generic interfaces enable you to specify, with a single
interface declaration, a set of related types. Comparable<T> objects have a compareTo

method. For example, if we have two Integer objects, integer1 and integer2, they can
be compared with the expression:

It’s your responsibility when you declare a class that implements Comparable<T> to declare
method compareTo such that it compares the contents of two objects of that class and returns the
comparison results. As specified in interface Comparable<T>’s documentation, compareTo
must return 0 if the objects are equal, a negative integer if object1 is less than object2 or
a positive integer if object1 is greater than object2. For example, class Integer’s compa-
reTo method compares the int values stored in two Integer objects. A benefit of imple-
menting interface Comparable<T> is that Comparable<T> objects can be used with the
sorting and searching methods of class Collections (package java.util). We discussed
those methods in Chapter 18. In this example, we’ll use method compareTo in method
maximum to help determine the largest value.

integer1.compareTo(integer2)

1 // Fig. 19.5: MaximumTest.java
2 // Generic method maximum returns the largest of three objects.
3
4 public class MaximumTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf("Maximum of %d, %d and %d is %d\n\n", 3, 4, 5,
9);

10 System.out.printf("Maximum of %.1f, %.1f and %.1f is %.1f\n\n",
11 6.6, 8.8, 7.7,);
12 System.out.printf("Maximum of %s, %s and %s is %s\n", "pear",
13 "apple", "orange",);
14 } // end main
15
16
17
18
19
20
21
22

Fig. 19.5 | Generic method maximum with an upper bound on its type parameter. (Part 1 of 2.)

maximum(3, 4, 5)

maximum(6.6, 8.8, 7.7)

maximum("pear", "apple", "orange")

// determines the largest of three Comparable objects
public static < T extends Comparable< T > > T maximum(T x, T y, T z)
{

T max = x; // assume x is initially the largest

if (y.compareTo(max) > 0)
max = y; // y is the largest so far

626 Chapter 19 Generic Classes and Methods

Generic Method maximum

Generic method maximum (lines 17–28) uses type parameter T as the return type of the meth-
od (line 17), as the type of method parameters x, y and z (line 17), and as the type of local
variable max (line 19). The type-parameter section specifies that T extends Comparable<T>—
only objects of classes that implement interface Comparable<T> can be used with this meth-
od. In this case, Comparable is known as the upper bound of the type parameter. By default,
Object is the upper bound. Type-parameter declarations that bound the parameter always
use keyword extends regardless of whether the type parameter extends a class or implements
an interface. This type parameter is more restrictive than the one specified for printArray
in Fig. 19.3, which was able to output arrays containing any type of object. The restriction
of using Comparable<T> objects is important, because not all objects can be compared. How-
ever, Comparable<T> objects are guaranteed to have a compareTo method.

Method maximum uses the same algorithm that we used in Section 6.4 to determine
the largest of its three arguments. The method assumes that its first argument (x) is the
largest and assigns it to local variable max (line 19). Next, the if statement at lines 21–22
determines whether y is greater than max. The condition invokes y’s compareTo method
with the expression y.compareTo(max), which returns a negative integer, 0 or a positive
integer, to determine y’s relationship to max. If the return value of the compareTo is greater
than 0, then y is greater and is assigned to variable max. Similarly, the if statement at lines
24–25 determines whether z is greater than max. If so, line 25 assigns z to max. Then line
27 returns max to the caller.

Calling Method maximum

In main (lines 6–14), line 9 calls maximum with the integers 3, 4 and 5. When the compiler
encounters this call, it first looks for a maximum method that takes three arguments of type
int. There’s no such method, so the compiler looks for a generic method that can be used
and finds generic method maximum. However, recall that the arguments to a generic meth-
od must be of a reference type. So the compiler autoboxes the three int values as Integer
objects and specifies that the three Integer objects will be passed to maximum. Class Inte-
ger (package java.lang) implements the Comparable<Integer> interface such that meth-
od compareTo compares the int values in two Integer objects. Therefore, Integers are
valid arguments to method maximum. When the Integer representing the maximum is re-

23
24
25
26
27
28
29 } // end class MaximumTest

Maximum of 3, 4 and 5 is 5

Maximum of 6.6, 8.8 and 7.7 is 8.8

Maximum of pear, apple and orange is pear

Fig. 19.5 | Generic method maximum with an upper bound on its type parameter. (Part 2 of 2.)

if (z.compareTo(max) > 0)
max = z; // z is the largest

return max; // returns the largest object
} // end method maximum

19.4 Methods That Use a Type Parameter as the Return Type 627

turned, we attempt to output it with the %d format specifier, which outputs an int prim-
itive-type value. So maximum’s return value is output as an int value.

A similar process occurs for the three double arguments passed to maximum in line 11.
Each double is autoboxed as a Double object and passed to maximum. Again, this is allowed
because class Double (package java.lang) implements the Comparable<Double> interface.
The Double returned by maximum is output with the format specifier %.1f, which outputs
a double primitive-type value. So maximum’s return value is auto-unboxed and output as a
double. The call to maximum in line 13 receives three Strings, which are also Compa-

rable<String> objects. We intentionally placed the largest value in a different position in
each method call (lines 9, 11 and 13) to show that the generic method always finds the
maximum value, regardless of its position in the argument list.

Upper Bound of a Type Parameter
When the compiler translates method maximum into bytecodes, it uses erasure (introduced in
Section 19.3) to replace the type parameters with actual types. In Fig. 19.3, all generic types
were replaced with type Object. Actually, all type parameters are replaced with the so-called
upper bound of the type parameter, which is specified in the type-parameter section. To in-
dicate the upper bound, follow the type parameter’s name with the keyword extends and
the class or interface name that represents the upper bound, or a comma-separated list of the
types that represent the upper bound. The list may contain zero or one class and zero or more
interfaces. For example, in method maximum’s type-parameter section (Fig. 19.5), we speci-
fied the upper bound of the type parameter T as type Comparable<T> as follows:

Thus, only Comparable<T> objects can be passed as arguments to maximum—anything that
is not a Comparable<T> will result in compilation errors. Unless specified otherwise, Ob-
ject is the default upper bound. Figure 19.6 simulates the erasure of method maximum’s
types by showing the method’s source code after the type-parameter section is removed
and type parameter T is replaced with the upper bound, Comparable, throughout the
method declaration. The erasure of Comparable<T> is simply Comparable.

After erasure, method maximum specifies that it returns type Comparable. However,
the calling method does not expect to receive a Comparable. It expects to receive an object

T extends Comparable< T >

1 public static maximum(x, y, z)
2 {
3 max = x; // assume x is initially the largest
4
5 if (y.compareTo(max) > 0)
6 max = y; // y is the largest so far
7
8 if (z.compareTo(max) > 0)
9 max = z; // z is the largest

10
11 return max; // returns the largest object
12 } // end method maximum

Fig. 19.6 | Generic method maximum after erasure is performed by the compiler.

Comparable Comparable Comparable Comparable

Comparable

628 Chapter 19 Generic Classes and Methods

of the same type that was passed to maximum as an argument—Integer, Double or String
in this example. When the compiler replaces the type-parameter information with the
upper-bound type in the method declaration, it also inserts explicit cast operations in front
of each method call to ensure that the returned value is of the type expected by the caller.
Thus, the call to maximum in line 9 (Fig. 19.5) is preceded by an Integer cast, as in

the call to maximum in line 11 is preceded by a Double cast, as in

and the call to maximum in line 13 is preceded by a String cast, as in

In each case, the type of the cast for the return value is inferred from the types of the meth-
od arguments in the particular method call, because, according to the method declaration,
the return type and the argument types match.

Possible ClassCastExceptions
In this example, you cannot use a method that accepts Objects, because class Object pro-
vides only an equality comparison. Also, without generics, you’d be responsible for imple-
menting the cast operation. Using generics ensures that the inserted cast will never throw
a ClassCastException, assuming that generics are used throughout your code (i.e., you
do not mix old code with new generics code).

19.5 Overloading Generic Methods
A generic method may be overloaded. A class can provide two or more generic methods that
specify the same method name but different method parameters. For example, generic
method printArray of Fig. 19.3 could be overloaded with another printArray generic
method with the additional parameters lowSubscript and highSubscript to specify the
portion of the array to output.

A generic method can also be overloaded by nongeneric methods. When the compiler
encounters a method call, it searches for the method declaration that most precisely
matches the method name and the argument types specified in the call. For example,
generic method printArray of Fig. 19.3 could be overloaded with a version that’s specific
to Strings, which outputs the Strings in neat, tabular format.

When the compiler encounters a method call, it performs a matching process to deter-
mine which method to invoke. The compiler tries to find and use a precise match in which
the method name and argument types of the method call match those of a specific method
declaration. If there’s no such method, the compiler attempts to find a method with com-
patible types or a matching generic method.

19.6 Generic Classes
The concept of a data structure, such as a stack, can be understood independently of the
element type it manipulates. Generic classes provide a means for describing the concept of
a stack (or any other class) in a type-independent manner. We can then instantiate type-

(Integer) maximum(3, 4, 5)

(Double) maximum(6.6, 8.8, 7.7)

(String) maximum("pear", "apple", "orange")

19.6 Generic Classes 629

specific objects of the generic class. This capability provides a wonderful opportunity for
software reusability.

Once you have a generic class, you can use a simple, concise notation to indicate the
type(s) that should be used in place of the class’s type parameter(s). At compilation time,
the compiler ensures the type safety of your code and uses the erasure techniques described
in Sections 19.3–19.4 to enable your client code to interact with the generic class.

One generic Stack class, for example, could be the basis for creating many logical
Stack classes (e.g., “Stack of Double,” “Stack of Integer,” “Stack of Character,” “Stack
of Employee”). These classes are known as parameterized classes or parameterized types
because they accept one or more type parameters. Recall that type parameters represent
only reference types, which means the Stack generic class cannot be instantiated with prim-
itive types. However, we can instantiate a Stack that stores objects of Java’s type-wrapper
classes and allow Java to use autoboxing to convert the primitive values into objects. Recall
that autoboxing occurs when a value of a primitive type (e.g., int) is pushed onto a Stack
that contains wrapper-class objects (e.g., Integer). Auto-unboxing occurs when an object
of the wrapper class is popped off the Stack and assigned to a primitive-type variable.

Implementing a Generic Stack Class
Figure 19.7 presents a generic Stack class declaration. A generic class declaration looks like
a nongeneric one, but the class name is followed by a type-parameter section (line 5). In this
case, type parameter T represents the element type the Stackwill manipulate. As with generic
methods, the type-parameter section of a generic class can have one or more type parameters
separated by commas. Type parameter T is used throughout the Stack class declaration to
represent the element type. This example implements a Stack as an ArrayList.

1 // Fig. 19.7: Stack.java
2 // Stack generic class declaration.
3 import java.util.ArrayList;
4
5 public class Stack< T >
6 {
7
8
9 // no-argument constructor creates a stack of the default size

10 public Stack()
11 {
12 this(10); // default stack size
13 } // end no-argument Stack constructor
14
15 // constructor creates a stack of the specified number of elements
16 public Stack(int capacity)
17 {
18 int initCapacity = capacity > 0 ? capacity : 10; // validate
19
20 } // end one-argument Stack constructor
21
22 // push element onto stack
23
24 {

Fig. 19.7 | Stack generic class declaration. (Part 1 of 2.)

private ArrayList< T > elements; // ArrayList stores stack elements

elements = new ArrayList< T >(initCapacity); // create ArrayList

public void push(T pushValue)

630 Chapter 19 Generic Classes and Methods

Class Stack declares variable elements as an ArrayList<T> (line 7). This ArrayList
will store the Stack’s elements. As you know, an ArrayList can grow dynamically, so
objects of our Stack class can also grow dynamically. The Stack class’s no-argument con-
structor (lines 10–13) invokes the one-argument constructor (lines 16–20) to create a
Stack in which the underlying ArrayList has a capacity of 10 elements. The one-argu-
ment constructor can also be called directly to create a Stack with a specified initial
capacity. Line 18 validates the constructor’s argument. Line 19 creates the ArrayList of
the specified capacity (or 10 if the capacity was invalid).

Method push (lines 23–26) uses ArrayList method add to append the pushed item
to the end of the ArrayList elements. The last element in the ArrayList represents the
top of the stack.

Method pop (lines 29–36) first determines whether an attempt is being made to pop
an element from an empty Stack. If so, line 32 throws an EmptyStackException (declared
in Fig. 19.8). Otherwise, line 35 returns the top element of the Stack by removing the last
element in the underlying ArrayList.

Class EmptyStackException (Fig. 19.8) provides a no-argument constructor and a
one-argument constructor. The no-argument constructor sets the default error message,
and the one-argument constructor sets a custom error message.

25
26 } // end method push
27
28 // return the top element if not empty; else throw EmptyStackException
29 public T pop()
30 {
31 if (elements.isEmpty()) // if stack is empty
32 throw new EmptyStackException("Stack is empty, cannot pop");
33
34 // remove and return top element of Stack
35 return elements.remove(elements.size() - 1);
36 } // end method pop
37 } // end class Stack< T >

1 // Fig. 19.8: EmptyStackException.java
2 // EmptyStackException class declaration.
3 public class EmptyStackException extends RuntimeException
4 {
5 // no-argument constructor
6 public EmptyStackException()
7 {
8 this("Stack is empty");
9 } // end no-argument EmptyStackException constructor

10
11 // one-argument constructor
12 public EmptyStackException(String message)
13 {

Fig. 19.8 | EmptyStackException class declaration. (Part 1 of 2.)

Fig. 19.7 | Stack generic class declaration. (Part 2 of 2.)

elements.add(pushValue); // place pushValue on Stack

19.6 Generic Classes 631

As with generic methods, when a generic class is compiled, the compiler performs era-
sure on the class’s type parameters and replaces them with their upper bounds. For class
Stack (Fig. 19.7), no upper bound is specified, so the default upper bound, Object, is
used. The scope of a generic class’s type parameter is the entire class. However, type
parameters cannot be used in a class’s static variable declarations.

Testing the Generic Stack Class of Fig. 19.7
Now, let’s consider the application (Fig. 19.9) that uses the Stack generic class (Fig. 19.7).
Lines 12–13 create and initialize variables of type Stack<Double> (pronounced “Stack of
Double”) and Stack<Integer> (pronounced “Stack of Integer”). The types Double and
Integer are known as the Stack’s type arguments. The compiler uses them to replace the
type parameters so that it can perform type checking and insert cast operations as neces-
sary. We’ll discuss the cast operations in more detail shortly. Lines 12–13 instantiate dou-
bleStack with a capacity of 5 and integerStack with a capacity of 10 (the default). Lines
16–17 and 20–21 call methods testPushDouble (lines 25–36), testPopDouble (lines 39–
59), testPushInteger (lines 62–73) and testPopInteger (lines 76–96), respectively, to
demonstrate the two Stacks in this example.

14 super(message);
15 } // end one-argument EmptyStackException constructor
16 } // end class EmptyStackException

1 // Fig. 19.9: StackTest.java
2 // Stack generic class test program.
3
4 public class StackTest
5 {
6 public static void main(String[] args)
7 {
8 double[] doubleElements = { 1.1, 2.2, 3.3, 4.4, 5.5 };
9 int[] integerElements = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };

10
11
12
13
14
15 // push elements of doubleElements onto doubleStack
16 testPushDouble(doubleStack, doubleElements);
17 testPopDouble(doubleStack); // pop from doubleStack
18
19 // push elements of integerElements onto integerStack
20 testPushInteger(integerStack, integerElements);
21 testPopInteger(integerStack); // pop from integerStack
22 } // end main
23

Fig. 19.9 | Stack generic class test program. (Part 1 of 3.)

Fig. 19.8 | EmptyStackException class declaration. (Part 2 of 2.)

// Create a Stack< Double > and a Stack< Integer >
Stack< Double > doubleStack = new Stack< Double >(5);
Stack< Integer > integerStack = new Stack< Integer >();

632 Chapter 19 Generic Classes and Methods

24 // test push method with double stack
25 private static void testPushDouble(
26 Stack< Double > stack, double[] values)
27 {
28 System.out.println("\nPushing elements onto doubleStack");
29
30 // push elements to Stack
31 for (double value : values)
32 {
33 System.out.printf("%.1f ", value);
34
35 } // end for
36 } // end method testPushDouble
37
38 // test pop method with double stack
39 private static void testPopDouble(Stack< Double > stack)
40 {
41 // pop elements from stack
42 try

43 {
44 System.out.println("\nPopping elements from doubleStack");
45 double popValue; // store element removed from stack
46
47 // remove all elements from Stack
48 while (true)
49 {
50
51 System.out.printf("%.1f ", popValue);
52 } // end while
53 } // end try
54 catch(EmptyStackException emptyStackException)
55 {
56 System.err.println();
57 emptyStackException.printStackTrace();
58 } // end catch EmptyStackException
59 } // end method testPopDouble
60
61 // test push method with integer stack
62 private static void testPushInteger(
63 Stack< Integer > stack, int[] values)
64 {
65 System.out.println("\nPushing elements onto integerStack");
66
67 // push elements to Stack
68 for (int value : values)
69 {
70 System.out.printf("%d ", value);
71
72 } // end for
73 } // end method testPushInteger
74

Fig. 19.9 | Stack generic class test program. (Part 2 of 3.)

stack.push(value); // push onto doubleStack

popValue = stack.pop(); // pop from doubleStack

stack.push(value); // push onto integerStack

19.6 Generic Classes 633

Methods testPushDouble and testPopDouble

Method testPushDouble (lines 25–36) invokes method push (line 34) to place the double
values 1.1, 2.2, 3.3, 4.4 and 5.5 from array doubleElements onto doubleStack. Autobox-
ing occurs in line 34 when the program tries to push a primitive double value onto the
doubleStack, which stores only references to Double objects.

Method testPopDouble (lines 39–59) invokes Stack method pop (line 50) in an infi-
nite while loop (lines 48–52) to remove all the values from the stack. Note in the output
that the values indeed pop off in last-in, first-out order (the defining characteristic of
stacks). When the loop attempts to pop a sixth value, the doubleStack is empty, so the pop

75 // test pop method with integer stack
76 private static void testPopInteger(Stack< Integer > stack)
77 {
78 // pop elements from stack
79 try

80 {
81 System.out.println("\nPopping elements from integerStack");
82 int popValue; // store element removed from stack
83
84 // remove all elements from Stack
85 while (true)
86 {
87
88 System.out.printf("%d ", popValue);
89 } // end while
90 } // end try
91 catch(EmptyStackException emptyStackException)
92 {
93 System.err.println();
94 emptyStackException.printStackTrace();
95 } // end catch EmptyStackException
96 } // end method testPopInteger
97 } // end class StackTest

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
EmptyStackException: Stack is empty, cannot pop

at Stack.pop(Stack.java:32)
at StackTest.testPopDouble(StackTest.java:50)
at StackTest.main(StackTest.java:17)

Pushing elements onto integerStack
1 2 3 4 5 6 7 8 9 10
Popping elements from integerStack
10 9 8 7 6 5 4 3 2 1
EmptyStackException: Stack is empty, cannot pop

at Stack.pop(Stack.java:32)
at StackTest.testPopInteger(StackTest.java:87)
at StackTest.main(StackTest.java:21)

Fig. 19.9 | Stack generic class test program. (Part 3 of 3.)

popValue = stack.pop(); // pop from intStack

634 Chapter 19 Generic Classes and Methods

throws an EmptyStackException, which causes the program to proceed to the catch block
(lines 54–58) to handle the exception. The stack trace indicates the exception that
occurred and shows that Stack method pop generated the exception at line 32 of the file
Stack.java (Fig. 19.7). The trace also shows that method pop was called by StackTest

method testPopDouble at line 50 of StackTest.java and that method testPopDouble

was called from method main at line 17 of StackTest.java. This information enables you
to determine the methods that were on the method-call stack at the time that the exception
occurred. Because the program catches the exception, the exception is considered to have
been handled and the program can continue executing.

Auto-unboxing occurs in line 50 when the program assigns the Double object popped
from the stack to a double primitive variable. Recall from Section 19.4 that the compiler
inserts casts to ensure that the proper types are returned from generic methods. After era-
sure, Stack method pop returns type Object, but the client code in testPopDouble expects
to receive a double when method pop returns. So the compiler inserts a Double cast, as in

The value assigned to popValue will be unboxed from the Double object returned by pop.

Methods testPushInteger and testPopInteger

Method testPushInteger (lines 62–73) invokes Stack method push to place values onto
integerStack until it’s full. Method testPopInteger (lines 76–96) invokes Stack meth-
od pop to remove values from integerStack. Once again, the values are popped in last-
in, first-out order. During erasure, the compiler recognizes that the client code in method
testPopInteger expects to receive an int when method pop returns. So the compiler in-
serts an Integer cast, as in

The value assigned to popValue will be unboxed from the Integer object returned by pop.

Creating Generic Methods to Test Class Stack<T>
The code in methods testPushDouble and testPushInteger is almost identical for push-
ing values onto a Stack<Double> or a Stack<Integer>, respectively, and the code in meth-
ods testPopDouble and testPopInteger is almost identical for popping values from a
Stack<Double> or a Stack<Integer>, respectively. This presents another opportunity to
use generic methods. Figure 19.10 declares generic method testPush (lines 24–35) to per-
form the same tasks as testPushDouble and testPushInteger in Fig. 19.9—that is, push
values onto a Stack<T>. Similarly, generic method testPop (lines 38–58) performs the
same tasks as testPopDouble and testPopInteger in Fig. 19.9—that is, pop values off a
Stack<T>. The output of Fig. 19.10 precisely matches that of Fig. 19.9.

popValue = (Double) stack.pop();

popValue = (Integer) stack.pop();

1 // Fig. 19.10: StackTest2.java
2 // Passing generic Stack objects to generic methods.
3 public class StackTest2
4 {
5 public static void main(String[] args)
6 {

Fig. 19.10 | Passing generic Stack objects to generic methods. (Part 1 of 3.)

19.6 Generic Classes 635

7 [] doubleElements = { 1.1, 2.2, 3.3, 4.4, 5.5 };
8 [] integerElements = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
9

10 // Create a Stack< Double > and a Stack< Integer >
11 Stack< Double > doubleStack = new Stack< Double >(5);
12 Stack< Integer > integerStack = new Stack< Integer >();
13
14
15
16
17
18
19
20
21 } // end main
22
23 // generic method testPush pushes elements onto a Stack
24
25
26 {
27 System.out.printf("\nPushing elements onto %s\n", name);
28
29 // push elements onto Stack
30 for ()
31 {
32 System.out.printf("%s ", element);
33 stack.push(element); // push element onto stack
34 } // end for
35 } // end method testPush
36
37 // generic method testPop pops elements from a Stack
38
39 {
40 // pop elements from stack
41 try

42 {
43 System.out.printf("\nPopping elements from %s\n", name);
44
45
46 // remove all elements from Stack
47 while (true)
48 {
49 popValue = stack.pop();
50 System.out.printf("%s ", popValue);
51 } // end while
52 } // end try
53 catch(EmptyStackException emptyStackException)
54 {
55 System.out.println();
56 emptyStackException.printStackTrace();
57 } // end catch EmptyStackException
58 } // end method testPop
59 } // end class StackTest2

Fig. 19.10 | Passing generic Stack objects to generic methods. (Part 2 of 3.)

Double
Integer

// push elements of doubleElements onto doubleStack
testPush("doubleStack", doubleStack, doubleElements);
testPop("doubleStack", doubleStack); // pop from doubleStack

// push elements of integerElements onto integerStack
testPush("integerStack", integerStack, integerElements);
testPop("integerStack", integerStack); // pop from integerStack

public static < T > void testPush(String name , Stack< T > stack,
T[] elements)

T element : elements

public static < T > void testPop(String name, Stack< T > stack)

T popValue; // store element removed from stack

636 Chapter 19 Generic Classes and Methods

Lines 11–12 create the Stack<Double> and Stack<Integer> objects, respectively.
Lines 15–16 and 19–20 invoke generic methods testPush and testPop to test the Stack

objects. Because type parameters can represent only reference types, to be able to pass arrays
doubleElements and integerElements to generic method testPush, the arrays declared in
lines 7–8 must be declared with the wrapper types Double and Integer. When these arrays
are initialized with primitive values, the compiler autoboxes each primitive value.

Generic method testPush (lines 24–35) uses type parameter T (specified at line 24)
to represent the data type stored in the Stack<T>. The generic method takes three argu-
ments—a String that represents the name of the Stack<T> object for output purposes, a
reference to an object of type Stack<T> and an array of type T—the type of elements that
will be pushed onto Stack<T>. The compiler enforces consistency between the type of the
Stack and the elements that will be pushed onto the Stack when push is invoked, which
is the real value of the generic method call. Generic method testPop (lines 38–58) takes
two arguments—a String that represents the name of the Stack<T> object for output pur-
poses and a reference to an object of type Stack<T>.

19.7 Raw Types
The test programs for generic class Stack in Section 19.6 instantiate Stacks with type ar-
guments Double and Integer. It’s also possible to instantiate generic class Stack without
specifying a type argument, as follows:

In this case, the objectStack is said to have a raw type, which means that the compiler
implicitly uses type Object throughout the generic class for each type argument. Thus the
preceding statement creates a Stack that can store objects of any type. This is important
for backward compatibility with prior versions of Java. For example, the data structures of
the Java Collections Framework (see Chapter 18) all stored references to Objects, but are
now implemented as generic types.

Pushing elements onto doubleStack
1.1 2.2 3.3 4.4 5.5
Popping elements from doubleStack
5.5 4.4 3.3 2.2 1.1
EmptyStackException: Stack is empty, cannot pop

at Stack.pop(Stack.java:32)
at StackTest2.testPop(StackTest2.java:50)
at StackTest2.main(StackTest2.java:17)

Pushing elements onto integerStack
1 2 3 4 5 6 7 8 9 10
Popping elements from integerStack
10 9 8 7 6 5 4 3 2 1
EmptyStackException: Stack is empty, cannot pop

at Stack.pop(Stack.java:32)
at StackTest2.testPop(StackTest2.java:50)
at StackTest2.main(StackTest2.java:21

Stack objectStack = new Stack(5); // no type-argument specified

Fig. 19.10 | Passing generic Stack objects to generic methods. (Part 3 of 3.)

19.7 Raw Types 637

A raw-type Stack variable can be assigned a Stack that specifies a type argument, such
as a Stack<Double> object, as follows:

because type Double is a subclass of Object. This assignment is allowed because the ele-
ments in a Stack<Double> (i.e., Double objects) are certainly objects—class Double is an
indirect subclass of Object.

Similarly, a Stack variable that specifies a type argument in its declaration can be
assigned a raw-type Stack object, as in:

Although this assignment is permitted, it’s unsafe, because a Stack of raw type might store
types other than Integer. In this case, the compiler issues a warning message which indi-
cates the unsafe assignment.

Using Raw Types with Generic Class Stack
The test program of Fig. 19.11 uses the notion of raw type. Line 11 instantiates generic
class Stack with raw type, which indicates that rawTypeStack1 can hold objects of any
type. Line 14 assigns a Stack<Double> to variable rawTypeStack2, which is declared as a
Stack of raw type. Line 17 assigns a Stack of raw type to Stack<Integer> variable, which
is legal but causes the compiler to issue a warning message (Fig. 19.12) indicating a poten-
tially unsafe assignment—again, this occurs because a Stack of raw type might store types
other than Integer. Also, the calls to generic methods testPush and testPop in lines 19–
22 result in compiler warning messages (Fig. 19.12). These occur because rawTypeStack1
and rawTypeStack2 are declared as Stacks of raw type, but methods testPush and
testPop each expect a second argument that is a Stack with a specific type argument. The
warnings indicate that the compiler cannot guarantee the types manipulated by the stacks
to be the correct types, since we did not supply a variable declared with a type argument.
Methods testPush (lines 28–39) and testPop (lines 42–62) are the same as in Fig. 19.10.

Figure 19.12 shows the warning messages generated by the compiler when the file
RawTypeTest.java (Fig. 19.11) is compiled with the -Xlint:unchecked option, which
provides more information about potentially unsafe operations in code that uses generics.
The first warning is generated for line 17, which assigned a raw-type Stack to a
Stack<Integer> variable—the compiler cannot ensure that all objects in the Stack will be
Integer objects. The next warning occurs at line 19. The compiler determines method
testPush’s type argument from the Double array passed as the third argument, because
the second method argument is a raw-type Stack variable. In this case, Double is the type
argument, so the compiler expects a Stack<Double> as the second argument. The warning
occurs because the compiler cannot ensure that a raw-type Stack contains only Doubles.
The warning at line 21 occurs for the same reason, even though the actual Stack that
rawTypeStack2 references is a Stack<Double>. The compiler cannot guarantee that the
variable will always refer to the same Stack object, so it must use the variable’s declared
type to perform all type checking. Lines 20 and 22 each generate warnings because method
testPop expects as an argument a Stack for which a type argument has been specified.
However, in each call to testPop, we pass a raw-type Stack variable. Thus, the compiler
indicates a warning because it cannot check the types used in the body of the method. In
general, you should avoid using raw types.

Stack rawTypeStack2 = new Stack< Double >(5);

Stack< Integer > integerStack = new Stack(10);

638 Chapter 19 Generic Classes and Methods

1 // Fig. 19.11: RawTypeTest.java
2 // Raw type test program.
3 public class RawTypeTest
4 {
5 public static void main(String[] args)
6 {
7 Double[] doubleElements = { 1.1, 2.2, 3.3, 4.4, 5.5 };
8 Integer[] integerElements = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 };
9

10
11
12
13
14
15
16
17
18
19 testPush("rawTypeStack1", rawTypeStack1, doubleElements);
20 testPop("rawTypeStack1", rawTypeStack1);
21 testPush("rawTypeStack2", rawTypeStack2, doubleElements);
22 testPop("rawTypeStack2", rawTypeStack2);
23 testPush("integerStack", integerStack, integerElements);
24 testPop("integerStack", integerStack);
25 } // end main
26
27 // generic method pushes elements onto stack
28 public static < T > void testPush(String name, Stack< T > stack,
29 T[] elements)
30 {
31 System.out.printf("\nPushing elements onto %s\n", name);
32
33 // push elements onto Stack
34 for (T element : elements)
35 {
36 System.out.printf("%s ", element);
37 stack.push(element); // push element onto stack
38 } // end for
39 } // end method testPush
40
41 // generic method testPop pops elements from stack
42 public static < T > void testPop(String name, Stack< T > stack)
43 {
44 // pop elements from stack
45 try

46 {
47 System.out.printf("\nPopping elements from %s\n", name);
48 T popValue; // store element removed from stack
49
50 // remove elements from Stack
51 while (true)
52 {
53 popValue = stack.pop(); // pop from stack

Fig. 19.11 | Raw-type test program. (Part 1 of 2.)

// Stack of raw types assigned to Stack of raw types variable
Stack rawTypeStack1 = new Stack(5);

// Stack< Double > assigned to Stack of raw types variable
Stack rawTypeStack2 = new Stack< Double >(5);

// Stack of raw types assigned to Stack< Integer > variable
Stack< Integer > integerStack = new Stack(10);

19.7 Raw Types 639

54 System.out.printf("%s ", popValue);
55 } // end while
56 } // end try
57 catch(EmptyStackException emptyStackException)
58 {
59 System.out.println();
60 emptyStackException.printStackTrace();
61 } // end catch EmptyStackException
62 } // end method testPop
63 } // end class RawTypeTest

Pushing elements onto rawTypeStack1
1.1 2.2 3.3 4.4 5.5
Popping elements from rawTypeStack1
5.5 4.4 3.3 2.2 1.1
EmptyStackException: Stack is empty, cannot pop

at Stack.pop(Stack.java:32)
at RawTypeTest.testPop(RawTypeTest.java:53)
at RawTypeTest.main(RawTypeTest.java:20)

Pushing elements onto rawTypeStack2
1.1 2.2 3.3 4.4 5.5
Popping elements from rawTypeStack2
5.5 4.4 3.3 2.2 1.1
EmptyStackException: Stack is empty, cannot pop

at Stack.pop(Stack.java:32)
at RawTypeTest.testPop(RawTypeTest.java:53)
at RawTypeTest.main(RawTypeTest.java:22)

Pushing elements onto integerStack
1 2 3 4 5 6 7 8 9 10
Popping elements from integerStack
10 9 8 7 6 5 4 3 2 1
EmptyStackException: Stack is empty, cannot pop

at Stack.pop(Stack.java:32)
at RawTypeTest.testPop(RawTypeTest.java:53)
at RawTypeTest.main(RawTypeTest.java:24)

RawTypeTest.java:17: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<java.lang.Integer>

Stack< Integer > integerStack = new Stack(10);
^

RawTypeTest.java:19: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<java.lang.Double>

testPush("rawTypeStack1", rawTypeStack1, doubleElements);
^

Fig. 19.12 | Warning messages from the compiler. (Part 1 of 2.)

Fig. 19.11 | Raw-type test program. (Part 2 of 2.)

640 Chapter 19 Generic Classes and Methods

19.8 Wildcards in Methods That Accept Type
Parameters
In this section, we introduce a powerful generics concept known as wildcards. For this
purpose, we’ll also introduce a new data structure from package java.util. In
Chapter 18, we discussed the Java Collections Framework, which provides many generic
data structures and algorithms that manipulate the elements of those data structures. Per-
haps the simplest of these data structures is class ArrayList—a dynamically resizable, ar-
raylike data structure. As part of this discussion, you’ll learn how to create an ArrayList,
add elements to it and traverse those elements using an enhanced for statement.

Let’s consider an example that motivates wildcards. Suppose that you’d like to imple-
ment a generic method sum that totals the numbers in a collection, such as an ArrayList.
You’d begin by inserting the numbers in the collection. Because generic classes can be used
only with class or interface types, the numbers would be autoboxed as objects of the type-

RawTypeTest.java:19: warning: [unchecked] unchecked method invocation:
<T>testPush(java.lang.String,Stack<T>,T[]) in RawTypeTest is applied to
(java.lang.String,Stack,java.lang.Double[])

testPush("rawTypeStack1", rawTypeStack1, doubleElements);
^

RawTypeTest.java:20: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<T>

testPop("rawTypeStack1", rawTypeStack1);
^

RawTypeTest.java:20: warning: [unchecked] unchecked method invocation:
<T>testPop(java.lang.String,Stack<T>) in RawTypeTest is applied to
(java.lang.String,Stack)

testPop("rawTypeStack1", rawTypeStack1);
^

RawTypeTest.java:21: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<java.lang.Double>

testPush("rawTypeStack2", rawTypeStack2, doubleElements);
^

RawTypeTest.java:21: warning: [unchecked] unchecked method invocation:
<T>testPush(java.lang.String,Stack<T>,T[]) in RawTypeTest is applied to
(java.lang.String,Stack,java.lang.Double[])

testPush("rawTypeStack2", rawTypeStack2, doubleElements);
^

RawTypeTest.java:22: warning: [unchecked] unchecked conversion
found : Stack
required: Stack<T>

testPop("rawTypeStack2", rawTypeStack2);
^

RawTypeTest.java:22: warning: [unchecked] unchecked method invocation:
<T>testPop(java.lang.String,Stack<T>) in RawTypeTest is applied to
(java.lang.String,Stack)

testPop("rawTypeStack2", rawTypeStack2);
^

9 warnings

Fig. 19.12 | Warning messages from the compiler. (Part 2 of 2.)

19.8 Wildcards in Methods That Accept Type Parameters 641

wrapper classes. For example, any int value would be autoboxed as an Integer object, and
any double value would be autoboxed as a Double object. We’d like to be able to total all the
numbers in the ArrayList regardless of their type. For this reason, we’ll declare the Array-

List with the type argument Number, which is the superclass of both Integer and Double.
In addition, method sum will receive a parameter of type ArrayList<Number> and total its
elements. Figure 19.13 demonstrates totaling the elements of an ArrayList of Numbers.

Line 11 declares and initializes an array of Numbers. Because the initializers are prim-
itive values, Java autoboxes each primitive value as an object of its corresponding wrapper
type. The int values 1 and 3 are autoboxed as Integer objects, and the double values 2.4
and 4.1 are autoboxed as Double objects. Line 12 declares and creates an ArrayList object
that stores Numbers and assigns it to variable numberList. We do not have to specify the
size of the ArrayList because it will grow automatically as we insert objects.

1 // Fig. 19.13: TotalNumbers.java
2 // Totaling the numbers in an ArrayList<Number>.
3 import java.util.ArrayList;
4
5 public class TotalNumbers
6 {
7 public static void main(String[] args)
8 {
9 // create, initialize and output ArrayList of Numbers containing

10 // both Integers and Doubles, then display total of the elements
11
12
13
14 for (Number element : numbers)
15
16
17 System.out.printf("numberList contains: %s\n",);
18 System.out.printf("Total of the elements in numberList: %.1f\n",
19);
20 } // end main
21
22 // calculate total of ArrayList elements
23 public static double sum(list)
24 {
25 double total = 0; // initialize total
26
27 // calculate sum
28
29
30
31 return total;
32 } // end method sum
33 } // end class TotalNumbers

numberList contains: [1, 2.4, 3, 4.1]
Total of the elements in numberList: 10.5

Fig. 19.13 | Totaling the numbers in an ArrayList<Number>.

Number[] numbers = { 1, 2.4, 3, 4.1 }; // Integers and Doubles
ArrayList< Number > numberList = new ArrayList< Number >();

numberList.add(element); // place each number in numberList

numberList

sum(numberList)

ArrayList< Number >

for (Number element : list)
total += element.doubleValue();

642 Chapter 19 Generic Classes and Methods

Lines 14–15 traverse array numbers and place each element in numberList. Line 17
outputs the contents of the ArrayList as a String. This statement implicitly invokes the
ArrayList’s toString method, which returns a String of the form "[elements]" in which
elements is a comma-separated list of the elements’ String representations. Lines 18–19
display the sum of the elements that is returned by the call to method sum.

Method sum (lines 23–32) receives an ArrayList of Numbers and calculates the total
of the Numbers in the collection. The method uses double values to perform the calcula-
tions and returns the result as a double. Lines 28–29 use the enhanced for statement,
which is designed to work with both arrays and the collections of the Collections Frame-
work, to total the elements of the ArrayList. The for statement assigns each Number in
the ArrayList to variable element, then uses Number method doubleValue to obtain the
Number’s underlying primitive value as a double value. The result is added to total. When
the loop terminates, the method returns the total.

Implementing Method sum With a Wildcard Type Argument in Its Parameter
Recall that the purpose of method sum in Fig. 19.13 was to total any type of Numbers stored
in an ArrayList. We created an ArrayList of Numbers that contained both Integer and
Double objects. The output of Fig. 19.13 demonstrates that method sum worked properly.
Given that method sum can total the elements of an ArrayList of Numbers, you might ex-
pect that the method would also work for ArrayLists that contain elements of only one
numeric type, such as ArrayList<Integer>. So we modified class TotalNumbers to create
an ArrayList of Integers and pass it to method sum. When we compile the program, the
compiler issues the following error message:

Although Number is the superclass of Integer, the compiler does not consider the param-
eterized type ArrayList<Number> to be a superclass of ArrayList<Integer>. If it were,
then every operation we could perform on ArrayList<Number> would also work on an Ar-

rayList<Integer>. Consider the fact that you can add a Double object to an Array-

List<Number> because a Double is a Number, but you cannot add a Double object to an
ArrayList<Integer> because a Double is not an Integer. Thus, the subtype relationship
does not hold.

How do we create a more flexible version of the sum method that can total the ele-
ments of any ArrayList containing elements of any subclass of Number? This is where
wildcard type arguments are important. Wildcards enable you to specify method param-
eters, return values, variables or fields, and so on, that act as supertypes or subtypes of
parameterized types. In Fig. 19.14, method sum’s parameter is declared in line 50 with the
type:

A wildcard type argument is denoted by a question mark (?), which by itself represents an
“unknown type.” In this case, the wildcard extends class Number, which means that the
wildcard has an upper bound of Number. Thus, the unknown-type argument must be ei-
ther Number or a subclass of Number. With the parameter type shown here, method sum can
receive an ArrayList argument that contains any type of Number, such as ArrayList<

Integer> (line 20), ArrayList<Double> (line 33) or ArrayList<Number> (line 46).

sum(java.util.ArrayList<java.lang.Number>) in TotalNumbersErrors
cannot be applied to (java.util.ArrayList<java.lang.Integer>)

ArrayList< ? extends Number >

19.8 Wildcards in Methods That Accept Type Parameters 643

1 // Fig. 19.14: WildcardTest.java
2 // Wildcard test program.
3 import java.util.ArrayList;
4
5 public class WildcardTest
6 {
7 public static void main(String[] args)
8 {
9 // create, initialize and output ArrayList of Integers, then

10 // display total of the elements
11 Integer[] integers = { 1, 2, 3, 4, 5 };
12
13
14 // insert elements in integerList
15 for (Integer element : integers)
16 integerList.add(element);
17
18 System.out.printf("integerList contains: %s\n", integerList);
19 System.out.printf("Total of the elements in integerList: %.0f\n\n",
20);
21
22 // create, initialize and output ArrayList of Doubles, then
23 // display total of the elements
24 Double[] doubles = { 1.1, 3.3, 5.5 };
25
26
27 // insert elements in doubleList
28 for (Double element : doubles)
29 doubleList.add(element);
30
31 System.out.printf("doubleList contains: %s\n", doubleList);
32 System.out.printf("Total of the elements in doubleList: %.1f\n\n",
33);
34
35 // create, initialize and output ArrayList of Numbers containing
36 // both Integers and Doubles, then display total of the elements
37 Number[] numbers = { 1, 2.4, 3, 4.1 }; // Integers and Doubles
38
39
40 // insert elements in numberList
41 for (Number element : numbers)
42 numberList.add(element);
43
44 System.out.printf("numberList contains: %s\n", numberList);
45 System.out.printf("Total of the elements in numberList: %.1f\n",
46);
47 } // end main
48
49 // total the elements; using a wildcard in the ArrayList parameter
50 public static double sum(list)
51 {
52 double total = 0; // initialize total
53

Fig. 19.14 | Generic wildcard test program. (Part 1 of 2.)

ArrayList< Integer > integerList = new ArrayList< Integer >();

sum(integerList)

ArrayList< Double > doubleList = new ArrayList< Double >();

sum(doubleList)

ArrayList< Number > numberList = new ArrayList< Number >();

sum(numberList)

ArrayList< ? extends Number >

644 Chapter 19 Generic Classes and Methods

Lines 11–20 create and initialize an ArrayList<Integer>, output its elements and
total them by calling method sum (line 20). Lines 24–33 perform the same operations for
an ArrayList<Double>. Lines 37–46 perform the same operations for an Array-

List<Number> that contains Integers and Doubles.
In method sum (lines 50–59), although the ArrayList argument’s element types are

not directly known by the method, they’re known to be at least of type Number, because
the wildcard was specified with the upper bound Number. For this reason line 56 is allowed,
because all Number objects have a doubleValue method.

Although wildcards provide flexibility when passing parameterized types to a method,
they also have some disadvantages. Because the wildcard (?) in the method’s header (line
50) does not specify a type-parameter name, you cannot use it as a type name throughout
the method’s body (i.e., you cannot replace Number with ? in line 55). You could, however,
declare method sum as follows:

which allows the method to receive an ArrayList that contains elements of any Number

subclass. You could then use the type parameter T throughout the method body.
If the wildcard is specified without an upper bound, then only the methods of type

Object can be invoked on values of the wildcard type. Also, methods that use wildcards in
their parameter’s type arguments cannot be used to add elements to a collection referenced
by the parameter.

19.9 Generics and Inheritance: Notes
Generics can be used with inheritance in several ways:

• A generic class can be derived from a nongeneric class. For example, the Object

class is a direct or indirect superclass of every generic class.

54 // calculate sum
55 for (Number element : list)
56 total += element.doubleValue();
57
58 return total;
59 } // end method sum
60 } // end class WildcardTest

integerList contains: [1, 2, 3, 4, 5]
Total of the elements in integerList: 15

doubleList contains: [1.1, 3.3, 5.5]
Total of the elements in doubleList: 9.9

numberList contains: [1, 2.4, 3, 4.1]
Total of the elements in numberList: 10.5

public static <T extends Number> double sum(ArrayList< T > list)

Common Programming Error 19.4
Using a wildcard in a method’s type-parameter section or using a wildcard as an explicit
type of a variable in the method body is a syntax error.

Fig. 19.14 | Generic wildcard test program. (Part 2 of 2.)

19.10 Wrap-Up 645

• A generic class can be derived from another generic class. For example, generic
class Stack (in package java.util) is a subclass of generic class Vector (in pack-
age java.util). We discussed these classes in Chapter 18.

• A nongeneric class can be derived from a generic class. For example, nongeneric
class Properties (in package java.util) is a subclass of generic class Hashtable
(in package java.util). We also discussed these classes in Chapter 18.

• Finally, a generic method in a subclass can override a generic method in a super-
class if both methods have the same signatures.

19.10 Wrap-Up
This chapter introduced generics. You learned how to declare generic methods and classes.
We discussed how backward compatibility is achieved via raw types. You also learned how
to use wildcards in a generic method or a generic class. For more information on generics,
please visit our Java Resource Center at www.deitel.com/Java/ and click the topic Java
Generics under the heading Resource Center Contents. Next, we introduce Java applets—
Java programs that typically execute in a browser. We overview the JDK’s sample applets,
then show you how to write and execute your own applets. We then introduce the Java
Web Start capabilities for launching an applet and installing a desktop shortcut to re-
launch the applet in the future without having to revisit the applet’s website.

www.deitel.com/Java/

20
Applets and Java Web
Start

O b j e c t i v e s
In this chapter you’ll learn:

� What applets are and how they’re used in web pages.

� To observe some of Java’s exciting capabilities through the
JDK’s demonstration applets.

� To write simple applets.

� To write a simple HyperText Markup Language (HTML)
document to load an applet into an applet container and
execute the applet.

� Applet life-cycle methods.

� About the sandbox security model for running downloaded
code safely.

� What Java Web Start is and how to use it to download,
install and run applets outside of the web browser.

Observe due measure, for
right timing is in all things
the most important factor.
—Hesiod

Painting is only a bridge
linking the painter’s mind
with that of the viewer.
—Eugene Delacroix

The direction in which
education starts a man will
determine his future in life.
—Plato

20.1 Introduction 647

20.1 Introduction
[Note: This chapter is intentionally small and simple for readers who wish to study applets
after reading only the book’s first few chapters. We present more complex applets in
Chapter 21, Multimedia: Applets and Applications, and Chapter 24, Networking. Also,
the examples in this chapter require some knowledge of HTML to create a web page that
loads an applet. With each example we supply sample HTML documents that you can
modify for your own purposes.

This chapter introduces applets—Java programs that are typically embedded in
HTML (HyperText Markup Language) documents—also called web pages. When a
Java-enabled web browser loads a web page containing an applet, the applet downloads
into the browser and executes.

Applet Containers
The application in which an applet executes is known as the applet container. It’s the ap-
plet container’s responsibility to load the applet’s class(es), create an instance of the applet
and manage its life cycle (which we discuss in more detail in Section 20.4). The Java De-
velopment Kit (JDK) includes one called the appletviewer for testing applets as you de-
velop them and before you embed them in web pages. We demonstrate applets using both
the appletviewer and web browsers, which execute Java applets via the Java Plug-In.
Some browsers don’t come with the plug-in by default. You can visit java.com to deter-
mine whether your browser is ready to execute Java applets. If not, you can click the Free
Java Download button to install Java for your browser. Several popular browsers are sup-
ported. We tested our applets in Mozilla’s Firefox 3.6, Microsoft’s Internet Explorer 8,
Google’s Chrome, Opera 11 and Apple’s Safari 5.

Java Web Start and the Java Network Launch Protocol (JNLP)
This chapter concludes with an introduction to Java Web Start and the Java Network
Launch Protocol (JNLP). Together, these enable you to package your applets and appli-
cations so that they can be installed onto the user’s desktop. As you’ll learn in Chapter 21,
Java Web Start also enables you to give the user control over whether an applet or appli-
cation downloaded from the web can have limited access to resources on the local file sys-
tem. For example, if you create a downloadable text-editor program in Java, users would
probably want to store their documents on their own computers.

20.1 Introduction
20.2 Sample Applets Provided with the

JDK
20.3 Simple Java Applet: Drawing a String

20.3.1 Executing WelcomeApplet in the
appletviewer

20.3.2 Executing an Applet in a Web
Browser

20.4 Applet Life-Cycle Methods
20.5 Initialization with Method init

20.6 Sandbox Security Model

20.7 Java Web Start and the Java Network
Launch Protocol (JNLP)

20.7.1 Packaging the DrawTest Applet for
Use with Java Web Start

20.7.2 JNLP Document for the DrawTest
Applet

20.8 Wrap-Up

648 Chapter 20 Applets and Java Web Start

20.2 Sample Applets Provided with the JDK
Before we discuss our own applets, let’s consider several demonstration applets provided
with the JDK. Each sample applet comes with its source code.

The demonstration programs provided with the JDK are located in a directory called
demo. For Windows, the default location of the JDK 6.0’s demo directory is

where _## represents the JDK update number. On UNIX/Linux, the default location is
the directory in which you install the JDK followed by jdk1.6.0_##/demo—for example,

Other platforms use a similar directory (or folder) structure. You may need to update the
locations specified here to reflect your chosen installation directory and disk drive, or a dif-
ferent version of the JDK. The demonstration programs are also available on JDK 7.

If you’re using a Java development tool that does not come with the Java demos, you
can download the current JDK from www.oracle.com/technetwork/java/javase/down-

loads/index.html. Mac OS X users should visit developer.apple.com/java for infor-
mation about Java SE on the Mac, or use virtualization software to run the Windows or
Linux versions of Java in a virtual machine. Apple recently joined the OpenJDK project
(openjdk.java.net). Eventually a Mac OS X version of the JDK for Java SE 7 will be
available from this project’s website.

Overview of the Demonstration Applets
Open a command window and use the cd command to change directories to the JDK’s
demo directory. The demo directory contains several subdirectories. You can list them by
issuing the dir command on Windows or the ls command on UNIX/Linux/Max OS X.
We discuss sample programs in the applets and jfc subdirectories. The applets directo-
ry contains demonstration applets. The jfc (Java Foundation Classes) directory contains
applets and applications that demonstrate Java’s powerful graphics and GUI capabilities.

Change to the applets directory and list its contents to see the directory names for
the demonstration applets. Figure 20.1 provides a brief description of each. If your
browser supports Java, you can test an applet by opening the HTML document for it in
the applet’s directory. We’ll demonstrate three of these applets by using the appletviewer
command in a command window.

C:\Program Files\Java\jdk1.6.0_##\demo

/usr/local/jdk1.6.0_##/demo

Example Description

Animator Performs one of four separate animations.

ArcTest Demonstrates drawing arcs. You can interact with the applet to change
attributes of the arc that’s displayed.

BarChart Draws a simple bar chart.

Blink Displays blinking text in different colors.

CardTest Demonstrates several GUI components and layouts.

Fig. 20.1 | The examples from the applets directory. (Part 1 of 2.)

www.oracle.com/technetwork/java/javase/down-loads/index.html
www.oracle.com/technetwork/java/javase/down-loads/index.html

20.2 Sample Applets Provided with the JDK 649

TicTacToe Applet
This TicTacToe demonstration applet allows you to play Tic-Tac-Toe against the com-
puter. Change directories to subdirectory TicTacToe, where you’ll find the file
example1.html that loads the applet. In the command window, type the command

and press Enter. This executes the appletviewer applet container, which loads the HTML
document example1.html specified as its command-line argument. The appletviewer

determines from the document which applet to load and executes it. Figure 20.2 shows
several screen captures of playing Tic-Tac-Toe with this applet. You can open the HTML
document in your browser to execute the applet in the browser.

You are player X. To interact with the applet, point the mouse at the square where you
want to place an X and click the mouse button. The applet plays a sound and places an X

Clock Draws a clock with rotating hands, the current date and the current time.
The clock updates once per second.

DitherTest Demonstrates drawing with a graphics technique known as dithering that
allows gradual transformation from one color to another.

DrawTest Allows the user to draw lines and points in different colors by dragging
the mouse.

Fractal Draws a fractal. Fractals typically require complex calculations to deter-
mine how they’re displayed. We discuss fractals in Section 18.8.

GraphicsTest Draws shapes to illustrate graphics capabilities.

GraphLayout Draws a graph consisting of many nodes (represented as rectangles) con-
nected by lines. Drag a node to see the other nodes in the graph adjust on
the screen and demonstrate complex graphical interactions.

JumpingBox Moves a rectangle randomly around the screen. Try to catch it by clicking
it with the mouse!

MoleculeViewer Presents a three-dimensional view of several chemical molecules. Drag the
mouse to view the molecule from different angles.

NervousText Draws text that jumps around the applet.

SimpleGraph Draws a complex curve.

SortDemo Compares three sorting techniques. Sorting (described in Chapter 19)
arranges information in order—like alphabetizing words. When you exe-
cute this example with the appletviewer, three windows appear. When
you execute it in a browser, the three demos appear side by side. Click in
each demo to start the sort. The sorts all operate at different speeds.

SpreadSheet Demonstrates a simple spreadsheet of rows and columns.

TicTacToe Allows the user to play Tic-Tac-Toe against the computer.

WireFrame Draws a three-dimensional shape as a wire frame. Drag the mouse to view
the shape from different angles.

appletviewer example1.html

Example Description

Fig. 20.1 | The examples from the applets directory. (Part 2 of 2.)

650 Chapter 20 Applets and Java Web Start

in the square if it’s open. If the square is occupied, this is an invalid move, and the applet
plays a different sound, indicating that you cannot make the specified move. After you
make a valid move, the applet responds by making its own move.

To play again, click the appletviewer’s Applet menu and select the Reload menu item
(Fig. 20.3), or click the applet again when the game is over. To terminate the applet-

viewer, click the appletviewer’s Applet menu and select the Quit menu item.

DrawTest Applet
The DrawTest applet allows you to draw lines and points in different colors. In the com-
mand window, change directories to directory applets, then to subdirectory DrawTest.
You can move up the directory tree incrementally toward demo by issuing the command
“cd ..” in the command window. The DrawTest directory contains the example1.html

document that’s used to execute the applet. In the command window, type the command

and press Enter. The appletviewer loads example1.html, determines from the document
which applet to load and executes it. Figure 20.4 shows a screen capture after some lines
and points have been drawn.

Fig. 20.2 | TicTacToe applet sample execution.

Fig. 20.3 | Applet menu in the appletviewer.

appletviewer example1.html

Select Quit to terminate the
appletviewer

Reload the applet to
execute it again

20.2 Sample Applets Provided with the JDK 651

By default the applet allows you to draw black lines by dragging the mouse across the
applet. When you drag the mouse, the line’s start point always remains in the same place
and its endpoint follows the mouse pointer around the applet. The line is not permanent
until you release the mouse button.

Select a color by clicking one of the radio buttons at the bottom of the applet. You
can select from red, green, blue, pink, orange and black. Change the shape to draw from
Lines to Points by selecting Points from the combo box. To start a new drawing, select
Reload from the appletviewer’s Applet menu.

Java2D Applet
The Java2D applet demonstrates many features of the Java 2D API, which we introduced
in Chapter 15. This demo can also be found at java.sun.com/products/java-media/2D/
samples/index.html. Change directories to the jfc directory in the JDK’s demo directory,
then change to the Java2D directory. In the command window, type the command

and press Enter. The appletviewer loads Java2Demo.html, determines from the docu-
ment which applet to load and executes it. Figure 20.5 shows a screen capture of one of
this applet’s many demonstrations of Java’s two-dimensional graphics capabilities.

At the top of the applet are tabs that look like file folders in a filing cabinet. This demo
provides 12 tabs, each demonstrating Java 2D API features. To change to a different part
of the demo, simply click a different tab. Also, try changing the options in the upper-right
corner of the applet. Some of these affect the speed with which the applet draws the
graphics. For example, click the checkbox to the left of the word Anti-Aliasing to turn off

Fig. 20.4 | DrawTest applet sample execution.

appletviewer Java2Demo.html

Select the
drawing color by

clicking one of the
radio buttons

Select Lines or
Points from the
combo box to
specify what will
be drawn when
you drag the mouse

Drag the mouse
in the white
area to draw

652 Chapter 20 Applets and Java Web Start

antialiasing (a graphics technique for producing smoother on-screen graphics in which the
edges are blurred). Shapes that are not antialiased are less complex to draw. Accordingly,
when the antialiasing feature is turned off, the animation speed increases for the animated
shapes at the bottom of the demo (Fig. 20.5).

20.3 Simple Java Applet: Drawing a String
Every Java applet is a graphical user interface on which you can place GUI components
using the techniques introduced in Chapter 14 or draw using the techniques demonstrat-
ed in Chapter 15. In this chapter, we’ll demonstrate drawing on an applet. Examples in
Chapters 21 and 24 demonstrate building an applet’s graphical user interface.

Now let’s build an applet of our own. We begin with a simple applet (Fig. 20.6) that
draws "Welcome to Java Programming!" on the applet. We show this applet executing in
two applet containers—the appletviewer and the Mozilla Firefox web browser. At the
end of this section, you’ll learn how to execute the applet in a web browser.

Fig. 20.5 | Java2D applet sample execution.

Click a tab to select a
two-dimensional graphics demo

Try changing the options to see
their effect on the demonstration

20.3 Simple Java Applet: Drawing a String 653

Creating the Applet Class
Line 3 imports class Graphics to enable the applet to draw graphics, such as lines, rectan-
gles, ovals and strings of characters. Class JApplet (imported at line 4) from package
javax.swing is used to create applets. As with applications, every Java applet contains at
least one public class declaration. An applet container can create only objects of classes
that are public and extend JApplet (or its superclass Applet). For this reason, class Wel-
comeApplet (lines 6–17) extends JApplet.

1 // Fig. 20.6: WelcomeApplet.java
2 // Applet that draws a String.
3
4
5
6
7 {
8
9

10
11
12
13
14
15
16
17 } // end class WelcomeApplet

Fig. 20.6 | Applet that draws a String.

import java.awt.Graphics; // program uses class Graphics
import javax.swing.JApplet; // program uses class JApplet

public class WelcomeApplet extends JApplet

// draw text on applet’s background
public void paint(Graphics g)
{

// call superclass version of method paint
super.paint(g);

// draw a String at x-coordinate 25 and y-coordinate 25
g.drawString("Welcome to Java Programming!", 25, 25);

} // end method paint

Status bar mimics what would
be displayed in the browser’s
status bar as the applet loads
and begins executing

Upper-left corner of drawing
area is location (0, 0).

Drawing area extends from
below the Applet menu to

above the status bar. x-
coordinates increase from left

to right. y-coordinates
increase from top to bottom.

Pixel coordinate (25, 25) at which
the string is displayed

x-axis
y-axis

Applet menu

WelcomeApplet executing in Mozilla Firefox

WelcomeApplet executing in the appletviewer

Upper-left corner of
drawing area

Pixel coordinate
(25, 25)

654 Chapter 20 Applets and Java Web Start

An applet container expects every Java applet to have methods named init, start,
paint, stop and destroy, each of which is declared in class JApplet. Each new applet class
you create inherits default implementations of these methods from class JApplet. These
methods can be overridden (redefined) to perform tasks that are specific to your applet.
Section 20.4 discusses each method in more detail.

When an applet container loads class WelcomeApplet, the container creates a Wel-

comeApplet object, then calls its methods init, start and paint in sequence. If you do
not declare these methods in your applet, the applet container calls the inherited versions.
The superclass methods init and start have empty bodies, so they do not perform any
tasks. The superclass method paint does not draw anything on the applet.

You might wonder why it’s necessary to inherit methods init, start and paint if
their default implementations do not perform tasks. Some applets do not use all three of
these methods. However, the applet container does not know that. Thus, it expects every
applet to have these methods, so that it can provide a consistent start-up sequence. This is
similar to applications’ always starting execution with main. Inheriting the “default” ver-
sions of these methods guarantees that the applet container can execute each applet uni-
formly. Also, inheriting default implementations of these methods allows you to
concentrate on defining only the methods required for a particular applet.

Overriding Method paint for Drawing
To enable our applet to draw, class WelcomeApplet overrides method paint (lines 9–16)
by placing statements in the body of paint that draw a message on the screen. Method
paint receives a parameter of type Graphics (called g by convention), which is used to
draw graphics on the applet. You do not call method paint explicitly in an applet. Rather,
the applet container calls paint to tell the applet when to draw, and the applet container
is responsible for passing a Graphics object as an argument.

Line 12 calls the superclass version of method paint that was inherited from JApplet.
This should be the first statement in every applet’s paint method. Omitting it can cause
subtle drawing errors in applets that combine drawing and GUI components.

Line 15 uses Graphics method drawString to draw Welcome to Java Programming!

on the applet. The method receives as arguments the String to draw and the x-y coordi-
nates at which the bottom-left corner of the String should appear in the drawing area.
When line 15 executes, it draws the String on the applet at the coordinates 25 and 25.

20.3.1 Executing WelcomeApplet in the appletviewer
After creating class WelcomeApplet and saving it in the file WelcomeApplet.java, open a
command window, change to the directory in which you saved the applet class declaration
and compile class WelcomeApplet.

Recall that applets are embedded in web pages for execution in an applet container
(appletviewer or a browser). Before you can execute the applet, you must create an
HTML document that specifies which applet to execute in the applet container. Typically,
an HTML document ends with an .html or .htm file-name extension. Figure 20.7 shows
a simple HTML document—WelcomeApplet.html—that loads the applet defined in
Fig. 20.6 into an applet container.

Most HTML elements are delimited by pairs of tags—e.g., lines 1 and 6 delimit the
HTML document’s beginning and end, respectively. Each tag is enclosed in angle brackets

20.3 Simple Java Applet: Drawing a String 655

(< and >). Lines 2–5 specify the body element element of the document—this represents
the elements that will be displayed in the web page. Lines 3–4 specify an applet element
that tells the applet container to load a specific applet and defines the size of its display area
(its width and height in pixels) in the applet container.

The applet and its corresponding HTML document are normally stored in the same
directory on disk. Typically, a browser loads an HTML document from a computer (other
than your own) connected to the Internet. However, HTML documents also can reside
on your computer (as in Section 20.2). When an applet container encounters an applet

element in an HTML document, it loads the applet’s .class file (or files) from the same
location that contains the HTML document.

The applet element has several attributes. The first attribute in line 3, code =

"WelcomeApplet.class", indicates that the file WelcomeApplet.class contains the com-
piled applet class. The second and third attributes in line 3 indicate the width (300) and
the height (45) of the applet in pixels. The </applet> tag (line 4) terminates the applet

element that began at line 2. The </html> tag (line 6) terminates the HTML document.

The appletviewer understands only the <applet> and </applet> HTML tags and
ignores all other tags in the document. The appletviewer is an ideal place to test an applet
and ensure that it executes properly. Once the applet’s execution is verified, you can add
its HTML tags to a web page that others can view in their web browsers.

To execute WelcomeApplet in the appletviewer, open a command window, change
to the directory containing your applet and HTML document, then type

1 <html>

2 <body>

3
4
5 </body>

6 </html>

Fig. 20.7 | WelcomeApplet.html loads WelcomeApplet (Fig. 20.6) into an applet container.

Common Programming Error 20.1
Forgetting the ending </applet> tag prevents the applet from executing in some applet
containers. The appletviewer terminates without indicating an error. Some web brows-
ers simply ignore the incomplete applet element.

Error-Prevention Tip 20.1
If you receive a MissingResourceException error message when loading an applet into
the appletviewer or a browser, check the <applet> tag in the HTML document care-
fully for syntax errors, such as commas (,) between the attributes.

appletviewer WelcomeApplet.html

Error-Prevention Tip 20.2
Test your applets in the appletviewer before executing them in a web browser. Browsers
often save a copy of an applet in memory until all the browser’s windows are closed. If you
change an applet, recompile it, then reload it in your browser, the browser may still exe-
cute the original version of the applet.

<applet code = "WelcomeApplet.class" width = "300" height = "45">

</applet>

656 Chapter 20 Applets and Java Web Start

20.3.2 Executing an Applet in a Web Browser
The sample program executions in Fig. 20.6 demonstrate WelcomeApplet executing in the
appletviewer and in the Mozilla Firefox web browser. To execute an applet in Firefox,
perform the following steps:

1. Select Open File… from the File menu.

2. In the dialog box that appears, locate the directory containing the HTML docu-
ment for the applet you wish to execute.

3. Select the HTML document.

4. Click the Open button.

The steps for executing applets in other web browsers are similar. In most browsers, you
can simply type <Ctrl> O to open a dialog that enables you to select an HTML document
from your local computer.

20.4 Applet Life-Cycle Methods
Now that you’ve created an applet, let’s consider the five applet methods that are called by
the applet container from the time the applet is loaded into the browser to the time it’s
terminated by the browser. These methods correspond to various aspects of an applet’s life
cycle. Figure 20.8 lists these methods, which are inherited into your applet classes from
class JApplet. The table specifies when each method gets called and explains its purpose.
Other than method paint, these methods have empty bodies by default. If you’d like to
declare any of them in your applets and have the applet container call them, you must use
the method headers shown in Fig. 20.8.

Error-Prevention Tip 20.3
Test your applets in every web browser in which they’ll execute to ensure that they operate
correctly.

Error-Prevention Tip 20.4
If your applet executes in the appletviewer but not in your web browser, Java may not
be installed and configured for your browser. In this case, visit the website java.com and
click the Free Java Download button to install Java for your browser.

Method Description

public void init()

Called once by the applet container when an applet is loaded for execution. This
method initializes an applet. Typical actions performed here are initializing fields,
creating GUI components, loading sounds to play, loading images to display (see
Chapter 21) and creating threads (see Chapter 23).

Fig. 20.8 | JApplet life-cycle methods that are called by an applet container during an
applet’s execution. (Part 1 of 2.)

20.5 Initialization with Method init 657

20.5 Initialization with Method init
Our next applet (Fig. 20.9) computes the sum of two values entered into input dialogs by
the user and displays the result by drawing a String inside a rectangle on the applet. The
sum is stored in an instance variable of the AdditionApplet class, so it can be used in both
the init method and the paint method. The HTML document that you can use to load
this applet into an applet container (i.e., the appletviewer or a web browser) is shown in
Fig. 20.10.

public void start()

Called by the applet container after method init completes execution. In addi-
tion, if the user browses to another website and later returns to the applet’s
HTML page, method start is called again. The method performs any tasks that
must be completed when the applet is loaded for the first time and that must be
performed every time the applet’s HTML page is revisited. Actions performed
here might include starting an animation or starting other threads of execution.

public void paint(Graphics g)

Called by the applet container after methods init and start. Method paint is
also called when the applet needs to be repainted. For example, if the user covers
the applet with another open window on the screen and later uncovers it, the
paint method is called. Typical actions performed here involve drawing with the
Graphics object g that’s passed to the paint method by the applet container.

public void stop()

This method is called by the applet container when the user leaves the applet’s web
page by browsing to another web page. Since it’s possible that the user might
return to the web page containing the applet, method stop performs tasks that
might be required to suspend the applet’s execution, so that the applet does not
use computer processing time when it’s not displayed on the screen. Typical
actions performed here would stop the execution of animations and threads.

public void destroy()

This method is called by the applet container when the applet is being removed
from memory. This occurs when the user exits the browsing session by closing all
the browser windows and may also occur at the browser’s discretion when the user
has browsed to other web pages. The method performs any tasks that are required
to clean up resources allocated to the applet.

Common Programming Error 20.2
Declaring methods init, start, paint, stop or destroy with method headers that differ
from those shown in Fig. 20.8 results in methods that will not be called by the applet con-
tainer. The code specified in your versions of the methods will not execute. The @Override
annotation can be applied to each method to prevent this problem.

Method Description

Fig. 20.8 | JApplet life-cycle methods that are called by an applet container during an
applet’s execution. (Part 2 of 2.)

658 Chapter 20 Applets and Java Web Start

1 // Fig. 20.9: AdditionApplet.java
2 // Applet that adds two double values entered via input dialogs.
3 import java.awt.Graphics; // program uses class Graphics
4 import javax.swing.JApplet; // program uses class JApplet
5 import javax.swing.JOptionPane; // program uses class JOptionPane
6
7 public class AdditionApplet extends JApplet
8 {
9

10
11 // initialize applet by obtaining values from user
12 public void init()
13 {
14 // obtain first number from user
15 String firstNumber = JOptionPane.showInputDialog(
16 "Enter first floating-point value");
17
18 // obtain second number from user
19 String secondNumber = JOptionPane.showInputDialog(
20 "Enter second floating-point value");
21
22 // convert numbers from type String to type double
23 double number1 = Double.parseDouble(firstNumber);
24 double number2 = Double.parseDouble(secondNumber);
25
26 sum = number1 + number2; // add numbers
27 } // end method init
28
29 // draw results in a rectangle on applet’s background
30 public void paint(Graphics g)
31 {
32 super.paint(g); // call superclass version of method paint
33
34 // draw rectangle starting from (15, 10) that is 270
35 // pixels wide and 20 pixels tall
36 g.drawRect(15, 10, 270, 20);
37
38 // draw results as a String at (25, 25)
39
40 } // end method paint
41 } // end class AdditionApplet

Fig. 20.9 | Applet that adds two double values entered via input dialogs. (Part 1 of 2.)

private double sum; // sum of values entered by user

g.drawString("The sum is " + sum, 25, 25);

20.6 Sandbox Security Model 659

The applet requests that the user enter two floating-point numbers. In Fig. 20.9, line
9 declares instance variable sum of type double. The applet contains two methods—init

(lines 12–27) and paint (lines 30–40). When an applet container loads this applet, the
container creates an instance of class AdditionApplet and calls its init method—this
occurs only once during an applet’s execution. Method init normally initializes the
applet’s fields (if they need to be initialized to values other than their defaults) and per-
forms other tasks that should occur only once when the applet begins execution. The first
line of init always appears as shown in line 12, which indicates that init is a public

method that receives no arguments and returns no information when it completes.
Lines 15–24 declare variables to store the values entered by the user, obtain the user

input and convert the Strings entered by the user to double values. Line 26 adds the
values stored in variables number1 and number2, and assigns the result to instance variable
sum. At this point, the applet’s init method returns program control to the applet con-
tainer, which then calls the applet’s start method. We did not declare start in this
applet, so the one inherited from class JApplet is called here.

Next, the applet container calls the applet’s paint method, which draws a rectangle
(line 36) where the addition result will appear. Line 39 calls the Graphics object’s draw-
String method to display the results. The statement concatenates the value of instance
variable sum to the String "The sum is " and displays the concatenated String.

20.6 Sandbox Security Model
For security reasons, it’s generally considered dangerous to allow applets or any other pro-
gram that you execute from a web browser to access your local computer. So, you must
decide whether you trust the source. For example, if you choose to download a new version

1 <html>

2 <body>

3 <applet code = "AdditionApplet.class" width = "300" height = "50">

4 </applet>

5 </body>

6 </html>

Fig. 20.10 | AdditionApplet.html loads class AdditionApplet of Fig. 20.9 into an applet
container.

Software Engineering Observation 20.1
The only statements that should be placed in an applet’s init method are those that should
execute only once when the applet is initialized.

Fig. 20.9 | Applet that adds two double values entered via input dialogs. (Part 2 of 2.)

660 Chapter 20 Applets and Java Web Start

of the Firefox web browser from Mozilla’s firefox.com website, you must decide whether
you trust Mozilla. After all, their installer program is going to modify your system and
place the files to execute Firefox on your computer. Once it’s installed, Firefox will be able
to access files and other local resources. Most of what you do with your web browsers—
such as shopping, browsing the web and downloading software—requires you to trust the
sites you visit and to trust the organizations that maintain those sites. If you’re not careful,
a malicious downloaded program could gain control of your computer, access personal in-
formation stored there, corrupt your data and possibly even be used to attack other com-
puters on the Internet—as so often happens with computer viruses today.

Preventing Malicious Applets
Applets are typically downloaded from the Internet. What would happen if you down-
loaded a malicious applet? Consider the fact that a browser downloads and executes a Java
applet automatically—the user is not asked for approval. In fact, an applet typically down-
loads without the user’s knowledge—it’s just another element of the web page the user hap-
pens to be visiting.

The designers of Java considered this issue thoroughly, since Java was intended for use
in networked environments. To combat malicious code, the Java platform uses a so-called
sandbox security model that provides a mechanism for executing downloaded code safely.
Such code executes in the “sandbox” and is not allowed to “play outside the sandbox.” By
default, downloaded code cannot access local system resources, and an applet can interact only
with the server from which the applet was downloaded.

Digitally Signed Applets
Unfortunately, executing in a sandbox makes it difficult for applets to perform useful
tasks. It’s possible, however, for an organization that wishes to create applets with access
to the local system to obtain a security certificate (also called a digital certificate) from one
of several certificate authorities (see en.wikipedia.org/wiki/Certificate_Authority

for a list of authorities and more information about certificate authorities). The organiza-
tion can then use tools provided with the JDK to digitally sign an applet that requires access
to local system resources. When a user downloads a digitally signed applet, a dialog
prompts the user asking whether he or she trusts the applet’s source. In that dialog, the
user can view the organization’s security certificate and see which certificate authority is-
sued it. If the user indicates that he/she trusts the source, only then will the applet be able
to access to the local computer’s resources.

In the next section, we introduce Java Web Start and the Java Network Launch Pro-
tocol (JNLP). These technologies enable applets or applications to interact with the user
to request access to specific local system resources. With the user’s permission, this enables
Java programmers to extend the sandbox, but it does not give their programs access to all of
the user’s local resources—so the sandbox principles are still in effect. For example, it
would be useful for a downloadable text editor program to store the user’s files in a folder
on the user’s computer. The text editor can prompt the user to ask for permission to do
this. If the user grants permission for a specific directory on disk, the program can then
access only that local directory and its subdirectories.

For more information on digitally signed applets, visit java.sun.com/developer/

onlineTraining/Programming/JDCBook/signed.html. For information on the Java secu-
rity model, visit download.oracle.com/javase/6/docs/technotes/guides/security/.

20.7 Java Web Start and the Java Network Launch Protocol (JNLP) 661

20.7 Java Web Start and the Java Network Launch
Protocol (JNLP)
Java Web Start is a framework for running downloaded applets and applications outside the
browser. Typically, such programs are stored on a web server for access via the Internet, but
they can also be stored on an organization’s network for internal distribution, or even on
CDs, DVDs or other media. As you’ll learn in Chapter 21, Java Web Start enables you to
ask the user if a downloaded program can have access to the resources of the user’s computer.

Java Web Start Features
Some key Java Web Start features include:

• Desktop integration: Users can launch robust applets and applications by clicking
a hyperlink in a web page, and can quickly and easily install the programs on their
computers. Java Web Start can be configured to ask the user if a desktop icon should
be created so the user can launch the program directly from the desktop. Downloaded
programs can also have an “offline mode” for execution when the computer is not
connected to the Internet.

• Automatic updating: When you execute a program via Java Web Start, the pro-
gram is downloaded and cached (stored) on the user’s computer. The next time
the user executes that program, Java Web Start launches it from the cache. If the
program has been updated since it was last launched, Java Web Start can auto-
matically download the updates, so a user always has the most up-to-date version.
This makes installing and updating software simple and seamless to the user.

• Draggable applets: With a small change to the applet element that invokes an
applet from an HTML document, you can allow users to execute an applet in its
own window by holding the Alt key and dragging the applet out of the web
browser. The applet continues to execute even after the web browser closes.

Java Network Launch Protocol (JNLP)
A Java Network Launch Protocol (JNLP) document provides the information that Java
Web Start needs in order to download and run a program. Also, you must package your
program in one or more Java archive (JAR) files that contain the program’s code and re-
sources (e.g., images, media files, text files).

By default, programs launched via Java Web Start execute using the sandbox security
model. If the user gives permission, such programs can access the local file system, the clip-
board and other services via the JNLP APIs of package javax.jnlp. We discuss some of
these features in Chapter 21. Digitally signed programs can gain greater access to the local
system if the user trusts the source.

20.7.1 Packaging the DrawTest Applet for Use with Java Web Start
Let’s package the JDK’s DrawTest demonstration applet (discussed in Section 20.2) so
that you can execute it via Java Web Start. To do so, you must first wrap the applet’s
.class files and the resources it uses (if any) into a Java archive (JAR) file. In a command
window, change to the DrawTest directory, as you did in Section 20.2. Once in that fold-
er, execute the following command:

662 Chapter 20 Applets and Java Web Start

which creates in the current directory a JAR file named DrawTest.jar containing the ap-
plet’s .class files—DrawControls.class, DrawPanel.class and DrawTest.class. If the
program had other resources, you’d simply add the file names or the folder names in which
those resources are stored to the end of the preceding command. The letters cvf are com-
mand-line options to the jar command. The c option indicates that the command should
create a new JAR file. The v option indicates that the command should produce verbose
output so you can see the list of files and directories being included in the JAR file. The f

option indicates that the next argument in the command line (DrawTest.jar) is the new
JAR file’s name. Figure 20.11 shows the preceding command’s verbose output, which
shows the files that were placed into the JAR.

20.7.2 JNLP Document for the DrawTest Applet
Next, you must create a JNLP document that describes the contents of the JAR file and
specifies which file in the JAR is the so-called main-class that begins the program’s exe-
cution. For an applet, the main-class is the one that extends JApplet (i.e., DrawTest in
this example). For an application, the main-class is the one that contains the main meth-
od. A basic JNLP document for the DrawTest applet is shown in Fig. 20.12. We describe
this document’s elements momentarily.

jar cvf DrawTest.jar *.class

added manifest
adding: DrawControls.class(in = 2611) (out= 1488)(deflated 43%)
adding: DrawPanel.class(in = 2703) (out= 1406)(deflated 47%)
adding: DrawTest.class(in = 1170) (out= 706)(deflated 39%)

Fig. 20.11 | Output of the jar command.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <jnlp

3
4 >

5
6 <information>

7 <title>DrawTest Applet</title>
8 <vendor>Oracle Corporation</vendor>
9 <shortcut>

10 <desktop/>

11 </shortcut>

12 <offline-allowed/>

13 </information>

14
15 <resources>

16 <java version="1.6+"/>
17 <jar main="true"/>
18 </resources>

Fig. 20.12 | DrawTest.jnlp document for launching the DrawTest applet. (Part 1 of 2.)

codebase=PathToJNLPFile
href="DrawTest.jnlp"

href="DrawTest.jar"

20.7 Java Web Start and the Java Network Launch Protocol (JNLP) 663

Overview of XML
JNLP documents are written in Extensible Markup Language (XML)—a widely support-
ed standard for describing data. XML is commonly used to exchange data between appli-
cations over the Internet, and many applications now use XML to specify configuration
information as well—as is the case with JNLP documents for Java Web Start. XML per-
mits you to create markup for virtually any type of information. This enables you to create
entirely new markup languages for describing any type of data, such as mathematical for-
mulas, software-configuration instructions, chemical molecular structures, music, news,
recipes and financial reports. XML describes data in a way that both humans and comput-
ers can understand. JNLP is a so-called XML vocabulary that describes the information
Java Web Start needs to launch a program.

XML documents contain elements that specify the document’s structure, such as
title (line 7), and text that represents content (i.e., data), such as DrawTest Applet (line
7). XML documents delimit elements with start tags and end tags. A start tag consists of
the element name in angle brackets (e.g., <title> and <vendor> in lines 7 and 8). Start
tags may also contain attributes of the form name=value—for example, the jnlp start tag
contains the attribute href="DrawTest.jnlp". An end tag consists of the element name
preceded by a forward slash (/) in angle brackets (e.g., </title> and </vendor> in lines
7 and 8). An element’s start and end tags enclose text that represents a piece of data (e.g.,
the vendor of the program—Oracle Corporation—in line 8, which is enclosed by the
<vendor> start tag and </vendor> end tag) or other elements (e.g., the title, vendor,
shortcut and offline-allowed elements in the information element of lines 6–13).
Every XML document must have exactly one root element that contains all the other ele-
ments. In Fig. 20.12, the jnlp element (lines 2–26) is the root element.

JNLP Document: jnlp Element
The jnlp element’s start tag (lines 2–4) has two attributes—codebase and href. The
codebase attribute’s value is a URL that specifies the path where the JNLP document and
the JAR file are stored—this is specified in Fig. 20.12 as PathToJNLPFile, since this value
depends on the location from which the applet is loaded. The href attribute specifies the
JNLP file that launches the program. We saved the JNLP file and the JAR file in the Draw-
Test demonstration applet’s directory within the JDK’s directory structure. We used the
following local file system URL as the codebase:

which indicates that the code is in the current directory (.). Typically, the codebase ref-
erences a directory on a web server with an http:// URL. If you’d like to serve your applet

19
20 <applet-desc

21 name="DrawTest"
22
23 width="400"
24 height="400">
25 </applet-desc>

26 </jnlp>

file:.

Fig. 20.12 | DrawTest.jnlp document for launching the DrawTest applet. (Part 2 of 2.)

main-class="DrawTest"

664 Chapter 20 Applets and Java Web Start

or application from a web server so users can access it online, you’ll need to configure your
web server correctly, as described at java.sun.com/javase/6/docs/technotes/guides/
javaws/developersguide/setup.html.

JNLP Document: information Element
The information element (lines 6–13) provides details about the program. The title el-
ement specifies a title for the program. The vendor element specifies who created the pro-
gram. The values of these elements appear in Java Web Start’s security warnings and errors
that are presented to the user. The title’s value also appears in the title bar of the window
in which the program executes.

The desktop element that’s nested in the shortcut element (lines 9–11) tells Java
Web Start to ask whether the user wishes to install a desktop shortcut. If the user accepts,
an icon will appear on the desktop. The user can then launch the program in its own
window by double-clicking the desktop icon. Note the syntax of the <desktop/> ele-
ment—a so-called empty XML element. When nothing appears between an element’s
start and end tags, the element can be written using one tag that ends with />.

The offline-allowed element (line 12) indicates that once the program is installed
on the user’s computer, it can be launched via Java Web Start—even when the computer
is not connected to the Internet. This is particularly useful for any program that can be
used with files stored on the user’s computer.

JNLP Document: resources Element
The resources element (lines 15–18) contains two nested elements. The java element
lists the minimum version of Java required to execute the program (line 16) and the jar

element (line 17) specifies the location of the JAR file that contains the program and
whether that JAR file contains the class that launches the program. There can be multiple
jar elements, as you’ll see in the next chapter.

JNLP Document: applet-desc Element
The applet-desc element (lines 20–25) is similar to the applet element in HTML. The
name attribute specifies the applet’s name. The main-class attribute specifies the main ap-
plet class (the one that extends JApplet). The width and height attributes specify the
width and height in pixels, respectively, of the window in which the applet will execute.
Chapter 21 discusses a similar element for applications—application-desc.

Launching the Applet with Java Web Start
You’re now ready to launch the applet via Java Web Start. There are several ways to do
this. You can use the javaws command in a command window from the folder that con-
tains the JNLP document, as in

You can also use your operating system’s file manager to locate the JNLP on your computer
and double click its file name. Normally, the JNLP file is referenced from a web page via a
hyperlink. The DrawTestWebPage.html document in Fig. 20.13 (which was saved in the
same directory as the JNLP file) contains an anchor (a) element (line 4), which links to the
DrawTest.jnlp file. Clicking this hyperlink in the web page downloads the JNLP file (in
this case, it’s loaded from the local file system) and executes the corresponding applet.

javaws DrawTest.jnlp

20.7 Java Web Start and the Java Network Launch Protocol (JNLP) 665

When you run the applet via Java Web Start the first time, you’ll be presented with
the dialog in Fig. 20.14. This dialog enables the user to decide if a desktop icon will be
installed. If the user clicks OK, a new icon labeled with the title specified in the JNLP doc-
ument appears on the user’s desktop. The applet is also cached for future use. After the
user clicks OK or Skip in this dialog, the program executes (Fig. 20.15).

Viewing the Installed Java Web Start Programs
You can view the installed Java Web Start programs in the Java Cache Viewer by typing
the following command in a command window:

This displays the window in Fig. 20.16. The Java Cache Viewer enables you to manage the
Java Web Start programs on your system. You can run a selected program, create a desktop
shortcut for a program (if there isn’t one already), delete installed programs, and more.

For more information on Java Web Start, visit download.oracle.com/javase/6/

docs/technotes/guides/javaws/. This site provides an overview of Java Web Start and
includes links to the Developer’s Guide, an FAQ, the JNLP Specification and the API doc-
umentation for the javax.jnlp package.

1 <html>

2 <head><title>DrawTest Launcher Page</title></head>
3 <body>

4
5 </body>

6 </html>

Fig. 20.13 | HTML document that launches the DrawTest applet when the user clicks the link.

Fig. 20.14 | Dialog asking whether the user wishes to install a desktop shortcut.

javaws -viewer

Launch DrawTest via Java Web Start

hyperlink to
DrawTest.jnlp

666 Chapter 20 Applets and Java Web Start

20.8 Wrap-Up
In this chapter, you learned the fundamentals of Java applets and Java Web Start. You
leaned HTML concepts for embedding an applet in a web page and executing it in an ap-
plet container such as the appletviewer or a web browser. You learned the five methods
that are called automatically by the applet container during an applet’s life cycle. We dis-
cussed Java’s sandbox security model for executing downloaded code. Then we introduced
Java Web Start and the Java Network Launch Protocol (JNLP). You packaged a program
into a JAR file so that it could be executed via Java Web Start. We also discussed the basic
elements of a JNLP document. Next, you’ll see additional applets as we present basic mul-
timedia capabilities. You’ll also learn more features of Java Web Start and JNLP.

Fig. 20.15 | DrawTest applet running with Java Web Start.

Fig. 20.16 | Viewing installed Java Web Start programs in the Java Cache Viewer.

Run the selected application Create desktop shortcut Remove selected items

21
Multimedia: Applets
and Applications

O b j e c t i v e s
In this chapter you’ll learn:

� How to get, display and scale images.

� How to create animations from sequences of images.

� How to create image maps that can sense when the cursor
is over them.

� How to get, play, loop and stop sounds using an
AudioClip.

� How to play video using interface Player.

The wheel that squeaks the
loudest … gets the grease.
—John Billings (Henry Wheeler
Shaw)

We’ll use a signal I have
tried and found far-
reaching and easy to yell.
Waa-hoo!
—Zane Grey

There is a natural hootchy-
kootchy motion to a
goldfish.
—Walt Disney

Between the motion and
the act falls the shadow.
—Thomas Stearns Eliot

668 Chapter 21 Multimedia: Applets and Applications

21.1 Introduction
Multimedia—using sound, images, graphics, animation and video—makes applications
“come alive.” Although most multimedia in Java applications is two-dimensional, you can
use the Java 3D API to create 3D graphics applications (www.oracle.com/technetwork/
java/javase/tech/index-jsp-138252.html).

Most new computers sold today are “multimedia ready,” with DVD drives and audio
and video capabilities. Economical desktop computers, laptops and smartphones are so
powerful that they can store and play DVD-quality (and often, HD-quality) sound and
video.

Among users who want graphics, many now want three-dimensional, high-resolution,
color graphics. True three-dimensional imaging is already available. We expect high-reso-
lution, “theater-in-the-round,” three-dimensional television to eventually become
common. Sporting and entertainment events will seem to take place on your living room
floor! Medical students worldwide will see operations being performed thousands of miles
away, as if they were occurring in the same room. People will learn how to drive with
incredibly realistic driving simulators in their homes before they get behind the wheel. The
possibilities are endless and exciting.

Multimedia demands extraordinary computing power. Today’s ultrapowerful proces-
sors make effective multimedia economical. Users are eager to own faster processors, larger
memories and wider communications channels that support demanding multimedia
applications. Ironically, these enhanced capabilities may not cost more—fierce competi-
tion keeps driving prices down.

The Java APIs provide multimedia facilities that enable you to start developing pow-
erful multimedia applications immediately. This chapter presents several examples,
including:

1. the basics of manipulating images

2. creating smooth animations

3. playing audio files with the AudioClip interface

4. creating image maps that can sense when the cursor is over them, even without a
mouse click

5. playing video files using the Player interface

We introduce additional JNLP features that, with the user’s permission, enable an
applet or application to access files on the user’s local computer. [Note: Java’s multimedia

21.1 Introduction
21.2 Loading, Displaying and Scaling

Images
21.3 Animating a Series of Images
21.4 Image Maps
21.5 Loading and Playing Audio Clips
21.6 Playing Video and Other Media with

Java Media Framework

21.7 Wrap-Up
21.8 Web Resources

www.oracle.com/technetwork/java/javase/tech/index-jsp-138252.html
www.oracle.com/technetwork/java/javase/tech/index-jsp-138252.html

21.2 Loading, Displaying and Scaling Images 669

capabilities go far beyond those presented in this chapter. They include the Java Media
Framework (JMF) API (for adding audio and video media to an application), Java Sound
API (for playing, recording and modifying audio), Java 3D API (for creating and modi-
fying 3D graphics), Java Advanced Imaging API (for image-processing capabilities, such
as cropping and scaling), Java Speech API (for inputting speech from the user and con-
verting it to text, or outputting text to the user as speech), Java 2D API (for creating and
modifying 2D graphics, covered in Chapter 15) and Java Image I/O API (for reading
images from and outputting images to files). Section 21.8 provides web links for these
APIs.]

21.2 Loading, Displaying and Scaling Images
We begin our discussion with images. We’ll use several different images in this chapter.
You can create your own images with software such as Adobe® Photoshop®, Corel® Paint
Shop Pro®, Microsoft® Paint and G.I.M.P. (gimp.org).

The applet of Fig. 21.1 uses Java Web Start and the JNLP FileOpenService (package
javax.jnlp) to allow the user to select an image, then displays that image and allows the
user to scale it. After the user selects an image, the applet gets the bytes from the file, then
passes them to the ImageIcon (package javax.swing) constructor to create the image that
will be displayed. Class ImageIcon’s constructors can receive arguments of several different
formats, including a byte array containing the bytes of an image, an Image (package
java.awt) already loaded in memory, or a String or a URL representing the image’s loca-
tion. Java supports various image formats, including Graphics Interchange Format (GIF),
Joint Photographic Experts Group (JPEG) and Portable Network Graphics (PNG). File
names for these types typically end with .gif, .jpg (or .jpeg) and .png, respectively.

1 // Fig. 21.1: LoadImageAndScale.java
2 // Loading, displaying and scaling an image in an applet
3 import java.awt.BorderLayout;
4 import java.awt.Graphics;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7
8
9

10 import javax.swing.ImageIcon;
11 import javax.swing.JApplet;
12 import javax.swing.JButton;
13 import javax.swing.JFrame;
14 import javax.swing.JLabel;
15 import javax.swing.JOptionPane;
16 import javax.swing.JPanel;
17 import javax.swing.JTextField;
18
19 public class LoadImageAndScale extends JApplet
20 {
21 private ImageIcon image; // references image to display
22 private JPanel scaleJPanel; // JPanel containing the scale-selector

Fig. 21.1 | Loading, displaying and scaling an image in an applet. (Part 1 of 4.)

import javax.jnlp.FileContents;
import javax.jnlp.FileOpenService;
import javax.jnlp.ServiceManager;

670 Chapter 21 Multimedia: Applets and Applications

23 private JLabel percentJLabel; // label for JTextField
24 private JTextField scaleInputJTextField; // obtains user’s input
25 private JButton scaleChangeJButton; // initiates scaling of image
26 private double scaleValue = 1.0; //scale percentage for image
27
28 // load image when applet is loaded
29 public void init()
30 {
31 scaleJPanel = new JPanel();
32 percentJLabel = new JLabel("scale percent:");
33 scaleInputJTextField = new JTextField("100");
34 scaleChangeJButton = new JButton("Set Scale");
35
36 // add components and place scaleJPanel in applet's NORTH region
37 scaleJPanel.add(percentJLabel);
38 scaleJPanel.add(scaleInputJTextField);
39 scaleJPanel.add(scaleChangeJButton);
40 add(scaleJPanel, BorderLayout.NORTH);
41
42 // register event handler for scaleChangeJButton
43 scaleChangeJButton.addActionListener(
44 new ActionListener()
45 {
46 // when the JButton is pressed, set scaleValue and repaint
47 public void actionPerformed(ActionEvent e)
48 {
49 scaleValue = Double.parseDouble(
50 scaleInputJTextField.getText()) / 100.0;
51
52 } // end method actionPerformed
53 } // end anonymous inner class
54); // end call to addActionListener
55
56 // use JNLP services to open an image file that the user selects
57 try

58 {
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73 // if image successfully loaded, create and add DrawJPanel
74 add(new DrawJPanel(), BorderLayout.CENTER);
75 } // end try

Fig. 21.1 | Loading, displaying and scaling an image in an applet. (Part 2 of 4.)

repaint(); // causes image to be redisplayed at new scale

// get a reference to the FileOpenService
FileOpenService fileOpenService =

(FileOpenService) ServiceManager.lookup(
"javax.jnlp.FileOpenService");

// get file's contents from the FileOpenService
FileContents contents =

fileOpenService.openFileDialog(null, null);

// byte array to store image's data
byte[] imageData = new byte[(int) contents.getLength()];
contents.getInputStream().read(imageData); // read image bytes
image = new ImageIcon(imageData); // create the image

21.2 Loading, Displaying and Scaling Images 671

76 catch(Exception e)
77 {
78 e.printStackTrace();
79 } // end catch
80 } // end method init
81
82 // DrawJPanel used to display loaded image
83 private class DrawJPanel extends JPanel
84 {
85 // display image
86 public void paintComponent(Graphics g)
87 {
88 super.paintComponent(g);
89
90 // the following values are used to center the image
91 double spareWidth =
92 getWidth() - scaleValue * image.getIconWidth();
93 double spareHeight =
94 getHeight() - scaleValue * image.getIconHeight();
95
96
97
98
99
100
101 } // end method paint
102 } // end class DrawJPanel
103 } // end class LoadImageAndScale

Fig. 21.1 | Loading, displaying and scaling an image in an applet. (Part 3 of 4.)

// draw image with scaled width and height
g.drawImage(image.getImage(),

(int) (spareWidth) / 2, (int) (spareHeight) / 2,
(int) (image.getIconWidth() * scaleValue),
(int) (image.getIconHeight() * scaleValue), this);

(a) Java Web Start
security dialog that

appears because this
applet is requesting

access to a file on
the local computer

(b) Open dialog
that appears if the

user clicks OK in the
security dialog

672 Chapter 21 Multimedia: Applets and Applications

Configuring the GUI and the JButton’s Event Handler
The applet’s init method (lines 29–80) configures the GUI and an event handler. It also
uses JNLP services to enable the user to select an image to display from the local computer.
Line 31 creates the JPanel that will contain the JLabel, JTextField and JButton created
in lines 32–34. Lines 37–39 add these components to the JPanel’s default FlowLayout.
Line 40 places this JPanel in the NORTH region of the JApplet’s default BorderLayout.

Lines 43–54 create the event handler for the scaleChangeJButton. When the user
clicks this JButton, lines 49–50 obtain the user’s input from the scaleInputJTextField,
divide it by 100.0 to calculate the scale percentage and assign the result to scaleValue.
This value will be used in later calculations to scale the image. For example, if the user
enters 50, the scale value will be 0.5 and the image will be displayed at half its original size.
Line 51 then repaints the applet to display the image at its new scale.

Opening the Image File Using JNLP’s FileOpenService
As we mentioned in Section 20.7, with the user’s permission, Java Web Start programs can
access the local file system via the JNLP APIs of package javax.jnlp. In this example,
we’d like the user to select an image from the local computer to display in the applet.
(We’ve provided two images in this example’s directory with the source code.) You can use
JNLP’s FileOpenService to request limited access to the local file system.

Lines 7–9 import the interfaces and class we need to use the FileOpenService. Lines
60–62 use the JNLP ServiceManager class’s static lookup method to obtain a reference
to the FileOpenService. JNLP provides several services, so this method returns an Object

that you must cast to the appropriate type. Lines 65–66 use the FileOpenService’s open-
FileDialog method to display a file-selection dialog. Java Web Start prompts the user
(Fig. 21.1(a)) to approve the applet’s request for local file-system access. If the user gives
permission, the Open dialog (Fig. 21.1(b)) is displayed. Method openFileDialog’s param-
eters are a String to suggest a directory to open and a String array of acceptable file exten-
sions (such as "png" and "jpg"). For simplicity, we passed null for each, which displays
an open dialog showing the user’s default directory and allows any file type to be selected.

Fig. 21.1 | Loading, displaying and scaling an image in an applet. (Part 4 of 4.)

(c) Scaling the image

21.2 Loading, Displaying and Scaling Images 673

When the user selects an image file and clicks the Open button in the dialog, method
openFileDialog returns a FileContents object, which for security reasons does not give
the program access to the file’s exact location on disk. Instead, the program can get an
InputStream and read the file’s bytes. Line 69 creates a byte array in which the image’s
data will be stored. FileContents method getLength returns the number of bytes (as a
long) in the file. Line 70 obtains the InputStream, then invokes its read method to fill
the imageData byte array. Line 71 creates an ImageIcon using the byte array as the source
of the image’s data. Finally, line 74 adds a new DrawJPanel to the CENTER of the applet’s
BorderLayout. When the applet is displayed, its components’ paintComponent methods
are called, which causes the DrawJPanel to display the image. You can learn more about
the JNLP APIs at download.oracle.com/javase/6/docs/jre/api/javaws/jnlp/.

Displaying the Image with Class DrawJPanel’s paintComponent Method
To separate the GUI from the area in which the image is displayed, we use a subclass of
JPanel named DrawJPanel (lines 83–102). Its paintComponent method (lines 86–101)
displays the image. We’d like to center the image in the DrawJPanel, so lines 91–94 cal-
culate the difference between the width of the DrawJPanel and that of the scaled image,
then the height of the DrawJPanel and that of the scaled image. DrawJPanel’s getWidth
and getHeight methods (inherited indirectly from class Component) return the DrawJPan-
el’s width and height, respectively. The ImageIcon’s getIconWidth and getIconHeight

methods return the image’s width and height, respectively. The scaleValue is set to 1.0

by default (line 26), and is changed when the user clicks the Set Scale JButton.
Lines 97–100 use Graphics’s method drawImage to display a scaled ImageIcon. The

first argument invokes the ImageIcon’s getImage method to obtain the Image to draw.
The second and third arguments represent the image’s upper-left corner coordinates with
respect to the DrawJPanel’s upper-left corner. The fourth and fifth arguments specify the
Image’s scaled width and height, respectively. Line 99 scales the image’s width by invoking
the ImageIcon’s getIconWidth method and multiplying its return value by scaleValue.
Similarly, line 100 scales the image’s height. The last argument is an ImageObserver—an
interface implemented by class Component. Since class DrawJPanel indirectly extends Com-
ponent, a DrawJPanel is an ImageObserver. This argument is important when displaying
large images that require a long time to load (or download from the Internet). It’s possible
that a program will attempt to display the image before it has completely loaded (or down-
loaded). As the Image loads, the ImageObserver receives notifications and updates the
image on the screen as necessary. In this example, the images are being loaded from the
user’s computer, so it’s likely that entire image will be displayed immediately.

Compiling the Applet
Compiling and running this applet requires the jnlp.jar file that contains the JNLP
APIs. This file can be found in your JDK installation directory under the directories

To compile the applet, use the following command:

sample
jnlp

servlet

javac -classpath PathToJnlpJarFile LoadImageAndScale.java

674 Chapter 21 Multimedia: Applets and Applications

where PathToJnlpJarFile includes both the path and the file name jnlp.jar. For example,
on our Windows Vista computer, the PathToJnlpJarFile is

Packaging the Applet for Use with Java Web Start
To package the applet for use with Java Web Start, you must create a JAR file that contains
the applet’s code and the jnlp.jar file. To do so, use the command

where PathToJnlpJarFile includes both the path and the file name jnlp.jar. This will
place all the .class files for the applet and a copy of the jnlp.jar file in the new JAR file
LoadImageAndScale.jar.

JNLP Document for LoadImageAndScale Applet
The JNLP document in Fig. 21.2 is similar to the one introduced in Fig. 20.12. The only
new feature in this document is that the resources element (lines 10–14) contains a sec-
ond jar element (line 13) that references the jnlp.jar file, which is embedded in the file
LoadImageAndScale.jar.

Making the Applet Draggable Outside the Browser Window
The HTML document in Fig. 21.3 loads the applet into a web browser. In this example,
we use an applet element to specify the applet’s class and provide two param elements be-
tween the applet element’s tags. The first (line 4) specifies that this applet should be drag-
gable. That is, the user can hold the Alt key and use the mouse to drag the applet outside
the browser window. The applet will then continue executing, even if the browser is

"C:\Program Files\Java\jdk1.6.0_11\sample\jnlp\servlet\jnlp.jar"

jar cvf LoadImageAndScale.jar *.class PathToJnlpJarFile

1 <?xml version="1.0" encoding="UTF-8"?>
2 <jnlp codebase="file:." href="LoadImageAndScale.jnlp">
3
4 <information>

5 <title>LoadImageAndScale Applet</title>
6 <vendor>Deitel</vendor>
7 <offline-allowed/>

8 </information>

9
10 <resources>

11 <java version="1.6+"/>
12 <jar href="LoadImageAndScale.jar" main="true"/>
13
14 </resources>

15
16 <applet-desc

17 name="LoadImageAndScale"
18 main-class="LoadImageAndScale"
19 width="400"
20 height="300">
21 </applet-desc>

22 </jnlp>

Fig. 21.2 | JNLP document for the LoadImageAndScale applet.

<jar href="jnlp.jar"/>

21.3 Animating a Series of Images 675

closed. Clicking the close box on the applet when it’s executing outside the browser causes
the applet to move back into the browser window if it’s still open, or to terminate other-
wise. The second param element shows an alternate way to specify the JNLP file that
launches an applet. We discuss applet parameters in more detail in Section 24.2.

21.3 Animating a Series of Images
Next, we animate a series of images stored in an array of ImageIcons. In this example, we
use the JNLP FileOpenService to enable the user to choose a group of images that will
be animated by displaying one image at a time at 50-millisecond intervals. The animation
presented in Figs. 21.4–21.5 is implemented using a subclass of JPanel called LogoAni-

matorJPanel (Fig. 21.4) that can be attached to an application window or a JApplet.
Class LogoAnimator (Fig. 21.5) declares a main method (lines 8–20 of Fig. 21.5) to exe-
cute the animation as an application. Method main declares an instance of class JFrame
and attaches a LogoAnimatorJPanel object to the JFrame to display the animation.

<html>
23 <body>

24 <applet code="LoadImageAndScale.class" width="400" height="300">
25
26
27 </applet>

28 </body>

29 </html>

Fig. 21.3 | HTML document to load the LoadImageAndScale applet and make it draggable
outside the browser window.

1 // Fig. 21.4: LogoAnimatorJPanel.java
2 // Animating a series of images.
3 import java.awt.Dimension;
4 import java.awt.event.ActionEvent;
5 import java.awt.event.ActionListener;
6 import java.awt.Graphics;
7 import javax.jnlp.FileContents;
8 import javax.jnlp.FileOpenService;
9 import javax.jnlp.ServiceManager;

10 import javax.swing.ImageIcon;
11 import javax.swing.JPanel;
12 import javax.swing.Timer;
13
14 public class LogoAnimatorJPanel extends JPanel
15 {
16
17 private int currentImage = 0; // current image index
18 private final int ANIMATION_DELAY = 50; // millisecond delay
19 private int width; // image width
20 private int height; // image height
21

Fig. 21.4 | Animating a series of images. (Part 1 of 3.)

<param name="draggable" value="true">
<param name="jnlp_href" value="LoadImageAndScale.jnlp">

protected ImageIcon images[]; // array of images

676 Chapter 21 Multimedia: Applets and Applications

22
23
24 // constructor initializes LogoAnimatorJPanel by loading images
25 public LogoAnimatorJPanel()
26 {
27 try

28 {
29 // get reference to FileOpenService
30 FileOpenService fileOpenService =
31 (FileOpenService) ServiceManager.lookup(
32 "javax.jnlp.FileOpenService");
33
34
35
36
37
38 // create array to store ImageIcon references
39 images = new ImageIcon[contents.length];
40
41 // load the selected images
42 for (int count = 0; count < images.length; count++)
43 {
44 // create byte array to store an image's data
45 byte[] imageData =
46 new byte[(int) contents[count].getLength()];
47
48 // get image's data and create image
49 contents[count].getInputStream().read(imageData);
50 images[count] = new ImageIcon(imageData);
51 } // end for
52
53 // this example assumes all images have the same width and height
54 width = images[0].getIconWidth(); // get icon width
55 height = images[0].getIconHeight(); // get icon height
56 } // end try
57 catch(Exception e)
58 {
59 e.printStackTrace();
60 } // end catch
61 } // end LogoAnimatorJPanel constructor
62
63 // display current image
64 public void paintComponent(Graphics g)
65 {
66 super.paintComponent(g); // call superclass paintComponent
67
68 images[currentImage].paintIcon(this, g, 0, 0);
69
70 // set next image to be drawn only if Timer is running
71 if ()
72 currentImage = (currentImage + 1) % images.length;
73 } // end method paintComponent

Fig. 21.4 | Animating a series of images. (Part 2 of 3.)

private Timer animationTimer; // Timer drives animation

// display dialog that allows user to select multiple files
FileContents[] contents =

fileOpenService.openMultiFileDialog(null, null);

animationTimer.isRunning()

21.3 Animating a Series of Images 677

74
75 // start animation, or restart if window is redisplayed
76 public void startAnimation()
77 {
78 if (animationTimer == null)
79 {
80 currentImage = 0; // display first image
81
82
83
84
85
86
87 } // end if
88 else // animationTimer already exists, restart animation
89 {
90 if (!)
91
92 } // end else
93 } // end method startAnimation
94
95 // stop animation Timer
96 public void stopAnimation()
97 {
98
99 } // end method stopAnimation
100
101
102
103
104
105
106
107
108
109
110
111
112
113 // inner class to handle action events from Timer
114 private class TimerHandler implements ActionListener
115 {
116 // respond to Timer's event
117 public void actionPerformed(ActionEvent actionEvent)
118 {
119 repaint(); // repaint animator
120 } // end method actionPerformed
121 } // end class TimerHandler
122 } // end class LogoAnimatorJPanel

Fig. 21.4 | Animating a series of images. (Part 3 of 3.)

// create timer
animationTimer =

new Timer(ANIMATION_DELAY, new TimerHandler());

animationTimer.start(); // start Timer

animationTimer.isRunning()
animationTimer.restart();

animationTimer.stop();

// return minimum size of animation
public Dimension getMinimumSize()
{

return getPreferredSize();
} // end method getMinimumSize

// return preferred size of animation
public Dimension getPreferredSize()
{

return new Dimension(width, height);
} // end method getPreferredSize

678 Chapter 21 Multimedia: Applets and Applications

Class LogoAnimatorPanel
Class LogoAnimatorJPanel (Fig. 21.4) maintains an array of ImageIcons (declared at line
16) that are loaded in the constructor (lines 25–61). The constructor begins by using the
JNLP FileOpenService’s openMultiFileDialog method to display a file-selection dialog
that allows the user to select multiple files at once. We named our sample images such that
they all have the same base name (“deitel”) followed by a two-digit number from 00–29.
This ensures that our images are in the proper order for the animation. As in this chapter’s
first example, first the user is prompted to give permission, then the Open dialog appears
if permission is granted. FileOpenService method openMultiFileDialog takes the same
arguments as method openFileDialog but returns an array of FileContents objects rep-
resenting the set of files selected by the user. When you run this application, navigate to a
folder containing the images you wish to use and select the images. If you wish, you can
use the 30 images we provide in this example’s subdirectory named images.

Line 39 creates the array of ImageIcons, then lines 42–51 populate the array by cre-
ating a byte array (lines 45–46) for the current image’s data, reading the bytes of the image
into the array (line 49) and creating an ImageIcon object from the byte array. Lines 54–
55 determine the width and height of the animation from the size of the first image in
array images—we assume that all the images have the same width and height.

1 // Fig. 21.5: LogoAnimator.java
2 // Displaying animated images on a JFrame.
3 import javax.swing.JFrame;
4
5 public class LogoAnimator
6 {
7 // execute animation in a JFrame
8 public static void main(String args[])
9 {

10 LogoAnimatorJPanel animation = new LogoAnimatorJPanel();
11
12 JFrame window = new JFrame("Animator test"); // set up window
13 window.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
14 window.add(animation); // add panel to frame
15
16
17 window.setVisible(true); // display window
18
19 animation.startAnimation(); // begin animation
20 } // end main
21 } // end class LogoAnimator

Fig. 21.5 | Displaying animated images on a JFrame.

window.pack(); // make window just large enough for its GUI

21.3 Animating a Series of Images 679

Method startAnimation

After the LogoAnimatorJPanel constructor loads the images, method main of Fig. 21.5
sets up the window in which the animation will appear (lines 12–17), and line 19 calls the
LogoAnimatorJPanel’s startAnimation method (declared at lines 76–93 of Fig. 21.4).
This method starts the program’s animation for the first time or restarts the animation that
the program stopped previously. The animation is driven by an instance of class Timer

(from package javax.swing).
When the program is first run, method startAnimation is called to begin the anima-

tion. Although we provide the functionality for this method to restart the animation if it
has been stopped, the example does not call the method for this purpose. We’ve added the
functionality, however, should the reader choose to add GUI components that enable the
user to start and stop the animation.

A Timer generates ActionEvents at a fixed interval in milliseconds (normally specified
as an argument to the Timer’s constructor) and notifies all its ActionListeners each time
an ActionEvent occurs. Line 78 determines whether the Timer reference animationTimer
is null. If it is, method startAnimation is being called for the first time, and a Timer

needs to be created so that the animation can begin. Line 80 sets currentImage to 0, which
indicates that the animation should begin with the first element of array images. Lines 83–
84 assign a new Timer object to animationTimer. The Timer constructor receives two
arguments—the delay in milliseconds (ANIMATION_DELAY is 50, as specified in line 18) and
the ActionListener that will respond to the Timer’s ActionEvents. For the second argu-
ment, an object of class TimerHandler is created. This class, which implements Action-
Listener, is declared in lines 114–121. Line 86 calls the Timer object’s start method to
start the Timer. Once started, animationTimer will generate an ActionEvent every 50 mil-
liseconds and call the Timer’s event handler actionPerformed (lines 117–120). Line 119
calls LogoAnimatorJPanel’s repaint method to schedule a call to LogoAnimatorJPanel’s
paintComponent method (lines 64–73). Remember that any subclass of JComponent that
draws should do so in its paintComponent method. Recall that the first statement in any
paintComponent method should be a call to the superclass’s paintComponent method, to
ensure that Swing components are displayed correctly.

If the animation started earlier, then our Timer was created and the condition in line
78 evaluates to false. The program continues with lines 90–91, which restarts the anima-
tion that the program stopped previously. The if condition at line 90 uses Timer method
isRunning to determine whether the Timer is running (i.e., generating events). If it’s not
running, line 91 calls Timer method restart to indicate that the Timer should start gen-
erating events again. Once this occurs, method actionPerformed (the Timer’s event han-
dler) is again called at regular intervals.

Method paintComponent

Line 68 calls the ImageIcon’s paintIcon method to display the image stored at element
currentImage in the array. The arguments represent the Component on which to draw
(this), the Graphics object that performs the drawing (g) and the coordinates of the im-
age’s upper-left corner. Lines 71–72 determine whether the animationTimer is running
and, if so, prepare for the next image to be displayed by incrementing currentImage by 1.
The remainder calculation ensures that the value of currentImage is set to 0 (to repeat the
animation sequence) when it’s incremented past the last element index in the array. The

680 Chapter 21 Multimedia: Applets and Applications

if statement ensures that the same image will be displayed if paintComponent is called
while the Timer is stopped. This can be useful if a GUI is provided that enables the user
to start and stop the animation. For example, if the animation is stopped and the user cov-
ers it with another window, then uncovers it, method paintComponent will be called. In
this case, we do not want the animation to show the next image (because the animation
has been stopped). We simply want the window to display the same image until the ani-
mation is restarted.

Method stopAnimation

Method stopAnimation (lines 96–99) stops the animation by calling Timer method stop

to indicate that the Timer should stop generating events. This prevents actionPerformed
from calling repaint to initiate the painting of the next image in the array. Just as with
restarting the animation, this example defines but does not use method stopAnimation.
We’ve provided this method for demonstration purposes, or to allow the user to modify
this example to stop and restart the animation.

Methods getPreferredSize and getMinimumSize

By extending class JPanel, we’re creating a new GUI component. So, we must ensure that
it works like other components for layout purposes. Layout managers often use a compo-
nent’s getPreferredSize method (inherited from class java.awt.Component) to deter-
mine the component’s preferred width and height. If a new component has a preferred
width and height, it should override method getPreferredSize (lines 108–111) to return
that width and height as an object of class Dimension (package java.awt). The Dimension
class represents the width and height of a GUI component. In this example, the images we
provide are 160 pixels wide and 80 pixels tall, so method getPreferredSize would return
a Dimension object containing the numbers 160 and 80 (if you use these images).

Lines 102–105 override method getMinimumSize. This method determines the min-
imum width and height of the component. As with method getPreferredSize, new com-
ponents should override method getMinimumSize (also inherited from class Component).
Method getMinimumSize simply calls getPreferredSize (a common programming prac-
tice) to indicate that the minimum size and preferred size are the same. Some layout man-
agers ignore the dimensions specified by these methods. For example, a BorderLayout’s

NORTH and SOUTH regions use only the component’s preferred height.

Software Engineering Observation 21.1
When creating an animation for use in an applet, provide a mechanism for disabling the
animation when the user browses a new web page different from the one on which the
animation applet resides.

Look-and-Feel Observation 21.1
The default size of a JPanel object is 10 pixels wide and 10 pixels tall.

Look-and-Feel Observation 21.2
When subclassing JPanel (or any other JComponent), override method getPreferred-

Size if the new component is to have a specific preferred width and height.

21.3 Animating a Series of Images 681

Compiling the Application
Compiling and running this application requires the jnlp.jar file that contains the JNLP
APIs. To compile the application use the following command:

where PathToJnlpJarFile includes both the path and the file name jnlp.jar.

Packaging the Application for Use with Java Web Start
To package the application for use with Java Web Start, you must create a JAR file that
contains the applet’s code and the jnlp.jar file. To do so, use the command

where PathToJnlpJarFile includes both the path and the file name jnlp.jar.

JNLP Document for LoadImageAndScale Applet
The JNLP document in Fig. 21.6 is similar to the one in Fig. 21.2. The only new feature
in this document is the application-desc element (lines 16–19), which specifies the
name of the application and its main class. To run this application, use the command

Recall that you can also run Java Web Start applications via a link in a web page, as we
showed in Fig. 20.13.

Look-and-Feel Observation 21.3
If a new GUI component has a minimum width and height (i.e., smaller dimensions
would render the component ineffective on the display), override method getMinimumSize

to return the minimum width and height as an instance of class Dimension.

Look-and-Feel Observation 21.4
For many GUI components, method getMinimumSize is implemented to return the result
of a call to the component’s getPreferredSize method.

javac -classpath PathToJnlpJarFile *.java

jar cvf LogoAnimator.jar *.class PathToJnlpJarFile

javaws LogoAnimator.jnlp

1 <?xml version="1.0" encoding="UTF-8"?>
2 <jnlp codebase="file:." href="LogoAnimator.jnlp">
3
4 <information>

5 <title>LogoAnimator</title>
6 <vendor>Deitel</vendor>
7 <offline-allowed/>

8 </information>

9
10 <resources>

11 <java version="1.6+"/>
12 <jar href="LogoAnimator.jar" main="true"/>
13 <jar href="jnlp.jar"/>
14 </resources>

15

Fig. 21.6 | JNLP document for the LoadImageAndScale applet. (Part 1 of 2.)

682 Chapter 21 Multimedia: Applets and Applications

21.4 Image Maps
Image maps are commonly used to create interactive web pages. An image map is an image
with hot areas that the user can click to accomplish a task, such as loading a different web
page into a browser. When the user positions the mouse pointer over a hot area, normally
a descriptive message appears in the status area of the browser or in a tool tip.

Figure 21.7 loads an image containing several of the programming-tip icons used in
this book. The program allows the user to position the mouse pointer over an icon to dis-
play a descriptive message associated with it. Event handler mouseMoved (lines 39–43)
takes the mouse coordinates and passes them to method translateLocation (lines 58–
69). Method translateLocation tests the coordinates to determine the icon over which
the mouse was positioned when the mouseMoved event occurred—the method then returns
a message indicating what the icon represents. This message is displayed in the applet con-
tainer’s status bar using method showStatus of class Applet.

16
17
18
19
20 </jnlp>

1 // Fig. 21.7: ImageMap.java
2 // Image map.
3 import java.awt.event.MouseAdapter;
4 import java.awt.event.MouseEvent;
5 import java.awt.event.MouseMotionAdapter;
6 import java.awt.Graphics;
7 import javax.swing.ImageIcon;
8 import javax.swing.JApplet;
9

10 public class ImageMap extends JApplet
11 {
12 private ImageIcon mapImage;
13
14 private static final String captions[] = { "Common Programming Error",
15 "Good Programming Practice", "Look-and-Feel Observation",
16 "Performance Tip", "Portability Tip",
17 "Software Engineering Observation", "Error-Prevention Tip" };
18
19 // sets up mouse listeners
20 public void init()
21 {
22 addMouseListener(
23
24 new MouseAdapter() // anonymous inner class
25 {

Fig. 21.7 | Image map. (Part 1 of 3.)

Fig. 21.6 | JNLP document for the LoadImageAndScale applet. (Part 2 of 2.)

<application-desc

name="LogoAnimator"
main-class="LogoAnimator">

</application-desc>

21.4 Image Maps 683

26 // indicate when mouse pointer exits applet area
27 public void mouseExited(MouseEvent event)
28 {
29 showStatus("Pointer outside applet");
30 } // end method mouseExited
31 } // end anonymous inner class
32); // end call to addMouseListener
33
34 addMouseMotionListener(
35
36 new MouseMotionAdapter() // anonymous inner class
37 {
38 // determine icon over which mouse appears
39 public void mouseMoved(MouseEvent event)
40 {
41 showStatus(translateLocation(
42 event.getX(), event.getY()));
43 } // end method mouseMoved
44 } // end anonymous inner class
45); // end call to addMouseMotionListener
46
47 mapImage = new ImageIcon("icons.png"); // get image
48 } // end method init
49
50 // display mapImage
51 public void paint(Graphics g)
52 {
53 super.paint(g);
54 mapImage.paintIcon(this, g, 0, 0);
55 } // end method paint
56
57 // return tip caption based on mouse coordinates
58 public String translateLocation(int x, int y)
59 {
60 // if coordinates outside image, return immediately
61 if (x >= mapImage.getIconWidth() || y >= mapImage.getIconHeight())
62 return "";
63
64 // determine icon number (0 - 6)
65
66
67
68 return captions[iconNumber]; // return appropriate icon caption
69 } // end method translateLocation
70 } // end class ImageMap

Fig. 21.7 | Image map. (Part 2 of 3.)

double iconWidth = (double) mapImage.getIconWidth() / 7.0;
int iconNumber = (int)((double) x / iconWidth);

684 Chapter 21 Multimedia: Applets and Applications

Clicking in the applet of Fig. 21.7 will not cause any action. In Chapter 24, we discuss
the techniques for loading another web page into a browser via URLs and the AppletCon-

Fig. 21.7 | Image map. (Part 3 of 3.)

21.5 Loading and Playing Audio Clips 685

text interface. Using those techniques, this applet could associate each icon with a URL

that the browser would display when the user clicks the icon.

21.5 Loading and Playing Audio Clips
Java programs can manipulate and play audio clips. Users can capture their own audio
clips, and many clips are available in software products and over the Internet. Your system
needs to be equipped with audio hardware (speakers and a sound card) to be able to play
the audio clips.

Java provides several mechanisms for playing sounds in an applet. The two simplest are
the Applet’s play method and the play method of the AudioClip interface. Additional
audio capabilities are available in the Java Media Framework and Java Sound APIs. If you’d
like to play a sound once in a program, the Applet method play loads the sound and plays
it once, then the sound can be garbage collected. The Applet method play has two versions:

The first version loads the audio clip stored in file soundFileName from location and
plays the sound. The first argument is normally a call to the applet’s getDocumentBase or
getCodeBase method. Method getDocumentBase returns the location of the HTML file
that loaded the applet. (If the applet is in a package, the method returns the location of
the package or the JAR file containing the package.) Method getCodeBase indicates the
location of the applet’s .class file. The second version of method play takes a URL that
contains the location and the file name of the audio clip. The statement

loads the audio clip in file hi.au and plays it once.
The sound engine that plays the audio clips supports several audio file formats,

including Sun Audio file format (.au extension), Windows Wave file format (.wav exten-
sion), Macintosh AIFF file format (.aif or .aiff extensions) and Musical Instrument
Digital Interface (MIDI) file format (.mid or .rmi extensions). The Java Media Frame-
work (JMF) and Java Sound APIs support additional formats.

The program of Fig. 21.8 demonstrates loading and playing an AudioClip (package
java.applet). This technique is more flexible than Applet method play. An applet can
use an AudioClip to store audio for repeated use throughout a program’s execution.
Applet method getAudioClip has two forms that take the same arguments as method
play described previously. Method getAudioClip returns a reference to an AudioClip. An
AudioClip has three methods—play, loop and stop. As mentioned earlier, method play

plays the audio clip once. Method loop continuously loops through the audio clip in the
background. Method stop terminates an audio clip that is currently playing. In the pro-
gram, each of these methods is associated with a button on the applet.

public void play(URL location, String soundFileName);
public void play(URL soundURL);

play(getDocumentBase(), "hi.au");

1 // Fig. 21.8: LoadAudioAndPlay.java
2 // Loading and playing an AudioClip.
3 import java.applet.AudioClip;
4 import java.awt.event.ItemListener;

Fig. 21.8 | Loading and playing an AudioClip. (Part 1 of 3.)

686 Chapter 21 Multimedia: Applets and Applications

5 import java.awt.event.ItemEvent;
6 import java.awt.event.ActionListener;
7 import java.awt.event.ActionEvent;
8 import java.awt.FlowLayout;
9 import javax.swing.JApplet;

10 import javax.swing.JButton;
11 import javax.swing.JComboBox;
12
13 public class LoadAudioAndPlay extends JApplet
14 {
15
16 private JButton playJButton, loopJButton, stopJButton;
17 private JComboBox soundJComboBox;
18
19 // load the audio when the applet begins executing
20 public void init()
21 {
22 setLayout(new FlowLayout());
23
24 String choices[] = { "Welcome", "Hi" };
25 soundJComboBox = new JComboBox(choices); // create JComboBox
26
27 soundJComboBox.addItemListener(
28
29 new ItemListener() // anonymous inner class
30 {
31 // stop sound and change sound to user's selection
32 public void itemStateChanged(ItemEvent e)
33 {
34 currentSound.stop();
35 currentSound = soundJComboBox.getSelectedIndex() == 0 ?
36 sound1 : sound2;
37 } // end method itemStateChanged
38 } // end anonymous inner class
39); // end addItemListener method call
40
41 add(soundJComboBox); // add JComboBox to applet
42
43 // set up button event handler and buttons
44 ButtonHandler handler = new ButtonHandler();
45
46 // create Play JButton
47 playJButton = new JButton("Play");
48 playJButton.addActionListener(handler);
49 add(playJButton);
50
51 // create Loop JButton
52 loopJButton = new JButton("Loop");
53 loopJButton.addActionListener(handler);
54 add(loopJButton);
55
56 // create Stop JButton
57 stopJButton = new JButton("Stop");

Fig. 21.8 | Loading and playing an AudioClip. (Part 2 of 3.)

private AudioClip sound1, sound2, currentSound;

21.5 Loading and Playing Audio Clips 687

Lines 62–63 in the applet’s init method use getAudioClip to load two audio files—
a Windows Wave file (welcome.wav) and a Sun Audio file (hi.au). The user can select
which audio clip to play from the JComboBox soundJComboBox. The applet’s stop method
is overridden at lines 68–71. When the user switches web pages, the applet container calls
the applet’s stop method. This enables the applet to stop playing the audio clip. Other-
wise, it continues to play in the background—even if the applet is not displayed in the
browser. This is not necessarily a problem, but it can be annoying to the user if the audio
clip is looping. The stop method is provided here as a convenience to the user.

58 stopJButton.addActionListener(handler);
59 add(stopJButton);
60
61 // load sounds and set currentSound
62
63
64 currentSound = sound1;
65 } // end method init
66
67 // stop the sound when the user switches web pages
68 public void stop()
69 {
70 currentSound.stop(); // stop AudioClip
71 } // end method stop
72
73 // private inner class to handle button events
74 private class ButtonHandler implements ActionListener
75 {
76 // process play, loop and stop button events
77 public void actionPerformed(ActionEvent actionEvent)
78 {
79 if (actionEvent.getSource() == playJButton)
80
81 else if (actionEvent.getSource() == loopJButton)
82
83 else if (actionEvent.getSource() == stopJButton)
84
85 } // end method actionPerformed
86 } // end class ButtonHandler
87 } // end class LoadAudioAndPlay

Look-and-Feel Observation 21.5
When playing audio clips in an applet or application, provide a mechanism for the user
to disable the audio.

Fig. 21.8 | Loading and playing an AudioClip. (Part 3 of 3.)

sound1 = getAudioClip(getDocumentBase(), "welcome.wav");
sound2 = getAudioClip(getDocumentBase(), "hi.au");

currentSound.play(); // play AudioClip once

currentSound.loop(); // play AudioClip continuously

currentSound.stop(); // stop AudioClip

688 Chapter 21 Multimedia: Applets and Applications

21.6 Playing Video and Other Media with Java Media
Framework
A simple video can concisely and effectively convey a great deal of information. Using the
Java Media Framework (JMF) API, you can create Java applications that play, edit, stream
and capture many popular media types. This section briefly introduces some popular me-
dia formats and demonstrates playing video using the JMF API.

JMF 2.1.1e supports media file types such as Microsoft Audio/Video Interleave
(.avi), Macromedia Flash movies (.swf), Future Splash (.spl), MPEG Layer 3 Audio
(.mp3), Musical Instrument Digital Interface (MIDI; .mid or .rmi extensions), MPEG-1
videos (.mpeg, .mpg), QuickTime (.mov), Sun Audio file format (.au extension), and
Macintosh AIFF file format (.aif or .aiff extensions). You’ve already seen some of these
file types.

Currently, JMF is available as an extension separate from the JDK. The most recent
JMF implementation (2.1.1e) can be downloaded from:

[Note: Keep track of where you install the Java Media Framework on your computer. To
compile and run this application, you must include in the class path the jmf.jar file that
is installed with the Java Media Framework. Recall that you can specify the class path with
both the javac and java commands via the -classpath command-line option.]

The JMF website provides versions of the JMF that take advantage of the performance
features of certain platforms. For example, the JMF Windows Performance Pack provides
extensive media and device support for Java programs running on Microsoft Windows
platforms. The JMF’s website (www.oracle.com/technetwork/java/javase/tech/
index-jsp-140239.html) provides information and resources for JMF programmers.

Creating a Simple Media Player
JMF offers several mechanisms for playing media. The simplest is using objects that im-
plement interface Player declared in package javax.media. Package javax.media and its
subpackages contain the classes that compose the Java Media Framework. To play a media
clip, you must first create a URL object that refers to it. Then pass the URL as an argument
to static method createRealizedPlayer of class Manager to obtain a Player for the me-
dia clip. Class Manager declares utility methods for accessing system resources to play and
to manipulate media. Figure 21.9 declares a JPanel that demonstrates some of these
methods.

www.oracle.com/technetwork/java/javase/download-142937.html

1 // Fig. 21.9: MediaPanel.java
2 // JPanel that plays a media file from a URL.
3 import java.awt.BorderLayout;
4 import java.awt.Component;
5 import java.io.IOException;
6 import java.net.URL;
7 import javax.media.CannotRealizeException;
8 import javax.media.Manager;
9 import javax.media.NoPlayerException;

Fig. 21.9 | JPanel that plays a media file from a URL. (Part 1 of 2.)

www.oracle.com/technetwork/java/javase/tech/index-jsp-140239.html
www.oracle.com/technetwork/java/javase/tech/index-jsp-140239.html
www.oracle.com/technetwork/java/javase/download-142937.html

21.6 Playing Video and Other Media with Java Media Framework 689

The constructor (lines 15–51) sets up the JPanel to play the media file specified by the
constructor’s URL parameter. MediaPanel uses a BorderLayout (line 17). Line 20 invokes
static method setHint to set the flag Manager.LIGHTWEIGHT_RENDERER to true. This
instructs the Manager to use a lightweight renderer that is compatible with lightweight
Swing components, as opposed to the default heavyweight renderer. Inside the try block
(lines 22–38), line 25 invokes static method createRealizedPlayer of class Manager to
create and realize a Player that plays the media file. When a Player realizes, it identifies

10 import javax.media.Player;
11 import javax.swing.JPanel;
12
13 public class MediaPanel extends JPanel
14 {
15 public MediaPanel(URL mediaURL)
16 {
17 setLayout(new BorderLayout()); // use a BorderLayout
18
19
20
21
22 try

23 {
24
25
26
27
28
29
30
31 if (video != null)
32 add(video, BorderLayout.CENTER); // add video component
33
34 if (controls != null)
35 add(controls, BorderLayout.SOUTH); // add controls
36
37
38 } // end try
39 catch (NoPlayerException noPlayerException)
40 {
41 System.err.println("No media player found");
42 } // end catch
43 catch (CannotRealizeException cannotRealizeException)
44 {
45 System.err.println("Could not realize media player");
46 } // end catch
47 catch (IOException iOException)
48 {
49 System.err.println("Error reading from the source");
50 } // end catch
51 } // end MediaPanel constructor
52 } // end class MediaPanel

Fig. 21.9 | JPanel that plays a media file from a URL. (Part 2 of 2.)

// Use lightweight components for Swing compatibility
Manager.setHint(Manager.LIGHTWEIGHT_RENDERER, true);

// create a player to play the media specified in the URL
Player mediaPlayer = Manager.createRealizedPlayer(mediaURL);

// get the components for the video and the playback controls
Component video = mediaPlayer.getVisualComponent();
Component controls = mediaPlayer.getControlPanelComponent();

mediaPlayer.start(); // start playing the media clip

690 Chapter 21 Multimedia: Applets and Applications

the system resources it needs to play the media. Depending on the file, realizing can be a
resource-consuming and time-consuming process. Method createRealizedPlayer throws
three checked exceptions, NoPlayerException, CannotRealizeException and IOExcep-

tion. A NoPlayerException indicates that the system could not find a player that can play
the file format. A CannotRealizeException indicates that the system could not properly
identify the resources a media file needs. An IOException indicates that there was an error
while reading the file. These exceptions are handled in the catch block in lines 39–50.

Line 28 invokes method getVisualComponent of Player to get a Component that dis-
plays the visual (generally video) aspect of the media file. Line 29 invokes method getCon-

trolPanelComponent of Player to get a Component that provides playback and media
controls. These components are assigned to local variables video and controls, respec-
tively. The if statements in lines 31–32 and lines 34–35 add the video and the controls
if they exist. The video Component is added to the CENTER region (line 32), so it fills any
available space on the JPanel. The controls Component, which is added to the SOUTH

region, typically provides the following controls:

1. A positioning slider to jump to certain points in the media clip

2. A pause button

3. A volume button that provides volume control by right clicking and a mute func-
tion by left clicking

4. A media properties button that provides detailed media information by left click-
ing and frame-rate control by right clicking

Line 37 calls Player method start to begin playing the media file. Lines 39–50 handle
the various exceptions that createRealizedPlayer throws.

The application in Fig. 21.10 displays a JFileChooser dialog for the user to choose a
media file. It then creates a MediaPanel that plays the selected file and creates a JFrame to
display the MediaPanel.

1 // Fig. 21.10: MediaTest.java
2 // Test application that creates a MediaPanel from a user-selected file.
3 import java.io.File;
4 import java.net.MalformedURLException;
5 import java.net.URL;
6 import javax.swing.JFileChooser;
7 import javax.swing.JFrame;
8
9 public class MediaTest

10 {
11 // launch the application
12 public static void main(String args[])
13 {
14 // create a file chooser
15 JFileChooser fileChooser = new JFileChooser();
16
17 // show open file dialog
18 int result = fileChooser.showOpenDialog(null);

Fig. 21.10 | Test application that creates a MediaPanel from a user-selected file. (Part 1 of 2.)

21.6 Playing Video and Other Media with Java Media Framework 691

Method main (lines 12–46) assigns a new JFileChooser to local variable
fileChooser (line 15), shows an open-file dialog (line 18) and assigns the return value to
result. Line 20 checks result to determine whether the user chose a file. To create a

19
20 if (result == JFileChooser.APPROVE_OPTION) // user chose a file
21 {
22 URL mediaURL = null;
23
24 try

25 {
26 // get the file as URL
27
28 } // end try
29 catch (MalformedURLException malformedURLException)
30 {
31 System.err.println("Could not create URL for the file");
32 } // end catch
33
34 if (mediaURL != null) // only display if there is a valid URL
35 {
36 JFrame mediaTest = new JFrame("Media Tester");
37 mediaTest.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
38
39 MediaPanel mediaPanel = new MediaPanel(mediaURL);
40 mediaTest.add(mediaPanel);
41
42 mediaTest.setSize(300, 300);
43 mediaTest.setVisible(true);
44 } // end inner if
45 } // end outer if
46 } // end main
47 } // end class MediaTest

Fig. 21.10 | Test application that creates a MediaPanel from a user-selected file. (Part 2 of 2.)

mediaURL = fileChooser.getSelectedFile().toURI().toURL();

692 Chapter 21 Multimedia: Applets and Applications

Player to play the selected media file, you must convert the File object returned by
JFileChooser to a URL object. Method toURI of class File returns a URI that points to the
File on the system. We then invoke method toURL of class URI to get the file’s URL. The
try statement (lines 24–32) creates a URL for the selected file and assigns it to mediaURL.
The if statement in lines 34–44 checks that mediaURL is not null and creates the GUI
components to play the media.

21.7 Wrap-Up
In this chapter, you learned how to build multimedia-rich applications with sound, imag-
es, graphics and video. We introduced Java’s multimedia capabilities, including the Java
Media Framework API and Java Sound API. You used class ImageIcon to display and ma-
nipulate images stored in files, and you learned about the different image formats support-
ed by Java. You used the JNLP FileOpenService to enable the user of a Java Web Start
application to select files from the local file system, then used streams to load the contents
of those files for use in your programs. You created an animation by displaying a series of
images in a specific order. You used image maps to make an application more interactive.
You learned how to load audio clips and how to play them either once or in a continuous
loop. The chapter concluded with a demonstration of loading and playing video. In the
next chapter, you’ll continue your study of GUI concepts, building on the techniques you
learned in Chapter 14.

21.8 Web Resources
www.nasa.gov/multimedia/index.html

The NASA Multimedia Gallery contains a wide variety of images, audio clips and video clips that
you can download and use to test your Java multimedia programs.
commons.wikimedia.org/wiki/Main_Page

The Wikimedia Commons site provides access to millions of media files.
www.anbg.gov.au/gardens/index.html

The Australian National Botanic Gardens website provides links to the sounds of many animals. Try,
for example, the Common Birds link under the “Animals in the Gardens” section.
www.thefreesite.com

This site has links to free sounds and clip art.
www.soundcentral.com

SoundCentral provides audio clips in WAV, AU, AIFF and MIDI formats.
www.animationfactory.com

The Animation Factory provides thousands of free GIF animations for personal use.
www.clipart.com

This site is a subscription-based service for images and sounds.
java.sun.com/developer/techDocs/hi/repository/

The Java look-and-feel Graphics Repository provides images designed for use in a Swing GUI, includ-
ing toolbar button images.
www.freebyte.com/graphicprograms/

This guide contains links to several free graphics software programs. The software can be used to
modify images and draw graphics.
graphicssoft.about.com/od/pixelbasedfreewin/

This site provides links to free graphics programs designed for use on Windows machines.

www.nasa.gov/multimedia/index.html
www.anbg.gov.au/gardens/index.html
www.thefreesite.com
www.soundcentral.com
www.animationfactory.com
www.clipart.com
www.freebyte.com/graphicprograms/

21.8 Web Resources 693

Java Multimedia API References
www.oracle.com/technetwork/java/javase/tech/media-141984.html

The online home of the Java Media APIs.
www.oracle.com/technetwork/java/index-139508.html

The Java Sound API home page. Java Sound provides capabilities for playing and recording audio.
java3d.dev.java.net/

The Java 3D API home page. This API can be used to produce three-dimensional images typical of
today’s video games.
java.sun.com/products/java-media/speech/

The Java Speech API enables programs to perform speech synthesis and speech recognition.
freetts.sourceforge.net/docs/index.php

FreeTTS is an implementation of the Java Speech API.

www.oracle.com/technetwork/java/javase/tech/media-141984.html
www.oracle.com/technetwork/java/index-139508.html

22
GUI Components:
Part 2

O b j e c t i v e s
In this chapter you’ll learn:

� To create and manipulate sliders, menus, pop-up menus
and windows.

� To programatically change the look-and-feel of a GUI, using
Swing’s pluggable look-and-feel.

� To create a multiple-document interface with
JDesktopPane and JInternalFrame.

� To use additional layout managers.

An actor entering through
the door, you’ve got nothing.
But if he enters through the
window, you’ve got a
situation.
—Billy Wilder

...the force of events wakes
slumberous talents.
—Edward Hoagland

You and I would see more
interesting photography if
they would stop worrying,
and instead, apply horse-
sense to the problem of
recording the look and feel
of their own era.
—Jessie Tarbox Beals

22.1 Introduction 695

22.1 Introduction
In this chapter, we continue our study of GUIs. We discuss additional components and
layout managers and lay the groundwork for building more complex GUIs.

We begin our discussion with sliders that enable you to select from a range of integer
values. Next, we discuss some additional details of windows. You’ll learn to use menus that
enable the user to effectively perform tasks in the program. The look-and-feel of a Swing
GUI can be uniform across all platforms on which a Java program executes, or the GUI
can be customized by using Swing’s pluggable look-and-feel (PLAF). We provide an
example that illustrates how to change between Swing’s default metal look-and-feel (which
looks and behaves the same across platforms), the Nimbus look-and-feel (introduced in
Chapter 14), a look-and-feel that simulates Motif (a popular UNIX look-and-feel) and
one that simulates Microsoft’s Windows look-and-feel.

Many of today’s applications use a multiple-document interface (MDI)—a main
window (often called the parent window) containing other windows (often called child
windows) to manage several open documents in parallel. For example, many e-mail pro-
grams allow you to have several e-mail windows open at the same time so that you can
compose or read multiple e-mail messages. We demonstrate Swing’s classes for creating
multiple-document interfaces. The chapter finishes with a series of examples discussing
additional layout managers for organizing graphical user interfaces.

Swing is a large and complex topic. There are many more GUI components and capa-
bilities than can be presented here. Several more Swing GUI components are introduced
in the remaining chapters of this book as they’re needed.

22.2 JSlider
JSliders enable a user to select from a range of integer values. Class JSlider inherits from
JComponent. Figure 22.1 shows a horizontal JSlider with tick marks and the thumb that
allows a user to select a value. JSliders can be customized to display major tick marks,
minor tick marks and labels for the tick marks. They also support snap-to ticks, which
cause the thumb, when positioned between two tick marks, to snap to the closest one.

22.1 Introduction
22.2 JSlider

22.3 Windows: Additional Notes
22.4 Using Menus with Frames
22.5 JPopupMenu

22.6 Pluggable Look-and-Feel
22.7 JDesktopPane and

JInternalFrame

22.8 JTabbedPane

22.9 Layout Managers: BoxLayout and
GridBagLayout

22.10 Wrap-Up

Fig. 22.1 | JSlider component with horizontal orientation.

Tick markThumb

696 Chapter 22 GUI Components: Part 2

Most Swing GUI components support user interactions through the mouse and the
keyboard. For example, if a JSlider has the focus (i.e., it’s the currently selected GUI
component in the user interface), the left arrow key and right arrow key cause the thumb
of the JSlider to decrease or increase by 1, respectively. The down arrow key and up
arrow key also cause the thumb to decrease or increase by 1 tick, respectively. The PgDn
(page down) key and PgUp (page up) key cause the thumb to decrease or increase by block
increments of one-tenth of the range of values, respectively. The Home key moves the
thumb to the minimum value of the JSlider, and the End key moves the thumb to the
maximum value of the JSlider.

JSliders have either a horizontal or a vertical orientation. For a horizontal JSlider,
the minimum value is at the left end and the maximum is at the right end. For a vertical
JSlider, the minimum value is at the bottom and the maximum is at the top. The min-
imum and maximum value positions on a JSlider can be reversed by invoking JSlider

method setInverted with boolean argument true. The relative position of the thumb
indicates the current value of the JSlider.

The program in Figs. 22.2–22.4 allows the user to size a circle drawn on a subclass of
JPanel called OvalPanel (Fig. 22.2). The user specifies the circle’s diameter with a hori-
zontal JSlider. Class OvalPanel knows how to draw a circle on itself, using its own
instance variable diameter to determine the diameter of the circle—the diameter is used
as the width and height of the bounding box in which the circle is displayed. The diameter
value is set when the user interacts with the JSlider. The event handler calls method set-

Diameter in class OvalPanel to set the diameter and calls repaint to draw the new circle.
The repaint call results in a call to OvalPanel’s paintComponent method.

1 // Fig. 22.2: OvalPanel.java
2 // A customized JPanel class.
3 import java.awt.Graphics;
4 import java.awt.Dimension;
5 import javax.swing.JPanel;
6
7 public class OvalPanel extends JPanel
8 {
9 private int diameter = 10; // default diameter of 10

10
11 // draw an oval of the specified diameter
12 public void paintComponent(Graphics g)
13 {
14 super.paintComponent(g);
15
16 g.fillOval(10, 10, diameter, diameter); // draw circle
17 } // end method paintComponent
18
19 // validate and set diameter, then repaint
20 public void setDiameter(int newDiameter)
21 {
22 // if diameter invalid, default to 10
23 diameter = (newDiameter >= 0 ? newDiameter : 10);

Fig. 22.2 | JPanel subclass for drawing circles of a specified diameter. (Part 1 of 2.)

22.2 JSlider 697

24 repaint(); // repaint panel
25 } // end method setDiameter
26
27 // used by layout manager to determine preferred size
28 public Dimension getPreferredSize()
29 {
30 return new Dimension(200, 200);
31 } // end method getPreferredSize
32
33
34
35
36
37
38 } // end class OvalPanel

1 // Fig. 22.3: SliderFrame.java
2 // Using JSliders to size an oval.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import javax.swing.JFrame;
6
7 import javax.swing.SwingConstants;
8
9

10
11 public class SliderFrame extends JFrame
12 {
13
14 private OvalPanel myPanel; // panel to draw circle
15
16 // no-argument constructor
17 public SliderFrame()
18 {
19 super("Slider Demo");
20
21 myPanel = new OvalPanel(); // create panel to draw circle
22 myPanel.setBackground(Color.YELLOW); // set background to yellow
23
24
25
26
27
28
29
30
31
32
33
34

Fig. 22.3 | JSlider value used to determine the diameter of a circle. (Part 1 of 2.)

Fig. 22.2 | JPanel subclass for drawing circles of a specified diameter. (Part 2 of 2.)

// used by layout manager to determine minimum size
public Dimension getMinimumSize()
{

return getPreferredSize();
} // end method getMinimumSize

import javax.swing.JSlider;

import javax.swing.event.ChangeListener;
import javax.swing.event.ChangeEvent;

private JSlider diameterJSlider; // slider to select diameter

// set up JSlider to control diameter value
diameterJSlider =

new JSlider(SwingConstants.HORIZONTAL, 0, 200, 10);
diameterJSlider.setMajorTickSpacing(10); // create tick every 10
diameterJSlider.setPaintTicks(true); // paint ticks on slider

// register JSlider event listener
diameterJSlider.addChangeListener(

new ChangeListener() // anonymous inner class
{

698 Chapter 22 GUI Components: Part 2

Class OvalPanel (Fig. 22.2) contains a paintComponent method (lines 12–17) that
draws a filled oval (a circle in this example), a setDiameter method (lines 20–25) that
changes the circle’s diameter and repaints the OvalPanel, a getPreferredSize method
(lines 28–31) that returns the preferred width and height of an OvalPanel and a getMin-

imumSize method (lines 34–37) that returns an OvalPanel’s minimum width and height.
Section 21.3 introduced getPreferredSize and getMinimumSize, which are used by
some layout managers to determine the size of a component.

35
36
37
38
39
40
41
42
43 add(diameterJSlider, BorderLayout.SOUTH); // add slider to frame
44 add(myPanel, BorderLayout.CENTER); // add panel to frame
45 } // end SliderFrame constructor
46 } // end class SliderFrame

1 // Fig. 22.4: SliderDemo.java
2 // Testing SliderFrame.
3 import javax.swing.JFrame;
4
5 public class SliderDemo
6 {
7 public static void main(String[] args)
8 {
9 SliderFrame sliderFrame = new SliderFrame();

10 sliderFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 sliderFrame.setSize(220, 270); // set frame size
12 sliderFrame.setVisible(true); // display frame
13 } // end main
14 } // end class SliderDemo

Fig. 22.4 | Test class for SliderFrame.

Fig. 22.3 | JSlider value used to determine the diameter of a circle. (Part 2 of 2.)

// handle change in slider value
public void stateChanged(ChangeEvent e)
{

myPanel.setDiameter(diameterJSlider.getValue());
} // end method stateChanged

} // end anonymous inner class
); // end call to addChangeListener

22.3 Windows: Additional Notes 699

Class SliderFrame (Fig. 22.3) creates the JSlider that controls the diameter of the
circle. Class SliderFrame’s constructor (lines 17–45) creates OvalPanel object myPanel

(line 21) and sets its background color (line 22). Lines 25–26 create JSlider object diame-
terSlider to control the diameter of the circle drawn on the OvalPanel. The JSlider con-
structor takes four arguments. The first argument specifies the orientation of
diameterSlider, which is HORIZONTAL (a constant in interface SwingConstants). The
second and third arguments indicate the minimum and maximum integer values in the
range of values for this JSlider. The last argument indicates that the initial value of the
JSlider (i.e., where the thumb is displayed) should be 10.

Lines 27–28 customize the appearance of the JSlider. Method setMajorTick-

Spacing indicates that each major tick mark represents 10 values in the range of values
supported by the JSlider. Method setPaintTicks with a true argument indicates that
the tick marks should be displayed (they aren’t displayed by default). For other methods
that are used to customize a JSlider’s appearance, see the JSlider on-line documentation
(download.oracle.com/javase/6/docs/api/javax/swing/JSlider.html).

JSliders generate ChangeEvents (package javax.swing.event) in response to user
interactions. An object of a class that implements interface ChangeListener (package
javax.swing.event) and declares method stateChanged can respond to ChangeEvents.
Lines 31–41 register a ChangeListener to handle diameterSlider’s events. When
method stateChanged (lines 36–39) is called in response to a user interaction, line 38 calls
myPanel’s setDiameter method and passes the current value of the JSlider as an argu-
ment. JSlider method getValue returns the current thumb position.

22.3 Windows: Additional Notes
A JFrame is a window with a title bar and a border. Class JFrame is a subclass of Frame
(package java.awt), which is a subclass of Window (package java.awt). As such, JFrame is
one of the heavyweight Swing GUI components. When you display a window from a Java
program, the window is provided by the local platform’s windowing toolkit, and therefore
the window will look like every other window displayed on that platform. When a Java
application executes on a Macintosh and displays a window, the window’s title bar and
borders will look like those of other Macintosh applications. When a Java application ex-
ecutes on a Microsoft Windows system and displays a window, the window’s title bar and
borders will look like those of other Microsoft Windows applications. And when a Java
application executes on a UNIX platform and displays a window, the window’s title bar
and borders will look like other UNIX applications on that platform.

By default, when the user closes a JFrame window, it’s hidden (i.e., removed from the
screen), but you can control this with JFrame method setDefaultCloseOperation. Inter-
face WindowConstants (package javax.swing), which class JFrame implements, declares
three constants—DISPOSE_ON_CLOSE, DO_NOTHING_ON_CLOSE and HIDE_ON_CLOSE (the
default)—for use with this method. Some platforms allow only a limited number of win-
dows to be displayed on the screen. Thus, a window is a valuable resource that should be
given back to the system when it’s no longer needed. Class Window (an indirect superclass
of JFrame) declares method dispose for this purpose. When a Window is no longer needed
in an application, you should explicitly dispose of it. This can be done by calling the
Window’s dispose method or by calling method setDefaultCloseOperation with the
argument WindowConstants.DISPOSE_ON_CLOSE. Terminating an application also returns

700 Chapter 22 GUI Components: Part 2

window resources to the system. Using DO_NOTHING_ON_CLOSE indicates that the program
will determine what to do when the user attempts to close the window. For example, the
program might want to ask whether to save a file’s changes before closing a window.

By default, a window is not displayed on the screen until the program invokes the
window’s setVisible method (inherited from class java.awt.Component) with a true

argument. A window’s size should be set with a call to method setSize (inherited from
class java.awt.Component). The position of a window when it appears on the screen is
specified with method setLocation (inherited from class java.awt.Component).

When the user manipulates the window, this action generates window events. Event
listeners are registered for window events with Window method addWindowListener. Inter-
face WindowListener provides seven window-event-handling methods—windowActi-

vated (called when the user makes a window the active window), windowClosed (called
after the window is closed), windowClosing (called when the user initiates closing of the
window), windowDeactivated (called when the user makes another window the active
window), windowDeiconified (called when the user restores a window from being mini-
mized), windowIconified (called when the user minimizes a window) and windowOpened

(called when a program first displays a window on the screen).

22.4 Using Menus with Frames
Menus are an integral part of GUIs. They allow the user to perform actions without un-
necessarily cluttering a GUI with extra components. In Swing GUIs, menus can be at-
tached only to objects of the classes that provide method setJMenuBar. Two such classes
are JFrame and JApplet. The classes used to declare menus are JMenuBar, JMenu, JMenu-
Item, JCheckBoxMenuItem and class JRadioButtonMenuItem.

Overview of Several Menu-Related Components
Class JMenuBar (a subclass of JComponent) contains the methods necessary to manage a
menu bar, which is a container for menus. Class JMenu (a subclass of javax.swing.JMenu-
Item) contains the methods necessary for managing menus. Menus contain menu items

Performance Tip 22.1
A window is an expensive system resource. Return it to the system by calling its dispose
method when the window is no longer needed.

Common Programming Error 22.1
Forgetting to call method setVisible on a window is a runtime logic error—the window
is not displayed.

Common Programming Error 22.2
Forgetting to call the setSize method on a window is a runtime logic error—only the
title bar appears.

Look-and-Feel Observation 22.1
Menus simplify GUIs because components can be hidden within them. These components
will be visible only when the user looks for them by selecting the menu.

22.4 Using Menus with Frames 701

and are added to menu bars or to other menus as submenus. When a menu is clicked, it
expands to show its list of menu items.

Class JMenuItem (a subclass of javax.swing.AbstractButton) contains the methods
necessary to manage menu items. A menu item is a GUI component inside a menu that,
when selected, causes an action event. A menu item can be used to initiate an action, or it
can be a submenu that provides more menu items from which the user can select. Sub-
menus are useful for grouping related menu items in a menu.

Class JCheckBoxMenuItem (a subclass of javax.swing.JMenuItem) contains the
methods necessary to manage menu items that can be toggled on or off. When a JCheck-

BoxMenuItem is selected, a check appears to the left of the menu item. When the JCheck-

BoxMenuItem is selected again, the check is removed.
Class JRadioButtonMenuItem (a subclass of javax.swing.JMenuItem) contains the

methods necessary to manage menu items that can be toggled on or off like JCheckBox-

MenuItems. When multiple JRadioButtonMenuItems are maintained as part of a Button-

Group, only one item in the group can be selected at a given time. When a
JRadioButtonMenuItem is selected, a filled circle appears to the left of the menu item.
When another JRadioButtonMenuItem is selected, the filled circle of the previously
selected menu item is removed.

Using Menus in an Application
Figures 22.5–22.6 demonstrate various menu items and how to specify special characters
called mnemonics that can provide quick access to a menu or menu item from the key-
board. Mnemonics can be used with all subclasses of javax.swing.AbstractButton. Class
MenuFrame (Fig. 22.5) creates the GUI and handles the menu-item events. Most of the
code in this application appears in the class’s constructor (lines 34–151).

1 // Fig. 22.5: MenuFrame.java
2 // Demonstrating menus.
3 import java.awt.Color;
4 import java.awt.Font;
5 import java.awt.BorderLayout;
6 import java.awt.event.ActionListener;
7 import java.awt.event.ActionEvent;
8 import java.awt.event.ItemListener;
9 import java.awt.event.ItemEvent;

10 import javax.swing.JFrame;
11
12
13 import javax.swing.JOptionPane;
14 import javax.swing.JLabel;
15 import javax.swing.SwingConstants;
16 import javax.swing.ButtonGroup;
17
18
19
20
21 public class MenuFrame extends JFrame
22 {

Fig. 22.5 | JMenus and mnemonics. (Part 1 of 5.)

import javax.swing.JRadioButtonMenuItem;
import javax.swing.JCheckBoxMenuItem;

import javax.swing.JMenu;
import javax.swing.JMenuItem;
import javax.swing.JMenuBar;

702 Chapter 22 GUI Components: Part 2

23 private final Color[] colorValues =
24 { Color.BLACK, Color.BLUE, Color.RED, Color.GREEN };
25
26
27
28 private JLabel displayJLabel; // displays sample text
29 private ButtonGroup fontButtonGroup; // manages font menu items
30 private ButtonGroup colorButtonGroup; // manages color menu items
31 private int style; // used to create style for font
32
33 // no-argument constructor set up GUI
34 public MenuFrame()
35 {
36 super("Using JMenus");
37
38
39
40
41 // create About... menu item
42
43
44
45 aboutItem.addActionListener(
46
47 new ActionListener() // anonymous inner class
48 {
49 // display message dialog when user selects About...
50 public void actionPerformed(ActionEvent event)
51 {
52 JOptionPane.showMessageDialog(MenuFrame.this,
53 "This is an example\nof using menus",
54 "About", JOptionPane.PLAIN_MESSAGE);
55 } // end method actionPerformed
56 } // end anonymous inner class
57); // end call to addActionListener
58
59
60
61
62 exitItem.addActionListener(
63
64 new ActionListener() // anonymous inner class
65 {
66 // terminate application when user clicks exitItem
67 public void actionPerformed(ActionEvent event)
68 {
69 System.exit(0); // exit application
70 } // end method actionPerformed
71 } // end anonymous inner class
72); // end call to addActionListener
73
74
75

Fig. 22.5 | JMenus and mnemonics. (Part 2 of 5.)

private JRadioButtonMenuItem[] colorItems; // color menu items
private JRadioButtonMenuItem[] fonts; // font menu items
private JCheckBoxMenuItem[] styleItems; // font style menu items

JMenu fileMenu = new JMenu("File"); // create file menu
fileMenu.setMnemonic('F'); // set mnemonic to F

JMenuItem aboutItem = new JMenuItem("About...");
aboutItem.setMnemonic('A'); // set mnemonic to A
fileMenu.add(aboutItem); // add about item to file menu

JMenuItem exitItem = new JMenuItem("Exit"); // create exit item
exitItem.setMnemonic('x'); // set mnemonic to x
fileMenu.add(exitItem); // add exit item to file menu

JMenuBar bar = new JMenuBar(); // create menu bar
setJMenuBar(bar); // add menu bar to application

22.4 Using Menus with Frames 703

76
77
78
79
80
81 // array listing string colors
82 String[] colors = { "Black", "Blue", "Red", "Green" };
83
84
85
86
87 // create radio button menu items for colors
88
89
90 ItemHandler itemHandler = new ItemHandler(); // handler for colors
91
92 // create color radio button menu items
93 for (int count = 0; count < colors.length; count++)
94 {
95
96
97
98
99 colorItems[count].addActionListener(itemHandler);
100 } // end for
101
102
103
104
105
106
107 // array listing font names
108 String[] fontNames = { "Serif", "Monospaced", "SansSerif" };
109
110
111
112 // create radio button menu items for font names
113
114
115
116 // create Font radio button menu items
117 for (int count = 0; count < fonts.length; count++)
118 {
119
120
121
122 fonts[count].addActionListener(itemHandler); // add handler
123 } // end for
124
125
126
127
128 String[] styleNames = { "Bold", "Italic" }; // names of styles

Fig. 22.5 | JMenus and mnemonics. (Part 3 of 5.)

bar.add(fileMenu); // add file menu to menu bar

JMenu formatMenu = new JMenu("Format"); // create format menu
formatMenu.setMnemonic('r'); // set mnemonic to r

JMenu colorMenu = new JMenu("Color"); // create color menu
colorMenu.setMnemonic('C'); // set mnemonic to C

colorItems = new JRadioButtonMenuItem[colors.length];
colorButtonGroup = new ButtonGroup(); // manages colors

colorItems[count] =
new JRadioButtonMenuItem(colors[count]); // create item

colorMenu.add(colorItems[count]); // add item to color menu
colorButtonGroup.add(colorItems[count]); // add to group

colorItems[0].setSelected(true); // select first Color item

formatMenu.add(colorMenu); // add color menu to format menu
formatMenu.addSeparator(); // add separator in menu

JMenu fontMenu = new JMenu("Font"); // create font menu
fontMenu.setMnemonic('n'); // set mnemonic to n

fonts = new JRadioButtonMenuItem[fontNames.length];
fontButtonGroup = new ButtonGroup(); // manages font names

fonts[count] = new JRadioButtonMenuItem(fontNames[count]);
fontMenu.add(fonts[count]); // add font to font menu
fontButtonGroup.add(fonts[count]); // add to button group

fonts[0].setSelected(true); // select first Font menu item
fontMenu.addSeparator(); // add separator bar to font menu

704 Chapter 22 GUI Components: Part 2

129
130 StyleHandler styleHandler = new StyleHandler(); // style handler
131
132 // create style checkbox menu items
133 for (int count = 0; count < styleNames.length; count++)
134 {
135
136
137
138 styleItems[count].addItemListener(styleHandler); // handler
139 } // end for
140
141
142
143
144 // set up label to display text
145 displayJLabel = new JLabel("Sample Text", SwingConstants.CENTER);
146 displayJLabel.setForeground(colorValues[0]);
147 displayJLabel.setFont(new Font("Serif", Font.PLAIN, 72));
148
149 getContentPane().setBackground(Color.CYAN); // set background
150 add(displayJLabel, BorderLayout.CENTER); // add displayJLabel
151 } // end MenuFrame constructor
152
153 // inner class to handle action events from menu items
154 private class ItemHandler implements ActionListener
155 {
156 // process color and font selections
157 public void actionPerformed(ActionEvent event)
158 {
159 // process color selection
160 for (int count = 0; count < colorItems.length; count++)
161 {
162 if (colorItems[count].isSelected())
163 {
164 displayJLabel.setForeground(colorValues[count]);
165 break;
166 } // end if
167 } // end for
168
169 // process font selection
170 for (int count = 0; count < fonts.length; count++)
171 {
172 if (event.getSource() == fonts[count])
173 {
174 displayJLabel.setFont(
175 new Font(fonts[count].getText(), style, 72));
176 } // end if
177 } // end for
178
179 repaint(); // redraw application
180 } // end method actionPerformed
181 } // end class ItemHandler

Fig. 22.5 | JMenus and mnemonics. (Part 4 of 5.)

styleItems = new JCheckBoxMenuItem[styleNames.length];

styleItems[count] =
new JCheckBoxMenuItem(styleNames[count]); // for style

fontMenu.add(styleItems[count]); // add to font menu

formatMenu.add(fontMenu); // add Font menu to Format menu
bar.add(formatMenu); // add Format menu to menu bar

22.4 Using Menus with Frames 705

182
183 // inner class to handle item events from checkbox menu items
184 private class StyleHandler implements ItemListener
185 {
186 // process font style selections
187 public void itemStateChanged(ItemEvent e)
188 {
189 String name = displayJLabel.getFont().getName(); // current Font
190 Font font; // new font based on user selections
191
192 // determine which items are checked and create Font
193 if (styleItems[0].isSelected() &&
194 styleItems[1].isSelected())
195 font = new Font(name, Font.BOLD + Font.ITALIC, 72);
196 else if (styleItems[0].isSelected())
197 font = new Font(name, Font.BOLD, 72);
198 else if (styleItems[1].isSelected())
199 font = new Font(name, Font.ITALIC, 72);
200 else

201 font = new Font(name, Font.PLAIN, 72);
202
203 displayJLabel.setFont(font);
204 repaint(); // redraw application
205 } // end method itemStateChanged
206 } // end class StyleHandler
207 } // end class MenuFrame

1 // Fig. 22.6: MenuTest.java
2 // Testing MenuFrame.
3 import javax.swing.JFrame;
4
5 public class MenuTest
6 {
7 public static void main(String[] args)
8 {
9 MenuFrame menuFrame = new MenuFrame(); // create MenuFrame

10 menuFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 menuFrame.setSize(500, 200); // set frame size
12 menuFrame.setVisible(true); // display frame
13 } // end main
14 } // end class MenuTest

Fig. 22.6 | Test class for MenuFrame. (Part 1 of 2.)

Fig. 22.5 | JMenus and mnemonics. (Part 5 of 5.)

Menu barMnemonic
characters

Menu

706 Chapter 22 GUI Components: Part 2

Setting Up the File Menu
Lines 38–76 set up the File menu and attach it to the menu bar. The File menu contains
an About… menu item that displays a message dialog when the menu item is selected and
an Exit menu item that can be selected to terminate the application.

Line 38 creates a JMenu and passes to the constructor the string "File" as the name
of the menu. Line 39 uses JMenu method setMnemonic (inherited from class Abstract-
Button) to indicate that F is the mnemonic for this menu. Pressing the Alt key and the
letter F opens the menu, just as clicking the menu name with the mouse would. In the
GUI, the mnemonic character in the menu’s name is displayed with an underline. (See the
screen captures in Fig. 22.6.)

Lines 42–43 create JMenuItem aboutItem with the text “About...” and set its mne-
monic to the letter A. This menu item is added to fileMenu at line 44 with JMenu method
add. To access the About... menu item through the keyboard, press the Alt key and letter
F to open the File menu, then press A to select the About... menu item. Lines 47–56 create
an ActionListener to process aboutItem’s action event. Lines 52–54 display a message
dialog box. In most prior uses of showMessageDialog, the first argument was null. The
purpose of the first argument is to specify the parent window that helps determine where
the dialog box will be displayed. If the parent window is specified as null, the dialog box
appears in the center of the screen. Otherwise, it appears centered over the specified parent
window. In this example, the program specifies the parent window with Menu-

Frame.this—the this reference of the MenuFrame object. When using the this reference
in an inner class, specifying this by itself refers to the inner-class object. To reference the
outer-class object’s this reference, qualify this with the outer-class name and a dot (.).

Dialog boxes are typically modal. A modal dialog box does not allow any other
window in the application to be accessed until the dialog box is dismissed. The dialogs dis-

Look-and-Feel Observation 22.2
Mnemonics provide quick access to menu commands and button commands through the
keyboard.

Look-and-Feel Observation 22.3
Different mnemonics should be used for each button or menu item. Normally, the first
letter in the label on the menu item or button is used as the mnemonic. If several buttons
or menu items start with the same letter, choose the next most prominent letter in the name
(e.g., x is commonly chosen for an Exit button or menu item). Mnemonics are case insen-
sitive.

Fig. 22.6 | Test class for MenuFrame. (Part 2 of 2.)

Expanded
submenu

Separator
line

Menu items

22.4 Using Menus with Frames 707

played with class JOptionPane are modal dialogs. Class JDialog can be used to create your
own modal or nonmodal dialogs.

Lines 59–72 create menu item exitItem, set its mnemonic to x, add it to fileMenu

and register an ActionListener that terminates the program when the user selects exit-
Item.

Lines 74–76 create the JMenuBar, attach it to the window with JFrame method set-

JMenuBar and use JMenuBar method add to attach the fileMenu to the JMenuBar.

Setting Up the Format Menu
Lines 78–79 create menu formatMenu and set its mnemonic to r. (F is not used because
that is the File menu’s mnemonic.)

Lines 84–85 create menu colorMenu (this will be a submenu in the Format menu) and
set its mnemonic to C. Line 88 creates JRadioButtonMenuItem array colorItems, which
refers to the menu items in colorMenu. Line 89 creates ButtonGroup colorButtonGroup,
which will ensure that only one of the menu items in the Color submenu is selected at a
time. Line 90 creates an instance of inner class ItemHandler (declared at lines 154–181)
that responds to selections from the Color and Font submenus (discussed shortly). The for
statement at lines 93–100 creates each JRadioButtonMenuItem in array colorItems, adds
each menu item to colorMenu and to colorButtonGroup and registers the ActionLis-

tener for each menu item.
Line 102 invokes AbstractButton method setSelected to select the first element in

array colorItems. Line 104 adds colorMenu as a submenu of formatMenu. Line 105
invokes JMenu method addSeparator to add a horizontal separator line to the menu.

Lines 108–126 create the Font submenu and several JRadioButtonMenuItems and select
the first element of JRadioButtonMenuItem array fonts. Line 129 creates a JCheckBoxMenu-

Common Programming Error 22.3
Forgetting to set the menu bar with JFrame method setJMenuBar prevents the menu bar
from displaying in the JFrame.

Look-and-Feel Observation 22.4
Menus appear left to right in the order they’re added to a JMenuBar.

Look-and-Feel Observation 22.5
A submenu is created by adding a menu as a menu item in another menu. When the
mouse is positioned over a submenu (or the submenu’s mnemonic is pressed), the submenu
expands to show its menu items.

Look-and-Feel Observation 22.6
Separators can be added to a menu to group menu items logically.

Look-and-Feel Observation 22.7
Any lightweight GUI component (i.e., a component that is a subclass of JComponent) can
be added to a JMenu or to a JMenuBar.

708 Chapter 22 GUI Components: Part 2

Item array to represent the menu items for specifying bold and italic styles for the fonts. Line
130 creates an instance of inner class StyleHandler (declared at lines 184–206) to respond
to the JCheckBoxMenuItem events. The for statement at lines 133–139 creates each JCheck-

BoxMenuItem, adds it to fontMenu and registers its ItemListener. Line 141 adds fontMenu
as a submenu of formatMenu. Line 142 adds the formatMenu to bar (the menu bar).

Creating the Rest of the GUI and Defining the Event Handlers
Lines 145–147 create a JLabel for which the Format menu items control the font, font
color and font style. The initial foreground color is set to the first element of array color-

Values (Color.BLACK) by invoking JComponent method setForeground. The initial font
is set to Serif with PLAIN style and 72-point size. Line 149 sets the background color of
the window’s content pane to cyan, and line 150 attaches the JLabel to the CENTER of the
content pane’s BorderLayout.

ItemHandler method actionPerformed (lines 157–180) uses two for statements to
determine which font or color menu item generated the event and sets the font or color of
the JLabel displayLabel, respectively. The if condition at line 162 uses Abstract-

Button method isSelected to determine the selected JRadioButtonMenuItem. The if

condition at line 172 invokes the event object’s getSource method to get a reference to
the JRadioButtonMenuItem that generated the event. Line 175 invokes AbstractButton
method getText to obtain the name of the font from the menu item.

StyleHandler method itemStateChanged (lines 187–205) is called if the user selects
a JCheckBoxMenuItem in the fontMenu. Lines 193–201 determine which JCheckBoxMenu-

Items are selected and use their combined state to determine the new font style.

22.5 JPopupMenu
Many of today’s computer applications provide so-called context-sensitive pop-up
menus. In Swing, such menus are created with class JPopupMenu (a subclass of JCompo-
nent). These menus provide options that are specific to the component for which the pop-
up trigger event was generated. On most systems, the pop-up trigger event occurs when
the user presses and releases the right mouse button.

The application in Figs. 22.7–22.8 creates a JPopupMenu that allows the user to select
one of three colors and change the background color of the window. When the user clicks
the right mouse button on the PopupFrame window’s background, a JPopupMenu con-
taining colors appears. If the user clicks a JRadioButtonMenuItem for a color, ItemHandler
method actionPerformed changes the background color of the window’s content pane.

Line 25 of the PopupFrame constructor (Fig. 22.7, lines 21–69) creates an instance of
class ItemHandler (declared in lines 72–87) that will process the item events from the
menu items in the pop-up menu. Line 29 creates the JPopupMenu. The for statement
(lines 33–39) creates a JRadioButtonMenuItem object (line 35), adds it to popupMenu (line
36), adds it to ButtonGroup colorGroup (line 37) to maintain one selected JRadioButton-

Look-and-Feel Observation 22.8
The pop-up trigger event is platform specific. On most platforms that use a mouse with
multiple buttons, the pop-up trigger event occurs when the user clicks the right mouse but-
ton on a component that supports a pop-up menu.

22.5 JPopupMenu 709

MenuItem at a time and registers its ActionListener (line 38). Line 41 sets the initial back-
ground to white by invoking method setBackground.

1 // Fig. 22.7: PopupFrame.java
2 // Demonstrating JPopupMenus.
3 import java.awt.Color;
4 import java.awt.event.MouseAdapter;
5 import java.awt.event.MouseEvent;
6 import java.awt.event.ActionListener;
7 import java.awt.event.ActionEvent;
8 import javax.swing.JFrame;
9 import javax.swing.JRadioButtonMenuItem;

10 import javax.swing.JPopupMenu;
11 import javax.swing.ButtonGroup;
12
13 public class PopupFrame extends JFrame
14 {
15 private JRadioButtonMenuItem[] items; // holds items for colors
16 private final Color[] colorValues =
17 { Color.BLUE, Color.YELLOW, Color.RED }; // colors to be used
18
19
20 // no-argument constructor sets up GUI
21 public PopupFrame()
22 {
23 super("Using JPopupMenus");
24
25 ItemHandler handler = new ItemHandler(); // handler for menu items
26 String[] colors = { "Blue", "Yellow", "Red" }; // array of colors
27
28 ButtonGroup colorGroup = new ButtonGroup(); // manages color items
29
30 items = new JRadioButtonMenuItem[colors.length]; // color items
31
32 // construct menu item, add to pop-up menu, enable event handling
33 for (int count = 0; count < items.length; count++)
34 {
35 items[count] = new JRadioButtonMenuItem(colors[count]);
36
37 colorGroup.add(items[count]); // add item to button group
38 items[count].addActionListener(handler); // add handler
39 } // end for
40
41 setBackground(Color.WHITE); // set background to white
42
43 // declare a MouseListener for the window to display pop-up menu
44 addMouseListener(
45
46 new MouseAdapter() // anonymous inner class
47 {
48 // handle mouse press event
49 public void mousePressed(MouseEvent event)
50 {

Fig. 22.7 | JPopupMenu for selecting colors. (Part 1 of 2.)

private JPopupMenu popupMenu; // allows user to select color

popupMenu = new JPopupMenu(); // create pop-up menu

popupMenu.add(items[count]); // add item to pop-up menu

710 Chapter 22 GUI Components: Part 2

51 checkForTriggerEvent(event); // check for trigger
52 } // end method mousePressed
53
54 // handle mouse release event
55 public void mouseReleased(MouseEvent event)
56 {
57 checkForTriggerEvent(event); // check for trigger
58 } // end method mouseReleased
59
60 // determine whether event should trigger pop-up menu
61 private void checkForTriggerEvent(MouseEvent event)
62 {
63
64
65
66 } // end method checkForTriggerEvent
67 } // end anonymous inner class
68); // end call to addMouseListener
69 } // end PopupFrame constructor
70
71 // private inner class to handle menu item events
72 private class ItemHandler implements ActionListener
73 {
74 // process menu item selections
75 public void actionPerformed(ActionEvent event)
76 {
77 // determine which menu item was selected
78 for (int i = 0; i < items.length; i++)
79 {
80 if (event.getSource() == items[i])
81 {
82 getContentPane().setBackground(colorValues[i]);
83 return;
84 } // end if
85 } // end for
86 } // end method actionPerformed
87 } // end private inner class ItemHandler
88 } // end class PopupFrame

1 // Fig. 22.8: PopupTest.java
2 // Testing PopupFrame.
3 import javax.swing.JFrame;
4
5 public class PopupTest
6 {
7 public static void main(String[] args)
8 {
9 PopupFrame popupFrame = new PopupFrame(); // create PopupFrame

10 popupFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);

Fig. 22.8 | Test class for PopupFrame. (Part 1 of 2.)

Fig. 22.7 | JPopupMenu for selecting colors. (Part 2 of 2.)

if (event.isPopupTrigger())
popupMenu.show(

event.getComponent(), event.getX(), event.getY());

22.6 Pluggable Look-and-Feel 711

Lines 44–68 register a MouseListener to handle the mouse events of the application
window. Methods mousePressed (lines 49–52) and mouseReleased (lines 55–58) check
for the pop-up trigger event. Each method calls private utility method checkForTrigger-

Event (lines 61–66) to determine whether the pop-up trigger event occurred. If it did,
MouseEvent method isPopupTrigger returns true, and JPopupMenu method show dis-
plays the JPopupMenu. The first argument to method show specifies the origin component,
whose position helps determine where the JPopupMenu will appear on the screen. The last
two arguments are the x-y coordinates (measured from the origin component’s upper-left
corner) at which the JPopupMenu is to appear.

When the user selects a menu item from the pop-up menu, class ItemHandler’s
method actionPerformed (lines 75–86) determines which JRadioButtonMenuItem the
user selected and sets the background color of the window’s content pane.

22.6 Pluggable Look-and-Feel
A program that uses Java’s AWT GUI components (package java.awt) takes on the look-
and-feel of the platform on which the program executes. A Java application running on a
Mac OS X looks like other Mac OS X applications. One running on Microsoft Windows
looks like other Windows applications. One running on a Linux platform looks like other
applications on that Linux platform. This is sometimes desirable, because it allows users
of the application on each platform to use GUI components with which they’re already
familiar. However, it also introduces interesting portability issues.

11 popupFrame.setSize(300, 200); // set frame size
12 popupFrame.setVisible(true); // display frame
13 } // end main
14 } // end class PopupTest

Look-and-Feel Observation 22.9
Displaying a JPopupMenu for the pop-up trigger event of multiple GUI components re-
quires registering mouse-event handlers for each of those GUI components.

Portability Tip 22.1
GUI components look different on different platforms and may require different amounts
of space to display. This could change their layout and alignments.

Fig. 22.8 | Test class for PopupFrame. (Part 2 of 2.)

712 Chapter 22 GUI Components: Part 2

Swing’s lightweight GUI components eliminate many of these issues by providing
uniform functionality across platforms and by defining a uniform cross-platform look-
and-feel. Recent versions of Java SE 6 and Java SE 7 include the Nimbus look-and-feel that
we discussed in Section 14.2. Earlier versions of Java used the metal look-and-feel, which
is still the default. Swing also provides the flexibility to customize the look-and-feel to
appear as a Microsoft Windows-style look-and-feel (only on Window systems), a Motif-
style (UNIX) look-and-feel (across all platforms) or a Macintosh look-and-feel (only on
Mac systems).

Figures 22.9–22.10 demonstrate a way to change the look-and-feel of a Swing GUI.
It creates several GUI components, so you can see the change in their look-and-feel at the
same time. The output windows show the Metal, Nimbus, CDE/Motif, Windows and
Windows Classic look-and-feels that are available on Windows systems. The installed
look-and-feels will vary by platform.

Portability Tip 22.2
GUI components on different platforms have different default functionality (e.g., some
platforms allow a button with the focus to be “pressed” with the space bar, and some
don’t).

1 // Fig. 22.9: LookAndFeelFrame.java
2 // Changing the look-and-feel.
3 import java.awt.GridLayout;
4 import java.awt.BorderLayout;
5 import java.awt.event.ItemListener;
6 import java.awt.event.ItemEvent;
7 import javax.swing.JFrame;
8
9 import javax.swing.JRadioButton;

10 import javax.swing.ButtonGroup;
11 import javax.swing.JButton;
12 import javax.swing.JLabel;
13 import javax.swing.JComboBox;
14 import javax.swing.JPanel;
15 import javax.swing.SwingConstants;
16
17
18 public class LookAndFeelFrame extends JFrame
19 {
20
21 private String[] lookNames; // names of look and feels
22 private JRadioButton[] radio; // radio buttons to select look-and-feel
23 private ButtonGroup group; // group for radio buttons
24 private JButton button; // displays look of button
25 private JLabel label; // displays look of label
26 private JComboBox comboBox; // displays look of combo box
27
28 // set up GUI
29 public LookAndFeelFrame()
30 {

Fig. 22.9 | Look-and-feel of a Swing-based GUI. (Part 1 of 3.)

import javax.swing.UIManager;

import javax.swing.SwingUtilities;

private UIManager.LookAndFeelInfo[] looks; // look and feels

22.6 Pluggable Look-and-Feel 713

31 super("Look and Feel Demo");
32
33
34
35 lookNames = new String[looks.length];
36
37 // get names of installed look-and-feels
38 for (int i = 0; i < looks.length; i++)
39 lookNames[i] = looks[i].getName();
40
41 JPanel northPanel = new JPanel(); // create north panel
42 northPanel.setLayout(new GridLayout(3, 1, 0, 5));
43
44 label = new JLabel("This is a " + lookNames[0] + " look-and-feel",
45 SwingConstants.CENTER); // create label
46 northPanel.add(label); // add label to panel
47
48 button = new JButton("JButton"); // create button
49 northPanel.add(button); // add button to panel
50
51 comboBox = new JComboBox(lookNames); // create combobox
52 northPanel.add(comboBox); // add combobox to panel
53
54 // create array for radio buttons
55 radio = new JRadioButton[looks.length];
56
57 JPanel southPanel = new JPanel(); // create south panel
58
59 // use a GridLayout with 3 buttons in each row
60 int rows = (int) Math.ceil(radio.length / 3.0);
61 southPanel.setLayout(new GridLayout(rows, 3));
62
63 group = new ButtonGroup(); // button group for looks-and-feels
64 ItemHandler handler = new ItemHandler(); // look-and-feel handler
65
66 for (int count = 0; count < radio.length; count++)
67 {
68 radio[count] = new JRadioButton(lookNames[count]);
69 radio[count].addItemListener(handler); // add handler
70 group.add(radio[count]); // add radio button to group
71 southPanel.add(radio[count]); // add radio button to panel
72 } // end for
73
74 add(northPanel, BorderLayout.NORTH); // add north panel
75 add(southPanel, BorderLayout.SOUTH); // add south panel
76
77 radio[0].setSelected(true); // set default selection
78 } // end LookAndFeelFrame constructor
79
80 // use UIManager to change look-and-feel of GUI
81 private void changeTheLookAndFeel(int value)
82 {

Fig. 22.9 | Look-and-feel of a Swing-based GUI. (Part 2 of 3.)

// get installed look-and-feel information
looks = UIManager.getInstalledLookAndFeels();

714 Chapter 22 GUI Components: Part 2

83 try // change look-and-feel
84 {
85
86
87
88
89
90 } // end try
91 catch (Exception exception)
92 {
93 exception.printStackTrace();
94 } // end catch
95 } // end method changeTheLookAndFeel
96
97 // private inner class to handle radio button events
98 private class ItemHandler implements ItemListener
99 {
100 // process user's look-and-feel selection
101 public void itemStateChanged(ItemEvent event)
102 {
103 for (int count = 0; count < radio.length; count++)
104 {
105 if (radio[count].isSelected())
106 {
107 label.setText(String.format(
108 "This is a %s look-and-feel", lookNames[count]));
109 comboBox.setSelectedIndex(count); // set combobox index
110 changeTheLookAndFeel(count); // change look-and-feel
111 } // end if
112 } // end for
113 } // end method itemStateChanged
114 } // end private inner class ItemHandler
115 } // end class LookAndFeelFrame

1 // Fig. 22.10: LookAndFeelDemo.java
2 // Changing the look-and-feel.
3 import javax.swing.JFrame;
4
5 public class LookAndFeelDemo
6 {
7 public static void main(String[] args)
8 {
9 LookAndFeelFrame lookAndFeelFrame = new LookAndFeelFrame();

10 lookAndFeelFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 lookAndFeelFrame.setSize(400, 220); // set frame size
12 lookAndFeelFrame.setVisible(true); // display frame
13 } // end main
14 } // end class LookAndFeelDemo

Fig. 22.10 | Test class for LookAndFeelFrame. (Part 1 of 2.)

Fig. 22.9 | Look-and-feel of a Swing-based GUI. (Part 3 of 3.)

// set look-and-feel for this application
UIManager.setLookAndFeel(looks[value].getClassName());

// update components in this application
SwingUtilities.updateComponentTreeUI(this);

22.6 Pluggable Look-and-Feel 715

We’ve covered the GUI components and event-handling concepts in this example
previously, so we focus here on the mechanism for changing the look-and-feel. Class
UIManager (package javax.swing) contains nested class LookAndFeelInfo (a public

static class) that maintains information about a look-and-feel. Line 20 declares an array
of type UIManager.LookAndFeelInfo (note the syntax used to identify the static inner
class LookAndFeelInfo). Line 34 uses UIManager static method getInstalledLookAnd-

Feels to get the array of UIManager.LookAndFeelInfo objects that describe each look-
and-feel available on your system.

Our utility method changeTheLookAndFeel (lines 81–95) is called by the event han-
dler for the JRadioButtons at the bottom of the user interface. The event handler (declared
in private inner class ItemHandler at lines 98–114) passes an integer representing the ele-
ment in array looks that should be used to change the look-and-feel. Line 86 invokes
static method setLookAndFeel of UIManager to change the look-and-feel. Method get-

ClassName of class UIManager.LookAndFeelInfo determines the name of the look-and-

Performance Tip 22.2
Each look-and-feel is represented by a Java class. UIManager method getInstalled-

LookAndFeels does not load each class. Rather, it provides the names of the available look-
and-feel classes so that a choice can be made (presumably once at program start-up). This
reduces the overhead of having to load all the look-and-feel classes even if the program will
not use some of them.

Fig. 22.10 | Test class for LookAndFeelFrame. (Part 2 of 2.)

716 Chapter 22 GUI Components: Part 2

feel class that corresponds to the UIManager.LookAndFeelInfo object. If the look-and-feel
class is not already loaded, it will be loaded as part of the call to setLookAndFeel. Line 89
invokes static method updateComponentTreeUI of class SwingUtilities (package
javax.swing) to change the look-and-feel of every GUI component attached to its argu-
ment (this instance of our application class LookAndFeelFrame) to the new look-and-feel.

22.7 JDesktopPane and JInternalFrame
Many of today’s applications use a multiple-document interface (MDI)—a main window
(called the parent window) containing other windows (called child windows), to manage
several open documents that are being processed in parallel. For example, many e-mail
programs allow you to have several windows open at the same time, so you can compose
or read multiple e-mail messages simultaneously. Similarly, many word processors allow
the user to open multiple documents in separate windows within a main window, making
it possible to switch between them without having to close one to open another. The ap-
plication in Figs. 22.11–22.12 demonstrates Swing’s JDesktopPane and JInternalFrame

classes for implementing multiple-document interfaces.

1 // Fig. 22.11: DesktopFrame.java
2 // Demonstrating JDesktopPane.
3 import java.awt.BorderLayout;
4 import java.awt.Dimension;
5 import java.awt.Graphics;
6 import java.awt.event.ActionListener;
7 import java.awt.event.ActionEvent;
8 import java.util.Random;
9 import javax.swing.JFrame;

10
11 import javax.swing.JMenuBar;
12 import javax.swing.JMenu;
13 import javax.swing.JMenuItem;
14
15 import javax.swing.JPanel;
16 import javax.swing.ImageIcon;
17
18 public class DesktopFrame extends JFrame
19 {
20
21
22 // set up GUI
23 public DesktopFrame()
24 {
25 super("Using a JDesktopPane");
26
27 JMenuBar bar = new JMenuBar(); // create menu bar
28 JMenu addMenu = new JMenu("Add"); // create Add menu
29 JMenuItem newFrame = new JMenuItem("Internal Frame");
30
31 addMenu.add(newFrame); // add new frame item to Add menu
32 bar.add(addMenu); // add Add menu to menu bar

Fig. 22.11 | Multiple-document interface. (Part 1 of 3.)

import javax.swing.JDesktopPane;

import javax.swing.JInternalFrame;

private JDesktopPane theDesktop;

22.7 JDesktopPane and JInternalFrame 717

33 setJMenuBar(bar); // set menu bar for this application
34
35
36
37
38 // set up listener for newFrame menu item
39 newFrame.addActionListener(
40
41 new ActionListener() // anonymous inner class
42 {
43 // display new internal window
44 public void actionPerformed(ActionEvent event)
45 {
46 // create internal frame
47
48
49
50 MyJPanel panel = new MyJPanel(); // create new panel
51 frame.add(panel, BorderLayout.CENTER); // add panel
52 frame.pack(); // set internal frame to size of contents
53
54
55
56 } // end method actionPerformed
57 } // end anonymous inner class
58); // end call to addActionListener
59 } // end DesktopFrame constructor
60 } // end class DesktopFrame
61
62 // class to display an ImageIcon on a panel
63 class MyJPanel extends JPanel
64 {
65 private static Random generator = new Random();
66
67 private final static String[] images = { "yellowflowers.png",
68 "purpleflowers.png", "redflowers.png", "redflowers2.png",
69 "lavenderflowers.png" };
70
71 // load image
72 public MyJPanel()
73 {
74 int randomNumber = generator.nextInt(images.length);
75
76 } // end MyJPanel constructor
77
78 // display imageIcon on panel
79 public void paintComponent(Graphics g)
80 {
81 super.paintComponent(g);
82
83 } // end method paintComponent
84

Fig. 22.11 | Multiple-document interface. (Part 2 of 3.)

theDesktop = new JDesktopPane(); // create desktop pane
add(theDesktop); // add desktop pane to frame

JInternalFrame frame = new JInternalFrame(
"Internal Frame", true, true, true, true);

theDesktop.add(frame); // attach internal frame
frame.setVisible(true); // show internal frame

private ImageIcon picture; // image to be displayed

picture = new ImageIcon(images[randomNumber]); // set icon

picture.paintIcon(this, g, 0, 0); // display icon

718 Chapter 22 GUI Components: Part 2

Lines 27–33 create a JMenuBar, a JMenu and a JMenuItem, add the JMenuItem to the
JMenu, add the JMenu to the JMenuBar and set the JMenuBar for the application window.
When the user selects the JMenuItem newFrame, the application creates and displays a new
JInternalFrame object containing an image.

Line 35 assigns JDesktopPane (package javax.swing) variable theDesktop a new
JDesktopPane object that will be used to manage the JInternalFrame child windows.
Line 36 adds the JDesktopPane to the JFrame. By default, the JDesktopPane is added to
the center of the content pane’s BorderLayout, so the JDesktopPane expands to fill the
entire application window.

Lines 39–58 register an ActionListener to handle the event when the user selects the
newFrame menu item. When the event occurs, method actionPerformed (lines 44–56)
creates a JInternalFrame object in lines 47–48. The JInternalFrame constructor used
here takes five arguments—a String for the title bar of the internal window, a boolean

indicating whether the internal frame can be resized by the user, a boolean indicating
whether the internal frame can be closed by the user, a boolean indicating whether the
internal frame can be maximized by the user and a boolean indicating whether the internal
frame can be minimized by the user. For each of the boolean arguments, a true value indi-
cates that the operation should be allowed (as is the case here).

As with JFrames and JApplets, a JInternalFrame has a content pane to which GUI
components can be attached. Line 50 (Fig. 22.11) creates an instance of our class
MyJPanel (declared at lines 63–91) that is added to the JInternalFrame at line 51.

85 // return image dimensions
86 public Dimension getPreferredSize()
87 {
88
89
90 } // end method getPreferredSize
91 } // end class MyJPanel

1 // Fig. 22.12: DesktopTest.java
2 // Demonstrating JDesktopPane.
3 import javax.swing.JFrame;
4
5 public class DesktopTest
6 {
7 public static void main(String[] args)
8 {
9 DesktopFrame desktopFrame = new DesktopFrame();

10 desktopFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 desktopFrame.setSize(600, 480); // set frame size
12 desktopFrame.setVisible(true); // display frame
13 } // end main
14 } // end class DesktopTest

Fig. 22.12 | Test class for DeskTopFrame. (Part 1 of 2.)

Fig. 22.11 | Multiple-document interface. (Part 3 of 3.)

return new Dimension(picture.getIconWidth(),
picture.getIconHeight());

22.7 JDesktopPane and JInternalFrame 719

Line 52 uses JInternalFrame method pack to set the size of the child window.
Method pack uses the preferred sizes of the components to determine the window’s size.
Class MyJPanel declares method getPreferredSize (lines 86–90) to specify the panel’s
preferred size for use by the pack method. Line 54 adds the JInternalFrame to the JDesk-
topPane, and line 55 displays the JInternalFrame.

Classes JInternalFrame and JDesktopPane provide many methods for managing
child windows. See the JInternalFrame and JDesktopPane online API documentation for
complete lists of these methods:

download.oracle.com/javase/6/docs/api/javax/swing/JInternalFrame.html
download.oracle.com/javase/6/docs/api/javax/swing/JDesktopPane.html

Fig. 22.12 | Test class for DeskTopFrame. (Part 2 of 2.)

Internal frames Minimize Maximize Close

Minimized internal frames Position the mouse over any corner of a child window to resize
the window (if resizing is allowed).

Maximized
internal frame

720 Chapter 22 GUI Components: Part 2

22.8 JTabbedPane
A JTabbedPane arranges GUI components into layers, of which only one is visible at a
time. Users access each layer via a tab—similar to folders in a file cabinet. When the user
clicks a tab, the appropriate layer is displayed. The tabs appear at the top by default but
also can be positioned at the left, right or bottom of the JTabbedPane. Any component can
be placed on a tab. If the component is a container, such as a panel, it can use any layout
manager to lay out several components on the tab. Class JTabbedPane is a subclass of
JComponent. The application in Figs. 22.13–22.14 creates one tabbed pane with three
tabs. Each tab displays one of the JPanels—panel1, panel2 or panel3.

1 // Fig. 22.13: JTabbedPaneFrame.java
2 // Demonstrating JTabbedPane.
3 import java.awt.BorderLayout;
4 import java.awt.Color;
5 import javax.swing.JFrame;
6
7 import javax.swing.JLabel;
8 import javax.swing.JPanel;
9 import javax.swing.JButton;

10 import javax.swing.SwingConstants;
11
12 public class JTabbedPaneFrame extends JFrame
13 {
14 // set up GUI
15 public JTabbedPaneFrame()
16 {
17 super("JTabbedPane Demo ");
18
19
20
21 // set up pane11 and add it to JTabbedPane
22 JLabel label1 = new JLabel("panel one", SwingConstants.CENTER);
23 JPanel panel1 = new JPanel(); // create first panel
24 panel1.add(label1); // add label to panel
25
26
27 // set up panel2 and add it to JTabbedPane
28 JLabel label2 = new JLabel("panel two", SwingConstants.CENTER);
29 JPanel panel2 = new JPanel(); // create second panel
30 panel2.setBackground(Color.YELLOW); // set background to yellow
31 panel2.add(label2); // add label to panel
32
33
34 // set up panel3 and add it to JTabbedPane
35 JLabel label3 = new JLabel("panel three");
36 JPanel panel3 = new JPanel(); // create third panel
37 panel3.setLayout(new BorderLayout()); // use borderlayout
38 panel3.add(new JButton("North"), BorderLayout.NORTH);
39 panel3.add(new JButton("West"), BorderLayout.WEST);
40 panel3.add(new JButton("East"), BorderLayout.EAST);

Fig. 22.13 | JTabbedPane used to organize GUI components. (Part 1 of 2.)

import javax.swing.JTabbedPane;

JTabbedPane tabbedPane = new JTabbedPane(); // create JTabbedPane

tabbedPane.addTab("Tab One", null, panel1, "First Panel");

tabbedPane.addTab("Tab Two", null, panel2, "Second Panel");

22.8 JTabbedPane 721

The constructor (lines 15–46) builds the GUI. Line 19 creates an empty JTabbedPane

with default settings—that is, tabs across the top. If the tabs do not fit on one line, they’ll
wrap to form additional lines of tabs. Next the constructor creates the JPanels panel1,
panel2 and panel3 and their GUI components. As we set up each panel, we add it to
tabbedPane, using JTabbedPane method addTab with four arguments. The first argument
is a String that specifies the title of the tab. The second argument is an Icon reference that
specifies an icon to display on the tab. If the Icon is a null reference, no image is displayed.
The third argument is a Component reference that represents the GUI component to dis-
play when the user clicks the tab. The last argument is a String that specifies the tool tip
for the tab. For example, line 25 adds JPanel panel1 to tabbedPane with title "Tab One"

and the tool tip "First Panel". JPanels panel2 and panel3 are added to tabbedPane at
lines 32 and 43. To view a tab, click it with the mouse or use the arrow keys to cycle
through the tabs.

41 panel3.add(new JButton("South"), BorderLayout.SOUTH);
42 panel3.add(label3, BorderLayout.CENTER);
43
44
45 add(tabbedPane); // add JTabbedPane to frame
46 } // end JTabbedPaneFrame constructor
47 } // end class JTabbedPaneFrame

1 // Fig. 22.14: JTabbedPaneDemo.java
2 // Demonstrating JTabbedPane.
3 import javax.swing.JFrame;
4
5 public class JTabbedPaneDemo
6 {
7 public static void main(String[] args)
8 {
9 JTabbedPaneFrame tabbedPaneFrame = new JTabbedPaneFrame();

10 tabbedPaneFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 tabbedPaneFrame.setSize(250, 200); // set frame size
12 tabbedPaneFrame.setVisible(true); // display frame
13 } // end main
14 } // end class JTabbedPaneDemo

Fig. 22.14 | Test class for JTabbedPaneFrame.

Fig. 22.13 | JTabbedPane used to organize GUI components. (Part 2 of 2.)

tabbedPane.addTab("Tab Three", null, panel3, "Third Panel");

722 Chapter 22 GUI Components: Part 2

22.9 Layout Managers: BoxLayout and GridBagLayout
In Chapter 14, we introduced three layout managers—FlowLayout, BorderLayout and
GridLayout. This section presents two additional layout managers (summarized in
Fig. 22.15). We discuss them in the examples that follow. We also discuss the extremely
flexible GroupLayout in Appendix H.

BoxLayout Layout Manager
The BoxLayout layout manager (in package javax.swing) arranges GUI components hor-
izontally along a container’s x-axis or vertically along its y-axis. The application in
Figs. 22.16–22.17 demonstrates BoxLayout and the container class Box that uses BoxLay-
out as its default layout manager.

Layout manager Description

BoxLayout A layout manager that allows GUI components to be arranged left-to-
right or top-to-bottom in a container. Class Box declares a container
with BoxLayout as its default layout manager and provides static
methods to create a Box with a horizontal or vertical BoxLayout.

GridBagLayout A layout manager similar to GridLayout, but the components can
vary in size and can be added in any order.

Fig. 22.15 | Additional layout managers.

1 // Fig. 22.16: BoxLayoutFrame.java
2 // Demonstrating BoxLayout.
3 import java.awt.Dimension;
4 import javax.swing.JFrame;
5 import javax.swing.Box;
6 import javax.swing.JButton;
7
8 import javax.swing.JPanel;
9 import javax.swing.JTabbedPane;

10
11 public class BoxLayoutFrame extends JFrame
12 {
13 // set up GUI
14 public BoxLayoutFrame()
15 {
16 super("Demonstrating BoxLayout");
17
18 // create Box containers with BoxLayout
19
20
21
22
23
24 final int SIZE = 3; // number of buttons on each Box
25

Fig. 22.16 | BoxLayout layout manager. (Part 1 of 2.)

import javax.swing.BoxLayout;

Box horizontal1 = Box.createHorizontalBox();
Box vertical1 = Box.createVerticalBox();
Box horizontal2 = Box.createHorizontalBox();
Box vertical2 = Box.createVerticalBox();

22.9 Layout Managers: BoxLayout and GridBagLayout 723

Lines 19–22 create Box containers. References horizontal1 and horizontal2 are ini-
tialized with static Box method createHorizontalBox, which returns a Box container

26 // add buttons to Box horizontal1
27 for (int count = 0; count < SIZE; count++)
28
29
30 // create strut and add buttons to Box vertical1
31 for (int count = 0; count < SIZE; count++)
32 {
33
34
35 } // end for
36
37 // create horizontal glue and add buttons to Box horizontal2
38 for (int count = 0; count < SIZE; count++)
39 {
40
41
42 } // end for
43
44 // create rigid area and add buttons to Box vertical2
45 for (int count = 0; count < SIZE; count++)
46 {
47
48
49 } // end for
50
51 // create vertical glue and add buttons to panel
52 JPanel panel = new JPanel();
53 panel.setLayout();
54
55 for (int count = 0; count < SIZE; count++)
56 {
57
58
59 } // end for
60
61 // create a JTabbedPane
62
63
64
65 // place each container on tabbed pane
66 tabs.addTab("Horizontal Box", horizontal1);
67 tabs.addTab("Vertical Box with Struts", vertical1);
68 tabs.addTab("Horizontal Box with Glue", horizontal2);
69 tabs.addTab("Vertical Box with Rigid Areas", vertical2);
70 tabs.addTab("Vertical Box with Glue", panel);
71
72 add(tabs); // place tabbed pane on frame
73 } // end BoxLayoutFrame constructor
74 } // end class BoxLayoutFrame

Fig. 22.16 | BoxLayout layout manager. (Part 2 of 2.)

horizontal1.add(new JButton("Button " + count));

vertical1.add(Box.createVerticalStrut(25));
vertical1.add(new JButton("Button " + count));

horizontal2.add(Box.createHorizontalGlue());
horizontal2.add(new JButton("Button " + count));

vertical2.add(Box.createRigidArea(new Dimension(12, 8)));
vertical2.add(new JButton("Button " + count));

new BoxLayout(panel, BoxLayout.Y_AXIS)

panel.add(Box.createGlue());
panel.add(new JButton("Button " + count));

JTabbedPane tabs = new JTabbedPane(
JTabbedPane.TOP, JTabbedPane.SCROLL_TAB_LAYOUT);

724 Chapter 22 GUI Components: Part 2

with a horizontal BoxLayout in which GUI components are arranged left-to-right. Vari-
ables vertical1 and vertical2 are initialized with static Box method createVerti-

calBox, which returns references to Box containers with a vertical BoxLayout in which
GUI components are arranged top-to-bottom.

The loop at lines 27–28 adds three JButtons to horizontal1. The for statement at
lines 31–35 adds three JButtons to vertical1. Before adding each button, line 33 adds a
vertical strut to the container with static Box method createVerticalStrut. A vertical
strut is an invisible GUI component that has a fixed pixel height and is used to guarantee
a fixed amount of space between GUI components. The int argument to method create-

VerticalStrut determines the height of the strut in pixels. When the container is resized,

1 // Fig. 22.17: BoxLayoutDemo.java
2 // Demonstrating BoxLayout.
3 import javax.swing.JFrame;
4
5 public class BoxLayoutDemo
6 {
7 public static void main(String[] args)
8 {
9 BoxLayoutFrame boxLayoutFrame = new BoxLayoutFrame();

10 boxLayoutFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 boxLayoutFrame.setSize(400, 220); // set frame size
12 boxLayoutFrame.setVisible(true); // display frame
13 } // end main
14 } // end class BoxLayoutDemo

Fig. 22.17 | Test class for BoxLayoutFrame.

Arrows for cycling
through tabs

22.9 Layout Managers: BoxLayout and GridBagLayout 725

the distance between GUI components separated by struts does not change. Class Box also
declares method createHorizontalStrut for horizontal BoxLayouts.

The for statement at lines 38–42 adds three JButtons to horizontal2. Before adding
each button, line 40 adds horizontal glue to the container with static Box method cre-

ateHorizontalGlue. Horizontal glue is an invisible GUI component that can be used
between fixed-size GUI components to occupy additional space. Normally, extra space
appears to the right of the last horizontal GUI component or below the last vertical one in
a BoxLayout. Glue allows the extra space to be placed between GUI components. When
the container is resized, components separated by glue components remain the same size,
but the glue stretches or contracts to occupy the space between them. Class Box also
declares method createVerticalGlue for vertical BoxLayouts.

The for statement at lines 45–49 adds three JButtons to vertical2. Before each
button is added, line 47 adds a rigid area to the container with static Box method
createRigidArea. A rigid area is an invisible GUI component that always has a fixed pixel
width and height. The argument to method createRigidArea is a Dimension object that
specifies the area’s width and height.

Lines 52–53 create a JPanel object and set its layout to a BoxLayout in the conven-
tional manner, using Container method setLayout. The BoxLayout constructor receives
a reference to the container for which it controls the layout and a constant indicating
whether the layout is horizontal (BoxLayout.X_AXIS) or vertical (BoxLayout.Y_AXIS).

The for statement at lines 55–59 adds three JButtons to panel. Before adding each
button, line 57 adds a glue component to the container with static Box method create-

Glue. This component expands or contracts based on the size of the Box.
Lines 62–63 create a JTabbedPane to display the five containers in this program. The

argument JTabbedPane.TOP sent to the constructor indicates that the tabs should appear
at the top of the JTabbedPane. The argument JTabbedPane.SCROLL_TAB_LAYOUT specifies
that the tabs should wrap to a new line if there are too many to fit on one line.

The Box containers and the JPanel are attached to the JTabbedPane at lines 66–70.
Try executing the application. When the window appears, resize the window to see how
the glue components, strut components and rigid area affect the layout on each tab.

GridBagLayout Layout Manager
One of the most powerful predefined layout managers is GridBagLayout (in package ja-

va.awt). This layout is similar to GridLayout in that it arranges components in a grid, but
it’s more flexible. The components can vary in size (i.e., they can occupy multiple rows
and columns) and can be added in any order.

The first step in using GridBagLayout is determining the appearance of the GUI. For
this step you need only a piece of paper. Draw the GUI, then draw a grid over it, dividing
the components into rows and columns. The initial row and column numbers should be
0, so that the GridBagLayout layout manager can use the row and column numbers to
properly place the components in the grid. Figure 22.18 demonstrates drawing the lines
for the rows and columns over a GUI.

A GridBagConstraints object describes how a component is placed in a Grid-

BagLayout. Several GridBagConstraints fields are summarized in Fig. 22.19.
GridBagConstraints field anchor specifies the relative position of the component in

an area that it does not fill. The variable anchor is assigned one of the following GridBag-

726 Chapter 22 GUI Components: Part 2

Constraints constants: NORTH, NORTHEAST, EAST, SOUTHEAST, SOUTH, SOUTHWEST, WEST,
NORTHWEST or CENTER. The default value is CENTER.

GridBagConstraints field fill defines how the component grows if the area in
which it can be displayed is larger than the component. The variable fill is assigned one
of the following GridBagConstraints constants: NONE, VERTICAL, HORIZONTAL or BOTH.
The default value is NONE, which indicates that the component will not grow in either
direction. VERTICAL indicates that it will grow vertically. HORIZONTAL indicates that it will
grow horizontally. BOTH indicates that it will grow in both directions.

Variables gridx and gridy specify where the upper-left corner of the component is
placed in the grid. Variable gridx corresponds to the column, and variable gridy corre-
sponds to the row. In Fig. 22.18, the JComboBox (displaying “Iron”) has a gridx value of
1 and a gridy value of 2.

Fig. 22.18 | Designing a GUI that will use GridBagLayout.

Field Description

anchor Specifies the relative position (NORTH, NORTHEAST, EAST,
SOUTHEAST, SOUTH, SOUTHWEST, WEST, NORTHWEST, CENTER) of the
component in an area that it does not fill.

fill Resizes the component in the specified direction (NONE,
HORIZONTAL, VERTICAL, BOTH) when the display area is larger
than the component.

gridx The column in which the component will be placed.

gridy The row in which the component will be placed.

gridwidth The number of columns the component occupies.

gridheight The number of rows the component occupies.

weightx The amount of extra space to allocate horizontally. The grid
slot can become wider when extra space is available.

weighty The amount of extra space to allocate vertically. The grid slot
can become taller when extra space is available.

Fig. 22.19 | GridBagConstraints fields.

Row

Column
0 1 2

0

1

2

3

22.9 Layout Managers: BoxLayout and GridBagLayout 727

Variable gridwidth specifies the number of columns a component occupies. The
JComboBox occupies two columns. Variable gridheight specifies the number of rows a
component occupies. The JTextArea on the left side of Fig. 22.18 occupies three rows.

Variable weightx specifies how to distribute extra horizontal space to grid slots in a
GridBagLayout when the container is resized. A zero value indicates that the grid slot does
not grow horizontally on its own. However, if the component spans a column containing
a component with nonzero weightx value, the component with zero weightx value will
grow horizontally in the same proportion as the other component(s) in that column. This
is because each component must be maintained in the same row and column in which it
was originally placed.

Variable weighty specifies how to distribute extra vertical space to grid slots in a Grid-
BagLayout when the container is resized. A zero value indicates that the grid slot does not
grow vertically on its own. However, if the component spans a row containing a compo-
nent with nonzero weighty value, the component with zero weighty value grows vertically
in the same proportion as the other component(s) in the same row.

In Fig. 22.18, the effects of weighty and weightx cannot easily be seen until the con-
tainer is resized and additional space becomes available. Components with larger weight
values occupy more of the additional space than those with smaller weight values.

Components should be given nonzero positive weight values—otherwise they’ll
“huddle” together in the middle of the container. Figure 22.20 shows the GUI of
Fig. 22.18 with all weights set to zero.

The application in Figs. 22.21–22.22 uses the GridBagLayout layout manager to
arrange the components of the GUI in Fig. 22.18. The application does nothing except
demonstrate how to use GridBagLayout.

Fig. 22.20 | GridBagLayout with the weights set to zero.

1 // Fig. 22.21: GridBagFrame.java
2 // Demonstrating GridBagLayout.
3
4
5 import java.awt.Component;
6 import javax.swing.JFrame;
7 import javax.swing.JTextArea;
8 import javax.swing.JTextField;

Fig. 22.21 | GridBagLayout layout manager. (Part 1 of 3.)

import java.awt.GridBagLayout;
import java.awt.GridBagConstraints;

728 Chapter 22 GUI Components: Part 2

9 import javax.swing.JButton;
10 import javax.swing.JComboBox;
11
12 public class GridBagFrame extends JFrame
13 {
14
15
16
17 // set up GUI
18 public GridBagFrame()
19 {
20 super("GridBagLayout");
21
22
23
24
25 // create GUI components
26 JTextArea textArea1 = new JTextArea("TextArea1", 5, 10);
27 JTextArea textArea2 = new JTextArea("TextArea2", 2, 2);
28
29 String[] names = { "Iron", "Steel", "Brass" };
30 JComboBox comboBox = new JComboBox(names);
31
32 JTextField textField = new JTextField("TextField");
33 JButton button1 = new JButton("Button 1");
34 JButton button2 = new JButton("Button 2");
35 JButton button3 = new JButton("Button 3");
36
37 // weightx and weighty for textArea1 are both 0: the default
38 // anchor for all components is CENTER: the default
39
40
41
42 // weightx and weighty for button1 are both 0: the default
43
44
45
46 // weightx and weighty for comboBox are both 0: the default
47 // fill is HORIZONTAL
48
49
50 // button2
51
52
53
54
55
56 // fill is BOTH for button3
57
58
59
60

Fig. 22.21 | GridBagLayout layout manager. (Part 2 of 3.)

private GridBagLayout layout; // layout of this frame
private GridBagConstraints constraints; // constraints of this layout

layout = new GridBagLayout();
setLayout(layout); // set frame layout
constraints = new GridBagConstraints(); // instantiate constraints

constraints.fill = GridBagConstraints.BOTH;
addComponent(textArea1, 0, 0, 1, 3);

constraints.fill = GridBagConstraints.HORIZONTAL;
addComponent(button1, 0, 1, 2, 1);

addComponent(comboBox, 2, 1, 2, 1);

constraints.weightx = 1000; // can grow wider
constraints.weighty = 1; // can grow taller
constraints.fill = GridBagConstraints.BOTH;
addComponent(button2, 1, 1, 1, 1);

constraints.weightx = 0;
constraints.weighty = 0;
addComponent(button3, 1, 2, 1, 1);

22.9 Layout Managers: BoxLayout and GridBagLayout 729

61 // weightx and weighty for textField are both 0, fill is BOTH
62
63
64 // weightx and weighty for textArea2 are both 0, fill is BOTH
65
66 } // end GridBagFrame constructor
67
68 // method to set constraints on
69 private void addComponent(Component component,
70 int row, int column, int width, int height)
71 {
72
73
74
75
76
77
78 } // end method addComponent
79 } // end class GridBagFrame

1 // Fig. 22.22: GridBagDemo.java
2 // Demonstrating GridBagLayout.
3 import javax.swing.JFrame;
4
5 public class GridBagDemo
6 {
7 public static void main(String[] args)
8 {
9 GridBagFrame gridBagFrame = new GridBagFrame();

10 gridBagFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 gridBagFrame.setSize(300, 150); // set frame size
12 gridBagFrame.setVisible(true); // display frame
13 } // end main
14 } // end class GridBagDemo

Fig. 22.22 | Test class for GridBagFrame. (Part 1 of 2.)

Fig. 22.21 | GridBagLayout layout manager. (Part 3 of 3.)

addComponent(textField, 3, 0, 2, 1);

addComponent(textArea2, 3, 2, 1, 1);

constraints.gridx = column; // set gridx
constraints.gridy = row; // set gridy
constraints.gridwidth = width; // set gridwidth
constraints.gridheight = height; // set gridheight
layout.setConstraints(component, constraints); // set constraints
add(component); // add component

730 Chapter 22 GUI Components: Part 2

The GUI contains three JButtons, two JTextAreas, a JComboBox and a JTextField.
The layout manager is GridBagLayout. Lines 21–22 create the GridBagLayout object and
set the layout manager for the JFrame to layout. Line 23 creates the GridBagConstraints
object used to determine the location and size of each component in the grid. Lines 26–
35 create each GUI component that will be added to the content pane.

Lines 39–40 configure JTextArea textArea1 and add it to the content pane. The
values for weightx and weighty values are not specified in constraints, so each has the
value zero by default. Thus, the JTextArea will not resize itself even if space is available.
However, it spans multiple rows, so the vertical size is subject to the weighty values of
JButtons button2 and button3. When either button is resized vertically based on its
weighty value, the JTextArea is also resized.

Line 39 sets variable fill in constraints to GridBagConstraints.BOTH, causing the
JTextArea to always fill its entire allocated area in the grid. An anchor value is not speci-
fied in constraints, so the default CENTER is used. We do not use variable anchor in this
application, so all the components will use the default. Line 40 calls our utility method
addComponent (declared at lines 69–78). The JTextArea object, the row, the column, the
number of columns to span and the number of rows to span are passed as arguments.

JButton button1 is the next component added (lines 43–44). By default, the weightx
and weighty values are still zero. The fill variable is set to HORIZONTAL—the component
will always fill its area in the horizontal direction. The vertical direction is not filled. The
weighty value is zero, so the button will become taller only if another component in the
same row has a nonzero weighty value. JButton button1 is located at row 0, column 1.
One row and two columns are occupied.

JComboBox comboBox is the next component added (line 48). By default, the weightx

and weighty values are zero, and the fill variable is set to HORIZONTAL. The JComboBox

button will grow only in the horizontal direction. The weightx, weighty and fill vari-
ables retain the values set in constraints until they’re changed. The JComboBox button is
placed at row 2, column 1. One row and two columns are occupied.

JButton button2 is the next component added (lines 51–54). It’s given a weightx

value of 1000 and a weighty value of 1. The area occupied by the button is capable of
growing in the vertical and horizontal directions. The fill variable is set to BOTH, which
specifies that the button will always fill the entire area. When the window is resized,
button2 will grow. The button is placed at row 1, column 1. One row and one column
are occupied.

Fig. 22.22 | Test class for GridBagFrame. (Part 2 of 2.)

22.9 Layout Managers: BoxLayout and GridBagLayout 731

JButton button3 is added next (lines 57–59). Both the weightx value and weighty

value are set to zero, and the value of fill is BOTH. JButton button3 will grow if the
window is resized—it’s affected by the weight values of button2. The weightx value for
button2 is much larger than that for button3. When resizing occurs, button2 will occupy
a larger percentage of the new space. The button is placed at row 1, column 2. One row
and one column are occupied.

Both the JTextField textField (line 62) and JTextArea textArea2 (line 65) have a
weightx value of 0 and a weighty value of 0. The value of fill is BOTH. The JTextField

is placed at row 3, column 0, and the JTextArea at row 3, column 2. The JTextField

occupies one row and two columns, the JTextArea one row and one column.
Method addComponent’s parameters are a Component reference component and inte-

gers row, column, width and height. Lines 72–73 set the GridBagConstraints variables
gridx and gridy. The gridx variable is assigned the column in which the Component will
be placed, and the gridy value is assigned the row in which the Component will be placed.
Lines 74–75 set the GridBagConstraints variables gridwidth and gridheight. The
gridwidth variable specifies the number of columns the Component will span in the grid,
and the gridheight variable specifies the number of rows the Component will span in the
grid. Line 76 sets the GridBagConstraints for a component in the GridBagLayout.
Method setConstraints of class GridBagLayout takes a Component argument and a
GridBagConstraints argument. Line 77 adds the component to the JFrame.

When you execute this application, try resizing the window to see how the constraints
for each GUI component affect its position and size in the window.

GridBagConstraints Constants RELATIVE and REMAINDER

Instead of gridx and gridy, a variation of GridBagLayout uses GridBagConstraints con-
stants RELATIVE and REMAINDER. RELATIVE specifies that the next-to-last component in a
particular row should be placed to the right of the previous component in the row.
REMAINDER specifies that a component is the last component in a row. Any component that
is not the second-to-last or last component on a row must specify values for GridbagCon-
straints variables gridwidth and gridheight. The application in Figs. 22.23–22.24 ar-
ranges components in GridBagLayout, using these constants.

1 // Fig. 22.23: GridBagFrame2.java
2 // Demonstrating GridBagLayout constants.
3 import java.awt.GridBagLayout;
4 import java.awt.GridBagConstraints;
5 import java.awt.Component;
6 import javax.swing.JFrame;
7 import javax.swing.JComboBox;
8 import javax.swing.JTextField;
9 import javax.swing.JList;

10 import javax.swing.JButton;
11
12 public class GridBagFrame2 extends JFrame
13 {
14 private GridBagLayout layout; // layout of this frame
15

Fig. 22.23 | GridBagConstraints constants RELATIVE and REMAINDER. (Part 1 of 3.)

private GridBagConstraints constraints; // constraints of this layout

732 Chapter 22 GUI Components: Part 2

16
17 // set up GUI
18 public GridBagFrame2()
19 {
20 super("GridBagLayout");
21
22
23 constraints = new GridBagConstraints(); // instantiate constraints
24
25 // create GUI components
26 String[] metals = { "Copper", "Aluminum", "Silver" };
27 JComboBox comboBox = new JComboBox(metals);
28
29 JTextField textField = new JTextField("TextField");
30
31 String[] fonts = { "Serif", "Monospaced" };
32 JList list = new JList(fonts);
33
34 String[] names = { "zero", "one", "two", "three", "four" };
35 JButton[] buttons = new JButton[names.length];
36
37 for (int count = 0; count < buttons.length; count++)
38 buttons[count] = new JButton(names[count]);
39
40 // define GUI component constraints for textField
41
42
43
44
45
46
47 // buttons[0] -- weightx and weighty are 1: fill is BOTH
48
49
50
51 // buttons[1] -- weightx and weighty are 1: fill is BOTH
52
53
54
55 // buttons[2] -- weightx and weighty are 1: fill is BOTH
56
57
58
59 // comboBox -- weightx is 1: fill is BOTH
60
61
62
63
64 // buttons[3] -- weightx is 1: fill is BOTH
65
66
67
68

Fig. 22.23 | GridBagConstraints constants RELATIVE and REMAINDER. (Part 2 of 3.)

layout = new GridBagLayout();
setLayout(layout); // set frame layout

constraints.weightx = 1;
constraints.weighty = 1;
constraints.fill = GridBagConstraints.BOTH;
constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(textField);

constraints.gridwidth = 1;
addComponent(buttons[0]);

constraints.gridwidth = GridBagConstraints.RELATIVE;
addComponent(buttons[1]);

constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(buttons[2]);

constraints.weighty = 0;
constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(comboBox);

constraints.weighty = 1;
constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(buttons[3]);

22.9 Layout Managers: BoxLayout and GridBagLayout 733

Lines 21–22 create a GridBagLayout and use it to set the JFrame’s layout manager.
The components that are placed in GridBagLayout are created in lines 27–38—they are a
JComboBox, a JTextField, a JList and five JButtons.

The JTextField is added first (lines 41–45). The weightx and weighty values are set
to 1. The fill variable is set to BOTH. Line 44 specifies that the JTextField is the last com-

69 // buttons[4] -- weightx and weighty are 1: fill is BOTH
70
71
72
73 // list -- weightx and weighty are 1: fill is BOTH
74
75
76 } // end GridBagFrame2 constructor
77
78 // add a component to the container
79 private void addComponent(Component component)
80 {
81
82
83 } // end method addComponent
84 } // end class GridBagFrame2

1 // Fig. 22.24: GridBagDemo2.java
2 // Demonstrating GridBagLayout constants.
3 import javax.swing.JFrame;
4
5 public class GridBagDemo2
6 {
7 public static void main(String[] args)
8 {
9 GridBagFrame2 gridBagFrame = new GridBagFrame2();

10 gridBagFrame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 gridBagFrame.setSize(300, 200); // set frame size
12 gridBagFrame.setVisible(true); // display frame
13 } // end main
14 } // end class GridBagDemo2

Fig. 22.24 | Test class for GridBagDemo2.

Fig. 22.23 | GridBagConstraints constants RELATIVE and REMAINDER. (Part 3 of 3.)

constraints.gridwidth = GridBagConstraints.RELATIVE;
addComponent(buttons[4]);

constraints.gridwidth = GridBagConstraints.REMAINDER;
addComponent(list);

layout.setConstraints(component, constraints);
add(component); // add component

734 Chapter 22 GUI Components: Part 2

ponent on the line. The JTextField is added to the content pane with a call to our utility
method addComponent (declared at lines 79–83). Method addComponent takes a Compo-

nent argument and uses GridBagLayout method setConstraints to set the constraints
for the Component. Method add attaches the component to the content pane.

JButton buttons[0] (lines 48–49) has weightx and weighty values of 1. The fill

variable is BOTH. Because buttons[0] is not one of the last two components on the row,
it’s given a gridwidth of 1 and so will occupy one column. The JButton is added to the
content pane with a call to utility method addComponent.

JButton buttons[1] (lines 52–53) has weightx and weighty values of 1. The fill

variable is BOTH. Line 52 specifies that the JButton is to be placed relative to the previous
component. The Button is added to the JFrame with a call to addComponent.

JButton buttons[2] (lines 56–57) has weightx and weighty values of 1. The fill

variable is BOTH. This JButton is the last component on the line, so REMAINDER is used. The
JButton is added to the content pane with a call to addComponent.

The JComboBox (lines 60–62) has a weightx of 1 and a weighty of 0. The JComboBox
will not grow vertically. The JComboBox is the only component on the line, so REMAINDER

is used. The JComboBox is added to the content pane with a call to addComponent.
JButton buttons[3] (lines 65–67) has weightx and weighty values of 1. The fill

variable is BOTH. This JButton is the only component on the line, so REMAINDER is used.
The JButton is added to the content pane with a call to addComponent.

JButton buttons[4] (lines 70–71) has weightx and weighty values of 1. The fill

variable is BOTH. This JButton is the next-to-last component on the line, so RELATIVE is
used. The JButton is added to the content pane with a call to addComponent.

The JList (lines 74–75) has weightx and weighty values of 1. The fill variable is
BOTH. The JList is added to the content pane with a call to addComponent.

22.10 Wrap-Up
This chapter completes our introduction to GUIs. In this chapter, we discussed additional
GUI topics, such as menus, sliders, pop-up menus, multiple-document interfaces, tabbed
panes and Java’s pluggable look-and-feel. All these components can be added to existing
applications to make them easier to use and understand. We also presented additional lay-
out managers for organizing and sizing GUI components. In the next chapter, you’ll learn
about multithreading, which allows you to specify that an application should perform
multiple tasks at once.

23
Multithreading

O b j e c t i v e s
In this chapter you’ll learn:

� What threads are and why they’re useful.

� How threads enable you to manage concurrent activities.

� The life cycle of a thread.

� To create and execute Runnables.

� Thread synchronization.

� What producer/consumer relationships are and how they’re
implemented with multithreading.

� To enable multiple threads to update Swing GUI
components in a thread-safe manner.

The most general definition
of beauty…Multeity in
Unity.
—Samuel Taylor Coleridge

Do not block the way of
inquiry.
—Charles Sanders Peirce

A person with one watch
knows what time it is; a
person with two watches is
never sure.
—Proverb

Learn to labor and to wait.
—Henry Wadsworth Longfellow

The world is moving so fast
these days that the man
who says it can’t be done is
generally interrupted by
someone doing it.
—Elbert Hubbard

736 Chapter 23 Multithreading

23.1 Introduction
It would be nice if we could focus our attention on performing only one action at a time
and performing it well, but that’s usually difficult to do. The human body performs a great
variety of operations in parallel—or, as we’ll say throughout this chapter, concurrently.
Respiration, blood circulation, digestion, thinking and walking, for example, can occur
concurrently, as can all the senses—sight, touch, smell, taste and hearing.

Computers, too, can perform operations concurrently. It’s common for personal
computers to compile a program, send a file to a printer and receive electronic mail mes-
sages over a network concurrently. Only computers that have multiple processors can truly
execute multiple instructions concurrently. Operating systems on single-processor com-
puters create the illusion of concurrent execution by rapidly switching between activities,
but on such computers only a single instruction can execute at once. Today’s multicore
computers have multiple processors that enable computers to perform tasks truly concur-
rently. Multicore smartphones are starting to appear.

Historically, concurrency has been implemented with operating system primitives
available only to experienced systems programmers. The Ada programming language—
developed by the United States Department of Defense—made concurrency primitives
widely available to defense contractors building military command-and-control systems.
However, Ada has not been widely used in academia and industry.

Java Concurrency
Java makes concurrency available to you through the language and APIs. Java programs
can have multiple threads of execution, where each thread has its own method-call stack
and program counter, allowing it to execute concurrently with other threads while sharing
with them application-wide resources such as memory. This capability is called multi-
threading.

23.1 Introduction
23.2 Thread States: Life Cycle of a Thread
23.3 Creating and Executing Threads with

Executor Framework
23.4 Thread Synchronization

23.4.1 Unsynchronized Data Sharing
23.4.2 Synchronized Data Sharing—Making

Operations Atomic
23.5 Producer/Consumer Relationship

without Synchronization
23.6 Producer/Consumer Relationship:

ArrayBlockingQueue

23.7 Producer/Consumer Relationship
with Synchronization

23.8 Producer/Consumer Relationship:
Bounded Buffers

23.9 Producer/Consumer Relationship:
The Lock and Condition
Interfaces

23.10 Concurrent Collections Overview
23.11 Multithreading with GUI

23.11.1 Performing Computations in a
Worker Thread

23.11.2 Processing Intermediate Results with
SwingWorker

23.12 Interfaces Callable and Future

23.13 Java SE 7: Fork/Join Framework
23.14 Wrap-Up

23.1 Introduction 737

Concurrent Programming Uses
We’ll discuss many applications of concurrent programming. For example, when down-
loading a large file (e.g., an image, an audio clip or a video clip) over the Internet, the user
may not want to wait until the entire clip downloads before starting the playback. To solve
this problem, multiple threads can be used—one to download the clip, and another to play
it. These activities proceed concurrently. To avoid choppy playback, the threads are syn-
chronized (that is, their actions are coordinated) so that the player thread doesn’t begin
until there’s a sufficient amount of the clip in memory to keep the player thread busy. The
Java Virtual Machine (JVM) creates threads to run programs and threads to perform
housekeeping tasks such as garbage collection.

Concurrent Programming Is Difficult
Writing multithreaded programs can be tricky. Although the human mind can perform
functions concurrently, people find it difficult to jump between parallel trains of thought.
To see why multithreaded programs can be difficult to write and understand, try the fol-
lowing experiment: Open three books to page 1, and try reading the books concurrently.
Read a few words from the first book, then a few from the second, then a few from the
third, then loop back and read the next few words from the first book, and so on. After
this experiment, you’ll appreciate many of the challenges of multithreading—switching
between the books, reading briefly, remembering your place in each book, moving the
book you’re reading closer so that you can see it and pushing the books you’re not reading
aside—and, amid all this chaos, trying to comprehend the content of the books!

Use the Prebuilt Classes of the Concurrency APIs Whenever Possible
Programming concurrent applications is difficult and error prone. If you must use synchro-
nization in a program, you should follow some simple guidelines. Use existing classes from the
Concurrency APIs (such as the ArrayBlockingQueue class we discuss in Section 23.6) that man-
age synchronization for you. These classes are written by experts, have been thoroughly tested
and debugged, operate efficiently and help you avoid common traps and pitfalls.

If you need even more complex capabilities, use interfaces Lock and Condition that
we introduce in Section 23.9. These interfaces should be used only by advanced program-
mers who are familiar with concurrent programming’s common traps and pitfalls. We
explain these topics in this chapter for several reasons:

• They provide a solid basis for understanding how concurrent applications syn-
chronize access to shared memory.

• The concepts are important to understand, even if an application does not use
these tools explicitly.

Performance Tip 23.1
A problem with single-threaded applications that can lead to poor responsiveness is that
lengthy activities must complete before others can begin. In a multithreaded application,
threads can be distributed across multiple processors (if available) so that multiple tasks
execute truly concurrently and the application can operate more efficiently. Multithread-
ing can also increase performance on single-processor systems that simulate concurrency—
when one thread cannot proceed (because, for example, it’s waiting for the result of an I/
O operation), another can use the processor.

738 Chapter 23 Multithreading

• By showing you the complexity involved in using these low-level features, we
hope to impress upon you the importance of using prebuilt concurrency capabilities
whenever possible.

Section 23.10 provides an overview of Java’s pre-built concurrent collections.

23.2 Thread States: Life Cycle of a Thread
At any time, a thread is said to be in one of several thread states—illustrated in the UML
state diagram in Fig. 23.1. Several of the terms in the diagram are defined in later sections.
We include this discussion to help you understand what’s going on “under the hood” in a
Java multithreaded environment. Java hides most of this detail from you, greatly simplify-
ing the task of developing multithreaded applications.

New and Runnable States
A new thread begins its life cycle in the new state. It remains in this state until the program
starts the thread, which places it in the runnable state. A thread in the runnable state is
considered to be executing its task.

Waiting State
Sometimes a runnable thread transitions to the waiting state while it waits for another
thread to perform a task. A waiting thread transitions back to the runnable state only when
another thread notifies it to continue executing.

Timed Waiting State
A runnable thread can enter the timed waiting state for a specified interval of time. It tran-
sitions back to the runnable state when that time interval expires or when the event it’s
waiting for occurs. Timed waiting and waiting threads cannot use a processor, even if one

Fig. 23.1 | Thread life-cycle UML state diagram.

task
com

pletes

acquire
lock

i
n
t
e
r
r
u
p
t

I/O
com

pletesw
a
i
t

s
l
e
e
pno

ti
fy

no
ti
fy
Al
l

wa
it

in
te

rv
al

ex
pi

re
s

n
o
t
i
f
y

n
o
t
i
f
y
A
l
l

runnable

program starts
the thread

new

issue I/O request

enter synchronized

statement

timed waitingwaiting terminated blocked

23.2 Thread States: Life Cycle of a Thread 739

is available. A runnable thread can transition to the timed waiting state if it provides an op-
tional wait interval when it’s waiting for another thread to perform a task. Such a thread
returns to the runnable state when it’s notified by another thread or when the timed inter-
val expires—whichever comes first. Another way to place a thread in the timed waiting
state is to put a runnable thread to sleep. A sleeping thread remains in the timed waiting
state for a designated period of time (called a sleep interval), after which it returns to the
runnable state. Threads sleep when they momentarily do not have work to perform. For
example, a word processor may contain a thread that periodically backs up (i.e., writes a
copy of) the current document to disk for recovery purposes. If the thread did not sleep
between successive backups, it would require a loop in which it continually tested whether
it should write a copy of the document to disk. This loop would consume processor time
without performing productive work, thus reducing system performance. In this case, it’s
more efficient for the thread to specify a sleep interval (equal to the period between suc-
cessive backups) and enter the timed waiting state. This thread is returned to the runnable
state when its sleep interval expires, at which point it writes a copy of the document to disk
and reenters the timed waiting state.

Blocked State
A runnable thread transitions to the blocked state when it attempts to perform a task that
cannot be completed immediately and it must temporarily wait until that task completes.
For example, when a thread issues an input/output request, the operating system blocks
the thread from executing until that I/O request completes—at that point, the blocked
thread transitions to the runnable state, so it can resume execution. A blocked thread can-
not use a processor, even if one is available.

Terminated State
A runnable thread enters the terminated state (sometimes called the dead state) when it
successfully completes its task or otherwise terminates (perhaps due to an error). In the
UML state diagram of Fig. 23.1, the terminated state is followed by the UML final state
(the bull’s-eye symbol) to indicate the end of the state transitions.

Operating-System View of the Runnable State
At the operating system level, Java’s runnable state typically encompasses two separate states
(Fig. 23.2). The operating system hides these states from the Java Virtual Machine (JVM),
which sees only the runnable state. When a thread first transitions to the runnable state
from the new state, it’s in the ready state. A ready thread enters the running state (i.e., be-
gins executing) when the operating system assigns it to a processor—also known as dis-
patching the thread. In most operating systems, each thread is given a small amount of
processor time—called a quantum or timeslice—with which to perform its task. When its
quantum expires, the thread returns to the ready state, and the operating system assigns
another thread to the processor. Transitions between the ready and running states are han-
dled solely by the operating system. The JVM does not “see” the transitions—it simply
views the thread as being runnable and leaves it up to the operating system to transition
the thread between ready and running. The process that an operating system uses to deter-
mine which thread to dispatch is called thread scheduling and is dependent on thread pri-
orities.

740 Chapter 23 Multithreading

Thread Priorities and Thread Scheduling
Every Java thread has a thread priority that helps determine the order in which threads are
scheduled. Each new thread inherits the priority of the thread that created it. Informally,
higher-priority threads are more important to a program and should be allocated processor
time before lower-priority threads. Nevertheless, thread priorities cannot guarantee the order
in which threads execute.

It’s recommended that you do not explicitly create and use Thread objects to implement con-
currency, but rather use the Executor interface (which is described in Section 23.3). The
Thread class does contain some useful static methods, which you will use later in the
chapter.

Most operating systems support timeslicing, which enables threads of equal priority
to share a processor. Without timeslicing, each thread in a set of equal-priority threads
runs to completion (unless it leaves the runnable state and enters the waiting or timed
waiting state, or gets interrupted by a higher-priority thread) before other threads of equal
priority get a chance to execute. With timeslicing, even if a thread has not finished exe-
cuting when its quantum expires, the processor is taken away from the thread and given
to the next thread of equal priority, if one is available.

An operating system’s thread scheduler determines which thread runs next. One simple
thread-scheduler implementation keeps the highest-priority thread running at all times
and, if there’s more than one highest-priority thread, ensures that all such threads execute
for a quantum each in round-robin fashion. This process continues until all threads run
to completion.

When a higher-priority thread enters the ready state, the operating system generally
preempts the currently running thread (an operation known as preemptive scheduling).
Depending on the operating system, higher-priority threads could postpone—possibly
indefinitely—the execution of lower-priority threads. Such indefinite postponement is
sometimes referred to more colorfully as starvation. Operating systems employ a tech-
nique called aging to prevent starvation—as a thread waits in the ready state, the operating
system gradually increases the thread’s priority, thus ensuring that the thread will eventu-
ally run.

Java provides higher-level concurrency utilities to hide much of this complexity and make
multithreaded programming less error prone. Thread priorities are used behind the scenes to
interact with the operating system, but most programmers who use Java multithreading will not
be concerned with setting and adjusting thread priorities.

Fig. 23.2 | Operating system’s internal view of Java’s runnable state.

Portability Tip 23.1
Thread scheduling is platform dependent—the behavior of a multithreaded program
could vary across different Java implementations.

running

runnable

quantum expires

operating system
dispatches a thread

ready

23.3 Creating and Executing Threads with Executor Framework 741

23.3 Creating and Executing Threads with Executor
Framework
This section demonstrates how to perform concurrent tasks in an application by using
Executors and Runnable objectss.

Creating Concurrent Tasks with the Runnable Interface
You implement the Runnable interface (of package java.lang) to specify a task that can
execute concurrently with other tasks. The Runnable interface declares the single method
run, which contains the code that defines the task that a Runnable object should perform.

Executing Runnable Objects with an Executor

To allow a Runnable to perform its task, you must execute it. An Executor object executes
Runnables. An Executor does this by creating and managing a group of threads called a
thread pool. When an Executor begins executing a Runnable, the Executor calls the Run-
nable object’s run method, which executes in the new thread.

The Executor interface declares a single method named execute which accepts a Run-
nable as an argument. The Executor assigns every Runnable passed to its execute method
to one of the available threads in the thread pool. If there are no available threads, the
Executor creates a new thread or waits for a thread to become available and assigns that
thread the Runnable that was passed to method execute.

Using an Executor has many advantages over creating threads yourself. Executors can
reuse existing threads to eliminate the overhead of creating a new thread for each task and can
improve performance by optimizing the number of threads to ensure that the processor stays
busy, without creating so many threads that the application runs out of resources.

Using Class Executors to Obtain an ExecutorService

The ExecutorService interface (of package java.util.concurrent) extends Executor
and declares various methods for managing the life cycle of an Executor. An object that
implements the ExecutorService interface can be created using static methods declared
in class Executors (of package java.util.concurrent). We use interface ExecutorSer-

vice and a method of class Executors in our example, which executes three tasks.

Implementing the Runnable Interface
Class PrintTask (Fig. 23.3) implements Runnable (line 5), so that multiple PrintTasks can
execute concurrently. Variable sleepTime (line 7) stores a random integer value from 0 to 5
seconds created in the PrintTask constructor (line 17). Each thread running a PrintTask
sleeps for the amount of time specified by sleepTime, then outputs its task’s name and a
message indicating that it’s done sleeping.

A PrintTask executes when a thread calls the PrintTask’s run method. Lines 25–26
display a message indicating the name of the currently executing task and that the task is
going to sleep for sleepTime milliseconds. Line 27 invokes static method sleep of class
Thread to place the thread in the timed waiting state for the specified amount of time. At
this point, the thread loses the processor, and the system allows another thread to execute.

Software Engineering Observation 23.1
Though it’s possible to create threads explicitly, it’s recommended that you use the
Executor interface to manage the execution of Runnable objects.

742 Chapter 23 Multithreading

When the thread awakens, it reenters the runnable state. When the PrintTask is assigned
to a processor again, line 36 outputs a message indicating that the task is done sleeping,
then method run terminates. The catch at lines 29–33 is required because method sleep

might throw a checked exception of type InterruptedException if a sleeping thread’s
interrupt method is called.

Using the ExecutorService to Manage Threads that Execute PrintTasks
Figure 23.4 uses an ExecutorService object to manage threads that execute PrintTasks

(as defined in Fig. 23.3). Lines 11–13 create and name three PrintTasks to execute. Line
18 uses Executors method newCachedThreadPool to obtain an ExecutorService that’s
capable of creating new threads as they’re needed by the application. These threads are
used by ExecutorService (threadExecutor) to execute the Runnables.

1 // Fig. 23.3: PrintTask.java
2 // PrintTask class sleeps for a random time from 0 to 5 seconds
3 import java.util.Random;
4
5 public class PrintTask
6 {
7 private final int sleepTime; // random sleep time for thread
8 private final String taskName; // name of task
9 private final static Random generator = new Random();

10
11 // constructor
12 public PrintTask(String name)
13 {
14 taskName = name; // set task name
15
16 // pick random sleep time between 0 and 5 seconds
17 sleepTime = generator.nextInt(5000); // milliseconds
18 } // end PrintTask constructor
19
20 // method run contains the code that a thread will execute
21
22 {
23 try // put thread to sleep for sleepTime amount of time
24 {
25 System.out.printf("%s going to sleep for %d milliseconds.\n",
26 taskName, sleepTime);
27
28 } // end try
29 catch (InterruptedException exception)
30 {
31 System.out.printf("%s %s\n", taskName,
32 "terminated prematurely due to interruption");
33 } // end catch
34
35 // print task name
36 System.out.printf("%s done sleeping\n", taskName);
37 } // end method run
38 } // end class PrintTask

Fig. 23.3 | PrintTask class sleeps for a random time from 0 to 5 seconds.

implements Runnable

public void run()

Thread.sleep(sleepTime); // put thread to sleep

23.3 Creating and Executing Threads with Executor Framework 743

1 // Fig. 23.4: TaskExecutor.java
2 // Using an ExecutorService to execute Runnables.
3 import java.util.concurrent.Executors;
4 import java.util.concurrent.ExecutorService;
5
6 public class TaskExecutor
7 {
8 public static void main(String[] args)
9 {

10 // create and name each runnable
11 PrintTask task1 = new PrintTask("task1");
12 PrintTask task2 = new PrintTask("task2");
13 PrintTask task3 = new PrintTask("task3");
14
15 System.out.println("Starting Executor");
16
17 // create ExecutorService to manage threads
18
19
20 // start threads and place in runnable state
21
22
23
24
25 // shut down worker threads when their tasks complete
26
27
28 System.out.println("Tasks started, main ends.\n");
29 } // end main
30 } // end class TaskExecutor

Starting Executor
Tasks started, main ends

task1 going to sleep for 4806 milliseconds
task2 going to sleep for 2513 milliseconds
task3 going to sleep for 1132 milliseconds
task3 done sleeping
task2 done sleeping
task1 done sleeping

Starting Executor
task1 going to sleep for 3161 milliseconds.
task3 going to sleep for 532 milliseconds.
task2 going to sleep for 3440 milliseconds.
Tasks started, main ends.

task3 done sleeping
task1 done sleeping
task2 done sleeping

Fig. 23.4 | Using an ExecutorService to execute Runnables.

ExecutorService threadExecutor = Executors.newCachedThreadPool();

threadExecutor.execute(task1); // start task1
threadExecutor.execute(task2); // start task2
threadExecutor.execute(task3); // start task3

threadExecutor.shutdown();

744 Chapter 23 Multithreading

Lines 21–23 each invoke the ExecutorService’s execute method, which executes the
Runnable passed to it as an argument (in this case a PrintTask) some time in the future.
The specified task may execute in one of the threads in the ExecutorService’s thread
pool, in a new thread created to execute it, or in the thread that called the execute

method—the ExecutorService manages these details. Method execute returns immedi-
ately from each invocation—the program does not wait for each PrintTask to finish. Line
26 calls ExecutorService method shutdown, which notifies the ExecutorService to stop
accepting new tasks, but continues executing tasks that have already been submitted. Once all
of the previously submitted Runnables have completed, the threadExecutor terminates.
Line 28 outputs a message indicating that the tasks were started and the main thread is fin-
ishing its execution.

The code in main executes in the main thread, a thread created by the JVM. The code
in the run method of PrintTask (lines 21–37 of Fig. 23.3) executes whenever the Exec-

utor starts each PrintTask—again, this is sometime after they’re passed to the Execu-

torService’s execute method (Fig. 23.4, lines 21–23). When main terminates, the
program itself continues running because there are still tasks that must finish executing.
The program will not terminate until these tasks complete.

The sample outputs show each task’s name and sleep time as the thread goes to sleep.
The thread with the shortest sleep time normally awakens first, indicates that it’s done
sleeping and terminates. In Section 23.8, we discuss multithreading issues that could pre-
vent the thread with the shortest sleep time from awakening first. In the first output, the
main thread terminates before any of the PrintTasks output their names and sleep times.
This shows that the main thread runs to completion before any of the PrintTasks gets a
chance to run. In the second output, all of the PrintTasks output their names and sleep
times before the main thread terminates. This shows that the PrintTasks started executing
before the main thread terminated. Also, notice in the second example output, task3 goes
to sleep before task2 last, even though we passed task2 to the ExecutorService’s exe-
cute method before task3. This illustrates the fact that we cannot predict the order in which
the tasks will start executing, even if we know the order in which they were created and started.

23.4 Thread Synchronization
When multiple threads share an object and it’s modified by one or more of them, indeter-
minate results may occur (as we’ll see in the examples) unless access to the shared object is
managed properly. If one thread is in the process of updating a shared object and another
thread also tries to update it, it’s unclear which thread’s update takes effect. When this
happens, the program’s behavior cannot be trusted—sometimes the program will produce
the correct results, and sometimes it won’t. In either case, there’ll be no indication that the
shared object was manipulated incorrectly.

The problem can be solved by giving only one thread at a time exclusive access to code
that manipulates the shared object. During that time, other threads desiring to manipulate
the object are kept waiting. When the thread with exclusive access to the object finishes
manipulating it, one of the threads that was waiting is allowed to proceed. This process,
called thread synchronization, coordinates access to shared data by multiple concurrent
threads. By synchronizing threads in this manner, you can ensure that each thread
accessing a shared object excludes all other threads from doing so simultaneously—this is
called mutual exclusion.

23.4 Thread Synchronization 745

Monitors
A common way to perform synchronization is to use Java’s built-in monitors. Every object
has a monitor and a monitor lock (or intrinsic lock). The monitor ensures that its object’s
monitor lock is held by a maximum of only one thread at any time. Monitors and monitor
locks can thus be used to enforce mutual exclusion. If an operation requires the executing
thread to hold a lock while the operation is performed, a thread must acquire the lock be-
fore proceeding with the operation. Other threads attempting to perform an operation
that requires the same lock will be blocked until the first thread releases the lock, at which
point the blocked threads may attempt to acquire the lock and proceed with the operation.

To specify that a thread must hold a monitor lock to execute a block of code, the code
should be placed in a synchronized statement. Such code is said to be guarded by the
monitor lock; a thread must acquire the lock to execute the guarded statements. The mon-
itor allows only one thread at a time to execute statements within synchronized state-
ments that lock on the same object, as only one thread at a time can hold the monitor lock.
The synchronized statements are declared using the synchronized keyword:

where object is the object whose monitor lock will be acquired; object is normally this if
it’s the object in which the synchronized statement appears. If several synchronized
statements are trying to execute on an object at the same time, only one of them may be
active on the object—all the other threads attempting to enter a synchronized statement
on the same object are placed in the blocked state.

When a synchronized statement finishes executing, the object’s monitor lock is
released and one of the blocked threads attempting to enter a synchronized statement can
be allowed to acquire the lock to proceed. Java also allows synchronized methods. Before
executing, a non-static synchronized method must acquire the lock on the object that’s
used to call the method. Similary, a static synchronized method must acquire the lock
on the class that’s used to call the method.

23.4.1 Unsynchronized Data Sharing
First, we illustrate the dangers of sharing an object across threads without proper synchro-
nization. In this example, two Runnables maintain references to a single integer array.
Each Runnable writes three values to the array, then terminates. This may seem harmless,
but we’ll see that it can result in errors if the array is manipulated without synchronization.

Class SimpleArray
A SimpleArray object (Fig. 23.5) will be shared across multiple threads. SimpleArray will
enable those threads to place int values into array (declared at line 8). Line 9 initializes
variable writeIndex, which will be used to determine the array element that should be
written to next. The constructor (lines 13–16) creates an integer array of the desired size.

Method add (lines 19–40) allows new values to be inserted at the end of the array.
Line 21 stores the current writeIndex value. Line 26 puts the thread that invokes add to
sleep for a random interval from 0 to 499 milliseconds. This is done to make the problems
associated with unsynchronized access to shared data more obvious. After the thread is done

synchronized (object)
{

statements
} // end synchronized statement

746 Chapter 23 Multithreading

sleeping, line 34 inserts the value passed to add into the array at the element specified by
position. Lines 35–36 output a message indicating the executing thread’s name, the value
that was inserted in the array and where it was inserted. The expression Thread.current-

Thread.getName() (line 36) first obtains a reference to the currently executing Thread,

1 // Fig. 23.5: SimpleArray.java
2 // Class that manages an integer array to be shared by multiple threads.
3 import java.util.Arrays;
4 import java.util.Random;
5
6 public class SimpleArray // CAUTION: NOT THREAD SAFE!
7 {
8 private final int[] array; // the shared integer array
9 private int writeIndex = 0; // index of next element to be written

10 private final static Random generator = new Random();
11
12 // construct a SimpleArray of a given size
13 public SimpleArray(int size)
14 {
15 array = new int[size];
16 } // end constructor
17
18 // add a value to the shared array
19 public void add(int value)
20 {
21
22
23 try

24 {
25 // put thread to sleep for 0-499 milliseconds
26 Thread.sleep(generator.nextInt(500));
27 } // end try
28 catch (InterruptedException ex)
29 {
30 ex.printStackTrace();
31 } // end catch
32
33
34
35 System.out.printf("%s wrote %2d to element %d.\n",
36 Thread.currentThread().getName(), value, position);
37
38
39 System.out.printf("Next write index: %d\n", writeIndex);
40 } // end method add
41
42 // used for outputting the contents of the shared integer array
43 public String toString()
44 {
45 return "\nContents of SimpleArray:\n" + Arrays.toString(array);
46 } // end method toString
47 } // end class SimpleArray

Fig. 23.5 | Class that manages an integer array to be shared by multiple threads.

int position = writeIndex; // store the write index

// put value in the appropriate element
array[position] = value;

++writeIndex; // increment index of element to be written next

23.4 Thread Synchronization 747

then uses that Thread’s getName method to obtain its name. Line 38 increments
writeIndex so that the next call to add will insert a value in the array’s next element. Lines
43–46 override method toString to create a String representation of the array’s contents.

Class ArrayWriter
Class ArrayWriter (Fig. 23.6) implements the interface Runnable to define a task for in-
serting values in a SimpleArray object. The constructor (lines 10–14) takes two argu-
ments—an integer value, which is the first value this task will insert in the SimpleArray

object, and a reference to the SimpleArray object. Line 20 invokes method add on the
SimpleArray object. The task completes after three consecutive integers beginning with
startValue are added to the SimpleArray object.

Class SharedArrayTest
Class SharedArrayTest (Fig. 23.7) executes two ArrayWriter tasks that add values to a
single SimpleArray object. Line 12 constructs a six-element SimpleArray object. Lines
15–16 create two new ArrayWriter tasks, one that places the values 1–3 in the Simple-

Array object, and one that places the values 11–13. Lines 19–21 create an ExecutorSer-

vice and execute the two ArrayWriters. Line 23 invokes the ExecutorService’s
shutDown method to prevent additional tasks from starting and to enable the application to
terminate when the currently executing tasks complete execution.

Recall that ExecutorService method shutdown returns immediately. Thus any code
that appears after the call to ExecutorService method shutdown in line 23 will continue
executing as long as the main thread is still assigned to a processor. We’d like to output the
SimpleArray object to show you the results after the threads complete their tasks. So, we

1 // Fig. 23.6: ArrayWriter.java
2 // Adds integers to an array shared with other Runnables
3 import java.lang.Runnable;
4
5 public class ArrayWriter implements Runnable
6 {
7 private final SimpleArray sharedSimpleArray;
8 private final int startValue;
9

10 public ArrayWriter(int value, SimpleArray array)
11 {
12 startValue = value;
13 sharedSimpleArray = array;
14 } // end constructor
15
16 public void run()
17 {
18 for (int i = startValue; i < startValue + 3; i++)
19 {
20 sharedSimpleArray.add(i); // add an element to the shared array
21 } // end for
22 } // end method run
23 } // end class ArrayWriter

Fig. 23.6 | Adds integers to an array shared with other Runnables.

748 Chapter 23 Multithreading

need the program to wait for the threads to complete before main outputs the SimpleArray
object’s contents. Interface ExecutorService provides the awaitTermination method for
this purpose. This method returns control to its caller either when all tasks executing in
the ExecutorService complete or when the specified timeout elapses. If all tasks are com-
pleted before awaitTermination times out, this method returns true; otherwise it returns
false. The two arguments to awaitTermination represent a timeout value and a unit of
measure specified with a constant from class TimeUnit (in this case, TimeUnit.MINUTES).

1 // Fig 23.7: SharedArrayTest.java
2 // Executes two Runnables to add elements to a shared SimpleArray.
3 import java.util.concurrent.Executors;
4 import java.util.concurrent.ExecutorService;
5 import java.util.concurrent.TimeUnit;
6
7 public class SharedArrayTest
8 {
9 public static void main(String[] arg)

10 {
11 // construct the shared object
12 SimpleArray sharedSimpleArray = new SimpleArray(6);
13
14 // create two tasks to write to the shared SimpleArray
15 ArrayWriter writer1 = new ArrayWriter(1, sharedSimpleArray);
16 ArrayWriter writer2 = new ArrayWriter(11, sharedSimpleArray);
17
18 // execute the tasks with an ExecutorService
19 ExecutorService executor = Executors.newCachedThreadPool();
20 executor.execute(writer1);
21 executor.execute(writer2);
22
23 executor.shutdown();
24
25 try

26 {
27 // wait 1 minute for both writers to finish executing
28 boolean tasksEnded = executor.awaitTermination(
29 1, TimeUnit.MINUTES);
30
31 if (tasksEnded)
32 System.out.println(sharedSimpleArray); // print contents
33 else

34 System.out.println(
35 "Timed out while waiting for tasks to finish.");
36 } // end try
37 catch (InterruptedException ex)
38 {
39 System.out.println(
40 "Interrupted while waiting for tasks to finish.");
41 } // end catch
42 } // end main
43 } // end class SharedArrayTest

Fig. 23.7 | Executes two Runnables to insert values in a shared array. (Part 1 of 2.)

23.4 Thread Synchronization 749

In this example, if both tasks complete before awaitTermination times out, line 32
displays the SimpleArray object’s contents. Otherwise, lines 34–35 print a message indi-
cating that the tasks did not finish executing before awaitTermination timed out.

The output in Fig. 23.7 demonstrates the problems (highlighted in the output) that can
be caused by failure to synchronize access to shared data. The value 1 was written to element 0,
then overwritten later by the value 11. Also, when writeIndex was incremented to 3, nothing
was written to that element, as indicated by the 0 in that element of the printed array.

Recall that we added calls to Thread method sleep between operations on the shared
data to emphasize the unpredictability of thread scheduling and increase the likelihood of
producing erroneous output. Even if these operations were allowed to proceed at their
normal pace, you could still see errors in the program’s output. However, modern proces-
sors can handle the simple operations of the SimpleArray method add so quickly that you
might not see the errors caused by the two threads executing this method concurrently,
even if you tested the program dozens of times. One of the challenges of multithreaded pro-
gramming is spotting the errors—they may occur so infrequently that a broken program does not
produce incorrect results during testing, creating the illusion that the program is correct.

23.4.2 Synchronized Data Sharing—Making Operations Atomic
The output errors of Fig. 23.7 can be attributed to the fact that the shared object, Simple-
Array, is not thread safe—SimpleArray is susceptible to errors if it’s accessed concurrently
by multiple threads. The problem lies in method add, which stores the value of writeIndex,
places a new value in that element, then increments writeIndex. Such a method would
present no problem in a single-threaded program. However, if one thread obtains the value
of writeIndex, there’s no guarantee that another thread cannot come along and increment
writeIndex before the first thread has had a chance to place a value in the array. If this hap-
pens, the first thread will be writing to the array based on a stale value of writeIndex—a
value that’s no longer valid. Another possibility is that one thread might obtain the value
of writeIndex after another thread adds an element to the array but before writeIndex is
incremented. In this case, too, the first thread would write to the array based on an invalid
value for writeIndex.

Next write index: 1
pool-1-thread-1 wrote 2 to element 1.
Next write index: 2
pool-1-thread-1 wrote 3 to element 2.
Next write index: 3

Next write index: 4
pool-1-thread-2 wrote 12 to element 4.
Next write index: 5
pool-1-thread-2 wrote 13 to element 5.
Next write index: 6

Contents of SimpleArray:
[11, 2, 3, 0, 12, 13]

Fig. 23.7 | Executes two Runnables to insert values in a shared array. (Part 2 of 2.)

pool-1-thread-1 wrote 1 to element 0.

First pool-1-thread-1 wrote the value
1 to element 0. Later pool-1-thread-2
wrote the value 11 to element 0, thus
overwriting the previously stored value.

pool-1-thread-2 wrote 11 to element 0.

750 Chapter 23 Multithreading

SimpleArray is not thread safe because it allows any number of threads to read and modify
shared data concurrently, which can cause errors. To make SimpleArray thread safe, we
must ensure that no two threads can access it at the same time. We also must ensure that
while one thread is in the process of storing writeIndex, adding a value to the array, and
incrementing writeIndex, no other thread may read or change the value of writeIndex
or modify the contents of the array at any point during these three operations. In other
words, we want these three operations—storing writeIndex, writing to the array, incre-
menting writeIndex—to be an atomic operation, which cannot be divided into smaller
suboperations. We can simulate atomicity by ensuring that only one thread carries out the
three operations at a time. Any other threads that need to perform the operation must wait
until the first thread has finished the add operation in its entirety.

Atomicity can be achieved using the synchronized keyword. By placing our three
suboperations in a synchronized statement or synchronized method, we allow only one
thread at a time to acquire the lock and perform the operations. When that thread has
completed all of the operations in the synchronized block and releases the lock, another
thread may acquire the lock and begin executing the operations. This ensures that a thread
executing the operations will see the actual values of the shared data and that these values
will not change unexpectedly in the middle of the operations as a result of another thread’s mod-
ifying them.

Class SimpleArray with Synchronization
Figure 23.8 displays class SimpleArray with the proper synchronization. Notice that it’s
identical to the SimpleArray class of Fig. 23.5, except that add is now a synchronized

method (line 20). So, only one thread at a time can execute this method. We reuse classes
ArrayWriter (Fig. 23.6) and SharedArrayTest (Fig. 23.7) from the previous example.

Software Engineering Observation 23.2
Place all accesses to mutable data that may be shared by multiple threads inside
synchronized statements or synchronized methods that synchronize on the same lock.
When performing multiple operations on shared data, hold the lock for the entirety of the
operation to ensure that the operation is effectively atomic.

1 // Fig. 23.8: SimpleArray.java
2 // Class that manages an integer array to be shared by multiple
3 // threads with synchronization.
4 import java.util.Arrays;
5 import java.util.Random;
6
7 public class SimpleArray
8 {
9 private final int[] array; // the shared integer array

10 private int writeIndex = 0; // index of next element to be written
11 private final static Random generator = new Random();
12

Fig. 23.8 | Class that manages an integer array to be shared by multiple threads with
synchronization. (Part 1 of 2.)

23.4 Thread Synchronization 751

13 // construct a SimpleArray of a given size
14 public SimpleArray(int size)
15 {
16 array = new int[size];
17 } // end constructor
18
19 // add a value to the shared array
20
21 {
22 int position = writeIndex; // store the write index
23
24 try

25 {
26 // put thread to sleep for 0-499 milliseconds
27 Thread.sleep(generator.nextInt(500));
28 } // end try
29 catch (InterruptedException ex)
30 {
31 ex.printStackTrace();
32 } // end catch
33
34 // put value in the appropriate element
35 array[position] = value;
36 System.out.printf("%s wrote %2d to element %d.\n",
37 Thread.currentThread().getName(), value, position);
38
39 ++writeIndex; // increment index of element to be written next
40 System.out.printf("Next write index: %d\n", writeIndex);
41 } // end method add
42
43 // used for outputting the contents of the shared integer array
44 public String toString()
45 {
46 return "\nContents of SimpleArray:\n" + Arrays.toString(array);
47 } // end method toString
48 } // end class SimpleArray

pool-1-thread-1 wrote 1 to element 0.
Next write index: 1
pool-1-thread-2 wrote 11 to element 1.
Next write index: 2
pool-1-thread-2 wrote 12 to element 2.
Next write index: 3
pool-1-thread-2 wrote 13 to element 3.
Next write index: 4
pool-1-thread-1 wrote 2 to element 4.
Next write index: 5
pool-1-thread-1 wrote 3 to element 5.
Next write index: 6

Contents of SimpleArray:
1 11 12 13 2 3

Fig. 23.8 | Class that manages an integer array to be shared by multiple threads with
synchronization. (Part 2 of 2.)

public synchronized void add(int value)

752 Chapter 23 Multithreading

Line 20 declares method as synchronized, making all of the operations in this
method behave as a single, atomic operation. Line 22 performs the first suboperation—
storing the value of writeIndex. Line 35 defines the second suboperation, writing an ele-
ment to the element at the index position. Line 39 increments writeIndex. When the
method finishes executing at line 41, the executing thread implicitly releases the Simple-

Array lock, making it possible for another thread to begin executing the add method.
In the synchronized add method, we print messages to the console indicating the

progress of threads as they execute this method, in addition to performing the actual oper-
ations required to insert a value in the array. We do this so that the messages will be printed
in the correct order, allowing us to see whether the method is properly synchronized by
comparing these outputs with those of the previous, unsynchronized example. We con-
tinue to output messages from synchronized blocks in later examples for demonstration
purposes only; typically, however, I/O should not be performed in synchronized blocks,
because it’s important to minimize the amount of time that an object is “locked.” Also,
line 27 in this example calls Thread method sleep to emphasize the unpredictability of
thread scheduling. You should never call sleep while holding a lock in a real application.

Another note on thread safety: We’ve said that it’s necessary to synchronize access to
all data that may be shared across multiple threads. Actually, this synchronization is nec-
essary only for mutable data, or data that may change in its lifetime. If the shared data will
not change in a multithreaded program, then it’s not possible for a thread to see old or
incorrect values as a result of another thread’s manipulating that data.

When you share immutable data across threads, declare the corresponding data fields
final to indicate that the values of the variables will not change after they’re initialized.
This prevents accidental modification of the shared data later in a program, which could
compromise thread safety. Labeling object references as final indicates that the reference will
not change, but it does not guarantee that the object itself is immutable—this depends entirely
on the object’s properties. However, it’s still good practice to mark references that will not
change as final, as doing so forces the object’s constructor to be atomic—the object will
be fully constructed with all its fields initialized before the program accesses it.

23.5 Producer/Consumer Relationship without
Synchronization
In a producer/consumer relationship, the producer portion of an application generates
data and stores it in a shared object, and the consumer portion of the application reads data

Performance Tip 23.2
Keep the duration of synchronized statements as short as possible while maintaining the
needed synchronization. This minimizes the wait time for blocked threads. Avoid per-
forming I/O, lengthy calculations and operations that do not require synchronization
while holding a lock.

Good Programming Practice 23.1
Always declare data fields that you do not expect to change as final. Primitive variables that
are declared as final can safely be shared across threads. An object reference that’s declared
as final ensures that the object it refers to will be fully constructed and initialized before it’s
used by the program, and prevents the reference from pointing to another object.

23.5 Producer/Consumer Relationship without Synchronization 753

from the shared object. The producer/consumer relationship separates the task of identify-
ing work to be done from the tasks involved in actually carrying out the work. One exam-
ple of a common producer/consumer relationship is print spooling. Although a printer
might not be available when you want to print from an application (i.e., the producer),
you can still “complete” the print task, as the data is temporarily placed on disk until the
printer becomes available. Similarly, when the printer (i.e., a consumer) is available, it
doesn’t have to wait until a current user wants to print. The spooled print jobs can be
printed as soon as the printer becomes available. Another example of the producer/con-
sumer relationship is an application that copies data onto DVDs by placing data in a fixed-
size buffer, which is emptied as the DVD drive “burns” the data onto the DVD.

In a multithreaded producer/consumer relationship, a producer thread generates data
and places it in a shared object called a buffer. A consumer thread reads data from the
buffer. This relationship requires synchronization to ensure that values are produced and
consumed properly. All operations on mutable data that’s shared by multiple threads (e.g.,
the data in the buffer) must be guarded with a lock to prevent corruption, as discussed in
Section 23.4. Operations on the buffer data shared by a producer and consumer thread are
also state dependent—the operations should proceed only if the buffer is in the correct
state. If the buffer is in a not-full state, the producer may produce; if the buffer is in a not-
empty state, the consumer may consume. All operations that access the buffer must use syn-
chronization to ensure that data is written to the buffer or read from the buffer only if the
buffer is in the proper state. If the producer attempting to put the next data into the buffer
determines that it’s full, the producer thread must wait until there’s space to write a new
value. If a consumer thread finds the buffer empty or finds that the previous data has
already been read, the consumer must also wait for new data to become available.

Consider how logic errors can arise if we do not synchronize access among multiple
threads manipulating shared data. Our next example (Fig. 23.9–Fig. 23.13) implements a
producer/consumer relationship without the proper synchronization. A producer thread
writes the numbers 1 through 10 into a shared buffer—a single memory location shared
between two threads (a single int variable called buffer in line 6 of Fig. 23.12 in this
example). The consumer thread reads this data from the shared buffer and displays the
data. The program’s output shows the values that the producer writes (produces) into the
shared buffer and the values that the consumer reads (consumes) from the shared buffer.

Each value the producer thread writes to the shared buffer must be consumed exactly
once by the consumer thread. However, the threads in this example are not synchronized.
Therefore, data can be lost or garbled if the producer places new data into the shared buffer
before the consumer reads the previous data. Also, data can be incorrectly duplicated if the
consumer consumes data again before the producer produces the next value. To show
these possibilities, the consumer thread in the following example keeps a total of all the
values it reads. The producer thread produces values from 1 through 10. If the consumer
reads each value produced once and only once, the total will be 55. However, if you exe-
cute this program several times, you’ll see that the total is not always 55 (as shown in the
outputs in Fig. 23.13). To emphasize the point, the producer and consumer threads in the
example each sleep for random intervals of up to three seconds between performing their
tasks. Thus, we do not know when the producer thread will attempt to write a new value,
or when the consumer thread will attempt to read a value.

754 Chapter 23 Multithreading

Implementing the Producer/Consumer Relationship
The program consists of interface Buffer (Fig. 23.9) and classes Producer (Fig. 23.10),
Consumer (Fig. 23.11), UnsynchronizedBuffer (Fig. 23.12) and SharedBufferTest

(Fig. 23.13). Interface Buffer (Fig. 23.9) declares methods set (line 6) and get (line 9)
that a Buffer (such as UnsynchronizedBuffer) must implement to enable the Producer

thread to place a value in the Buffer and the Consumer thread to retrieve a value from the
Buffer, respectively. In subsequent examples, methods set and get will call methods that
throw InterruptedExceptions. We declare each method with a throws clause here so that
we don’t have to modify this interface for the later examples.

Class Producer (Fig. 23.10) implements the Runnable interface, allowing it to be exe-
cuted as a task in a separate thread. The constructor (lines 11–14) initializes the Buffer ref-
erence sharedLocation with an object created in main (line 14 of Fig. 23.13) and passed
to the constructor. As we’ll see, this is an UnsynchronizedBuffer object that implements
interface Buffer without synchronizing access to the shared object. The Producer thread in
this program executes the tasks specified in the method run (lines 17–39). Each iteration of
the loop (lines 21–35) invokes Thread method sleep (line 25) to place the Producer thread
into the timed waiting state for a random time interval between 0 and 3 seconds. When the
thread awakens, line 26 passes the value of control variable count to the Buffer object’s set
method to set the shared buffer’s value. Lines 27–28 keep a total of all the values produced
so far and output that value. When the loop completes, lines 37–38 display a message indi-
cating that the Producer has finished producing data and is terminating. Next, method run

terminates, which indicates that the Producer completed its task. Any method called from
a Runnable’s run method (e.g., Buffer method set) executes as part of that task’s thread of
execution. This fact becomes important in Sections 23.6–23.8 when we add synchroniza-
tion to the producer/consumer relationship.

1 // Fig. 23.9: Buffer.java
2 // Buffer interface specifies methods called by Producer and Consumer.
3 public interface Buffer
4 {
5 // place int value into Buffer
6 public void set(int value) throws InterruptedException;
7
8 // return int value from Buffer
9 public int get() throws InterruptedException;

10 } // end interface Buffer

Fig. 23.9 | Buffer interface specifies methods called by Producer and Consumer.

1 // Fig. 23.10: Producer.java
2 // Producer with a run method that inserts the values 1 to 10 in buffer.
3 import java.util.Random;
4
5
6 {

Fig. 23.10 | Producer with a run method that inserts the values 1 to 10 in buffer. (Part 1 of 2.)

public class Producer implements Runnable

23.5 Producer/Consumer Relationship without Synchronization 755

Class Consumer (Fig. 23.11) also implements interface Runnable, allowing the Con-

sumer to execute concurrently with the Producer. Lines 11–14 initialize Buffer reference
sharedLocation with an object that implements the Buffer interface (created in main,
Fig. 23.13) and passed to the constructor as the parameter shared. As we’ll see, this is the
same UnsynchronizedBuffer object that’s used to initialize the Producer object—thus,
the two threads share the same object. The Consumer thread in this program performs the
tasks specified in method run (lines 17–39). Lines 21–35 iterate 10 times. Each iteration
invokes Thread method sleep (line 26) to put the Consumer thread into the timed waiting
state for up to 3 seconds. Next, line 27 uses the Buffer’s get method to retrieve the value
in the shared buffer, then adds the value to variable sum. Line 28 displays the total of all
the values consumed so far. When the loop completes, lines 37–38 display a line indicating
the sum of the consumed values. Then method run terminates, which indicates that the
Consumer completed its task. Once both threads enter the terminated state, the program
ends.

7 private final static Random generator = new Random();
8 private final Buffer sharedLocation; // reference to shared object
9

10 // constructor
11 public Producer(Buffer shared)
12 {
13 sharedLocation = shared;
14 } // end Producer constructor
15
16
17
18
19 int sum = 0;
20
21 for (int count = 1; count <= 10; count++)
22 {
23 try // sleep 0 to 3 seconds, then place value in Buffer
24 {
25
26 sharedLocation.set(count); // set value in buffer
27 sum += count; // increment sum of values
28 System.out.printf("\t%2d\n", sum);
29 } // end try
30 // if lines 25 or 26 get interrupted, print stack trace
31 catch (InterruptedException exception)
32 {
33 exception.printStackTrace();
34 } // end catch
35 } // end for
36
37 System.out.println(
38 "Producer done producing\nTerminating Producer");
39
40 } // end class Producer

Fig. 23.10 | Producer with a run method that inserts the values 1 to 10 in buffer. (Part 2 of 2.)

// store values from 1 to 10 in sharedLocation
public void run()
{

Thread.sleep(generator.nextInt(3000)); // random sleep

} // end method run

756 Chapter 23 Multithreading

[Note: We call method sleep in method run of the Producer and Consumer classes to
emphasize the fact that, in multithreaded applications, it’s unpredictable when each thread will
perform its task and for how long it will perform the task when it has a processor. Normally,
these thread scheduling issues are beyond the control of the Java developer. In this program,
our thread’s tasks are quite simple—the Producer writes the values 1 to 10 to the buffer,
and the Consumer reads 10 values from the buffer and adds each value to variable sum.
Without the sleep method call, and if the Producer executes first, given today’s phenom-
enally fast processors, the Producer would likely complete its task before the Consumer got
a chance to execute. If the Consumer executed first, it would likely consume garbage data
ten times, then terminate before the Producer could produce the first real value.]

1 // Fig. 23.11: Consumer.java
2 // Consumer with a run method that loops, reading 10 values from buffer.
3 import java.util.Random;
4
5
6 {
7 private final static Random generator = new Random();
8 private final Buffer sharedLocation; // reference to shared object
9

10 // constructor
11 public Consumer(Buffer shared)
12 {
13 sharedLocation = shared;
14 } // end Consumer constructor
15
16
17
18
19 int sum = 0;
20
21 for (int count = 1; count <= 10; count++)
22 {
23 // sleep 0 to 3 seconds, read value from buffer and add to sum
24 try

25 {
26
27 sum += sharedLocation.get();
28 System.out.printf("\t\t\t%2d\n", sum);
29 } // end try
30 // if lines 26 or 27 get interrupted, print stack trace
31 catch (InterruptedException exception)
32 {
33 exception.printStackTrace();
34 } // end catch
35 } // end for
36
37 System.out.printf("\n%s %d\n%s\n",
38 "Consumer read values totaling", sum, "Terminating Consumer");
39
40 } // end class Consumer

Fig. 23.11 | Consumer with a run method that loops, reading 10 values from buffer.

public class Consumer implements Runnable

// read sharedLocation's value 10 times and sum the values
public void run()
{

Thread.sleep(generator.nextInt(3000));

} // end method run

23.5 Producer/Consumer Relationship without Synchronization 757

Class UnsynchronizedBuffer (Fig. 23.12) implements interface Buffer (line 4). An
object of this class is shared between the Producer and the Consumer. Line 6 declares
instance variable buffer and initializes it with the value –1. This value is used to demon-
strate the case in which the Consumer attempts to consume a value before the Producer ever
places a value in buffer. Methods set (lines 9–13) and get (lines 16–20) do not synchro-
nize access to the field buffer. Method set simply assigns its argument to buffer (line
12), and method get simply returns the value of buffer (line 19).

In class SharedBufferTest (Fig. 23.13), line 11 creates an ExecutorService to exe-
cute the Producer and Consumer Runnables. Line 14 creates an UnsynchronizedBuffer

object and assigns it to Buffer variable sharedLocation. This object stores the data that
the Producer and Consumer threads will share. Lines 23–24 create and execute the Pro-

ducer and Consumer. The Producer and Consumer constructors are each passed the same
Buffer object (sharedLocation), so each object is initialized with a reference to the same
Buffer. These lines also implicitly launch the threads and call each Runnable’s run

method. Finally, line 26 calls method shutdown so that the application can terminate
when the threads executing the Producer and Consumer complete their tasks. When main

terminates (line 27), the main thread of execution enters the terminated state.

1 // Fig. 23.12: UnsynchronizedBuffer.java
2 // UnsynchronizedBuffer maintains the shared integer that is accessed by
3 // a producer thread and a consumer thread via methods set and get.
4 public class UnsynchronizedBuffer implements Buffer
5 {
6
7
8 // place value into buffer
9 public void set(int value) throws InterruptedException

10 {
11 System.out.printf("Producer writes\t%2d", value);
12
13 } // end method set
14
15 // return value from buffer
16 public int get() throws InterruptedException
17 {
18 System.out.printf("Consumer reads\t%2d", buffer);
19
20 } // end method get
21 } // end class UnsynchronizedBuffer

Fig. 23.12 | UnsynchronizedBuffer maintains the shared integer that is accessed by a
producer thread and a consumer thread via methods set and get.

1 // Fig. 23.13: SharedBufferTest.java
2 // Application with two threads manipulating an unsynchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;

Fig. 23.13 | Application with two threads manipulating an unsynchronized buffer. (Part 1 of 3.)

private int buffer = -1; // shared by producer and consumer threads

buffer = value;

return buffer;

758 Chapter 23 Multithreading

5
6 public class SharedBufferTest
7 {
8 public static void main(String[] args)
9 {

10 // create new thread pool with two threads
11 ExecutorService application = Executors.newCachedThreadPool();
12
13
14
15
16 System.out.println(
17 "Action\t\tValue\tSum of Produced\tSum of Consumed");
18 System.out.println(
19 "------\t\t-----\t---------------\t---------------\n");
20
21 // execute the Producer and Consumer, giving each of them access
22 // to sharedLocation
23
24
25
26 application.shutdown(); // terminate application when tasks complete
27 } // end main
28 } // end class SharedBufferTest

Action Value Sum of Produced Sum of Consumed
------ ----- --------------- ---------------

Producer writes 1 1

Consumer reads 3 3
Producer writes 4 10
Consumer reads 4 7
Producer writes 5 15

Consumer reads 7 14

Producer writes 8 36
Consumer reads 8 29

Producer writes 9 45

Producer done producing
Terminating Producer
Consumer reads 10 47

Consumer read values totaling 77
Terminating Consumer

Fig. 23.13 | Application with two threads manipulating an unsynchronized buffer. (Part 2 of 3.)

// create UnsynchronizedBuffer to store ints
Buffer sharedLocation = new UnsynchronizedBuffer();

application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

Producer writes 2 3 1 is lost
2 is lost

5 is lost
6 is lost

7 read again

8 read again

9 is lost

10 read again
10 read again
10 read again

Producer writes 3 6

Producer writes 6 21
Producer writes 7 28

Consumer reads 7 21

Consumer reads 8 37

Producer writes 10 55

Consumer reads 10 57
Consumer reads 10 67
Consumer reads 10 77

23.5 Producer/Consumer Relationship without Synchronization 759

Recall from the overview of this example that we would like the Producer to execute
first and every value produced by the Producer to be consumed exactly once by the
Consumer. However, when we study the first output of Fig. 23.13, we see that the Pro-

ducer writes the values 1, 2 and 3 before the Consumer reads its first value (3). Therefore,
the values 1 and 2 are lost. Later, the values 5, 6 and 9 are lost, while 7 and 8 are read twice
and 10 is read four times. So the first output produces an incorrect total of 77, instead of
the correct total of 55. In the second output, the Consumer reads the value -1 before the
Producer ever writes a value. The Consumer reads the value 1 five times before the Pro-

ducer writes the value 2. Meanwhile, the values 5, 7, 8, 9 and 10 are all lost—the last four
because the Consumer terminates before the Producer. An incorrect consumer total of 19
is displayed. (Lines in the output where the Producer or Consumer has acted out of order
are highlighted.)

To solve the problems of lost and duplicated data, Section 23.6 presents an example
in which we use an ArrayBlockingQueue (from package java.util.concurrent) to syn-
chronize access to the shared object, guaranteeing that each and every value will be pro-
cessed once and only once.

Action Value Sum of Produced Sum of Consumed
------ ----- --------------- ---------------

Producer writes 1 1
Consumer reads 1 0

Producer writes 2 3
Consumer reads 2 6
Producer writes 3 6
Consumer reads 3 9
Producer writes 4 10
Consumer reads 4 13
Producer writes 5 15

Consumer reads 6 19

Consumer read values totaling 19
Terminating Consumer

Producer done producing
Terminating Producer

Error-Prevention Tip 23.1
Access to a shared object by concurrent threads must be controlled carefully or a program
may produce incorrect results.

Fig. 23.13 | Application with two threads manipulating an unsynchronized buffer. (Part 3 of 3.)

Consumer reads -1 -1 reads -1 bad data

1 read again
1 read again
1 read again
1 read again

10 never read

5 is lost

7 never read
8 never read
9 never read

Consumer reads 1 1
Consumer reads 1 2
Consumer reads 1 3
Consumer reads 1 4

Producer writes 6 21

Producer writes 7 28
Producer writes 8 36
Producer writes 9 45
Producer writes 10 55

760 Chapter 23 Multithreading

23.6 Producer/Consumer Relationship:
ArrayBlockingQueue
One way to synchronize producer and consumer threads is to use classes from Java’s con-
currency package that encapsulate the synchronization for you. Java includes the class
ArrayBlockingQueue (from package java.util.concurrent)—a fully implemented,
thread-safe buffer class that implements interface BlockingQueue. This interface extends
the Queue interface discussed in Chapter 18 and declares methods put and take, the
blocking equivalents of Queue methods offer and poll, respectively. Method put places
an element at the end of the BlockingQueue, waiting if the queue is full. Method take

removes an element from the head of the BlockingQueue, waiting if the queue is empty.
These methods make class ArrayBlockingQueue a good choice for implementing a shared
buffer. Because method put blocks until there’s room in the buffer to write data, and
method take blocks until there’s new data to read, the producer must produce a value first,
the consumer correctly consumes only after the producer writes a value and the producer
correctly produces the next value (after the first) only after the consumer reads the previous
(or first) value. ArrayBlockingQueue stores the shared data in an array. The array’s size is
specified as an argument to the ArrayBlockingQueue constructor. Once created, an
ArrayBlockingQueue is fixed in size and will not expand to accommodate extra elements.

Figures 23.14–23.15 demonstrate a Producer and a Consumer accessing an Array-

BlockingQueue. Class BlockingBuffer (Fig. 23.14) uses an ArrayBlockingQueue object
that stores an Integer (line 7). Line 11 creates the ArrayBlockingQueue and passes 1 to
the constructor so that the object holds a single value, as we did with the Unsynchronized-
Buffer of Fig. 23.12. Lines 7 and 11 use generics, which we discussed in Chapters 18–19.
We discuss multiple-element buffers in Section 23.8. Because our BlockingBuffer class
uses the thread-safe ArrayBlockingQueue class to manage access to the shared buffer,
BlockingBuffer is itself thread safe, even though we have not implemented the synchro-
nization ourselves.

1 // Fig. 23.14: BlockingBuffer.java
2 // Creating a synchronized buffer using an ArrayBlockingQueue.
3 import java.util.concurrent.ArrayBlockingQueue;
4
5 public class BlockingBuffer implements Buffer
6 {
7
8
9 public BlockingBuffer()

10 {
11
12 } // end BlockingBuffer constructor
13
14 // place value into buffer
15 public void set(int value) throws InterruptedException
16 {
17

Fig. 23.14 | Creating a synchronized buffer using an ArrayBlockingQueue. (Part 1 of 2.)

private final ArrayBlockingQueue<Integer> buffer; // shared buffer

buffer = new ArrayBlockingQueue<Integer>(1);

buffer.put(value); // place value in buffer

23.6 Producer/Consumer Relationship: ArrayBlockingQueue 761

BlockingBuffer implements interface Buffer (Fig. 23.9) and uses classes Producer
(Fig. 23.10 modified to remove line 28) and Consumer (Fig. 23.11 modified to remove
line 28) from the example in Section 23.5. This approach demonstrates that the threads
accessing the shared object are unaware that their buffer accesses are now synchronized. The
synchronization is handled entirely in the set and get methods of BlockingBuffer by
calling the synchronized ArrayBlockingQueue methods put and take, respectively. Thus,
the Producer and Consumer Runnables are properly synchronized simply by calling the
shared object’s set and get methods.

Line 17 in method set (Fig. 23.14, lines 15–20) calls the ArrayBlockingQueue

object’s put method. This method call blocks if necessary until there’s room in the buffer
to place the value. Method get (lines 23–30) calls the ArrayBlockingQueue object’s take
method (line 25). This method call blocks if necessary until there’s an element in the
buffer to remove. Lines 18–19 and 26–27 use the ArrayBlockingQueue object’s size

method to display the total number of elements currently in the ArrayBlockingQueue.
Class BlockingBufferTest (Fig. 23.15) contains the main method that launches the

application. Line 12 creates an ExecutorService, and line 15 creates a BlockingBuffer

object and assigns its reference to the Buffer variable sharedLocation. Lines 17–18 exe-
cute the Producer and Consumer Runnables. Line 19 calls method shutdown to end the
application when the threads finish executing the Producer and Consumer tasks.

18 System.out.printf("%s%2d\t%s%d\n", "Producer writes ", value,
19 "Buffer cells occupied: ", buffer.size());
20 } // end method set
21
22 // return value from buffer
23 public int get() throws InterruptedException
24 {
25
26 System.out.printf("%s %2d\t%s%d\n", "Consumer reads ",
27 readValue, "Buffer cells occupied: ", buffer.size());
28
29 return readValue;
30 } // end method get
31 } // end class BlockingBuffer

1 // Fig. 23.15: BlockingBufferTest.java
2 // Two threads manipulating a blocking buffer that properly
3 // implements the producer/consumer relationship.
4 import java.util.concurrent.ExecutorService;
5 import java.util.concurrent.Executors;
6
7 public class BlockingBufferTest
8 {
9 public static void main(String[] args)

10 {

Fig. 23.15 | Two threads manipulating a blocking buffer that properly implements the producer/
consumer relationship. (Part 1 of 2.)

Fig. 23.14 | Creating a synchronized buffer using an ArrayBlockingQueue. (Part 2 of 2.)

int readValue = buffer.take(); // remove value from buffer

762 Chapter 23 Multithreading

While methods put and take of ArrayBlockingQueue are properly synchronized,
BlockingBuffer methods set and get (Fig. 23.14) are not declared to be synchronized.
Thus, the statements performed in method set—the put operation (line 17) and the
output (lines 18–19)—are not atomic; nor are the statements in method get—the take

operation (line 25) and the output (lines 26–27). So there’s no guarantee that each output
will occur immediately after the corresponding put or take operation, and the outputs
may appear out of order. Even if they do, the ArrayBlockingQueue object is properly syn-
chronizing access to the data, as evidenced by the fact that the sum of values read by the
consumer is always correct.

11 // create new thread pool with two threads
12 ExecutorService application = Executors.newCachedThreadPool();
13
14
15
16
17
18
19
20 application.shutdown();
21 } // end main
22 } // end class BlockingBufferTest

Producer writes 1 Buffer cells occupied: 1
Consumer reads 1 Buffer cells occupied: 0
Producer writes 2 Buffer cells occupied: 1
Consumer reads 2 Buffer cells occupied: 0
Producer writes 3 Buffer cells occupied: 1
Consumer reads 3 Buffer cells occupied: 0
Producer writes 4 Buffer cells occupied: 1
Consumer reads 4 Buffer cells occupied: 0
Producer writes 5 Buffer cells occupied: 1
Consumer reads 5 Buffer cells occupied: 0
Producer writes 6 Buffer cells occupied: 1
Consumer reads 6 Buffer cells occupied: 0
Producer writes 7 Buffer cells occupied: 1
Consumer reads 7 Buffer cells occupied: 0
Producer writes 8 Buffer cells occupied: 1
Consumer reads 8 Buffer cells occupied: 0
Producer writes 9 Buffer cells occupied: 1
Consumer reads 9 Buffer cells occupied: 0
Producer writes 10 Buffer cells occupied: 1

Producer done producing
Terminating Producer
Consumer reads 10 Buffer cells occupied: 0

Consumer read values totaling 55
Terminating Consumer

Fig. 23.15 | Two threads manipulating a blocking buffer that properly implements the producer/
consumer relationship. (Part 2 of 2.)

// create BlockingBuffer to store ints
Buffer sharedLocation = new BlockingBuffer();

application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

23.7 Producer/Consumer Relationship with Synchronization 763

23.7 Producer/Consumer Relationship with
Synchronization
The previous example showed how multiple threads can share a single-element buffer in a
thread-safe manner by using the ArrayBlockingQueue class that encapsulates the synchro-
nization necessary to protect the shared data. For educational purposes, we now explain
how you can implement a shared buffer yourself using the synchronized keyword and
methods of class Object. Using an ArrayBlockingQueue will result in more-maintainable
and better-performing code.

The first step in synchronizing access to the buffer is to implement methods get and
set as synchronized methods. This requires that a thread obtain the monitor lock on the
Buffer object before attempting to access the buffer data, but it does not automatically
ensure that threads proceed with an operation only if the buffer is in the proper state. We
need a way to allow our threads to wait, depending on whether certain conditions are true.
In the case of placing a new item in the buffer, the condition that allows the operation to
proceed is that the buffer is not full. In the case of fetching an item from the buffer, the
condition that allows the operation to proceed is that the buffer is not empty. If the condi-
tion in question is true, the operation may proceed; if it’s false, the thread must wait until
it becomes true. When a thread is waiting on a condition, it’s removed from contention
for the processor and placed into the waiting state and the lock it holds is released.

Methods wait, notify and notifyAll

Object methods wait, notify and notifyAll, which are inherited by all other classes, can
be used with conditions to make threads wait when they cannot perform their tasks. If a
thread obtains the monitor lock on an object, then determines that it cannot continue with
its task on that object until some condition is satisfied, the thread can call Object method
wait on the synchronized object; this releases the monitor lock on the object, and the
thread waits in the waiting state while the other threads try to enter the object’s synchro-
nized statement(s) or method(s). When a thread executing a synchronized statement (or
method) completes or satisfies the condition on which another thread may be waiting, it
can call Object method notify on the synchronized object to allow a waiting thread to
transition to the runnable state again. At this point, the thread that was transitioned from
the waiting state to the runnable state can attempt to reacquire the monitor lock on the
object. Even if the thread is able to reacquire the monitor lock, it still might not be able to
perform its task at this time—in which case the thread will reenter the waiting state and
implicitly release the monitor lock. If a thread calls notifyAll on the synchronized ob-
ject, then all the threads waiting for the monitor lock become eligible to reacquire the lock
(that is, they all transition to the runnable state).

Remember that only one thread at a time can obtain the monitor lock on the object—
other threads that attempt to acquire the same monitor lock will be blocked until the mon-
itor lock becomes available again (i.e., until no other thread is executing in a synchronized
statement on that object).

Common Programming Error 23.1
It’s an error if a thread issues a wait, a notify or a notifyAll on an object without hav-
ing acquired a lock for it. This causes an IllegalMonitorStateException.

764 Chapter 23 Multithreading

The application in Fig. 23.16 and Fig. 23.17 demonstrates a Producer and a Con-

sumer accessing a shared buffer with synchronization. In this case, the Producer always
produces a value first, the Consumer correctly consumes only after the Producer produces
a value and the Producer correctly produces the next value only after the Consumer con-
sumes the previous (or first) value. We reuse interface Buffer and classes Producer and
Consumer from the example in Section 23.5, except that line 28 is removed from class Pro-
ducer and class Consumer. The synchronization is handled in the set and get methods of
class SynchronizedBuffer (Fig. 23.16), which implements interface Buffer (line 4).
Thus, the Producer’s and Consumer’s run methods simply call the shared object’s syn-

chronized set and get methods.

Error-Prevention Tip 23.2
It’s a good practice to use notifyAll to notify waiting threads to become runnable. Doing
so avoids the possibility that your program would forget about waiting threads, which
would otherwise starve.

1 // Fig. 23.16: SynchronizedBuffer.java
2 // Synchronizing access to shared data using Object
3 // methods wait and notifyAll.
4 public class SynchronizedBuffer implements Buffer
5 {
6 private int buffer = -1; // shared by producer and consumer threads
7 private boolean occupied = false; // whether the buffer is occupied
8
9 // place value into buffer

10
11 {
12 // while there are no empty locations, place thread in waiting state
13
14 {
15 // output thread information and buffer information, then wait
16 System.out.println("Producer tries to write.");
17 displayState("Buffer full. Producer waits.");
18
19 } // end while
20
21
22
23
24
25
26
27 displayState("Producer writes " + buffer);
28
29
30 } // end method set; releases lock on SynchronizedBuffer
31

Fig. 23.16 | Synchronizing access to shared data using Object methods wait and notifyAll.
(Part 1 of 2.)

public synchronized void set(int value) throws InterruptedException

while (occupied)

wait();

buffer = value; // set new buffer value

// indicate producer cannot store another value
// until consumer retrieves current buffer value
occupied = true;

notifyAll(); // tell waiting thread(s) to enter runnable state

23.7 Producer/Consumer Relationship with Synchronization 765

Fields and Methods of Class SynchronizedBuffer
Class SynchronizedBuffer contains fields buffer (line 6) and occupied (line 7). Methods
set (lines 10–30) and get (lines 33–53) are declared as synchronized—only one thread
can call either of these methods at a time on a particular SynchronizedBuffer object. Field
occupied is used to determine whether it’s the Producer’s or the Consumer’s turn to per-
form a task. This field is used in conditional expressions in both the set and get methods.
If occupied is false, then buffer is empty, so the Consumer cannot read the value of buf-
fer, but the Producer can place a value into buffer. If occupied is true, the Consumer

can read a value from buffer, but the Producer cannot place a value into buffer.

Method set and the Producer Thread
When the Producer thread’s runmethod invokes synchronizedmethod set, the thread im-
plicitly attempts to acquire the SynchronizedBuffer object’s monitor lock. If the monitor
lock is available, the Producer thread implicitly acquires the lock. Then the loop at lines 13–
19 first determines whether occupied is true. If so, buffer is full, so line 16 outputs a mes-
sage indicating that the Producer thread is trying to write a value, and line 17 invokes meth-
od displayState (lines 56–60) to output another message indicating that buffer is full and

32 // return value from buffer
33
34 {
35 // while no data to read, place thread in waiting state
36 while (!occupied)
37 {
38 // output thread information and buffer information, then wait
39 System.out.println("Consumer tries to read.");
40 displayState("Buffer empty. Consumer waits.");
41
42 } // end while
43
44
45
46
47
48 displayState("Consumer reads " + buffer);
49
50
51
52 return buffer;
53 } // end method get; releases lock on SynchronizedBuffer
54
55 // display current operation and buffer state
56 public void displayState(String operation)
57 {
58 System.out.printf("%-40s%d\t\t%b\n\n", operation, buffer,
59 occupied);
60 } // end method displayState
61 } // end class SynchronizedBuffer

Fig. 23.16 | Synchronizing access to shared data using Object methods wait and notifyAll.
(Part 2 of 2.)

public synchronized int get() throws InterruptedException

wait();

// indicate that producer can store another value
// because consumer just retrieved buffer value
occupied = false;

notifyAll(); // tell waiting thread(s) to enter runnable state

766 Chapter 23 Multithreading

that the Producer thread is waiting until there’s space. Line 18 invokes method wait (inher-
ited from Object by SynchronizedBuffer) to place the thread that called method set (i.e.,
the Producer thread) in the waiting state for the SynchronizedBuffer object. The call to
wait causes the calling thread to implicitly release the lock on the SynchronizedBuffer ob-
ject. This is important because the thread cannot currently perform its task and because other
threads (in this case, the Consumer) should be allowed to access the object to allow the con-
dition (occupied) to change. Now another thread can attempt to acquire the Synchro-

nizedBuffer object’s lock and invoke the object’s set or get method.
The Producer thread remains in the waiting state until another thread notifies the Pro-

ducer that it may proceed—at which point the Producer returns to the runnable state and
attempts to implicitly reacquire the lock on the SynchronizedBuffer object. If the lock is
available, the Producer thread reacquires it, and method set continues executing with the
next statement after the wait call. Because wait is called in a loop, the loop-continuation
condition is tested again to determine whether the thread can proceed. If not, then wait is
invoked again—otherwise, method set continues with the next statement after the loop.

Line 21 in method set assigns the value to the buffer. Line 25 sets occupied to true

to indicate that the buffer now contains a value (i.e., a consumer can read the value, but
a Producer cannot yet put another value there). Line 27 invokes method displayState

to output a message indicating that the Producer is writing a new value into the buffer.
Line 29 invokes method notifyAll (inherited from Object). If any threads are waiting on
the SynchronizedBuffer object’s monitor lock, those threads enter the runnable state and
can now attempt to reacquire the lock. Method notifyAll returns immediately, and
method set then returns to the caller (i.e., the Producer’s run method). When method
set returns, it implicitly releases the monitor lock on the SynchronizedBuffer object.

Method get and the Consumer Thread
Methods get and set are implemented similarly. When the Consumer thread’s run meth-
od invokes synchronized method get, the thread attempts to acquire the monitor lock on
the SynchronizedBuffer object. If the lock is available, the Consumer thread acquires it.
Then the while loop at lines 36–42 determines whether occupied is false. If so, the buf-
fer is empty, so line 39 outputs a message indicating that the Consumer thread is trying to
read a value, and line 40 invokes method displayState to output a message indicating
that the buffer is empty and that the Consumer thread is waiting. Line 41 invokes method
wait to place the thread that called method get (i.e., the Consumer) in the waiting state
for the SynchronizedBuffer object. Again, the call to wait causes the calling thread to im-
plicitly release the lock on the SynchronizedBuffer object, so another thread can attempt
to acquire the SynchronizedBuffer object’s lock and invoke the object’s set or get meth-
od. If the lock on the SynchronizedBuffer is not available (e.g., if the Producer has not
yet returned from method set), the Consumer is blocked until the lock becomes available.

The Consumer thread remains in the waiting state until it’s notified by another thread
that it may proceed—at which point the Consumer thread returns to the runnable state and
attempts to implicitly reacquire the lock on the SynchronizedBuffer object. If the lock is
available, the Consumer reacquires it, and method get continues executing with the next
statement after wait. Because wait is called in a loop, the loop-continuation condition is
tested again to determine whether the thread can proceed with its execution. If not, wait
is invoked again—otherwise, method get continues with the next statement after the loop.

23.7 Producer/Consumer Relationship with Synchronization 767

Line 46 sets occupied to false to indicate that buffer is now empty (i.e., a Consumer

cannot read the value, but a Producer can place another value in buffer), line 48 calls
method displayState to indicate that the consumer is reading and line 50 invokes
method notifyAll. If any threads are in the waiting state for the lock on this Synchro-
nizedBuffer object, they enter the runnable state and can now attempt to reacquire the
lock. Method notifyAll returns immediately, then method get returns the value of
buffer to its caller. When method get returns, the lock on the SynchronizedBuffer

object is implicitly released.

Testing Class SynchronizedBuffer
Class SharedBufferTest2 (Fig. 23.17) is similar to class SharedBufferTest (Fig. 23.13).
SharedBufferTest2 contains method main (lines 8–24), which launches the application.
Line 11 creates an ExecutorService to run the Producer and Consumer tasks. Line 14 cre-
ates a SynchronizedBuffer object and assigns its reference to Buffer variable shared-

Location. This object stores the data that will be shared between the Producer and
Consumer. Lines 16–17 display the column heads for the output. Lines 20–21 execute a
Producer and a Consumer. Finally, line 23 calls method shutdown to end the application
when the Producer and Consumer complete their tasks. When method main ends (line 24),
the main thread of execution terminates.

Error-Prevention Tip 23.3
Always invoke method wait in a loop that tests the condition the task is waiting on. It’s
possible that a thread will reenter the runnable state (via a timed wait or another thread
calling notifyAll) before the condition is satisfied. Testing the condition again ensures
that the thread will not erroneously execute if it was notified early.

1 // Fig. 23.17: SharedBufferTest2.java
2 // Two threads correctly manipulating a synchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5
6 public class SharedBufferTest2
7 {
8 public static void main(String[] args)
9 {

10 // create a newCachedThreadPool
11 ExecutorService application = Executors.newCachedThreadPool();
12
13
14
15
16 System.out.printf("%-40s%s\t\t%s\n%-40s%s\n\n", "Operation",
17 "Buffer", "Occupied", "---------", "------\t\t--------");
18
19 // execute the Producer and Consumer tasks
20
21
22

Fig. 23.17 | Two threads correctly manipulating a synchronized buffer. (Part 1 of 3.)

// create SynchronizedBuffer to store ints
Buffer sharedLocation = new SynchronizedBuffer();

application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

768 Chapter 23 Multithreading

23 application.shutdown();
24 } // end main
25 } // end class SharedBufferTest2

Operation Buffer Occupied
--------- ------ --------

Consumer tries to read.
-1 false

Producer writes 1 1 true

Consumer reads 1 1 false

Consumer tries to read.
1 false

Producer writes 2 2 true

Consumer reads 2 2 false

Producer writes 3 3 true

Consumer reads 3 3 false

Producer writes 4 4 true

Producer tries to write.
4 true

Consumer reads 4 4 false

Producer writes 5 5 true

Consumer reads 5 5 false

Producer writes 6 6 true

Producer tries to write.
6 true

Consumer reads 6 6 false

Producer writes 7 7 true

Producer tries to write.
7 true

Consumer reads 7 7 false

Producer writes 8 8 true

Consumer reads 8 8 false

Consumer tries to read.
8 false

Fig. 23.17 | Two threads correctly manipulating a synchronized buffer. (Part 2 of 3.)

Buffer empty. Consumer waits.

Buffer empty. Consumer waits.

Buffer full. Producer waits.

Buffer full. Producer waits.

Buffer full. Producer waits.

Buffer empty. Consumer waits.

23.8 Producer/Consumer Relationship: Bounded Buffers 769

Study the outputs in Fig. 23.17. Observe that every integer produced is consumed exactly
once—no values are lost, and no values are consumed more than once. The synchronization
ensures that the Producer produces a value only when the buffer is empty and the Con-

sumer consumes only when the buffer is full. The Producer always goes first, the Consumer
waits if the Producer has not produced since the Consumer last consumed, and the Pro-

ducer waits if the Consumer has not yet consumed the value that the Producer most
recently produced. Execute this program several times to confirm that every integer pro-
duced is consumed exactly once. In the sample output, note the highlighted lines indi-
cating when the Producer and Consumer must wait to perform their respective tasks.

23.8 Producer/Consumer Relationship: Bounded Buffers
The program in Section 23.7 uses thread synchronization to guarantee that two threads
manipulate data in a shared buffer correctly. However, the application may not perform
optimally. If the two threads operate at different speeds, one them will spend more (or
most) of its time waiting. For example, in the program in Section 23.7 we shared a single
integer variable between the two threads. If the Producer thread produces values faster
than the Consumer can consume them, then the Producer thread waits for the Consumer,
because there are no other locations in the buffer in which to place the next value. Simi-
larly, if the Consumer consumes values faster than the Producer produces them, the Con-

sumer waits until the Producer places the next value in the shared buffer. Even when we
have threads that operate at the same relative speeds, those threads may occasionally be-
come “out of sync” over a period of time, causing one of them to wait for the other. We
cannot make assumptions about the relative speeds of concurrent threads—interactions that
occur with the operating system, the network, the user and other components can cause
the threads to operate at different and ever-changing speeds. When this happens, threads
wait. When threads wait excessively, programs become less efficient, interactive programs
become less responsive and applications suffer longer delays.

Producer writes 9 9 true

Consumer reads 9 9 false

Consumer tries to read.
9 false

Producer writes 10 10 true

Consumer reads 10 10 false

Producer done producing
Terminating Producer

Consumer read values totaling 55
Terminating Consumer

Fig. 23.17 | Two threads correctly manipulating a synchronized buffer. (Part 3 of 3.)

Buffer empty. Consumer waits.

770 Chapter 23 Multithreading

Bounded Buffers
To minimize the amount of waiting time for threads that share resources and operate at
the same average speeds, we can implement a bounded buffer that provides a fixed number
of buffer cells into which the Producer can place values, and from which the Consumer can
retrieve those values. (In fact, we’ve already done this with the ArrayBlockingQueue class
in Section 23.6.) If the Producer temporarily produces values faster than the Consumer can
consume them, the Producer can write additional values into the extra buffer cells, if any
are available. This capability enables the Producer to perform its task even though the
Consumer is not ready to retrieve the current value being produced. Similarly, if the Con-

sumer consumes faster than the Producer produces new values, the Consumer can read ad-
ditional values (if there are any) from the buffer. This enables the Consumer to keep busy
even though the Producer is not ready to produce additional values.

Even a bounded buffer is inappropriate if the Producer and the Consumer operate con-
sistently at different speeds. If the Consumer always executes faster than the Producer, then
a buffer containing one location is enough. Additional locations would simply waste
memory. If the Producer always executes faster, only a buffer with an “infinite” number
of locations would be able to absorb the extra production. However, if the Producer and
Consumer execute at about the same average speed, a bounded buffer helps to smooth the
effects of any occasional speeding up or slowing down in either thread’s execution.

The key to using a bounded buffer with a Producer and Consumer that operate at about
the same speed is to provide the buffer with enough locations to handle the anticipated
“extra” production. If, over a period of time, we determine that the Producer often pro-
duces as many as three more values than the Consumer can consume, we can provide a
buffer of at least three cells to handle the extra production. Making the buffer too small
would cause threads to wait longer; making the buffer too large would waste memory.

Bounded Buffers Using ArrayBlockingQueue
The simplest way to implement a bounded buffer is to use an ArrayBlockingQueue for the
buffer so that all of the synchronization details are handled for you. This can be done by mod-
ifying the example from Section 23.6 to pass the desired size for the bounded buffer into
the ArrayBlockingQueue constructor. Rather than repeat our previous ArrayBlocking-
Queue example with a different size, we instead present an example that illustrates how you
can build a bounded buffer yourself. Again, using an ArrayBlockingQueue will result in
more-maintainable and better-performing code.

Implementing Your Own Bounded Buffer as a Circular Buffer
The program in Fig. 23.18 and Fig. 23.19 demonstrates a Producer and a Consumer ac-
cessing a bounded buffer with synchronization. Again, we reuse interface Buffer and classes

Performance Tip 23.3
Even when using a bounded buffer, it’s possible that a producer thread could fill the buf-
fer, which would force the producer to wait until a consumer consumed a value to free an
element in the buffer. Similarly, if the buffer is empty at any given time, a consumer
thread must wait until the producer produces another value. The key to using a bounded
buffer is to optimize the buffer size to minimize the amount of thread wait time, while
not wasting space.

23.8 Producer/Consumer Relationship: Bounded Buffers 771

Producer and Consumer from the example in Section 23.5, except that line 28 is removed
from class Producer and class Consumer. We implement the bounded buffer in class Cir-
cularBuffer (Fig. 23.18) as a circular buffer that uses a shared array of three elements. A
circular buffer writes into and reads from the array elements in order, beginning at the first
cell and moving toward the last. When a Producer or Consumer reaches the last element,
it returns to the first and begins writing or reading, respectively, from there. In this version
of the producer/consumer relationship, the Consumer consumes a value only when the ar-
ray is not empty and the Producer produces a value only when the array is not full. The
statements that created and started the thread objects in the main method of class
SharedBufferTest2 (Fig. 23.17) now appear in class CircularBufferTest (Fig. 23.19).

1 // Fig. 23.18: CircularBuffer.java
2 // Synchronizing access to a shared three-element bounded buffer.
3 public class CircularBuffer implements Buffer
4 {
5 private final int[] buffer = { -1, -1, -1 }; // shared buffer
6
7 private int occupiedCells = 0; // count number of buffers used
8 private int writeIndex = 0; // index of next element to write to
9 private int readIndex = 0; // index of next element to read

10
11 // place value into buffer
12 public synchronized void set(int value) throws InterruptedException
13 {
14 // wait until buffer has space available, then write value;
15
16
17
18
19
20
21
22 buffer[writeIndex] = value; // set new buffer value
23
24 // update circular write index
25
26
27 ++occupiedCells; // one more buffer cell is full
28 displayState("Producer writes " + value);
29 notifyAll(); // notify threads waiting to read from buffer
30 } // end method set
31
32 // return value from buffer
33 public synchronized int get() throws InterruptedException
34 {
35 // wait until buffer has data, then read value;
36 // while no data to read, place thread in waiting state
37 while (occupiedCells == 0)
38 {
39 System.out.printf("Buffer is empty. Consumer waits.\n");

Fig. 23.18 | Synchronizing access to a shared three-element bounded buffer. (Part 1 of 2.)

// while no empty locations, place thread in blocked state
while (occupiedCells == buffer.length)
{

System.out.printf("Buffer is full. Producer waits.\n");
wait(); // wait until a buffer cell is free

} // end while

writeIndex = (writeIndex + 1) % buffer.length;

772 Chapter 23 Multithreading

Line 5 initializes array buffer as a three-element int array that represents the circular
buffer. Variable occupiedCells (line 7) counts the number of elements in buffer that
contain data to be read. When occupiedBuffers is 0, there’s no data in the circular buffer
and the Consumer must wait—when occupiedCells is 3 (the size of the circular buffer),

40 wait(); // wait until a buffer cell is filled
41 } // end while
42
43 int readValue = buffer[readIndex]; // read value from buffer
44
45 // update circular read index
46
47
48 --occupiedCells; // one fewer buffer cells are occupied
49 displayState("Consumer reads " + readValue);
50 notifyAll(); // notify threads waiting to write to buffer
51
52 return readValue;
53 } // end method get
54
55 // display current operation and buffer state
56 public void displayState(String operation)
57 {
58 // output operation and number of occupied buffer cells
59 System.out.printf("%s%s%d)\n%s", operation,
60 " (buffer cells occupied: ", occupiedCells, "buffer cells: ");
61
62 for (int value : buffer)
63 System.out.printf(" %2d ", value); // output values in buffer
64
65 System.out.print("\n ");
66
67 for (int i = 0; i < buffer.length; i++)
68 System.out.print("---- ");
69
70 System.out.print("\n ");
71
72 for (int i = 0; i < buffer.length; i++)
73 {
74 if (i == writeIndex && i == readIndex)
75 System.out.print(" WR"); // both write and read index
76 else if (i == writeIndex)
77 System.out.print(" W "); // just write index
78 else if (i == readIndex)
79 System.out.print(" R "); // just read index
80 else

81 System.out.print(" "); // neither index
82 } // end for
83
84 System.out.println("\n");
85 } // end method displayState
86 } // end class CircularBuffer

Fig. 23.18 | Synchronizing access to a shared three-element bounded buffer. (Part 2 of 2.)

readIndex = (readIndex + 1) % buffer.length;

23.8 Producer/Consumer Relationship: Bounded Buffers 773

the circular buffer is full and the Producer must wait. Variable writeIndex (line 8) indi-
cates the next location in which a value can be placed by a Producer. Variable readIndex

(line 9) indicates the position from which the next value can be read by a Consumer.

CircularBuffer Method set

CircularBuffer method set (lines 12–30) performs the same tasks as in Fig. 23.16, with
a few modifications. The loop at lines 16–20 determines whether the Producer must wait
(i.e., all buffer cells are full). If so, line 18 indicates that the Producer is waiting to perform
its task. Then line 19 invokes method wait, causing the Producer thread to release the
CircularBuffer’s lock and wait until there’s space for a new value to be written into the
buffer. When execution continues at line 22 after the while loop, the value written by the
Producer is placed in the circular buffer at location writeIndex. Then line 25 updates
writeIndex for the next call to CircularBuffer method set. This line is the key to the
buffer’s circularity. When writeIndex is incremented past the end of the buffer, the line
sets it to 0. Line 27 increments occupiedCells, because there’s now one more value in the
buffer that the Consumer can read. Next, line 28 invokes method displayState (lines 56–
85) to update the output with the value produced, the number of occupied buffer cells,
the contents of the buffer cells and the current writeIndex and readIndex. Line 29 in-
vokes method notifyAll to transition waiting threads to the runnable state, so that a wait-
ing Consumer thread (if there is one) can now try again to read a value from the buffer.

CircularBuffer Method get

CircularBuffer method get (lines 33–53) also performs the same tasks as it did in
Fig. 23.16, with a few minor modifications. The loop at lines 37–41 determines whether
the Consumer must wait (i.e., all buffer cells are empty). If the Consumer must wait, line 39
updates the output to indicate that the Consumer is waiting to perform its task. Then line
40 invokes method wait, causing the current thread to release the lock on the Circular-

Buffer and wait until data is available to read. When execution eventually continues at
line 43 after a notifyAll call from the Producer, readValue is assigned the value at loca-
tion readIndex in the circular buffer. Then line 46 updates readIndex for the next call to
CircularBuffer method get. This line and line 25 implement the circularity of the buffer.
Line 48 decrements occupiedCells, because there’s now one more position in the buffer
in which the Producer thread can place a value. Line 49 invokes method displayState

to update the output with the consumed value, the number of occupied buffer cells, the
contents of the buffer cells and the current writeIndex and readIndex. Line 50 invokes
method notifyAll to allow any Producer threads waiting to write into the CircularBuf-
fer object to attempt to write again. Then line 52 returns the consumed value to the caller.

CircularBuffer Method displayState

Method displayState (lines 56–85) outputs the application’s state. Lines 62–63 output
the values of the buffer cells. Line 63 uses method printf with a "%2d" format specifier
to print the contents of each buffer with a leading space if it’s a single digit. Lines 70–82
output the current writeIndex and readIndex with the letters W and R, respectively.

Testing Class CircularBuffer
Class CircularBufferTest (Fig. 23.19) contains the main method that launches the ap-
plication. Line 11 creates the ExecutorService, and line 14 creates a CircularBuffer ob-

774 Chapter 23 Multithreading

ject and assigns its reference to CircularBuffer variable sharedLocation. Line 17
invokes the CircularBuffer’s displayState method to show the initial state of the buf-
fer. Lines 20–21 execute the Producer and Consumer tasks. Line 23 calls method shutdown

to end the application when the threads complete the Producer and Consumer tasks.
Each time the Producer writes a value or the Consumer reads a value, the program out-

puts a message indicating the action performed (a read or a write), the contents of buffer,
and the location of writeIndex and readIndex. In the output of Fig. 23.19, the Producer
first writes the value 1. The buffer then contains the value 1 in the first cell and the value
–1 (the default value that we use for output purposes) in the other two cells. The write
index is updated to the second cell, while the read index stays at the first cell. Next, the
Consumer reads 1. The buffer contains the same values, but the read index has been
updated to the second cell. The Consumer then tries to read again, but the buffer is empty
and the Consumer is forced to wait. Only once in this execution of the program was it nec-
essary for either thread to wait.

1 // Fig. 23.19: CircularBufferTest.java
2 // Producer and Consumer threads manipulating a circular buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5
6 public class CircularBufferTest
7 {
8 public static void main(String[] args)
9 {

10 // create new thread pool with two threads
11 ExecutorService application = Executors.newCachedThreadPool();
12
13
14
15
16 // display the initial state of the CircularBuffer
17 sharedLocation.displayState("Initial State");
18
19 // execute the Producer and Consumer tasks
20
21
22
23 application.shutdown();
24 } // end main
25 } // end class CircularBufferTest

Initial State (buffer cells occupied: 0)
buffer cells: -1 -1 -1

---- ---- ----
WR

Producer writes 1 (buffer cells occupied: 1)
buffer cells: 1 -1 -1

---- ---- ----
R W

Fig. 23.19 | Producer and Consumer threads manipulating a circular buffer. (Part 1 of 3.)

// create CircularBuffer to store ints
CircularBuffer sharedLocation = new CircularBuffer();

application.execute(new Producer(sharedLocation));
application.execute(new Consumer(sharedLocation));

23.8 Producer/Consumer Relationship: Bounded Buffers 775

Consumer reads 1 (buffer cells occupied: 0)
buffer cells: 1 -1 -1

---- ---- ----
WR

Producer writes 2 (buffer cells occupied: 1)
buffer cells: 1 2 -1

---- ---- ----
R W

Consumer reads 2 (buffer cells occupied: 0)
buffer cells: 1 2 -1

---- ---- ----
WR

Producer writes 3 (buffer cells occupied: 1)
buffer cells: 1 2 3

---- ---- ----
W R

Consumer reads 3 (buffer cells occupied: 0)
buffer cells: 1 2 3

---- ---- ----
WR

Producer writes 4 (buffer cells occupied: 1)
buffer cells: 4 2 3

---- ---- ----
R W

Producer writes 5 (buffer cells occupied: 2)
buffer cells: 4 5 3

---- ---- ----
R W

Consumer reads 4 (buffer cells occupied: 1)
buffer cells: 4 5 3

---- ---- ----
R W

Producer writes 6 (buffer cells occupied: 2)
buffer cells: 4 5 6

---- ---- ----
W R

Producer writes 7 (buffer cells occupied: 3)
buffer cells: 7 5 6

---- ---- ----
WR

Consumer reads 5 (buffer cells occupied: 2)
buffer cells: 7 5 6

---- ---- ----
W R

Producer writes 8 (buffer cells occupied: 3)
buffer cells: 7 8 6

---- ---- ----
WR

Fig. 23.19 | Producer and Consumer threads manipulating a circular buffer. (Part 2 of 3.)

Buffer is empty. Consumer waits.

776 Chapter 23 Multithreading

23.9 Producer/Consumer Relationship: The Lock and
Condition Interfaces
Though the synchronized keyword provides for most basic thread-synchronization
needs, Java provides other tools to assist in developing concurrent programs. In this sec-
tion, we discuss the Lock and Condition interfaces. These interfaces give you more precise
control over thread synchronization, but are more complicated to use.

Interface Lock and Class ReentrantLock
Any object can contain a reference to an object that implements the Lock interface (of
package java.util.concurrent.locks). A thread calls the Lock’s lock method (analo-
gous to entering a synchronized block) to acquire the lock. Once a Lock has been ob-
tained by one thread, the Lock object will not allow another thread to obtain the Lock until
the first thread releases the Lock (by calling the Lock’s unlock method—analogous to ex-

Consumer reads 6 (buffer cells occupied: 2)
buffer cells: 7 8 6

---- ---- ----
R W

Consumer reads 7 (buffer cells occupied: 1)
buffer cells: 7 8 6

---- ---- ----
R W

Producer writes 9 (buffer cells occupied: 2)
buffer cells: 7 8 9

---- ---- ----
W R

Consumer reads 8 (buffer cells occupied: 1)
buffer cells: 7 8 9

---- ---- ----
W R

Consumer reads 9 (buffer cells occupied: 0)
buffer cells: 7 8 9

---- ---- ----
WR

Producer writes 10 (buffer cells occupied: 1)
buffer cells: 10 8 9

---- ---- ----
R W

Producer done producing
Terminating Producer
Consumer reads 10 (buffer cells occupied: 0)
buffer cells: 10 8 9

---- ---- ----
WR

Consumer read values totaling: 55
Terminating Consumer

Fig. 23.19 | Producer and Consumer threads manipulating a circular buffer. (Part 3 of 3.)

23.9 The Lock and Condition Interfaces 777

iting a synchronized block). If several threads are trying to call method lock on the same
Lock object at the same time, only one of these threads can obtain the lock—all the others
are placed in the waiting state for that lock. When a thread calls method unlock, the lock
on the object is released and a waiting thread attempting to lock the object proceeds.

Class ReentrantLock (of package java.util.concurrent.locks) is a basic imple-
mentation of the Lock interface. The constructor for a ReentrantLock takes a boolean

argument that specifies whether the lock has a fairness policy. If the argument is true, the
ReentrantLock’s fairness policy is “the longest-waiting thread will acquire the lock when
it’s available.” Such a fairness policy guarantees that indefinite postponement (also called
starvation) cannot occur. If the fairness policy argument is set to false, there’s no guar-
antee as to which waiting thread will acquire the lock when it’s available.

Condition Objects and Interface Condition
If a thread that owns a Lock determines that it cannot continue with its task until some
condition is satisfied, the thread can wait on a condition object. Using Lock objects allows
you to explicitly declare the condition objects on which a thread may need to wait. For
example, in the producer/consumer relationship, producers can wait on one object and
consumers can wait on another. This is not possible when using the synchronized key-
words and an object’s built-in monitor lock. Condition objects are associated with a spe-
cific Lock and are created by calling a Lock’s newCondition method, which returns an
object that implements the Condition interface (of package java.util.concur-

rent.locks). To wait on a condition object, the thread can call the Condition’s await

method (analogous to Object method wait). This immediately releases the associated
Lock and places the thread in the waiting state for that Condition. Other threads can then
try to obtain the Lock. When a runnable thread completes a task and determines that the
waiting thread can now continue, the runnable thread can call Condition method signal

(analogous to Object method notify) to allow a thread in that Condition’s waiting state
to return to the runnable state. At this point, the thread that transitioned from the waiting
state to the runnable state can attempt to reacquire the Lock. Even if it’s able to reacquire
the Lock, the thread still might not be able to perform its task at this time—in which case
the thread can call the Condition’s await method to release the Lock and reenter the wait-
ing state. If multiple threads are in a Condition’s waiting state when signal is called, the
default implementation of Condition signals the longest-waiting thread to transition to
the runnable state. If a thread calls Condition method signalAll (analogous to Object

method notifyALl), then all the threads waiting for that condition transition to the run-
nable state and become eligible to reacquire the Lock. Only one of those threads can obtain
the Lock on the object—the others will wait until the Lock becomes available again. If the
Lock has a fairness policy, the longest-waiting thread acquires the Lock. When a thread is
finished with a shared object, it must call method unlock to release the Lock.

Software Engineering Observation 23.3
Using a ReentrantLock with a fairness policy avoids indefinite postponement.

Performance Tip 23.4
Using a ReentrantLock with a fairness policy can decrease program performance.

778 Chapter 23 Multithreading

Lock and Condition vs. the synchronized Keyword
In some applications, using Lock and Condition objects may be preferable to using the
synchronized keyword. Locks allow you to interrupt waiting threads or to specify a time-
out for waiting to acquire a lock, which is not possible using the synchronized keyword.
Also, a Lock is not constrained to be acquired and released in the same block of code, which
is the case with the synchronized keyword. Condition objects allow you to specify mul-
tiple conditions on which threads may wait. Thus, it’s possible to indicate to waiting
threads that a specific condition object is now true by calling signal or signallAll on
that Condition object. With synchronized, there’s no way to explicitly state the condi-
tion on which threads are waiting, and thus there’s no way to notify threads waiting on
one condition that they may proceed without also signaling threads waiting on any other
conditions. There are other possible advantages to using Lock and Condition objects, but
generally it’s best to use the synchronized keyword unless your application requires ad-
vanced synchronization capabilities.

Using Locks and Conditions to Implement Synchronization
To illustrate how to use the Lock and Condition interfaces, we now implement the pro-
ducer/consumer relationship using Lock and Condition objects to coordinate access to a
shared single-element buffer (Fig. 23.20 and Fig. 23.21). In this case, each produced value
is correctly consumed exactly once. Again, we reuse interface Buffer and classes Producer
and Consumer from the example in Section 23.5, except that line 28 is removed from class
Producer and class Consumer.

Common Programming Error 23.2
Deadlock occurs when a waiting thread (let’s call this thread1) cannot proceed because
it’s waiting (either directly or indirectly) for another thread (let’s call this thread2) to pro-
ceed, while simultaneously thread2 cannot proceed because it’s waiting (either directly or
indirectly) for thread1 to proceed. The two threads are waiting for each other, so the ac-
tions that would enable each thread to continue execution can never occur.

Error-Prevention Tip 23.4
When multiple threads manipulate a shared object using locks, ensure that if one thread
calls method await to enter the waiting state for a condition object, a separate thread
eventually will call Condition method signal to transition the thread waiting on the
condition object back to the runnable state. If multiple threads may be waiting on the
condition object, a separate thread can call Condition method signalAll as a safeguard
to ensure that all the waiting threads have another opportunity to perform their tasks. If
this is not done, starvation might occur.

Common Programming Error 23.3
An IllegalMonitorStateException occurs if a thread issues an await, a signal, or a
signalAll on a Condition object that was created from a ReentrantLock without hav-
ing acquired the lock for that Condition object.

Error-Prevention Tip 23.5
Using interfaces Lock and Condition is error prone—unlock is not guaranteed to be
called, whereas the monitor in a synchronized statement will always be released when
the statement completes execution.

23.9 The Lock and Condition Interfaces 779

Class SynchronizedBuffer (Fig. 23.20) contains five fields. Line 11 creates a new
object of type ReentrantLock and assigns its reference to Lock variable accessLock. The
ReentrantLock is created without the fairness policy because at any time only a single Pro-
ducer or Consumer will be waiting to acquire the Lock in this example. Lines 14–15 create
two Conditions using Lock method newCondition. Condition canWrite contains a queue
for a Producer thread waiting while the buffer is full (i.e., there’s data in the buffer that
the Consumer has not read yet). If the buffer is full, the Producer calls method await on
this Condition. When the Consumer reads data from a full buffer, it calls method signal

on this Condition. Condition canRead contains a queue for a Consumer thread waiting
while the buffer is empty (i.e., there’s no data in the buffer for the Consumer to read). If
the buffer is empty, the Consumer calls method await on this Condition. When the Pro-

ducer writes to the empty buffer, it calls method signal on this Condition. The int vari-
able buffer (line 17) holds the shared data. The boolean variable occupied (line 18) keeps
track of whether the buffer currently holds data (that the Consumer should read).

1 // Fig. 23.20: SynchronizedBuffer.java
2 // Synchronizing access to a shared integer using the Lock and Condition
3 // interfaces
4 import java.util.concurrent.locks.Lock;
5 import java.util.concurrent.locks.ReentrantLock;
6 import java.util.concurrent.locks.Condition;
7
8 public class SynchronizedBuffer implements Buffer
9 {

10
11
12
13
14
15
16
17
18 private boolean occupied = false; // whether buffer is occupied
19
20 // place int value into buffer
21 public void set(int value) throws InterruptedException
22 {
23
24
25 // output thread information and buffer information, then wait
26 try

27 {
28 // while buffer is not empty, place thread in waiting state
29 while (occupied)
30 {
31 System.out.println("Producer tries to write.");
32 displayState("Buffer full. Producer waits.");
33
34 } // end while

Fig. 23.20 | Synchronizing access to a shared integer using the Lock and Condition

interfaces. (Part 1 of 3.)

// Lock to control synchronization with this buffer
private final Lock accessLock = new ReentrantLock();

// conditions to control reading and writing
private final Condition canWrite = accessLock.newCondition();
private final Condition canRead = accessLock.newCondition();

private int buffer = -1; // shared by producer and consumer threads

accessLock.lock(); // lock this object

canWrite.await(); // wait until buffer is empty

780 Chapter 23 Multithreading

35
36 buffer = value; // set new buffer value
37
38 // indicate producer cannot store another value
39 // until consumer retrieves current buffer value
40 occupied = true;
41
42 displayState("Producer writes " + buffer);
43
44
45
46 } // end try
47 finally

48 {
49
50 } // end finally
51 } // end method set
52
53 // return value from buffer
54 public int get() throws InterruptedException
55 {
56 int readValue = 0; // initialize value read from buffer
57
58
59 // output thread information and buffer information, then wait
60 try

61 {
62 // if there is no data to read, place thread in waiting state
63 while (!occupied)
64 {
65 System.out.println("Consumer tries to read.");
66 displayState("Buffer empty. Consumer waits.");
67
68 } // end while
69
70 // indicate that producer can store another value
71 // because consumer just retrieved buffer value
72 occupied = false;
73
74 readValue = buffer; // retrieve value from buffer
75 displayState("Consumer reads " + readValue);
76
77
78
79 } // end try
80 finally

81 {
82
83 } // end finally
84
85 return readValue;
86 } // end method get

Fig. 23.20 | Synchronizing access to a shared integer using the Lock and Condition

interfaces. (Part 2 of 3.)

// signal any threads waiting to read from buffer
canRead.signalAll();

accessLock.unlock(); // unlock this object

accessLock.lock(); // lock this object

canRead.await(); // wait until buffer is full

// signal any threads waiting for buffer to be empty
canWrite.signalAll();

accessLock.unlock(); // unlock this object

23.9 The Lock and Condition Interfaces 781

Line 23 in method set calls method lock on the SynchronizedBuffer’s accessLock.
If the lock is available (i.e., no other thread has acquired it), this thread now owns the lock
and the thread continues. If the lock is unavailable (i.e., it’s held by another thread), method
lock waits until the lock is released. After the lock is acquired, lines 26–46 execute. Line 29
tests occupied to determine whether buffer is full. If it is, lines 31–32 display a message
indicating that the thread will wait. Line 33 calls Condition method await on the canWrite
condition object, which temporarily releases the SynchronizedBuffer’s Lock and waits for
a signal from the Consumer that buffer is available for writing. When buffer is available,
the method proceeds, writing to buffer (line 36), setting occupied to true (line 40) and
displaying a message indicating that the producer wrote a value (line 42). Line 45 calls Con-
dition method signal on condition object canRead to notify the waiting Consumer (if
there is one) that the buffer has new data to be read. Line 49 calls method unlock from a
finally block to release the lock and allow the Consumer to proceed.

Line 57 of method get (lines 54–86) calls method lock to acquire the Lock. This
method waits until the Lock is available. Once the Lock is acquired, line 63 tests whether
occupied is false, indicating that the buffer is empty. If so, line 67 calls method await on
condition object canRead. Recall that method signal is called on variable canRead in the
set method (line 45). When the Condition object is signaled, the get method continues.
Line 72–74 set occupied to false, store the value of buffer in readValue and output the
readValue. Then line 78 signals the condition object canWrite. This awakens the Pro-

ducer if it’s indeed waiting for the buffer to be emptied. Line 82 calls method unlock from
a finally block to release the lock, and line 85 returns readValue to the caller.

Class SharedBufferTest2 (Fig. 23.21) is identical to that of Fig. 23.17. Study the
outputs in Fig. 23.21. Observe that every integer produced is consumed exactly once—no
values are lost, and no values are consumed more than once. The Lock and Condition objects
ensure that the Producer and Consumer cannot perform their tasks unless it’s their turn.

87
88 // display current operation and buffer state
89 public void displayState(String operation)
90 {
91 System.out.printf("%-40s%d\t\t%b\n\n", operation, buffer,
92 occupied);
93 } // end method displayState
94 } // end class SynchronizedBuffer

Error-Prevention Tip 23.6
Place calls to Lock method unlock in a finally block. If an exception is thrown, unlock
must still be called or deadlock could occur.

Common Programming Error 23.4
Forgetting to signal a waiting thread is a logic error. The thread will remain in the wait-
ing state, which will prevent it from proceeding. Such waiting can lead to indefinite post-
ponement or deadlock.

Fig. 23.20 | Synchronizing access to a shared integer using the Lock and Condition

interfaces. (Part 3 of 3.)

782 Chapter 23 Multithreading

The Producer must go first, the Consumer must wait if the Producer has not produced
since the Consumer last consumed and the Producer must wait if the Consumer has not yet
consumed the value that the Producer most recently produced. Execute this program sev-
eral times to confirm that every integer produced is consumed exactly once. In the sample
output, note the highlighted lines indicating when the Producer and Consumer must wait
to perform their respective tasks.

1 // Fig. 23.21: SharedBufferTest2.java
2 // Two threads manipulating a synchronized buffer.
3 import java.util.concurrent.ExecutorService;
4 import java.util.concurrent.Executors;
5
6 public class SharedBufferTest2
7 {
8 public static void main(String[] args)
9 {

10 // create new thread pool with two threads
11 ExecutorService application = Executors.newCachedThreadPool();
12
13 // create SynchronizedBuffer to store ints
14 Buffer sharedLocation = new SynchronizedBuffer();
15
16 System.out.printf("%-40s%s\t\t%s\n%-40s%s\n\n", "Operation",
17 "Buffer", "Occupied", "---------", "------\t\t--------");
18
19 // execute the Producer and Consumer tasks
20 application.execute(new Producer(sharedLocation));
21 application.execute(new Consumer(sharedLocation));
22
23 application.shutdown();
24 } // end main
25 } // end class SharedBufferTest2

Operation Buffer Occupied
--------- ------ --------

Producer writes 1 1 true

Consumer reads 1 1 false

Producer writes 2 2 true

Consumer reads 2 2 false

Producer writes 3 3 true

Consumer reads 3 3 false

Fig. 23.21 | Two threads manipulating a synchronized buffer. (Part 1 of 2.)

Producer tries to write.
Buffer full. Producer waits. 1 true

Producer tries to write.
Buffer full. Producer waits. 2 true

23.10 Concurrent Collections Overview 783

23.10 Concurrent Collections Overview
In Chapter 18, we introduced various collections from the Java Collections API. We also
mentioned that you can obtain synchronized versions of those collections to allow only
one thread at a time to access a collection that might be shared among several threads. The
collections from the java.util.concurrent package are specifically designed and opti-
mized for use in programs that share collections among multiple threads.

Figure 23.22 lists the many concurrent collections in package java.util.concur-

rent. For more information on these collections, visit

Producer writes 4 4 true

Consumer reads 4 4 false

Producer writes 5 5 true

Consumer reads 5 5 false

Producer writes 6 6 true

Consumer reads 6 6 false

Producer writes 7 7 true

Consumer reads 7 7 false

Producer writes 8 8 true

Consumer reads 8 8 false

Producer writes 9 9 true

Consumer reads 9 9 false

Producer writes 10 10 true

Producer done producing
Terminating Producer
Consumer reads 10 10 false

Consumer read values totaling 55
Terminating Consumer

download.oracle.com/javase/6/docs/api/java/util/concurrent/
package-summary.html

Fig. 23.21 | Two threads manipulating a synchronized buffer. (Part 2 of 2.)

Consumer tries to read.
Buffer empty. Consumer waits. 4 false

Consumer tries to read.
Buffer empty. Consumer waits. 5 false

784 Chapter 23 Multithreading

For information on the additional concurrent collections that are new in Java SE 7, visit

download.java.net/jdk7/docs/api/java/util/concurrent/
package-summary.html

Collection Description

ArrayBlockingQueue A fixed-size queue that supports the producer/consumer
relationship—possibly with many producers and consumers.

ConcurrentHashMap A hash-based map that allows an arbitrary number of reader
threads and a limited number of writer threads.

ConcurrentLinkedQueue A concurrent linked-list implementation of a queue that can
grow dynamically.

ConcurrentSkipListMap A concurrent map that is sorted by its keys.

ConcurrentSkipListSet A sorted concurrent set.

CopyOnWriteArrayList A thread-safe ArrayList. Each operation that modifies the
collection first creates a new copy of the contents. Used
when the collection is traversed much more frequently than
the collection’s contents are modified.

CopyOnWriteArraySet A set that’s implemented using CopyOnWriteArrayList.

DelayQueue A variable-size queue containing Delayed objects. An object
can be removed only after its delay has expired.

LinkedBlockingDeque A double-ended blocking queue implemented as a linked list
that can optionally be fixed in size.

LinkedBlockingQueue A blocking queue implemented as a linked list that can
optionally be fixed in size.

PriorityBlockingQueue A variable-length priority-based blocking queue (like a
PriorityQueue).

SynchronousQueue A blocking queue implementation that does not have an
internal capacity. Each insert operation by one thread must
wait for a remove operation from another thread and vice
versa.

Concurrent Collections Added in Java SE 7
ConcurrentLinkedDeque A concurrent linked-list implementation of a double-ended

queue.

LinkedTransferQueue A linked-list implementation of interface TransferQueue.
Each producer has the option of waiting for a consumer to
take an element being inserted (via method transfer) or
simply placing the element into the queue (via method put).
Also provides overloaded method tryTransfer to immedi-
ately transfer an element to a waiting consumer or to do so
within a specified timeout period. If the transfer cannot be
completed, the element is not placed in the queue. Typically
used in applications that pass messages between threads.

Fig. 23.22 | Concurrent collections summary (package java.util.concurrent).

23.11 Multithreading with GUI 785

23.11 Multithreading with GUI
Swing applications present a unique set of challenges for multithreaded programming. All
Swing applications have a single thread, called the event dispatch thread, to handle inter-
actions with the application’s GUI components. Typical interactions include updating
GUI components or processing user actions such as mouse clicks. All tasks that require inter-
action with an application’s GUI are placed in an event queue and are executed sequentially
by the event dispatch thread.

Swing GUI components are not thread safe—they cannot be manipulated by multiple
threads without the risk of incorrect results. Unlike the other examples presented in this
chapter, thread safety in GUI applications is achieved not by synchronizing thread actions,
but by ensuring that Swing components are accessed from only a single thread—the event dis-
patch thread. This technique is called thread confinement. Allowing just one thread to
access non-thread-safe objects eliminates the possibility of corruption due to multiple
threads accessing these objects concurrently.

Usually it’s sufficient to perform simple calculations on the event dispatch thread in
sequence with GUI component manipulations. If an application must perform a lengthy
computation in response to a user interface interaction, the event dispatch thread cannot
attend to other tasks in the event queue while the thread is tied up in that computation.
This causes the GUI components to become unresponsive. It’s preferable to handle a long-
running computation in a separate thread, freeing the event dispatch thread to continue
managing other GUI interactions. Of course, to update the GUI based on the computa-
tion’s results, you must update the GUI from the event dispatch thread, rather than from
the worker thread that performed the computation.

Class SwingWorker
Class SwingWorker (in package javax.swing) perform long-running computations in a
worker thread and to update Swing components from the event dispatch thread based on
the computations’ results. SwingWorker implements the Runnable interface, meaning that
a SwingWorker object can be scheduled to execute in a separate thread. The SwingWorker class
provides several methods to simplify performing computations in a worker thread and
making the results available for display in a GUI. Some common SwingWorker methods
are described in Fig. 23.23.

Method Description

doInBackground Defines a long computation and is called in a worker thread.

done Executes on the event dispatch thread when doInBackground returns.

execute Schedules the SwingWorker object to be executed in a worker thread.

get Waits for the computation to complete, then returns the result of the
computation (i.e., the return value of doInBackground).

publish Sends intermediate results from the doInBackground method to the pro-

cess method for processing on the event dispatch thread.

Fig. 23.23 | Commonly used SwingWorker methods. (Part 1 of 2.)

786 Chapter 23 Multithreading

23.11.1 Performing Computations in a Worker Thread
In the next example, the user enters a number n and the program gets the nth Fibonacci
number, which we calculate using a recursive algorithm. Since the algorithm is time con-
suming for large values, we use a SwingWorker object to perform the calculation in a work-
er thread. The GUI also provides a separate set of components that get the next Fibonacci
number in the sequence with each click of a button, beginning with fibonacci(1). This
set of components performs its short computation directly in the event dispatch thread.
This program is capable of producing up to the 92nd Fibonacci number—subsequent val-
ues are outside the range that can be represented by a long. Recall that you can use class
BigInteger to represent arbitrarily large integer values.

Class BackgroundCalculator (Fig. 23.24) performs the recursive Fibonacci calcula-
tion in a worker thread. This class extends SwingWorker (line 8), overriding the methods
doInBackground and done. Method doInBackground (lines 21–24) computes the nth
Fibonacci number in a worker thread and returns the result. Method done (lines 27–43)
displays the result in a JLabel.

process Receives intermediate results from the publish method and processes
these results on the event dispatch thread.

setProgress Sets the progress property to notify any property change listeners on the
event dispatch thread of progress bar updates.

1 // Fig. 23.24: BackgroundCalculator.java
2 // SwingWorker subclass for calculating Fibonacci numbers
3 // in a background thread.
4 import javax.swing.SwingWorker;
5 import javax.swing.JLabel;
6 import java.util.concurrent.ExecutionException;
7
8 public class BackgroundCalculator extends SwingWorker< Long, Object >
9 {

10 private final int n; // Fibonacci number to calculate
11 private final JLabel resultJLabel; // JLabel to display the result
12
13 // constructor
14 public BackgroundCalculator(int number, JLabel label)
15 {
16 n = number;
17 resultJLabel = label;
18 } // end BackgroundCalculator constructor

Fig. 23.24 | SwingWorker subclass for calculating Fibonacci numbers in a background thread.
(Part 1 of 2.)

Method Description

Fig. 23.23 | Commonly used SwingWorker methods. (Part 2 of 2.)

23.11 Multithreading with GUI 787

SwingWorker is a generic class. In line 8, the first type parameter is Long and the second
is Object. The first type parameter indicates the type returned by the doInBackground

method; the second indicates the type that’s passed between the publish and process

methods to handle intermediate results. Since we do not use publish and process in this
example, we simply use Object as the second type parameter. We discuss publish and
process in Section 23.11.2.

A BackgroundCalculator object can be instantiated from a class that controls a GUI.
A BackgroundCalculator maintains instance variables for an integer that represents the
Fibonacci number to be calculated and a JLabel that displays the results of the calculation
(lines 10–11). The BackgroundCalculator constructor (lines 14–18) initializes these
instance variables with the arguments that are passed to the constructor.

19
20 // long-running code to be run in a worker thread
21 public Long doInBackground()
22 {
23 return nthFib = fibonacci(n);
24 } // end method doInBackground
25
26 // code to run on the event dispatch thread when doInBackground returns
27 protected void done()
28 {
29 try

30 {
31
32
33 } // end try
34 catch (InterruptedException ex)
35 {
36 resultJLabel.setText("Interrupted while waiting for results.");
37 } // end catch
38 catch (ExecutionException ex)
39 {
40 resultJLabel.setText(
41 "Error encountered while performing calculation.");
42 } // end catch
43 } // end method done
44
45 // recursive method fibonacci; calculates nth Fibonacci number
46 public long fibonacci(long number)
47 {
48 if (number == 0 || number == 1)
49 return number;
50 else

51 return fibonacci(number - 1) + fibonacci(number - 2);
52 } // end method fibonacci
53 } // end class BackgroundCalculator

Fig. 23.24 | SwingWorker subclass for calculating Fibonacci numbers in a background thread.
(Part 2 of 2.)

// get the result of doInBackground and display it
resultJLabel.setText(get().toString());

788 Chapter 23 Multithreading

When method execute is called on a BackgroundCalculator object, the object is
scheduled for execution in a worker thread. Method doInBackground is called from the
worker thread and invokes the fibonacci method (lines 46–52), passing instance variable
n as an argument (line 23). Method fibonacci uses recursion to compute the Fibonacci
of n. When fibonacci returns, method doInBackground returns the result.

After doInBackground returns, method done is called from the event dispatch thread.
This method attempts to set the result JLabel to the return value of doInBackground by
calling method get to retrieve this return value (line 32). Method get waits for the result to
be ready if necessary, but since we call it from method done, the computation will be com-
plete before get is called. Lines 34–37 catch InterruptedException if the current thread is
interrupted while waiting for get to return. This exception will not occur in this example
since the calculation will have already completed by the time get is called. Lines 38–42 catch
ExecutionException, which is thrown if an exception occurs during the computation.

Class FibonacciNumbers
Class FibonacciNumbers (Fig. 23.25) displays a window containing two sets of GUI com-
ponents—one set to compute a Fibonacci number in a worker thread and another to get
the next Fibonacci number in response to the user’s clicking a JButton. The constructor
(lines 38–109) places these components in separate titled JPanels. Lines 46–47 and 78–
79 add two JLabels, a JTextField and a JButton to the workerJPanel to allow the user
to enter an integer whose Fibonacci number will be calculated by the BackgroundWorker.
Lines 84–85 and 103 add two JLabels and a JButton to the event dispatch thread panel
to allow the user to get the next Fibonacci number in the sequence. Instance variables n1
and n2 contain the previous two Fibonacci numbers in the sequence and are initialized to
0 and 1, respectively (lines 29–30). Instance variable count stores the most recently com-
puted sequence number and is initialized to 1 (line 31). The two JLabels display count

and n2 initially, so that the user will see the text Fibonacci of 1: 1 in the eventThread-

JPanel when the GUI starts.

Software Engineering Observation 23.4
Any GUI components that will be manipulated by SwingWorker methods, such as
components that will be updated from methods process or done, should be passed to the
SwingWorker subclass’s constructor and stored in the subclass object. This gives these
methods access to the GUI components they’ll manipulate.

1 // Fig. 23.25: FibonacciNumbers.java
2 // Using SwingWorker to perform a long calculation with
3 // results displayed in a GUI.
4 import java.awt.GridLayout;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.ActionListener;
7 import javax.swing.JButton;
8 import javax.swing.JFrame;
9 import javax.swing.JPanel;

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 1 of 4.)

23.11 Multithreading with GUI 789

10 import javax.swing.JLabel;
11 import javax.swing.JTextField;
12 import javax.swing.border.TitledBorder;
13 import javax.swing.border.LineBorder;
14 import java.awt.Color;
15 import java.util.concurrent.ExecutionException;
16
17 public class FibonacciNumbers extends JFrame
18 {
19 // components for calculating the Fibonacci of a user-entered number
20 private final JPanel workerJPanel =
21 new JPanel(new GridLayout(2, 2, 5, 5));
22 private final JTextField numberJTextField = new JTextField();
23 private final JButton goJButton = new JButton("Go");
24 private final JLabel fibonacciJLabel = new JLabel();
25
26 // components and variables for getting the next Fibonacci number
27 private final JPanel eventThreadJPanel =
28 new JPanel(new GridLayout(2, 2, 5, 5));
29 private long n1 = 0; // initialize with first Fibonacci number
30 private long n2 = 1; // initialize with second Fibonacci number
31 private int count = 1; // current Fibonacci number to display
32 private final JLabel nJLabel = new JLabel("Fibonacci of 1: ");
33 private final JLabel nFibonacciJLabel =
34 new JLabel(String.valueOf(n2));
35 private final JButton nextNumberJButton = new JButton("Next Number");
36
37 // constructor
38 public FibonacciNumbers()
39 {
40 super("Fibonacci Numbers");
41 setLayout(new GridLayout(2, 1, 10, 10));
42
43 // add GUI components to the SwingWorker panel
44 workerJPanel.setBorder(new TitledBorder(
45 new LineBorder(Color.BLACK), "With SwingWorker"));
46 workerJPanel.add(new JLabel("Get Fibonacci of:"));
47 workerJPanel.add(numberJTextField);
48 goJButton.addActionListener(
49 new ActionListener()
50 {
51 public void actionPerformed(ActionEvent event)
52 {
53 int n;
54
55 try

56 {
57 // retrieve user's input as an integer
58 n = Integer.parseInt(numberJTextField.getText());
59 } // end try
60 catch(NumberFormatException ex)
61 {

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 2 of 4.)

790 Chapter 23 Multithreading

62 // display an error message if the user did not
63 // enter an integer
64 fibonacciJLabel.setText("Enter an integer.");
65 return;
66 } // end catch
67
68 // indicate that the calculation has begun
69 fibonacciJLabel.setText("Calculating...");
70
71
72
73
74
75 } // end method actionPerformed
76 } // end anonymous inner class
77); // end call to addActionListener
78 workerJPanel.add(goJButton);
79 workerJPanel.add(fibonacciJLabel);
80
81 // add GUI components to the event-dispatching thread panel
82 eventThreadJPanel.setBorder(new TitledBorder(
83 new LineBorder(Color.BLACK), "Without SwingWorker"));
84 eventThreadJPanel.add(nJLabel);
85 eventThreadJPanel.add(nFibonacciJLabel);
86 nextNumberJButton.addActionListener(
87 new ActionListener()
88 {
89 public void actionPerformed(ActionEvent event)
90 {
91 // calculate the Fibonacci number after n2
92 long temp = n1 + n2;
93 n1 = n2;
94 n2 = temp;
95 ++count;
96
97 // display the next Fibonacci number
98 nJLabel.setText("Fibonacci of " + count + ": ");
99 nFibonacciJLabel.setText(String.valueOf(n2));
100 } // end method actionPerformed
101 } // end anonymous inner class
102); // end call to addActionListener
103 eventThreadJPanel.add(nextNumberJButton);
104
105 add(workerJPanel);
106 add(eventThreadJPanel);
107 setSize(275, 200);
108 setVisible(true);
109 } // end constructor
110
111 // main method begins program execution
112 public static void main(String[] args)
113 {

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 3 of 4.)

// create a task to perform calculation in background
BackgroundCalculator task =

new BackgroundCalculator(n, fibonacciJLabel);
task.execute(); // execute the task

23.11 Multithreading with GUI 791

Lines 48–77 register the event handler for the goJButton. If the user clicks this
JButton, line 58 gets the value entered in the numberJTextField and attempts to parse it
as an integer. Lines 72–73 create a new BackgroundCalculator object, passing in the user-
entered value and the fibonacciJLabel that’s used to display the calculation’s results.
Line 74 calls method execute on the BackgroundCalculator, scheduling it for execution
in a separate worker thread. Method execute does not wait for the BackgroundCalcu-

lator to finish executing. It returns immediately, allowing the GUI to continue pro-
cessing other events while the computation is performed.

If the user clicks the nextNumberJButton in the eventThreadJPanel, the event han-
dler registered in lines 86–102 executes.Lines 92–95 add the previous two Fibonacci num-
bers stored in n1 and n2 to determine the next number in the sequence, update n1 and n2

to their new values and increment count. Then lines 98–99 update the GUI to display the
next number. The code for these calculations is in method actionPerformed, so they’re
performed on the event dispatch thread. Handling such short computations in the event
dispatch thread does not cause the GUI to become unresponsive, as with the recursive
algorithm for calculating the Fibonacci of a large number. Because the longer Fibonacci
computation is performed in a separate worker thread using the SwingWorker, it’s possible
to get the next Fibonacci number while the recursive computation is still in progress.

114 FibonacciNumbers application = new FibonacciNumbers();
115 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
116 } // end main
117 } // end class FibonacciNumbers

Fig. 23.25 | Using SwingWorker to perform a long calculation with results displayed in a GUI.
(Part 4 of 4.)

a) Begin calculating Fibonacci of 40 in the
background

b) Calculating other Fibonacci values while
Fibonacci of 40 continues calculating

c) Fibonacci of 40 calculation finishes

792 Chapter 23 Multithreading

23.11.2 Processing Intermediate Results with SwingWorker

We’ve presented an example that uses the SwingWorker class to execute a long process in
a background thread and update the GUI when the process is finished. We now present an
example of updating the GUI with intermediate results before the long process completes.
Figure 23.26 presents class PrimeCalculator, which extends SwingWorker to compute the
first n prime numbers in a worker thread. In addition to the doInBackground and done

methods used in the previous example, this class uses SwingWorker methods publish, pro-
cess and setProgress. In this example, method publish sends prime numbers to method
process as they’re found, method process displays these primes in a GUI component and
method setProgress updates the progress property. We later show how to use this prop-
erty to update a JProgressBar.

1 // Fig. 23.26: PrimeCalculator.java
2 // Calculates the first n primes, displaying them as they are found.
3 import javax.swing.JTextArea;
4 import javax.swing.JLabel;
5 import javax.swing.JButton;
6 import javax.swing.SwingWorker;
7 import java.util.Arrays;
8 import java.util.Random;
9 import java.util.List;

10 import java.util.concurrent.CancellationException;
11 import java.util.concurrent.ExecutionException;
12
13 public class PrimeCalculator extends SwingWorker< Integer, Integer >
14 {
15 private final Random generator = new Random();
16 private final JTextArea intermediateJTextArea; // displays found primes
17 private final JButton getPrimesJButton;
18 private final JButton cancelJButton;
19 private final JLabel statusJLabel; // displays status of calculation
20 private final boolean[] primes; // boolean array for finding primes
21
22 // constructor
23 public PrimeCalculator(int max, JTextArea intermediate, JLabel status,
24 JButton getPrimes, JButton cancel)
25 {
26 intermediateJTextArea = intermediate;
27 statusJLabel = status;
28 getPrimesJButton = getPrimes;
29 cancelJButton = cancel;
30 primes = new boolean[max];
31
32 // initialize all prime array values to true
33 Arrays.fill(primes, true);
34 } // end constructor
35
36 // finds all primes up to max using the Sieve of Eratosthenes
37 public Integer doInBackground()
38 {

Fig. 23.26 | Calculates the first n primes, displaying them as they are found. (Part 1 of 3.)

23.11 Multithreading with GUI 793

39 int count = 0; // the number of primes found
40
41 // starting at the third value, cycle through the array and put
42 // false as the value of any greater number that is a multiple
43 for (int i = 2; i < primes.length; i++)
44 {
45 if (isCancelled()) // if calculation has been canceled
46 return count;
47 else

48 {
49
50
51 try

52 {
53 Thread.sleep(generator.nextInt(5));
54 } // end try
55 catch (InterruptedException ex)
56 {
57 statusJLabel.setText("Worker thread interrupted");
58 return count;
59 } // end catch
60
61 if (primes[i]) // i is prime
62 {
63
64 ++count;
65
66 for (int j = i + i; j < primes.length; j += i)
67 primes[j] = false; // i is not prime
68 } // end if
69 } // end else
70 } // end for
71
72 return count;
73 } // end method doInBackground
74
75
76
77
78
79
80
81
82 // code to execute when doInBackground completes
83 protected void done()
84 {
85 getPrimesJButton.setEnabled(true); // enable Get Primes button
86 cancelJButton.setEnabled(false); // disable Cancel button
87
88 int numPrimes;
89
90 try

91 {

Fig. 23.26 | Calculates the first n primes, displaying them as they are found. (Part 2 of 3.)

setProgress(100 * (i + 1) / primes.length);

publish(i); // make i available for display in prime list

// displays published values in primes list
protected void process(List< Integer > publishedVals)
{

for (int i = 0; i < publishedVals.size(); i++)
intermediateJTextArea.append(publishedVals.get(i) + "\n");

} // end method process

794 Chapter 23 Multithreading

Class PrimeCalculator extends SwingWorker (line 13), with the first type parameter
indicating the return type of method doInBackground and the second indicating the type
of intermediate results passed between methods publish and process. In this case, both
type parameters are Integers. The constructor (lines 23–34) takes as arguments an integer
that indicates the upper limit of the prime numbers to locate, a JTextArea used to display
primes in the GUI, one JButton for initiating a calculation and one for canceling it, and
a JLabel used to display the status of the calculation.

Sieve of Eratosthenes
Line 33 initializes the elements of the boolean array primes to true with Arrays method
fill. PrimeCalculator uses this array and the Sieve of Eratosthenes algorithm to find all
primes less than max. The Sieve of Eratosthenes takes a list of integers and, beginning with
the first prime number, filters out all multiples of that prime. It then moves to the next
prime, which will be the next number that’s not yet filtered out, and eliminates all of its
multiples. It continues until the end of the list is reached and all nonprimes have been fil-
tered out. Algorithmically, we begin with element 2 of the boolean array and set the cells
corresponding to all values that are multiples of 2 to false to indicate that they’re divisible
by 2 and thus not prime. We then move to the next array element, check whether it’s true,
and if so set all of its multiples to false to indicate that they’re divisible by the current
index. When the whole array has been traversed in this way, all indices that contain true

are prime, as they have no divisors.

Method doInBackground

In method doInBackground (lines 37–73), the control variable i for the loop (lines 43–
70) controls the current index for implementing the Sieve of Eratosthenes. Line 45 calls
the inherited SwingWorker method isCancelled to determine whether the user has

92 numPrimes = get(); // retrieve doInBackground return value
93 } // end try
94 catch (InterruptedException ex)
95 {
96 statusJLabel.setText("Interrupted while waiting for results.");
97 return;
98 } // end catch
99 catch (ExecutionException ex)
100 {
101 statusJLabel.setText("Error performing computation.");
102 return;
103 } // end catch
104 catch (CancellationException ex)
105 {
106 statusJLabel.setText("Cancelled.");
107 return;
108 } // end catch
109
110 statusJLabel.setText("Found " + numPrimes + " primes.");
111 } // end method done
112 } // end class PrimeCalculator

Fig. 23.26 | Calculates the first n primes, displaying them as they are found. (Part 3 of 3.)

23.11 Multithreading with GUI 795

clicked the Cancel button. If isCancelled returns true, method doInBackground returns
the number of primes found so far (line 46) without finishing the computation.

If the calculation isn’t canceled, line 49 calls setProgress to update the percentage of
the array that’s been traversed so far. Line 53 puts the currently executing thread to sleep
for up to 4 milliseconds. We discuss the reason for this shortly. Line 61 tests whether the
element of array primes at the current index is true (and thus prime). If so, line 63 passes
the index to method publish so that it can be displayed as an intermediate result in the
GUI and line 64 increments the number of primes found. Lines 66–67 set all multiples of
the current index to false to indicate that they’re not prime. When the entire array has
been traversed, line 72 returns the number of primes found.

Method process

Lines 76–80 declare method process, which executes in the event dispatch thread and re-
ceives its argument publishedVals from method publish. The passing of values between
publish in the worker thread and process in the event dispatch thread is asynchronous;
process might not be invoked for every call to publish. All Integers published since the
last call to process are received as a List by method process. Lines 78–79 iterate through
this list and display the published values in a JTextArea. Because the computation in
method doInBackground progresses quickly, publishing values often, updates to the
JTextArea can pile up on the event dispatch thread, causing the GUI to become sluggish.
In fact, when searching for a large number of primes, the event dispatch thread may receive
so many requests in quick succession to update the JTextArea that it runs out of memory
in its event queue. This is why we put the worker thread to sleep for a few milliseconds be-
tween calls to publish. The calculation is slowed just enough to allow the event dispatch
thread to keep up with requests to update the JTextArea with new primes, enabling the
GUI to update smoothly and remain responsive.

Method done

Lines 83–111 define method done. When the calculation is finished or canceled, method
done enables the Get Primes button and disables the Cancel button (lines 85–86). Line 92
gets the return value—the number of primes found—from method doInBackground.
Lines 94–108 catch the exceptions thrown by method get and display an appropriate mes-
sage in the statusJLabel. If no exceptions occur, line 110 sets the statusJLabel to indi-
cate the number of primes found.

Class FindPrimes
Class FindPrimes (Fig. 23.27) displays a JTextField that allows the user to enter a num-
ber, a JButton to begin finding all primes less than that number and a JTextArea to dis-
play the primes. A JButton allows the user to cancel the calculation, and a JProgressBar

indicates the calculation’s progress. The FindPrimes constructor (lines 32–125) sets up
the application’s GUI.

Lines 42–94 register the event handler for the getPrimesJButton. When the user
clicks this JButton, lines 47–49 reset the JProgressBar and clear the displayPrimes-

JTextArea and the statusJLabel. Lines 53–63 parse the value in the JTextField and dis-
play an error message if the value is not an integer. Lines 66–68 construct a new
PrimeCalculator object, passing as arguments the integer the user entered, the display-

PrimesJTextArea for displaying the primes, the statusJLabel and the two JButtons.

796 Chapter 23 Multithreading

1 // Fig 23.27: FindPrimes.java
2 // Using a SwingWorker to display prime numbers and update a JProgressBar
3 // while the prime numbers are being calculated.
4 import javax.swing.JFrame;
5 import javax.swing.JTextField;
6 import javax.swing.JTextArea;
7 import javax.swing.JButton;
8 import javax.swing.JProgressBar;
9 import javax.swing.JLabel;

10 import javax.swing.JPanel;
11 import javax.swing.JScrollPane;
12 import javax.swing.ScrollPaneConstants;
13 import java.awt.BorderLayout;
14 import java.awt.GridLayout;
15 import java.awt.event.ActionListener;
16 import java.awt.event.ActionEvent;
17 import java.util.concurrent.ExecutionException;
18 import java.beans.PropertyChangeListener;
19 import java.beans.PropertyChangeEvent;
20
21 public class FindPrimes extends JFrame
22 {
23 private final JTextField highestPrimeJTextField = new JTextField();
24 private final JButton getPrimesJButton = new JButton("Get Primes");
25 private final JTextArea displayPrimesJTextArea = new JTextArea();
26 private final JButton cancelJButton = new JButton("Cancel");
27 private final JProgressBar progressJProgressBar = new JProgressBar();
28 private final JLabel statusJLabel = new JLabel();
29 private PrimeCalculator calculator;
30
31 // constructor
32 public FindPrimes()
33 {
34 super("Finding Primes with SwingWorker");
35 setLayout(new BorderLayout());
36
37 // initialize panel to get a number from the user
38 JPanel northJPanel = new JPanel();
39 northJPanel.add(new JLabel("Find primes less than: "));
40 highestPrimeJTextField.setColumns(5);
41 northJPanel.add(highestPrimeJTextField);
42 getPrimesJButton.addActionListener(
43 new ActionListener()
44 {
45 public void actionPerformed(ActionEvent e)
46 {
47 progressJProgressBar.setValue(0); // reset JProgressBar
48 displayPrimesJTextArea.setText(""); // clear JTextArea
49 statusJLabel.setText(""); // clear JLabel
50
51 int number; // search for primes up through this value

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 1 of 3.)

23.11 Multithreading with GUI 797

52
53 try

54 {
55 // get user input
56 number = Integer.parseInt(
57 highestPrimeJTextField.getText());
58 } // end try
59 catch (NumberFormatException ex)
60 {
61 statusJLabel.setText("Enter an integer.");
62 return;
63 } // end catch
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87 // disable Get Primes button and enable Cancel button
88 getPrimesJButton.setEnabled(false);
89 cancelJButton.setEnabled(true);
90
91
92 } // end method ActionPerformed
93 } // end anonymous inner class
94); // end call to addActionListener
95 northJPanel.add(getPrimesJButton);
96
97 // add a scrollable JList to display results of calculation
98 displayPrimesJTextArea.setEditable(false);
99 add(new JScrollPane(displayPrimesJTextArea,
100 ScrollPaneConstants.VERTICAL_SCROLLBAR_ALWAYS,
101 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER));
102

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 2 of 3.)

// construct a new PrimeCalculator object
calculator = new PrimeCalculator(number,

displayPrimesJTextArea, statusJLabel, getPrimesJButton,
cancelJButton);

// listen for progress bar property changes
calculator.addPropertyChangeListener(

new PropertyChangeListener()
{

public void propertyChange(PropertyChangeEvent e)
{

// if the changed property is progress,
// update the progress bar
if (e.getPropertyName().equals("progress"))
{

int newValue = (Integer) e.getNewValue();
progressJProgressBar.setValue(newValue);

} // end if
} // end method propertyChange

} // end anonymous inner class
); // end call to addPropertyChangeListener

calculator.execute(); // execute the PrimeCalculator object

798 Chapter 23 Multithreading

Lines 71–85 register a PropertyChangeListener for the PrimeCalculator object.
PropertyChangeListener is an interface from package java.beans that defines a single
method, propertyChange. Every time method setProgress is invoked on a PrimeCalcu-

103 // initialize a panel to display cancelJButton,
104 // progressJProgressBar, and statusJLabel
105 JPanel southJPanel = new JPanel(new GridLayout(1, 3, 10, 10));
106 cancelJButton.setEnabled(false);
107 cancelJButton.addActionListener(
108 new ActionListener()
109 {
110 public void actionPerformed(ActionEvent e)
111 {
112
113 } // end method ActionPerformed
114 } // end anonymous inner class
115); // end call to addActionListener
116 southJPanel.add(cancelJButton);
117 progressJProgressBar.setStringPainted(true);
118 southJPanel.add(progressJProgressBar);
119 southJPanel.add(statusJLabel);
120
121 add(northJPanel, BorderLayout.NORTH);
122 add(southJPanel, BorderLayout.SOUTH);
123 setSize(350, 300);
124 setVisible(true);
125 } // end constructor
126
127 // main method begins program execution
128 public static void main(String[] args)
129 {
130 FindPrimes application = new FindPrimes();
131 application.setDefaultCloseOperation(EXIT_ON_CLOSE);
132 } // end main
133 } // end class FindPrimes

Fig. 23.27 | Using a SwingWorker to display prime numbers and update a JProgressBar
while the prime numbers are being calculated. (Part 3 of 3.)

calculator.cancel(true); // cancel the calculation

23.12 Interfaces Callable and Future 799

lator, the PrimeCalculator generates a PropertyChangeEvent to indicate that the prog-
ress property has changed. Method propertyChange listens for these events. Line 78 tests
whether a given PropertyChangeEvent indicates a change to the progress property. If so,
line 80 gets the new value of the property and line 81 updates the JProgressBar with the
new progress property value.

The Get Primes JButton is disabled (line 88) so only one calculation that updates the
GUI can execute at a time, and the Cancel JButton is enabled (line 89) to allow the user
to stop the computation before it completes. Line 91 executes the PrimesCalculator to
begin finding primes. If the user clicks the cancelJButton, the event handler registered at
lines 107–115 calls PrimeCalculator’s method cancel (line 112), which is inherited from
class SwingWorker, and the calculation returns early. The argument true to method
cancel indicates that the thread performing the task should be interrupted in an attempt
to cancel the task.

23.12 Interfaces Callable and Future
Interface Runnable provides only the most basic functionality for multithreaded program-
ming. In fact, this interface has several limitations. Suppose a Runnable encounters a prob-
lem and tries to throw a checked exception. The run method is not declared to throw any
exceptions, so the problem must be handled within the Runnable—the exception cannot
be passed to the calling thread. Now suppose a Runnable is performing a long calculation
and the application wants to retrieve the result of that calculation. The run method cannot
return a value, so the application must use shared data to pass the value back to the calling
thread. This also involves the overhead of synchronizing access to the data. The developers
of the concurrency APIs recognized these limitations and created a new interface to fix
them. The Callable interface (of package java.util.concurrent) declares a single meth-
od named call. This interface is designed to be similar to the Runnable interface—allow-
ing an action to be performed concurrently in a separate thread—but the call method
allows the thread to return a value or to throw a checked exception.

An application that creates a Callable likely wants to run it concurrently with other
Runnables and Callables. The ExecutorService interface provides method submit,
which will execute a Callable passed in as its argument. The submit method returns an
object of type Future (of package java.util.concurrent), which is an interface that rep-
resents the executing Callable. The Future interface declares method get to return the
result of the Callable and provides other methods to manage a Callable’s execution.

23.13 Java SE 7: Fork/Join Framework
Java SE 7’s concurrency APIs include the new fork/join framework, which helps program-
mers parallelize algorithms. The framework is beyond the scope of this book. Experts tell
us that most Java programmers will benefit by this framework being used “behind the
scenes” in the Java API and other third party libraries.

The fork/join framework is particularly well suited to divide-and-conquer-style algo-
rithms, such as the merge sort, which uses a recursive algorithm to sort an array by splitting
it into two equal-sized subarrays, sorting each subarray, then merging them into one larger
array. Each subarray is sorted by performing the same algorithm on the subarray. For algo-
rithms like merge sort, the fork/join framework can be used to create parallel tasks so that

800 Chapter 23 Multithreading

they can be distributed across multiple processors and be truly performed in parallel—the
details of assigning the parallel tasks to different processors are handled for you by the
framework.

To learn more about the fork/join framework and Java multithreading in general,
please visit the sites listed in our Java Multithreading Resource Center at

23.14 Wrap-Up
In this chapter, you learned that concurrency has historically been implemented with op-
erating-system primitives available only to experienced systems programmers, but that
Java makes concurrency available to you through the language and APIs. You also learned
that the JVM itself creates threads to run a program, and that it also can create threads to
perform housekeeping tasks such as garbage collection.

We discussed the life cycle of a thread and the states that a thread may occupy during
its lifetime. Next, we presented the interface Runnable, which is used to specify a task that
can execute concurrently with other tasks. This interface’s run method is invoked by the
thread executing the task. We showed how to execute a Runnable object by associating it
with an object of class Thread. Then we showed how to use the Executor interface to
manage the execution of Runnable objects via thread pools, which can reuse existing
threads to eliminate the overhead of creating a new thread for each task and can improve
performance by optimizing the number of threads to ensure that the processor stays busy.

You learned that when multiple threads share an object and one or more of them
modify that object, indeterminate results may occur unless access to the shared object is
managed properly. We showed you how to solve this problem via thread synchronization,
which coordinates access to shared data by multiple concurrent threads. You learned sev-
eral techniques for performing synchronization—first with the built-in class ArrayBlock-
ingQueue (which handles all the synchronization details for you), then with Java’s built-in
monitors and the synchronized keyword, and finally with interfaces Lock and Condition.

We discussed the fact that Swing GUIs are not thread safe, so all interactions with and
modifications to the GUI must be performed in the event dispatch thread. We also dis-
cussed the problems associated with performing long-running calculations in the event
dispatch thread. Then we showed how you can use the SwingWorker class to perform long-
running calculations in worker threads. You learned how to display the results of a Swing-
Worker in a GUI when the calculation completed and how to display intermediate results
while the calculation was still in process.

Finally, we discussed the Callable and Future interfaces, which enable you to exe-
cute tasks that return results and to obtain those results, respectively. We use the multi-
threading techniques introduced in this chapter again in Chapter 24, Networking, to help
build multithreaded servers that can interact with multiple clients concurrently.

www.deitel.com/JavaMultithreading

www.deitel.com/JavaMultithreading

24
Networking

O b j e c t i v e s
In this chapter you’ll learn:

� Java networking with URLs, sockets and datagrams.

� To implement Java networking applications by using sockets
and datagrams.

� To implement Java clients and servers that communicate
with one another.

� To implement network-based collaborative applications.

� To construct a simple multithreaded server.

If the presence of electricity
can be made visible in any
part of a circuit, I see no
reason why intelligence
may not be transmitted
instantaneously by
electricity.
—Samuel F. B. Morse

Protocol is everything.
—Francois Giuliani

What networks of
railroads, highways and
canals were in another age,
the networks of
telecommunications,
information and
computerization … are
today.
—Bruno Kreisky

The port is near, the bells I
hear, the people all
exulting.
—Walt Whitman

802 Chapter 24 Networking

24.1 Introduction
Java provides a number of built-in networking capabilities that make it easy to develop In-
ternet-based and web-based applications. Java can enable programs to search the world for
information and to collaborate with programs running on other computers international-
ly, nationally or just within an organization (subject to security constraints).

Java’s fundamental networking capabilities are declared by the classes and interfaces
of package java.net, through which Java offers stream-based communications that
enable applications to view networking as streams of data. The classes and interfaces of
package java.net also offer packet-based communications for transmitting individual
packets of information—commonly used to transmit data images, audio and video over
the Internet. In this chapter, we show how to communicate with packets and streams of
data.

We focus on both sides of the client/server relationship. The client requests that some
action be performed, and the server performs the action and responds to the client. A
common implementation of the request-response model is between web browsers and web
servers. When a user selects a website to browse through a browser (the client application),
a request is sent to the appropriate web server (the server application). The server normally
responds to the client by sending an appropriate web page to be rendered by the browser.

We introduce Java’s socket-based communications, which enable applications to
view networking as if it were file I/O—a program can read from a socket or write to a
socket as simply as reading from a file or writing to a file. The socket is simply a software
construct that represents one endpoint of a connection. We show how to create and
manipulate stream sockets and datagram sockets.

With stream sockets, a process establishes a connection to another process. While the
connection is in place, data flows between the processes in continuous streams. Stream
sockets are said to provide a connection-oriented service. The protocol used for transmis-
sion is the popular TCP (Transmission Control Protocol).

With datagram sockets, individual packets of information are transmitted. The pro-
tocol used—UDP, the User Datagram Protocol—is a connectionless service and does not
guarantee that packets arrive in any particular order. With UDP, packets can even be lost
or duplicated. Significant extra programming is required on your part to deal with these
problems (if you choose to do so). UDP is most appropriate for network applications that
do not require the error checking and reliability of TCP. Stream sockets and the TCP pro-
tocol will be more desirable for the vast majority of Java networking applications.

24.1 Introduction
24.2 Manipulating URLs
24.3 Reading a File on a Web Server
24.4 Establishing a Simple Server Using

Stream Sockets
24.5 Establishing a Simple Client Using

Stream Sockets
24.6 Client/Server Interaction with Stream

Socket Connections

24.7 Datagrams: Connectionless Client/
Server Interaction

24.8 Client/Server Tic-Tac-Toe Using a
Multithreaded Server

24.9 [Web Bonus] Case Study:
DeitelMessenger

24.10 Wrap-Up

24.2 Manipulating URLs 803

On the web at www.deitel.com/books/javafp2/, we present a case study that imple-
ments a client/server chat application similar to popular instant-messaging services. The
application introduces multicasting, in which a server can publish information and many
clients can subscribe to it. When the server publishes information, all subscribers receive it.

24.2 Manipulating URLs
The Internet offers many protocols. The HyperText Transfer Protocol (HTTP), which
forms the basis of the web, uses URIs (Uniform Resource Identifiers) to identify data on
the Internet. URIs that specify the locations of websites and web pages are called URLs
(Uniform Resource Locators). Common URLs refer to files or directories and can refer-
ence objects that perform complex tasks, such as database lookups and Internet searches.
If you know the URL of a publicly available web page, you can access it through HTTP.

Java makes it easy to manipulate URLs. When you use a URL that refers to the exact
location of a resource (e.g., a web page) as an argument to the showDocument method of
interface AppletContext, the browser in which the applet is executing will access and dis-
play that resource. The applet in Figs. 24.1–24.2 demonstrates simple networking capa-
bilities. It enables the user to select a web page from a JList and causes the browser to
display the corresponding page. In this example, the networking is performed by the
browser.

Processing Applet Parameters
This applet takes advantage of applet parameters specified in the HTML document that
invokes the applet. When browsing the web, you’ll often come across applets that are in
the public domain—you can use them free of charge on your own web pages (normally in
exchange for crediting the applet’s creator). Many applets can be customized via parame-
ters supplied from the HTML file that invokes the applet. For example, Fig. 24.1 contains
the HTML that invokes the applet SiteSelector in Fig. 24.2.

Performance Tip 24.1
Connectionless services generally offer greater performance but less reliability than connec-
tion-oriented services.

Portability Tip 24.1
TCP, UDP and related protocols enable heterogeneous computer systems (i.e., those with
different processors and different operating systems) to intercommunicate.

1 <html>

2 <head>

3 <title>Site Selector</title>
4 </head>

5 <body>

6 <applet code = "SiteSelector.class" width = "300" height = "75">

7
8

Fig. 24.1 | HTML document to load SiteSelector applet. (Part 1 of 2.)

<param name = "title0" value = "Java Home Page">

<param name = "location0"

www.deitel.com/books/javafp2/

804 Chapter 24 Networking

The HTML document contains eight parameters specified with the param element—
these lines must appear between the starting and ending applet tags. The applet can read
these values and use them to customize itself. Any number of param elements can appear
between the starting and ending applet tags. Each parameter has a unique name and a
value. Applet method getParameter returns the value associated with a specific param-
eter name as a String. The argument passed to getParameter is a String containing the
name of the parameter in the param element. In this example, parameters represent the
title and location of each website the user can select. Parameters specified for this applet
are named title#, where the value of # starts at 0 and increments by 1 for each new title.
Each title should have a corresponding location parameter of the form location#, where
the value of # starts at 0 and increments by 1 for each new location. The statement

gets the value associated with parameter "title0" and assigns it to reference title. If
there’s no param tag containing the specified parameter, getParameter returns null.

Storing the Website Names and URLs
The applet (Fig. 24.2) obtains from the HTML document (Fig. 24.1) the choices that will
be displayed in the applet’s JList. Class SiteSelector uses a HashMap (package ja-

va.util) to store the website names and URLs. In this example, the key is the String in
the JList that represents the website name, and the value is a URL object that stores the
location of the website to display in the browser.

9
10
11
12
13
14
15
16 </applet>

17 </body>

18 </html>

String title = getParameter("title0");

1 // Fig. 24.2: SiteSelector.java
2 // Loading a document from a URL into a browser.
3
4
5 import java.util.HashMap;
6 import java.util.ArrayList;
7 import java.awt.BorderLayout;
8
9 import javax.swing.JApplet;

10 import javax.swing.JLabel;
11 import javax.swing.JList;
12 import javax.swing.JScrollPane;

Fig. 24.2 | Loading a document from a URL into a browser. (Part 1 of 3.)

Fig. 24.1 | HTML document to load SiteSelector applet. (Part 2 of 2.)

value = "http://www.oracle.com/technetwork/java/">

<param name = "title1" value = "Deitel">

<param name = "location1" value = "http://www.deitel.com/">

<param name = "title2" value = "JGuru">

<param name = "location2" value = "http://www.jGuru.com/">

<param name = "title3" value = "JavaWorld">

<param name = "location3" value = "http://www.javaworld.com/">

import java.net.MalformedURLException;
import java.net.URL;

import java.applet.AppletContext;

24.2 Manipulating URLs 805

13 import javax.swing.event.ListSelectionEvent;
14 import javax.swing.event.ListSelectionListener;
15
16 public class SiteSelector extends JApplet
17 {
18 private HashMap< String, URL > sites; // site names and URLs
19 private ArrayList< String > siteNames; // site names
20 private JList siteChooser; // list of sites to choose from
21
22 // read parameters and set up GUI
23 public void init()
24 {
25 sites = new HashMap< String, URL >(); // create HashMap
26 siteNames = new ArrayList< String >(); // create ArrayList
27
28 // obtain parameters from HTML document
29 getSitesFromHTMLParameters();
30
31 // create GUI components and lay out interface
32 add(new JLabel("Choose a site to browse"), BorderLayout.NORTH);
33
34 siteChooser = new JList(siteNames.toArray()); // populate JList
35 siteChooser.addListSelectionListener(
36 new ListSelectionListener() // anonymous inner class
37 {
38 // go to site user selected
39 public void valueChanged(ListSelectionEvent event)
40 {
41 // get selected site name
42 Object object = siteChooser.getSelectedValue();
43
44
45
46
47
48
49
50
51
52 } // end method valueChanged
53 } // end anonymous inner class
54); // end call to addListSelectionListener
55
56 add(new JScrollPane(siteChooser), BorderLayout.CENTER);
57 } // end method init
58
59 // obtain parameters from HTML document
60 private void getSitesFromHTMLParameters()
61 {
62 String title; // site title
63 String location; // location of site
64 URL url; // URL of location
65 int counter = 0; // count number of sites

Fig. 24.2 | Loading a document from a URL into a browser. (Part 2 of 3.)

// use site name to locate corresponding URL
URL newDocument = sites.get(object);

// get applet container
AppletContext browser = getAppletContext();

// tell applet container to change pages
browser.showDocument(newDocument);

806 Chapter 24 Networking

Class SiteSelector also contains an ArrayList (package java.util) in which the
site names are placed so that they can be used to initialize the JList (one version of the
JList constructor receives an array of Objects which is returned by ArrayList’s toArray
method). An ArrayList is a dynamically resizable array of references. Class ArrayList

provides method add to add a new element to the end of the ArrayList. (ArrayList and
HashMap were discussed in Chapter 18.)

66
67
68
69 // loop until no more parameters in HTML document
70 while (title != null)
71 {
72 // obtain site location
73
74
75 try // place title/URL in HashMap and title in ArrayList
76 {
77
78 sites.put(title, url); // put title/URL in HashMap
79 siteNames.add(title); // put title in ArrayList
80 } // end try
81 catch (MalformedURLException urlException)
82 {
83 urlException.printStackTrace();
84 } // end catch
85
86 ++counter;
87
88 } // end while
89 } // end method getSitesFromHTMLParameters
90 } // end class SiteSelector

Fig. 24.2 | Loading a document from a URL into a browser. (Part 3 of 3.)

title = getParameter("title" + counter); // get first site title

location = getParameter("location" + counter);

url = new URL(location); // convert location to URL

title = getParameter("title" + counter); // get next site title

24.2 Manipulating URLs 807

Lines 25–26 in the applet’s init method (lines 23–57) create a HashMap object and
an ArrayList object. Line 29 calls our utility method getSitesFromHTMLParameters

(declared at lines 60–89) to obtain the HTML parameters from the HTML document
that invoked the applet.

Method getSitesFromHTMLParameters uses Appletmethod getParameter (line 67) to
obtain a website title. If the title is not null, lines 73–87 execute. Line 73 uses Applet
method getParameter to obtain the website location. Line 77 uses the location as the value
of a new URL object. The URL constructor determines whether its argument represents a valid
URL. If not, the URL constructor throws a MalformedURLException. The URL constructor
must be called in a try block. If the URL constructor generates a MalformedURLException,
the call to printStackTrace (line 83) causes the program to output a stack trace to the Java
console. On Windows machines, the Java console can be viewed by right clicking the Java
icon in the notification area of the taskbar. On a Mac, go to Applications > Utilities and
launch the Java Preferences app. Then on the Advanced tab under Java console, select Show
console. On other platforms, this is typically accessible through a desktop icon. Then the
program attempts to obtain the next website title. The program does not add the site for the
invalid URL to the HashMap, so the title will not be displayed in the JList.

For a proper URL, line 78 places the title and URL into the HashMap, and line 79 adds
the title to the ArrayList. Line 87 gets the next title from the HTML document. When
the call to getParameter at line 87 returns null, the loop terminates.

Building the Applet’s GUI
When method getSitesFromHTMLParameters returns to init, lines 32–56 construct the
applet’s GUI. Line 32 adds the JLabel “Choose a site to browse” to the NORTH of the JAp-
plet’s BorderLayout. Line 34 creates JList siteChooser to allow the user to select a web
page to view. Lines 35–54 register a ListSelectionListener to handle the JList’s events.
Line 56 adds siteChooser to the CENTER of the JFrame’s BorderLayout.

Processing a User Selection
When the user selects a website in siteChooser, the program calls method valueChanged

(lines 39–52). Line 42 obtains the selected site name from the JList. Line 45 passes the
selected site name (the key) to HashMap method get, which locates and returns a reference
to the corresponding URL object (the value) that’s assigned to reference newDocument.

Line 48 uses Applet method getAppletContext to get a reference to an AppletCon-

text object that represents the applet container. Line 51 uses this reference to invoke
method showDocument, which receives a URL object as an argument and passes it to the
AppletContext (i.e., the browser). The browser displays in the current browser window the
resource associated with that URL. In this example, all the resources are HTML documents.

Specifying the Target Frame for Method showDocument

A second version of AppletContext method showDocument enables an applet to specify the
target frame in which to display the web resource. This takes as arguments a URL object
specifying the resource to display and a String representing the target frame. There are
some special target frames that can be used as the second argument. The target frame
_blank results in a new web browser window to display the content from the specified
URL. The target frame _self specifies that the content from the specified URL should be
displayed in the same frame as the applet (the applet’s HTML page is replaced in this case).

808 Chapter 24 Networking

The target frame _top specifies that the browser should remove the current frames in the
browser window, then display the content from the specified URL in the current window.

24.3 Reading a File on a Web Server
The application in Fig. 24.3 uses Swing GUI component JEditorPane (from package
javax.swing) to display the contents of a file on a web server. The user enters a URL in
the JTextField at the top of the window, and the application displays the corresponding
document (if it exists) in the JEditorPane. Class JEditorPane is able to render both plain
text and basic HTML-formatted text, as illustrated in the two screen captures (Fig. 24.4),
so this application acts as a simple web browser. The application also demonstrates how to
process HyperlinkEvents when the user clicks a hyperlink in the HTML document. The
techniques shown in this example can also be used in applets. However, an applet is al-
lowed to read files only on the server from which it was downloaded. [Note: This program
might not work if your web browser must access the web through a proxy server. If you
create a JNLP document for this program and use Java Web Start to launch it, Java Web
Start will use the proxy server settings from your default web browser. See Chapters 20–
21 for more information on Java Web Start.]

Error-Prevention Tip 24.1
The applet in Fig. 24.2 must be run from a web browser to show the results of displaying
another web page. The appletviewer is capable only of executing applets—it ignores all
other HTML tags. If the websites in the program contained Java applets, only those ap-
plets would appear in the appletviewer when the user selected a website. Each applet
would execute in a separate appletviewer window.

1 // Fig. 24.3: ReadServerFile.java
2 // Reading a file by opening a connection through a URL.
3 import java.awt.BorderLayout;
4 import java.awt.event.ActionEvent;
5 import java.awt.event.ActionListener;
6 import java.io.IOException;
7
8 import javax.swing.JFrame;
9 import javax.swing.JOptionPane;

10 import javax.swing.JScrollPane;
11 import javax.swing.JTextField;
12
13
14
15 public class ReadServerFile extends JFrame
16 {
17 private JTextField enterField; // JTextField to enter site name
18
19
20 // set up GUI
21 public ReadServerFile()
22 {

Fig. 24.3 | Reading a file by opening a connection through a URL. (Part 1 of 2.)

import javax.swing.JEditorPane;

import javax.swing.event.HyperlinkEvent;
import javax.swing.event.HyperlinkListener;

private JEditorPane contentsArea; // to display website

24.3 Reading a File on a Web Server 809

23 super("Simple Web Browser");
24
25 // create enterField and register its listener
26 enterField = new JTextField("Enter file URL here");
27 enterField.addActionListener(
28 new ActionListener()
29 {
30 // get document specified by user
31 public void actionPerformed(ActionEvent event)
32 {
33 getThePage(event.getActionCommand());
34 } // end method actionPerformed
35 } // end inner class
36); // end call to addActionListener
37
38 add(enterField, BorderLayout.NORTH);
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55 add(new JScrollPane(contentsArea), BorderLayout.CENTER);
56 setSize(400, 300); // set size of window
57 setVisible(true); // show window
58 } // end ReadServerFile constructor
59
60 // load document
61 private void getThePage(String location)
62 {
63 try // load document and display location
64 {
65
66 enterField.setText(location); // set the text
67 } // end try
68 catch (IOException ioException)
69 {
70 JOptionPane.showMessageDialog(this,
71 "Error retrieving specified URL", "Bad URL",
72 JOptionPane.ERROR_MESSAGE);
73 } // end catch
74 } // end method getThePage
75 } // end class ReadServerFile

Fig. 24.3 | Reading a file by opening a connection through a URL. (Part 2 of 2.)

contentsArea = new JEditorPane(); // create contentsArea
contentsArea.setEditable(false);
contentsArea.addHyperlinkListener(

new HyperlinkListener()
{

// if user clicked hyperlink, go to specified page
public void hyperlinkUpdate(HyperlinkEvent event)
{

if (event.getEventType() ==
HyperlinkEvent.EventType.ACTIVATED)

getThePage(event.getURL().toString());
} // end method hyperlinkUpdate

} // end inner class
); // end call to addHyperlinkListener

contentsArea.setPage(location); // set the page

810 Chapter 24 Networking

The application class ReadServerFile contains JTextField enterField, in which
the user enters the URL of the file to read and JEditorPane contentsArea to display the
file’s contents. When the user presses the Enter key in enterField, the application calls
method actionPerformed (lines 31–34). Line 33 uses ActionEvent method getAction-

Command to get the String the user input in the JTextField and passes the String to
utility method getThePage (lines 61–74).

Line 65 invokes JEditorPane method setPage to download the document specified
by location and display it in the JEditorPane. If there’s an error downloading the docu-
ment, method setPage throws an IOException. Also, if an invalid URL is specified, a
MalformedURLException (a subclass of IOException) occurs. If the document loads suc-
cessfully, line 66 displays the current location in enterField.

Typically, an HTML document contains hyperlinks that, when clicked, provide
quick access to another document on the web. If a JEditorPane contains an HTML doc-
ument and the user clicks a hyperlink, the JEditorPane generates a HyperlinkEvent

(package javax.swing.event) and notifies all registered HyperlinkListeners (package
javax.swing.event) of that event. Lines 42–53 register a HyperlinkListener to handle
HyperlinkEvents. When a HyperlinkEvent occurs, the program calls method hyper-

linkUpdate (lines 46–51). Lines 48–49 use HyperlinkEvent method getEventType to
determine the type of the HyperlinkEvent. Class HyperlinkEvent contains a public

nested class called EventType that declares three static EventType objects, which repre-
sent the hyperlink event types. ACTIVATED indicates that the user clicked a hyperlink to
change web pages, ENTERED indicates that the user moved the mouse over a hyperlink and
EXITED indicates that the user moved the mouse away from a hyperlink. If a hyperlink was
ACTIVATED, line 50 uses HyperlinkEvent method getURL to obtain the URL represented by
the hyperlink. Method toString converts the returned URL to a String that can be passed
to utility method getThePage.

1 // Fig. 24.4: ReadServerFileTest.java
2 // Create and start a ReadServerFile.
3 import javax.swing.JFrame;
4
5 public class ReadServerFileTest
6 {
7 public static void main(String[] args)
8 {
9 ReadServerFile application = new ReadServerFile();

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 } // end main
12 } // end class ReadServerFileTest

Fig. 24.4 | Test class for ReadServerFile.

24.4 Establishing a Simple Server Using Stream Sockets 811

24.4 Establishing a Simple Server Using Stream Sockets
The two examples discussed so far use high-level Java networking capabilities to commu-
nicate between applications. In the examples, it was not your responsibility to establish the
connection between a client and a server. The first program relied on the web browser to
communicate with a web server. The second program relied on a JEditorPane to perform
the connection. This section begins our discussion of creating your own applications that
can communicate with one another.

Step 1: Create a ServerSocket

Establishing a simple server in Java requires five steps. Step 1 is to create a ServerSocket

object. A call to the ServerSocket constructor, such as

registers an available TCP port number and specifies the maximum number of clients that
can wait to connect to the server (i.e., the queue length). The port number is used by cli-
ents to locate the server application on the server computer. This is often called the hand-
shake point. If the queue is full, the server refuses client connections. The constructor
establishes the port where the server waits for connections from clients—a process known
as binding the server to the port. Each client will ask to connect to the server on this port.
Only one application at a time can be bound to a specific port on the server.

Step 2: Wait for a Connection
Programs manage each client connection with a Socket object. In Step 2, the server listens
indefinitely (or blocks) for an attempt by a client to connect. To listen for a client connec-
tion, the program calls ServerSocket method accept, as in

which returns a Socket when a connection with a client is established. The Socket allows
the server to interact with the client. The interactions with the client actually occur at a
different server port from the handshake point. This allows the port specified in Step 1 to
be used again in a multithreaded server to accept another client connection. We demon-
strate this concept in Section 24.8.

Step 3: Get the Socket’s I/O Streams
Step 3 is to get the OutputStream and InputStream objects that enable the server to com-
municate with the client by sending and receiving bytes. The server sends information to

Look-and-Feel Observation 24.1
A JEditorPane generates HyperlinkEvents only if it’s uneditable.

ServerSocket server = new ServerSocket(portNumber, queueLength);

Software Engineering Observation 24.1
Port numbers can be between 0 and 65,535. Most operating systems reserve port numbers
below 1024 for system services (e.g., e-mail and World Wide Web servers). Generally,
these ports should not be specified as connection ports in user programs. In fact, some
operating systems require special access privileges to bind to port numbers below 1024.

Socket connection = server.accept();

812 Chapter 24 Networking

the client via an OutputStream and receives information from the client via an Input-

Stream. The server invokes method getOutputStream on the Socket to get a reference to
the Socket’s OutputStream and invokes method getInputStream on the Socket to get a
reference to the Socket’s InputStream.

The stream objects can be used to send or receive individual bytes or sequences of
bytes with the OutputStream’s method write and the InputStream’s method read,
respectively. Often it’s useful to send or receive values of primitive types (e.g., int and
double) or Serializable objects (e.g., Strings or other serializable types) rather than
sending bytes. In this case, we can use the techniques discussed in Chapter 17 to wrap
other stream types (e.g., ObjectOutputStream and ObjectInputStream) around the Out-

putStream and InputStream associated with the Socket. For example,

The beauty of establishing these relationships is that whatever the server writes to the
ObjectOutputStream is sent via the OutputStream and is available at the client’s
InputStream, and whatever the client writes to its OutputStream (with a corresponding
ObjectOutputStream) is available via the server’s InputStream. The transmission of the
data over the network is seamless and is handled completely by Java.

Step 4: Perform the Processing
Step 4 is the processing phase, in which the server and the client communicate via the Out-
putStream and InputStream objects.

Step 5: Close the Connection
In Step 5, when the transmission is complete, the server closes the connection by invoking
the close method on the streams and on the Socket.

ObjectInputStream input =
new ObjectInputStream(connection.getInputStream());

ObjectOutputStream output =
new ObjectOutputStream(connection.getOutputStream());

Software Engineering Observation 24.2
With sockets, network I/O appears to Java programs to be similar to sequential file I/O.
Sockets hide much of the complexity of network programming.

Software Engineering Observation 24.3
A multithreaded server can take the Socket returned by each call to accept and create a
new thread that manages network I/O across that Socket. Alternatively, a multithreaded
server can maintain a pool of threads (a set of already existing threads) ready to manage
network I/O across the new Sockets as they’re created. These techniques enable
multithreaded servers to manage many simultaneous client connections.

Performance Tip 24.2
In high-performance systems in which memory is abundant, a multithreaded server can
create a pool of threads that can be assigned quickly to handle network I/O for new Sock-

ets as they’re created. Thus, when the server receives a connection, it need not incur
thread-creation overhead. When the connection is closed, the thread is returned to the
pool for reuse.

24.5 Establishing a Simple Client Using Stream Sockets 813

24.5 Establishing a Simple Client Using Stream Sockets
Establishing a simple client in Java requires four steps.

Step 1: Create a Socket to Connect to the sServer
In Step 1, we create a Socket to connect to the server. The Socket constructor establishes
the connection. For example, the statement

uses the Socket constructor with two arguments—the server’s address (serverAddress) and
the port number. If the connection attempt is successful, this statement returns a Socket.
A connection attempt that fails throws an instance of a subclass of IOException, so many
programs simply catch IOException. An UnknownHostException occurs specifically when
the system is unable to resolve the server name specified in the call to the Socket construc-
tor to a corresponding IP address.

Step 2: Get the Socket’s I/O Streams
In Step 2, the client uses Socket methods getInputStream and getOutputStream to ob-
tain references to the Socket’s InputStream and OutputStream. As we mentioned in the
preceding section, we can use the techniques of Chapter 17 to wrap other stream types
around the InputStream and OutputStream associated with the Socket. If the server is
sending information in the form of actual types, the client should receive the information
in the same format. Thus, if the server sends values with an ObjectOutputStream, the cli-
ent should read those values with an ObjectInputStream.

Step 3: Perform the Processing
Step 3 is the processing phase in which the client and the server communicate via the In-

putStream and OutputStream objects.

Step 4: Close the Connection
In Step 4, the client closes the connection when the transmission is complete by invoking
the close method on the streams and on the Socket. The client must determine when the
server is finished sending information so that it can call close to close the Socket connec-
tion. For example, the InputStream method read returns the value –1 when it detects
end-of-stream (also called EOF—end-of-file). If an ObjectInputStream reads informa-
tion from the server, an EOFException occurs when the client attempts to read a value
from a stream on which end-of-stream is detected.

24.6 Client/Server Interaction with Stream Socket
Connections
Figures 24.5 and 24.7 use stream sockets, ObjectInputStream and ObjectOutputStream

to demonstrate a simple client/server chat application. The server waits for a client connec-
tion attempt. When a client connects to the server, the server application sends the client a
String object (recall that Strings are Serializable objects) indicating that the connection
was successful. Then the client displays the message. The client and server applications each
provide text fields that allow the user to type a message and send it to the other application.

Socket connection = new Socket(serverAddress, port);

814 Chapter 24 Networking

When the client or the server sends the String "TERMINATE", the connection terminates.
Then the server waits for the next client to connect. The declaration of class Server appears
in Fig. 24.5. The declaration of class Client appears in Fig. 24.7. The screen captures
showing the execution between the client and the server are shown in Fig. 24.8.

Server Class
Server’s constructor (Fig. 24.5, lines 30–55) creates the server’s GUI, which contains a
JTextField and a JTextArea. Server displays its output in the JTextArea. When the
main method (lines 6–11 of Fig. 24.6) executes, it creates a Server object, specifies the
window’s default close operation and calls method runServer (Fig. 24.5, lines 57–86).

1 // Fig. 24.5: Server.java
2 // Server portion of a client/server stream-socket connection.
3 import java.io.EOFException;
4 import java.io.IOException;
5 import java.io.ObjectInputStream;
6 import java.io.ObjectOutputStream;
7
8
9 import java.awt.BorderLayout;

10 import java.awt.event.ActionEvent;
11 import java.awt.event.ActionListener;
12 import javax.swing.JFrame;
13 import javax.swing.JScrollPane;
14 import javax.swing.JTextArea;
15 import javax.swing.JTextField;
16 import javax.swing.SwingUtilities;
17
18 public class Server extends JFrame
19 {
20 private JTextField enterField; // inputs message from user
21 private JTextArea displayArea; // display information to user
22 private ObjectOutputStream output; // output stream to client
23 private ObjectInputStream input; // input stream from client
24
25
26 private int counter = 1; // counter of number of connections
27
28 // set up GUI
29 public Server()
30 {
31 super("Server");
32
33 enterField = new JTextField(); // create enterField
34 enterField.setEditable(false);
35 enterField.addActionListener(
36 new ActionListener()
37 {
38 // send message to client
39 public void actionPerformed(ActionEvent event)
40 {

Fig. 24.5 | Server portion of a client/server stream-socket connection. (Part 1 of 4.)

import java.net.ServerSocket;
import java.net.Socket;

private ServerSocket server; // server socket
private Socket connection; // connection to client

24.6 Client/Server Interaction with Stream Socket Connections 815

41 sendData(event.getActionCommand());
42 enterField.setText("");
43 } // end method actionPerformed
44 } // end anonymous inner class
45); // end call to addActionListener
46
47 add(enterField, BorderLayout.NORTH);
48
49 displayArea = new JTextArea(); // create displayArea
50 add(new JScrollPane(displayArea), BorderLayout.CENTER);
51
52 setSize(300, 150); // set size of window
53 setVisible(true); // show window
54 } // end Server constructor
55
56 // set up and run server
57 public void runServer()
58 {
59 try // set up server to receive connections; process connections
60 {
61
62
63 while (true)
64 {
65 try

66 {
67 waitForConnection(); // wait for a connection
68 getStreams(); // get input & output streams
69 processConnection(); // process connection
70 } // end try
71 catch (EOFException eofException)
72 {
73 displayMessage("\nServer terminated connection");
74 } // end catch
75 finally

76 {
77 closeConnection(); // close connection
78 ++counter;
79 } // end finally
80 } // end while
81 } // end try
82 catch (IOException ioException)
83 {
84 ioException.printStackTrace();
85 } // end catch
86 } // end method runServer
87
88 // wait for connection to arrive, then display connection info
89 private void waitForConnection() throws IOException
90 {
91 displayMessage("Waiting for connection\n");
92

Fig. 24.5 | Server portion of a client/server stream-socket connection. (Part 2 of 4.)

server = new ServerSocket(12345, 100); // create ServerSocket

connection = server.accept(); // allow server to accept connection

816 Chapter 24 Networking

93 displayMessage("Connection " + counter + " received from: " +
94);
95 } // end method waitForConnection
96
97 // get streams to send and receive data
98 private void getStreams() throws IOException
99 {
100 // set up output stream for objects
101
102
103
104 // set up input stream for objects
105
106
107 displayMessage("\nGot I/O streams\n");
108 } // end method getStreams
109
110 // process connection with client
111 private void processConnection() throws IOException
112 {
113 String message = "Connection successful";
114 sendData(message); // send connection successful message
115
116 // enable enterField so server user can send messages
117 setTextFieldEditable(true);
118
119 do // process messages sent from client
120 {
121 try // read message and display it
122 {
123
124 displayMessage("\n" + message); // display message
125 } // end try
126 catch (ClassNotFoundException classNotFoundException)
127 {
128 displayMessage("\nUnknown object type received");
129 } // end catch
130
131 } while (!message.equals("CLIENT>>> TERMINATE"));
132 } // end method processConnection
133
134 // close streams and socket
135 private void closeConnection()
136 {
137 displayMessage("\nTerminating connection\n");
138 setTextFieldEditable(false); // disable enterField
139
140 try

141 {
142
143
144
145 } // end try

Fig. 24.5 | Server portion of a client/server stream-socket connection. (Part 3 of 4.)

connection.getInetAddress().getHostName()

output = new ObjectOutputStream(connection.getOutputStream());
output.flush(); // flush output buffer to send header information

input = new ObjectInputStream(connection.getInputStream());

message = (String) input.readObject(); // read new message

output.close(); // close output stream
input.close(); // close input stream
connection.close(); // close socket

24.6 Client/Server Interaction with Stream Socket Connections 817

146 catch (IOException ioException)
147 {
148 ioException.printStackTrace();
149 } // end catch
150 } // end method closeConnection
151
152 // send message to client
153 private void sendData(String message)
154 {
155 try // send object to client
156 {
157
158
159 displayMessage("\nSERVER>>> " + message);
160 } // end try
161 catch (IOException ioException)
162 {
163 displayArea.append("\nError writing object");
164 } // end catch
165 } // end method sendData
166
167 // manipulates displayArea in the event-dispatch thread
168 private void displayMessage(final String messageToDisplay)
169 {
170 SwingUtilities.invokeLater(
171 new Runnable()
172 {
173 public void run() // updates displayArea
174 {
175 displayArea.append(messageToDisplay); // append message
176 } // end method run
177 } // end anonymous inner class
178); // end call to SwingUtilities.invokeLater
179 } // end method displayMessage
180
181 // manipulates enterField in the event-dispatch thread
182 private void setTextFieldEditable(final boolean editable)
183 {
184 SwingUtilities.invokeLater(
185 new Runnable()
186 {
187 public void run() // sets enterField's editability
188 {
189 enterField.setEditable(editable);
190 } // end method run
191 } // end inner class
192); // end call to SwingUtilities.invokeLater
193 } // end method setTextFieldEditable
194 } // end class Server

Fig. 24.5 | Server portion of a client/server stream-socket connection. (Part 4 of 4.)

output.writeObject("SERVER>>> " + message);
output.flush(); // flush output to client

818 Chapter 24 Networking

Method runServer

Method runServer (Fig. 24.5, lines 57–86) sets up the server to receive a connection and
processes one connection at a time. Line 61 creates a ServerSocket called server to wait
for connections. The ServerSocket listens for a connection from a client at port 12345.
The second argument to the constructor is the number of connections that can wait in a
queue to connect to the server (100 in this example). If the queue is full when a client at-
tempts to connect, the server refuses the connection.

Line 67 calls method waitForConnection (declared at lines 89–95) to wait for a client
connection. After the connection is established, line 68 calls method getStreams (declared
at lines 98–108) to obtain references to the connection’s streams. Line 69 calls method
processConnection (declared at lines 111–132) to send the initial connection message to
the client and to process all messages received from the client. The finally block (lines
75–79) terminates the client connection by calling method closeConnection (lines 135–
150), even if an exception occurs. These methods call displayMessage (lines 168–179),
which uses the event-dispatch thread to display messages in the application’s JTextArea.
SwingUtilities method invokeLater receives a Runnable object as its argument and
places it into the event-dispatch thread for execution. This ensures that we don’t modify
a GUI component from a thread other than the event-dispatch thread, which is important
since Swing GUI components are not thread safe. We use a similar technique in method set-

TextFieldEditable (lines 182–193), to set the editability of enterField. For more infor-
mation on interface Runnable, see Chapter 23.

Method waitForConnection

Method waitForConnection (lines 89–95) uses ServerSocket method accept (line 92)
to wait for a connection from a client. When a connection occurs, the resulting Socket is
assigned to connection. Method accept blocks until a connection is received (i.e., the
thread in which accept is called stops executing until a client connects). Lines 93–94 out-
put the host name of the computer that made the connection. Socket method getInet-

1 // Fig. 24.6: ServerTest.java
2 // Test the Server application.
3 import javax.swing.JFrame;
4
5 public class ServerTest
6 {
7 public static void main(String[] args)
8 {
9 Server application = new Server(); // create server

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 application.runServer(); // run server application
12 } // end main
13 } // end class ServerTest

Fig. 24.6 | Test class for Server.

Common Programming Error 24.1
Specifying a port that’s already in use or specifying an invalid port number when creating
a ServerSocket results in a BindException.

24.6 Client/Server Interaction with Stream Socket Connections 819

Address returns an InetAddress (package java.net) containing information about the
client computer. InetAddress method getHostName returns the host name of the client
computer. For example, a special IP address (127.0.0.1) and host name (localhost) are
useful for testing networking applications on your local computer (this is also known as
the loopback address). If getHostName is called on an InetAddress containing 127.0.0.1,
the corresponding host name returned by the method will be localhost.

Method getStreams

Method getStreams (lines 98–108) obtains the Socket’s streams and uses them to initial-
ize an ObjectOutputStream (line 101) and an ObjectInputStream (line 105), respective-
ly. Note the call to ObjectOutputStream method flush at line 102. This statement causes
the ObjectOutputStream on the server to send a stream header to the corresponding cli-
ent’s ObjectInputStream. The stream header contains such information as the version of
object serialization being used to send objects. This information is required by the Object-
InputStream so that it can prepare to receive those objects correctly.

Method processConnection

Line 114 of method processConnection (lines 111–132) calls method sendData to send
"SERVER>>> Connection successful" as a String to the client. The loop at lines 119–
131 executes until the server receives the message "CLIENT>>> TERMINATE". Line 123 uses
ObjectInputStream method readObject to read a String from the client. Line 124 in-
vokes method displayMessage to append the message to the JTextArea.

Method closeConnection

When the transmission is complete, method processConnection returns, and the pro-
gram calls method closeConnection (lines 135–150) to close the streams associated with
the Socket and close the Socket. Then the server waits for the next connection attempt
from a client by continuing with line 67 at the beginning of the while loop.

Server receives a connection, processes it, closes it and waits for the next connection.
A more likely scenario would be a Server that receives a connection, sets it up to be pro-
cessed as a separate thread of execution, then immediately waits for new connections. The
separate threads that process existing connections can continue to execute while the
Server concentrates on new connection requests. This makes the server more efficient,
because multiple client requests can be processed concurrently. We demonstrate a multi-
threaded server in Section 24.8.

Software Engineering Observation 24.4
When using ObjectOutputStream and ObjectInputStream to send and receive data over
a network connection, always create the ObjectOutputStream first and flush the stream
so that the client’s ObjectInputStream can prepare to receive the data. This is required
for networking applications that communicate using ObjectOutputStream and
ObjectInputStream.

Performance Tip 24.3
A computer’s I/O components are typically much slower than its memory. Output buffers
are used to increase the efficiency of an application by sending larger amounts of data fewer
times, reducing the number of times an application accesses the computer’s I/O components.

820 Chapter 24 Networking

Processing User Interactions
When the user of the server application enters a String in the text field and presses the
Enter key, the program calls method actionPerformed (lines 39–43), which reads the
String from the text field and calls utility method sendData (lines 153–165) to send the
String to the client. Method sendData writes the object, flushes the output buffer and
appends the same String to the text area in the server window. It’s not necessary to invoke
displayMessage to modify the text area here, because method sendData is called from an
event handler—thus, sendData executes as part of the event-dispatch thread.

Client Class
Like class Server, class Client’s constructor (Fig. 24.7, lines 29–56) creates the GUI of
the application (a JTextField and a JTextArea). Client displays its output in the text ar-
ea. When method main (lines 7–19 of Fig. 24.8) executes, it creates an instance of class
Client, specifies the window’s default close operation and calls method runClient

(Fig. 24.7, lines 59–79). In this example, you can execute the client from any computer
on the Internet and specify the IP address or host name of the server computer as a com-
mand-line argument to the program. For example, the command

attempts to connect to the Server on the computer with IP address 192.168.1.15.

java Client 192.168.1.15

1 // Fig. 24.7: Client.java
2 // Client portion of a stream-socket connection between client and server.
3 import java.io.EOFException;
4 import java.io.IOException;
5 import java.io.ObjectInputStream;
6 import java.io.ObjectOutputStream;
7
8
9 import java.awt.BorderLayout;

10 import java.awt.event.ActionEvent;
11 import java.awt.event.ActionListener;
12 import javax.swing.JFrame;
13 import javax.swing.JScrollPane;
14 import javax.swing.JTextArea;
15 import javax.swing.JTextField;
16 import javax.swing.SwingUtilities;
17
18 public class Client extends JFrame
19 {
20 private JTextField enterField; // enters information from user
21 private JTextArea displayArea; // display information to user
22 private ObjectOutputStream output; // output stream to server
23 private ObjectInputStream input; // input stream from server
24 private String message = ""; // message from server
25 private String chatServer; // host server for this application
26
27

Fig. 24.7 | Client portion of a stream-socket connection between client and server. (Part 1 of 5.)

import java.net.InetAddress;
import java.net.Socket;

private Socket client; // socket to communicate with server

24.6 Client/Server Interaction with Stream Socket Connections 821

28 // initialize chatServer and set up GUI
29 public Client(String host)
30 {
31 super("Client");
32
33 chatServer = host; // set server to which this client connects
34
35 enterField = new JTextField(); // create enterField
36 enterField.setEditable(false);
37 enterField.addActionListener(
38 new ActionListener()
39 {
40 // send message to server
41 public void actionPerformed(ActionEvent event)
42 {
43 sendData(event.getActionCommand());
44 enterField.setText("");
45 } // end method actionPerformed
46 } // end anonymous inner class
47); // end call to addActionListener
48
49 add(enterField, BorderLayout.NORTH);
50
51 displayArea = new JTextArea(); // create displayArea
52 add(new JScrollPane(displayArea), BorderLayout.CENTER);
53
54 setSize(300, 150); // set size of window
55 setVisible(true); // show window
56 } // end Client constructor
57
58 // connect to server and process messages from server
59 public void runClient()
60 {
61 try // connect to server, get streams, process connection
62 {
63 connectToServer(); // create a Socket to make connection
64 getStreams(); // get the input and output streams
65 processConnection(); // process connection
66 } // end try
67 catch (EOFException eofException)
68 {
69 displayMessage("\nClient terminated connection");
70 } // end catch
71 catch (IOException ioException)
72 {
73 ioException.printStackTrace();
74 } // end catch
75 finally

76 {
77 closeConnection(); // close connection
78 } // end finally
79 } // end method runClient

Fig. 24.7 | Client portion of a stream-socket connection between client and server. (Part 2 of 5.)

822 Chapter 24 Networking

80
81 // connect to server
82 private void connectToServer() throws IOException
83 {
84 displayMessage("Attempting connection\n");
85
86 // create Socket to make connection to server
87
88
89 // display connection information
90 displayMessage("Connected to: " +
91
92 } // end method connectToServer
93
94 // get streams to send and receive data
95 private void getStreams() throws IOException
96 {
97 // set up output stream for objects
98
99
100
101 // set up input stream for objects
102 input = new ObjectInputStream(client.getInputStream());
103
104 displayMessage("\nGot I/O streams\n");
105 } // end method getStreams
106
107 // process connection with server
108 private void processConnection() throws IOException
109 {
110 // enable enterField so client user can send messages
111 setTextFieldEditable(true);
112
113 do // process messages sent from server
114 {
115 try // read message and display it
116 {
117
118 displayMessage("\n" + message); // display message
119 } // end try
120 catch (ClassNotFoundException classNotFoundException)
121 {
122 displayMessage("\nUnknown object type received");
123 } // end catch
124
125 } while (!message.equals("SERVER>>> TERMINATE"));
126 } // end method processConnection
127
128 // close streams and socket
129 private void closeConnection()
130 {
131 displayMessage("\nClosing connection");
132 setTextFieldEditable(false); // disable enterField

Fig. 24.7 | Client portion of a stream-socket connection between client and server. (Part 3 of 5.)

client = new Socket(InetAddress.getByName(chatServer), 12345);

client.getInetAddress().getHostName());

output = new ObjectOutputStream(client.getOutputStream());
output.flush(); // flush output buffer to send header information

message = (String) input.readObject(); // read new message

24.6 Client/Server Interaction with Stream Socket Connections 823

133
134 try

135 {
136
137 1
138
139 } // end try
140 catch (IOException ioException)
141 {
142 ioException.printStackTrace();
143 } // end catch
144 } // end method closeConnection
145
146 // send message to server
147 private void sendData(String message)
148 {
149 try // send object to server
150 {
151
152
153 displayMessage("\nCLIENT>>> " + message);
154 } // end try
155 catch (IOException ioException)
156 {
157 displayArea.append("\nError writing object");
158 } // end catch
159 } // end method sendData
160
161 // manipulates displayArea in the event-dispatch thread
162 private void displayMessage(final String messageToDisplay)
163 {
164 SwingUtilities.invokeLater(
165 new Runnable()
166 {
167 public void run() // updates displayArea
168 {
169 displayArea.append(messageToDisplay);
170 } // end method run
171 } // end anonymous inner class
172); // end call to SwingUtilities.invokeLater
173 } // end method displayMessage
174
175 // manipulates enterField in the event-dispatch thread
176 private void setTextFieldEditable(final boolean editable)
177 {
178 SwingUtilities.invokeLater(
179 new Runnable()
180 {
181 public void run() // sets enterField's editability
182 {
183 enterField.setEditable(editable);
184 } // end method run
185 } // end anonymous inner class

Fig. 24.7 | Client portion of a stream-socket connection between client and server. (Part 4 of 5.)

output.close(); // close output stream
input.close(); // close input stream
client.close(); // close socket

output.writeObject("CLIENT>>> " + message);
output.flush(); // flush data to output

824 Chapter 24 Networking

Method runClient

Client method runClient (Fig. 24.7, lines 59–79) sets up the connection to the server,
processes messages received from the server and closes the connection when communica-
tion is complete. Line 63 calls method connectToServer (declared at lines 82–92) to per-
form the connection. After connecting, line 64 calls method getStreams (declared at lines
95–105) to obtain references to the Socket’s stream objects. Then line 65 calls method
processConnection (declared at lines 108–126) to receive and display messages sent from
the server. The finally block (lines 75–78) calls closeConnection (lines 129–144) to
close the streams and the Socket even if an exception occurred. Method displayMessage

(lines 162–173) is called from these methods to use the event-dispatch thread to display
messages in the application’s text area.

186); // end call to SwingUtilities.invokeLater
187 } // end method setTextFieldEditable
188 } // end class Client

1 // Fig. 24.8: ClientTest.java
2 // Class that tests the Client.
3 import javax.swing.JFrame;
4
5 public class ClientTest
6 {
7 public static void main(String[] args)
8 {
9 Client application; // declare client application

10
11 // if no command line args
12 if (args.length == 0)
13
14 else

15
16
17 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 application.runClient(); // run client application
19 } // end main
20 } // end class ClientTest

Fig. 24.8 | Class that tests the Client.

Fig. 24.7 | Client portion of a stream-socket connection between client and server. (Part 5 of 5.)

application = new Client("127.0.0.1"); // connect to localhost

application = new Client(args[0]); // use args to connect

24.7 Datagrams: Connectionless Client/Server Interaction 825

Method connectToServer

Method connectToServer (lines 82–92) creates a Socket called client (line 87) to estab-
lish a connection. The arguments to the Socket constructor are the IP address of the server
computer and the port number (12345) where the server application is awaiting client
connections. In the first argument, InetAddress static method getByName returns an
InetAddress object containing the IP address specified as a command-line argument to
the application (or 127.0.0.1 if none was specified). Method getByName can receive a
String containing either the actual IP address or the host name of the server. The first ar-
gument also could have been written other ways. For the localhost address 127.0.0.1,
the first argument could be specified with either of the following expressions:

Other versions of the Socket constructor receive the IP address or host name as a String.
The first argument could have been specified as the IP address "127.0.0.1" or the host name
"localhost". We chose to demonstrate the client/server relationship by connecting between
applications on the same computer (localhost). Normally, this first argument would be the
IP address of another computer. The InetAddress object for another computer can be ob-
tained by specifying the computer’s IP address or host name as the argument to InetAddress

method getByName. The Socket constructor’s second argument is the server port number.
This must match the port number at which the server is waiting for connections (called the
handshake point). Once the connection is made, lines 90–91 display a message in the text area
indicating the name of the server computer to which the client has connected.

The Client uses an ObjectOutputStream to send data to the server and an Object-

InputStream to receive data from the server. Method getStreams (lines 95–105) creates
the ObjectOutputStream and ObjectInputStream objects that use the streams associated
with the client socket.

Methods processConnection and closeConnection

Method processConnection (lines 108–126) contains a loop that executes until the client
receives the message "SERVER>>> TERMINATE". Line 117 reads a String object from the
server. Line 118 invokes displayMessage to append the message to the text area. When
the transmission is complete, method closeConnection (lines 129–144) closes the
streams and the Socket.

Processing User Interactions
When the client application user enters a String in the text field and presses Enter, the
program calls method actionPerformed (lines 41–45) to read the String, then invokes
utility method sendData (147–159) to send the String to the server. Method sendData

writes the object, flushes the output buffer and appends the same String to the client win-
dow’s JTextArea. Once again, it’s not necessary to invoke utility method displayMessage

to modify the text area here, because method sendData is called from an event handler.

24.7 Datagrams: Connectionless Client/Server Interaction
We’ve been discussing connection-oriented, streams-based transmission. Now we consid-
er connectionless transmission with datagrams.

InetAddress.getByName("localhost")
InetAddress.getLocalHost()

826 Chapter 24 Networking

Connection-oriented transmission is like the telephone system in which you dial and
are given a connection to the telephone of the person with whom you wish to communi-
cate. The connection is maintained for your phone call, even when you’re not talking.

Connectionless transmission with datagrams is more like the way mail is carried via
the postal service. If a large message will not fit in one envelope, you break it into separate
pieces that you place in sequentially numbered envelopes. All of the letters are then mailed
at once. The letters could arrive in order, out of order or not at all (the last case is rare). The
person at the receiving end reassembles the pieces into sequential order before attempting
to make sense of the message.

If your message is small enough to fit in one envelope, you need not worry about the
“out-of-sequence” problem, but it’s still possible that your message might not arrive. One
advantage of datagrams over postal mail is that duplicates of datagrams can arrive at the
receiving computer.

Figures 24.9–24.12 use datagrams to send packets of information via the User Data-
gram Protocol (UDP) between a client application and a server application. In the Client
application (Fig. 24.11), the user types a message into a text field and presses Enter. The
program converts the message into a byte array and places it in a datagram packet that’s
sent to the server. The Server (Figs. 24.9–24.10) receives the packet and displays the
information in it, then echoes the packet back to the client. Upon receiving the packet,
the client displays the information it contains.

Server Class
Class Server (Fig. 24.9) declares two DatagramPackets that the server uses to send and
receive information and one DatagramSocket that sends and receives the packets. The
constructor (lines 19–37), which is called from main (Fig. 24.10, lines 7–12), creates the
GUI in which the packets of information will be displayed. Line 30 creates the Datagram-
Socket in a try block. Line 30 in Fig. 24.9 uses the DatagramSocket constructor that
takes an integer port-number argument (5000 in this example) to bind the server to a port
where it can receive packets from clients. Clients sending packets to this Server specify
the same port number in the packets they send. A SocketException is thrown if the Da-

tagramSocket constructor fails to bind the DatagramSocket to the specified port.

Common Programming Error 24.2
Specifying a port that’s already in use or specifying an invalid port number when creating
a DatagramSocket results in a SocketException.

1 // Fig. 24.9: Server.java
2 // Server side of connectionless client/server computing with datagrams.
3 import java.io.IOException;
4 import java.net.DatagramPacket;
5 import java.net.DatagramSocket;
6 import java.net.SocketException;
7 import java.awt.BorderLayout;
8 import javax.swing.JFrame;
9 import javax.swing.JScrollPane;

10 import javax.swing.JTextArea;

Fig. 24.9 | Server side of connectionless client/server computing with datagrams. (Part 1 of 3.)

24.7 Datagrams: Connectionless Client/Server Interaction 827

11 import javax.swing.SwingUtilities;
12
13 public class Server extends JFrame
14 {
15 private JTextArea displayArea; // displays packets received
16
17
18 // set up GUI and DatagramSocket
19 public Server()
20 {
21 super("Server");
22
23 displayArea = new JTextArea(); // create displayArea
24 add(new JScrollPane(displayArea), BorderLayout.CENTER);
25 setSize(400, 300); // set size of window
26 setVisible(true); // show window
27
28 try // create DatagramSocket for sending and receiving packets
29 {
30
31 } // end try
32 catch (SocketException socketException)
33 {
34 socketException.printStackTrace();
35 System.exit(1);
36 } // end catch
37 } // end Server constructor
38
39 // wait for packets to arrive, display data and echo packet to client
40 public void waitForPackets()
41 {
42 while (true)
43 {
44 try // receive packet, display contents, return copy to client
45 {
46
47
48
49
50
51
52 // display information from received packet
53 displayMessage("\nPacket received:" +
54 "\nFrom host: " + +
55 "\nHost port: " + +
56 "\nLength: " + +
57 "\nContaining:\n\t" + new String(,
58 0,));
59
60 sendPacketToClient(receivePacket); // send packet to client
61 } // end try
62 catch (IOException ioException)
63 {

Fig. 24.9 | Server side of connectionless client/server computing with datagrams. (Part 2 of 3.)

private DatagramSocket socket; // socket to connect to client

socket = new DatagramSocket(5000);

byte[] data = new byte[100]; // set up packet
DatagramPacket receivePacket =

new DatagramPacket(data, data.length);

socket.receive(receivePacket); // wait to receive packet

receivePacket.getAddress()
receivePacket.getPort()

receivePacket.getLength()
receivePacket.getData()

receivePacket.getLength()

828 Chapter 24 Networking

64 displayMessage(ioException + "\n");
65 ioException.printStackTrace();
66 } // end catch
67 } // end while
68 } // end method waitForPackets
69
70 // echo packet to client
71 private void sendPacketToClient(DatagramPacket receivePacket)
72 throws IOException
73 {
74 displayMessage("\n\nEcho data to client...");
75
76 // create packet to send
77
78
79
80
81
82 displayMessage("Packet sent\n");
83 } // end method sendPacketToClient
84
85 // manipulates displayArea in the event-dispatch thread
86 private void displayMessage(final String messageToDisplay)
87 {
88 SwingUtilities.invokeLater(
89 new Runnable()
90 {
91 public void run() // updates displayArea
92 {
93 displayArea.append(messageToDisplay); // display message
94 } // end method run
95 } // end anonymous inner class
96); // end call to SwingUtilities.invokeLater
97 } // end method displayMessage
98 } // end class Server

1 // Fig. 24.10: ServerTest.java
2 // Class that tests the Server.
3 import javax.swing.JFrame;
4
5 public class ServerTest
6 {
7 public static void main(String[] args)
8 {
9 Server application = new Server(); // create server

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 application.waitForPackets(); // run server application
12 } // end main
13 } // end class ServerTest

Fig. 24.10 | Class that tests the Server. (Part 1 of 2.)

Fig. 24.9 | Server side of connectionless client/server computing with datagrams. (Part 3 of 3.)

DatagramPacket sendPacket = new DatagramPacket(
receivePacket.getData(), receivePacket.getLength(),
receivePacket.getAddress(), receivePacket.getPort());

socket.send(sendPacket); // send packet to client

24.7 Datagrams: Connectionless Client/Server Interaction 829

Method waitForPackets

Server method waitForPackets (Fig. 24.9, lines 40–68) uses an infinite loop to wait for
packets to arrive at the Server. Lines 47–48 create a DatagramPacket in which a received
packet of information can be stored. The DatagramPacket constructor for this purpose re-
ceives two arguments—a byte array in which the data will be stored and the length of the
array. Line 50 uses DatagramSocket method receive to wait for a packet to arrive at the
Server. Method receive blocks until a packet arrives, then stores the packet in its Data-
gramPacket argument. The method throws an IOException if an error occurs while re-
ceiving a packet.

Method displayMessage

When a packet arrives, lines 53–58 call method displayMessage (declared at lines 86–97)
to append the packet’s contents to the text area. DatagramPacket method getAddress

(line 54) returns an InetAddress object containing the IP address of the computer from
which the packet was sent. Method getPort (line 55) returns an integer specifying the port
number through which the client computer sent the packet. Method getLength (line 56)
returns an integer representing the number of bytes of data received. Method getData

(line 57) returns a byte array containing the data. Lines 57–58 initialize a String object
using a three-argument constructor that takes a byte array, the offset and the length. This
String is then appended to the text to display.

Method sendPacketToClient

After displaying a packet, line 60 calls method sendPacketToClient (declared at lines 71–
83) to create a new packet and send it to the client. Lines 77–79 create a DatagramPacket

and pass four arguments to its constructor. The first argument specifies the byte array to
send. The second argument specifies the number of bytes to send. The third argument
specifies the client computer’s IP address, to which the packet will be sent. The fourth ar-
gument specifies the port where the client is waiting to receive packets. Line 81 sends the
packet over the network. Method send of DatagramSocket throws an IOException if an
error occurs while sending a packet.

Client Class
The Client (Figs. 24.11–24.12) works similarly to class Server, except that the Client

sends packets only when the user types a message in a text field and presses the Enter key.

Fig. 24.10 | Class that tests the Server. (Part 2 of 2.)

Server window after packet
of data is received from Client

830 Chapter 24 Networking

When this occurs, the program calls method actionPerformed (Fig. 24.11, lines 32–57),
which converts the String the user entered into a byte array (line 41). Lines 44–45 create
a DatagramPacket and initialize it with the byte array, the length of the String that was
entered by the user, the IP address to which the packet is to be sent (InetAddress.getLo-
calHost() in this example) and the port number at which the Server is waiting for pack-
ets (5000 in this example). Line 47 sends the packet. The client in this example must know
that the server is receiving packets at port 5000—otherwise, the server will not receive the
packets.

The DatagramSocket constructor call (Fig. 24.11, line 71) in this application does
not specify any arguments. This no-argument constructor allows the computer to select
the next available port number for the DatagramSocket. The client does not need a specific
port number, because the server receives the client’s port number as part of each Data-

gramPacket sent by the client. Thus, the server can send packets back to the same com-
puter and port number from which it receives a packet of information.

1 // Fig. 24.11: Client.java
2 // Client side of connectionless client/server computing with datagrams.
3 import java.io.IOException;
4 import java.net.DatagramPacket;
5 import java.net.DatagramSocket;
6 import java.net.InetAddress;
7 import java.net.SocketException;
8 import java.awt.BorderLayout;
9 import java.awt.event.ActionEvent;

10 import java.awt.event.ActionListener;
11 import javax.swing.JFrame;
12 import javax.swing.JScrollPane;
13 import javax.swing.JTextArea;
14 import javax.swing.JTextField;
15 import javax.swing.SwingUtilities;
16
17 public class Client extends JFrame
18 {
19 private JTextField enterField; // for entering messages
20 private JTextArea displayArea; // for displaying messages
21
22
23 // set up GUI and DatagramSocket
24 public Client()
25 {
26 super("Client");
27
28 enterField = new JTextField("Type message here");
29 enterField.addActionListener(
30 new ActionListener()
31 {
32 public void actionPerformed(ActionEvent event)
33 {
34 try // create and send packet
35 {

Fig. 24.11 | Client side of connectionless client/server computing with datagrams. (Part 1 of 3.)

private DatagramSocket socket; // socket to connect to server

24.7 Datagrams: Connectionless Client/Server Interaction 831

36 // get message from textfield
37 String message = event.getActionCommand();
38 displayArea.append("\nSending packet containing: " +
39 message + "\n");
40
41
42
43 // create sendPacket
44
45
46
47
48 displayArea.append("Packet sent\n");
49 displayArea.setCaretPosition(
50 displayArea.getText().length());
51 } // end try
52 catch (IOException ioException)
53 {
54 displayMessage(ioException + "\n");
55 ioException.printStackTrace();
56 } // end catch
57 } // end actionPerformed
58 } // end inner class
59); // end call to addActionListener
60
61 add(enterField, BorderLayout.NORTH);
62
63 displayArea = new JTextArea();
64 add(new JScrollPane(displayArea), BorderLayout.CENTER);
65
66 setSize(400, 300); // set window size
67 setVisible(true); // show window
68
69 try // create DatagramSocket for sending and receiving packets
70 {
71 socket = new DatagramSocket();
72 } // end try
73 catch (SocketException socketException)
74 {
75 socketException.printStackTrace();
76 System.exit(1);
77 } // end catch
78 } // end Client constructor
79
80 // wait for packets to arrive from Server, display packet contents
81 public void waitForPackets()
82 {
83 while (true)
84 {
85 try // receive packet and display contents
86 {
87

Fig. 24.11 | Client side of connectionless client/server computing with datagrams. (Part 2 of 3.)

byte[] data = message.getBytes(); // convert to bytes

DatagramPacket sendPacket = new DatagramPacket(data,
data.length, InetAddress.getLocalHost(), 5000);

socket.send(sendPacket); // send packet

byte[] data = new byte[100]; // set up packet

832 Chapter 24 Networking

88
89
90
91 socket.receive(receivePacket); // wait for packet
92
93 // display packet contents
94 displayMessage("\nPacket received:" +
95 "\nFrom host: " + +
96 "\nHost port: " + +
97 "\nLength: " + +
98 "\nContaining:\n\t" + new String(,
99 0,));
100 } // end try
101 catch (IOException exception)
102 {
103 displayMessage(exception + "\n");
104 exception.printStackTrace();
105 } // end catch
106 } // end while
107 } // end method waitForPackets
108
109 // manipulates displayArea in the event-dispatch thread
110 private void displayMessage(final String messageToDisplay)
111 {
112 SwingUtilities.invokeLater(
113 new Runnable()
114 {
115 public void run() // updates displayArea
116 {
117 displayArea.append(messageToDisplay);
118 } // end method run
119 } // end inner class
120); // end call to SwingUtilities.invokeLater
121 } // end method displayMessage
122 } // end class Client

1 // Fig. 24.12: ClientTest.java
2 // Tests the Client class.
3 import javax.swing.JFrame;
4
5 public class ClientTest
6 {
7 public static void main(String[] args)
8 {
9 Client application = new Client(); // create client

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 application.waitForPackets(); // run client application
12 } // end main
13 } // end class ClientTest

Fig. 24.12 | Class that tests the Client. (Part 1 of 2.)

Fig. 24.11 | Client side of connectionless client/server computing with datagrams. (Part 3 of 3.)

DatagramPacket receivePacket = new DatagramPacket(
data, data.length);

receivePacket.getAddress()
receivePacket.getPort()

receivePacket.getLength()
receivePacket.getData()

receivePacket.getLength()

24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 833

Method waitForPackets

Client method waitForPackets (lines 81–107) uses an infinite loop to wait for packets
from the server. Line 91 blocks until a packet arrives. This does not prevent the user from
sending a packet, because the GUI events are handled in the event-dispatch thread. It only
prevents the while loop from continuing until a packet arrives at the Client. When a
packet arrives, line 91 stores it in receivePacket, and lines 94–99 call method dis-

playMessage (declared at lines 110–121) to display the packet’s contents in the text area.

24.8 Client/Server Tic-Tac-Toe Using a Multithreaded
Server
This section presents the popular game Tic-Tac-Toe implemented by using client/server
techniques with stream sockets. The program consists of a TicTacToeServer application
(Figs. 24.13–24.14) that allows two TicTacToeClient applications (Figs. 24.15–24.16)
to connect to the server and play Tic-Tac-Toe. Sample outputs are shown in Fig. 24.17.

TicTacToeServer Class
As the TicTacToeServer receives each client connection, it creates an instance of inner-
class Player (Fig. 24.13, lines 182–304) to process the client in a separate thread. These
threads enable the clients to play the game independently. The first client to connect to
the server is player X and the second is player O. Player X makes the first move. The server
maintains the information about the board so it can determine if a player’s move is valid.

1 // Fig. 24.13: TicTacToeServer.java
2 // Server side of client/server Tic-Tac-Toe program.
3 import java.awt.BorderLayout;
4 import java.net.ServerSocket;
5 import java.net.Socket;
6 import java.io.IOException;
7 import java.util.Formatter;
8 import java.util.Scanner;
9 import java.util.concurrent.ExecutorService;

10 import java.util.concurrent.Executors;

Fig. 24.13 | Server side of client/server Tic-Tac-Toe program. (Part 1 of 7.)

Fig. 24.12 | Class that tests the Client. (Part 2 of 2.)

Client window after sending
packet to Server and receiving packet back
from Server

834 Chapter 24 Networking

11 import java.util.concurrent.locks.Lock;
12 import java.util.concurrent.locks.ReentrantLock;
13 import java.util.concurrent.locks.Condition;
14 import javax.swing.JFrame;
15 import javax.swing.JTextArea;
16 import javax.swing.SwingUtilities;
17
18 public class TicTacToeServer extends JFrame
19 {
20 private String[] board = new String[9]; // tic-tac-toe board
21 private JTextArea outputArea; // for outputting moves
22 private Player[] players; // array of Players
23 private ServerSocket server; // server socket to connect with clients
24 private int currentPlayer; // keeps track of player with current move
25 private final static int PLAYER_X = 0; // constant for first player
26 private final static int PLAYER_O = 1; // constant for second player
27 private final static String[] MARKS = { "X", "O" }; // array of marks
28 private ExecutorService runGame; // will run players
29 private Lock gameLock; // to lock game for synchronization
30 private Condition otherPlayerConnected; // to wait for other player
31 private Condition otherPlayerTurn; // to wait for other player's turn
32
33 // set up tic-tac-toe server and GUI that displays messages
34 public TicTacToeServer()
35 {
36 super("Tic-Tac-Toe Server"); // set title of window
37
38 // create ExecutorService with a thread for each player
39 runGame = Executors.newFixedThreadPool(2);
40 gameLock = new ReentrantLock(); // create lock for game
41
42 // condition variable for both players being connected
43 otherPlayerConnected = gameLock.newCondition();
44
45 // condition variable for the other player's turn
46 otherPlayerTurn = gameLock.newCondition();
47
48 for (int i = 0; i < 9; i++)
49 board[i] = new String(""); // create tic-tac-toe board
50
51 currentPlayer = PLAYER_X; // set current player to first player
52
53 try

54 {
55
56 } // end try
57 catch (IOException ioException)
58 {
59 ioException.printStackTrace();
60 System.exit(1);
61 } // end catch
62
63 outputArea = new JTextArea(); // create JTextArea for output

Fig. 24.13 | Server side of client/server Tic-Tac-Toe program. (Part 2 of 7.)

players = new Player[2]; // create array of players

server = new ServerSocket(12345, 2); // set up ServerSocket

24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 835

64 add(outputArea, BorderLayout.CENTER);
65 outputArea.setText("Server awaiting connections\n");
66
67 setSize(300, 300); // set size of window
68 setVisible(true); // show window
69 } // end TicTacToeServer constructor
70
71 // wait for two connections so game can be played
72 public void execute()
73 {
74 // wait for each client to connect
75 for (int i = 0; i < players.length; i++)
76 {
77 try // wait for connection, create Player, start runnable
78 {
79
80
81 } // end try
82 catch (IOException ioException)
83 {
84 ioException.printStackTrace();
85 System.exit(1);
86 } // end catch
87 } // end for
88
89 gameLock.lock(); // lock game to signal player X's thread
90
91 try

92 {
93 players[PLAYER_X].setSuspended(false); // resume player X
94 otherPlayerConnected.signal(); // wake up player X's thread
95 } // end try
96 finally

97 {
98 gameLock.unlock(); // unlock game after signalling player X
99 } // end finally
100 } // end method execute
101
102 // display message in outputArea
103 private void displayMessage(final String messageToDisplay)
104 {
105 // display message from event-dispatch thread of execution
106 SwingUtilities.invokeLater(
107 new Runnable()
108 {
109 public void run() // updates outputArea
110 {
111 outputArea.append(messageToDisplay); // add message
112 } // end method run
113 } // end inner class
114); // end call to SwingUtilities.invokeLater
115 } // end method displayMessage

Fig. 24.13 | Server side of client/server Tic-Tac-Toe program. (Part 3 of 7.)

players[i] = new Player(server.accept(), i);
runGame.execute(players[i]); // execute player runnable

836 Chapter 24 Networking

116
117 // determine if move is valid
118 public boolean validateAndMove(int location, int player)
119 {
120 // while not current player, must wait for turn
121 while (player != currentPlayer)
122 {
123 gameLock.lock(); // lock game to wait for other player to go
124
125 try

126 {
127 otherPlayerTurn.await(); // wait for player's turn
128 } // end try
129 catch (InterruptedException exception)
130 {
131 exception.printStackTrace();
132 } // end catch
133 finally

134 {
135 gameLock.unlock(); // unlock game after waiting
136 } // end finally
137 } // end while
138
139 // if location not occupied, make move
140 if (!isOccupied(location))
141 {
142 board[location] = MARKS[currentPlayer]; // set move on board
143 currentPlayer = (currentPlayer + 1) % 2; // change player
144
145 // let new current player know that move occurred
146 players[currentPlayer].otherPlayerMoved(location);
147
148 gameLock.lock(); // lock game to signal other player to go
149
150 try

151 {
152 otherPlayerTurn.signal(); // signal other player to continue
153 } // end try
154 finally

155 {
156 gameLock.unlock(); // unlock game after signaling
157 } // end finally
158
159 return true; // notify player that move was valid
160 } // end if
161 else // move was not valid
162 return false; // notify player that move was invalid
163 } // end method validateAndMove
164
165 // determine whether location is occupied
166 public boolean isOccupied(int location)
167 {

Fig. 24.13 | Server side of client/server Tic-Tac-Toe program. (Part 4 of 7.)

24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 837

168 if (board[location].equals(MARKS[PLAYER_X]) ||
169 board [location].equals(MARKS[PLAYER_O]))
170 return true; // location is occupied
171 else

172 return false; // location is not occupied
173 } // end method isOccupied
174
175 // place code in this method to determine whether game over
176 public boolean isGameOver()
177 {
178 return false; // this is left as an exercise
179 } // end method isGameOver
180
181 // private inner class Player manages each Player as a runnable
182 private class Player implements Runnable
183 {
184 private Socket connection; // connection to client
185 private Scanner input; // input from client
186 private Formatter output; // output to client
187 private int playerNumber; // tracks which player this is
188 private String mark; // mark for this player
189 private boolean suspended = true; // whether thread is suspended
190
191 // set up Player thread
192 public Player(Socket socket, int number)
193 {
194 playerNumber = number; // store this player's number
195 mark = MARKS[playerNumber]; // specify player's mark
196 connection = socket; // store socket for client
197
198 try // obtain streams from Socket
199 {
200
201
202 } // end try
203 catch (IOException ioException)
204 {
205 ioException.printStackTrace();
206 System.exit(1);
207 } // end catch
208 } // end Player constructor
209
210 // send message that other player moved
211 public void otherPlayerMoved(int location)
212 {
213
214
215
216 } // end method otherPlayerMoved
217

Fig. 24.13 | Server side of client/server Tic-Tac-Toe program. (Part 5 of 7.)

input = new Scanner(connection.getInputStream());
output = new Formatter(connection.getOutputStream());

output.format("Opponent moved\n");
output.format("%d\n", location); // send location of move
output.flush(); // flush output

838 Chapter 24 Networking

218 // control thread's execution
219 public void run()
220 {
221 // send client its mark (X or O), process messages from client
222 try

223 {
224 displayMessage("Player " + mark + " connected\n");
225
226
227
228 // if player X, wait for another player to arrive
229 if (playerNumber == PLAYER_X)
230 {
231
232
233
234
235 gameLock.lock(); // lock game to wait for second player
236
237 try

238 {
239 while(suspended)
240 {
241 otherPlayerConnected.await(); // wait for player O
242 } // end while
243 } // end try
244 catch (InterruptedException exception)
245 {
246 exception.printStackTrace();
247 } // end catch
248 finally

249 {
250 gameLock.unlock(); // unlock game after second player
251 } // end finally
252
253 // send message that other player connected
254
255
256 } // end if
257 else

258 {
259
260
261 } // end else
262
263 // while game not over
264 while (!isGameOver())
265 {
266 int location = 0; // initialize move location
267
268 if (input.hasNext())
269
270

Fig. 24.13 | Server side of client/server Tic-Tac-Toe program. (Part 6 of 7.)

output.format("%s\n", mark); // send player's mark
output.flush(); // flush output

output.format("%s\n%s", "Player X connected",
"Waiting for another player\n");

output.flush(); // flush output

output.format("Other player connected. Your move.\n");
output.flush(); // flush output

output.format("Player O connected, please wait\n");
output.flush(); // flush output

location = input.nextInt(); // get move location

24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 839

271 // check for valid move
272 if (validateAndMove(location, playerNumber))
273 {
274 displayMessage("\nlocation: " + location);
275
276
277 } // end if
278 else // move was invalid
279 {
280
281
282 } // end else
283 } // end while
284 } // end try
285 finally

286 {
287 try

288 {
289 connection.close(); // close connection to client
290 } // end try
291 catch (IOException ioException)
292 {
293 ioException.printStackTrace();
294 System.exit(1);
295 } // end catch
296 } // end finally
297 } // end method run
298
299 // set whether or not thread is suspended
300 public void setSuspended(boolean status)
301 {
302 suspended = status; // set value of suspended
303 } // end method setSuspended
304 } // end class Player
305 } // end class TicTacToeServer

1 // Fig. 24.14: TicTacToeServerTest.java
2 // Class that tests Tic-Tac-Toe server.
3 import javax.swing.JFrame;
4
5 public class TicTacToeServerTest
6 {
7 public static void main(String[] args)
8 {
9 TicTacToeServer application = new TicTacToeServer();

10 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
11 application.execute();
12 } // end main
13 } // end class TicTacToeServerTest

Fig. 24.14 | Class that tests Tic-Tac-Toe server. (Part 1 of 2.)

Fig. 24.13 | Server side of client/server Tic-Tac-Toe program. (Part 7 of 7.)

output.format("Valid move.\n"); // notify client
output.flush(); // flush output

output.format("Invalid move, try again\n");
output.flush(); // flush output

840 Chapter 24 Networking

We begin with a discussion of the server side of the Tic-Tac-Toe game. When the
TicTacToeServer application executes, the main method (lines 7–12 of Fig. 24.14) creates
a TicTacToeServer object called application. The constructor (Fig. 24.13, lines 34–69)
attempts to set up a ServerSocket. If successful, the program displays the server window,
then main invokes the TicTacToeServer method execute (lines 72–100). Method exe-

cute loops twice, blocking at line 79 each time while waiting for a client connection.
When a client connects, line 79 creates a new Player object to manage the connection as
a separate thread, and line 80 executes the Player in the runGame thread pool.

When the TicTacToeServer creates a Player, the Player constructor (lines 192–
208) receives the Socket object representing the connection to the client and gets the asso-
ciated input and output streams. Line 201 creates a Formatter (see Chapter 17) by wrap-
ping it around the output stream of the socket. The Player’s run method (lines 219–297)
controls the information that’s sent to and received from the client. First, it passes to the
client the character that the client will place on the board when a move is made (line 225).
Line 226 calls Formatter method flush to force this output to the client. Line 241 sus-
pends player X’s thread as it starts executing, because player X can move only after player
O connects.

When player O connects, the game can be played, and the run method begins exe-
cuting its while statement (lines 264–283). Each iteration of this loop reads an integer
(line 269) representing the location where the client wants to place a mark (blocking to
wait for input, if necessary), and line 272 invokes the TicTacToeServer method
validateAndMove (declared at lines 118–163) to check the move. If the move is valid, line
275 sends a message to the client to this effect. If not, line 280 sends a message indicating
that the move was invalid. The program maintains board locations as numbers from 0 to
8 (0 through 2 for the first row, 3 through 5 for the second row and 6 through 8 for the
third row).

Method validateAndMove (lines 118–163 in class TicTacToeServer) allows only one
player at a time to move, thereby preventing them from modifying the state information
of the game simultaneously. If the Player attempting to validate a move is not the current
player (i.e., the one allowed to make a move), it’s placed in a wait state until its turn to
move. If the position for the move being validated is already occupied on the board,

Fig. 24.14 | Class that tests Tic-Tac-Toe server. (Part 2 of 2.)

24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 841

validMove returns false. Otherwise, the server places a mark for the player in its local rep-
resentation of the board (line 142), notifies the other Player object (line 146) that a move
has been made (so that the client can be sent a message), invokes method signal (line 152)
so that the waiting Player (if there is one) can validate a move and returns true (line 159)
to indicate that the move is valid.

TicTacToeClient Class
Each TicTacToeClient application (Figs. 24.15–24.16; sample outputs in Fig. 24.17)
maintains its own GUI version of the Tic-Tac-Toe board on which it displays the state of
the game. The clients can place a mark only in an empty square. Inner class Square

(Fig. 24.15, lines 205–261) implements each of the nine squares on the board. When a
TicTacToeClient begins execution, it creates a JTextArea in which messages from the
server and a representation of the board using nine Square objects are displayed. The
startClient method (lines 80–100) opens a connection to the server and gets the associ-
ated input and output streams from the Socket object. Lines 85–86 make a connection to
the server. Class TicTacToeClient implements interface Runnable so that a separate
thread can read messages from the server. This approach enables the user to interact with
the board (in the event-dispatch thread) while waiting for messages from the server. After
establishing the connection to the server, line 99 executes the client with the worker Ex-

ecutorService. The run method (lines 103–126) controls the separate thread of execu-
tion. The method first reads the mark character (X or O) from the server (line 105), then
loops continuously (lines 121–125) and reads messages from the server (line 124). Each
message is passed to the processMessage method (lines 129–156) for processing.

1 // Fig. 24.15: TicTacToeClient.java
2 // Client side of client/server Tic-Tac-Toe program.
3 import java.awt.BorderLayout;
4 import java.awt.Dimension;
5 import java.awt.Graphics;
6 import java.awt.GridLayout;
7 import java.awt.event.MouseAdapter;
8 import java.awt.event.MouseEvent;
9 import java.net.Socket;

10 import java.net.InetAddress;
11 import java.io.IOException;
12 import javax.swing.JFrame;
13 import javax.swing.JPanel;
14 import javax.swing.JScrollPane;
15 import javax.swing.JTextArea;
16 import javax.swing.JTextField;
17 import javax.swing.SwingUtilities;
18 import java.util.Formatter;
19 import java.util.Scanner;
20 import java.util.concurrent.Executors;
21 import java.util.concurrent.ExecutorService;
22
23 public class TicTacToeClient extends JFrame implements Runnable
24 {

Fig. 24.15 | Client side of client/server Tic-Tac-Toe program. (Part 1 of 6.)

842 Chapter 24 Networking

25 private JTextField idField; // textfield to display player's mark
26 private JTextArea displayArea; // JTextArea to display output
27 private JPanel boardPanel; // panel for tic-tac-toe board
28 private JPanel panel2; // panel to hold board
29 private Square[][] board; // tic-tac-toe board
30 private Square currentSquare; // current square
31 private Socket connection; // connection to server
32 private Scanner input; // input from server
33 private Formatter output; // output to server
34 private String ticTacToeHost; // host name for server
35 private String myMark; // this client's mark
36 private boolean myTurn; // determines which client's turn it is
37 private final String X_MARK = "X"; // mark for first client
38 private final String O_MARK = "O"; // mark for second client
39
40 // set up user-interface and board
41 public TicTacToeClient(String host)
42 {
43 ticTacToeHost = host; // set name of server
44 displayArea = new JTextArea(4, 30); // set up JTextArea
45 displayArea.setEditable(false);
46 add(new JScrollPane(displayArea), BorderLayout.SOUTH);
47
48 boardPanel = new JPanel(); // set up panel for squares in board
49 boardPanel.setLayout(new GridLayout(3, 3, 0, 0));
50
51 board = new Square[3][3]; // create board
52
53 // loop over the rows in the board
54 for (int row = 0; row < board.length; row++)
55 {
56 // loop over the columns in the board
57 for (int column = 0; column < board[row].length; column++)
58 {
59 // create square
60 board[row][column] = new Square(' ', row * 3 + column);
61 boardPanel.add(board[row][column]); // add square
62 } // end inner for
63 } // end outer for
64
65 idField = new JTextField(); // set up textfield
66 idField.setEditable(false);
67 add(idField, BorderLayout.NORTH);
68
69 panel2 = new JPanel(); // set up panel to contain boardPanel
70 panel2.add(boardPanel, BorderLayout.CENTER); // add board panel
71 add(panel2, BorderLayout.CENTER); // add container panel
72
73 setSize(300, 225); // set size of window
74 setVisible(true); // show window
75
76 startClient();
77 } // end TicTacToeClient constructor

Fig. 24.15 | Client side of client/server Tic-Tac-Toe program. (Part 2 of 6.)

24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 843

78
79 // start the client thread
80 public void startClient()
81 {
82 try // connect to server and get streams
83 {
84 // make connection to server
85
86
87
88 // get streams for input and output
89
90
91 } // end try
92 catch (IOException ioException)
93 {
94 ioException.printStackTrace();
95 } // end catch
96
97 // create and start worker thread for this client
98 ExecutorService worker = Executors.newFixedThreadPool(1);
99 worker.execute(this); // execute client
100 } // end method startClient
101
102 // control thread that allows continuous update of displayArea
103 public void run()
104 {
105
106
107 SwingUtilities.invokeLater(
108 new Runnable()
109 {
110 public void run()
111 {
112 // display player's mark
113 idField.setText("You are player \"" + myMark + "\"");
114 } // end method run
115 } // end anonymous inner class
116); // end call to SwingUtilities.invokeLater
117
118 myTurn = (myMark.equals(X_MARK)); // determine if client's turn
119
120 // receive messages sent to client and output them
121 while (true)
122 {
123 if (input.hasNextLine())
124 processMessage();
125 } // end while
126 } // end method run
127
128 // process messages received by client
129 private void processMessage(String message)
130 {

Fig. 24.15 | Client side of client/server Tic-Tac-Toe program. (Part 3 of 6.)

connection = new Socket(
InetAddress.getByName(ticTacToeHost), 12345);

input = new Scanner(connection.getInputStream());
output = new Formatter(connection.getOutputStream());

myMark = input.nextLine(); // get player's mark (X or O)

input.nextLine()

844 Chapter 24 Networking

131 // valid move occurred
132 if (message.equals("Valid move."))
133 {
134 displayMessage("Valid move, please wait.\n");
135 setMark(currentSquare, myMark); // set mark in square
136 } // end if
137 else if (message.equals("Invalid move, try again"))
138 {
139 displayMessage(message + "\n"); // display invalid move
140 myTurn = true; // still this client's turn
141 } // end else if
142 else if (message.equals("Opponent moved"))
143 {
144 int location = input.nextInt(); // get move location
145 input.nextLine(); // skip newline after int location
146 int row = location / 3; // calculate row
147 int column = location % 3; // calculate column
148
149 setMark(board[row][column],
150 (myMark.equals(X_MARK) ? O_MARK : X_MARK)); // mark move
151 displayMessage("Opponent moved. Your turn.\n");
152 myTurn = true; // now this client's turn
153 } // end else if
154 else

155 displayMessage(message + "\n"); // display the message
156 } // end method processMessage
157
158 // manipulate displayArea in event-dispatch thread
159 private void displayMessage(final String messageToDisplay)
160 {
161 SwingUtilities.invokeLater(
162 new Runnable()
163 {
164 public void run()
165 {
166 displayArea.append(messageToDisplay); // updates output
167 } // end method run
168 } // end inner class
169); // end call to SwingUtilities.invokeLater
170 } // end method displayMessage
171
172 // utility method to set mark on board in event-dispatch thread
173 private void setMark(final Square squareToMark, final String mark)
174 {
175 SwingUtilities.invokeLater(
176 new Runnable()
177 {
178 public void run()
179 {
180 squareToMark.setMark(mark); // set mark in square
181 } // end method run

Fig. 24.15 | Client side of client/server Tic-Tac-Toe program. (Part 4 of 6.)

24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 845

182 } // end anonymous inner class
183); // end call to SwingUtilities.invokeLater
184 } // end method setMark
185
186 // send message to server indicating clicked square
187 public void sendClickedSquare(int location)
188 {
189 // if it is my turn
190 if (myTurn)
191 {
192
193
194 myTurn = false; // not my turn any more
195 } // end if
196 } // end method sendClickedSquare
197
198 // set current Square
199 public void setCurrentSquare(Square square)
200 {
201 currentSquare = square; // set current square to argument
202 } // end method setCurrentSquare
203
204 // private inner class for the squares on the board
205 private class Square extends JPanel
206 {
207 private String mark; // mark to be drawn in this square
208 private int location; // location of square
209
210 public Square(String squareMark, int squareLocation)
211 {
212 mark = squareMark; // set mark for this square
213 location = squareLocation; // set location of this square
214
215 addMouseListener(
216 new MouseAdapter()
217 {
218 public void mouseReleased(MouseEvent e)
219 {
220 setCurrentSquare(Square.this); // set current square
221
222 // send location of this square
223 sendClickedSquare(getSquareLocation());
224 } // end method mouseReleased
225 } // end anonymous inner class
226); // end call to addMouseListener
227 } // end Square constructor
228
229 // return preferred size of Square
230 public Dimension getPreferredSize()
231 {
232 return new Dimension(30, 30); // return preferred size
233 } // end method getPreferredSize

Fig. 24.15 | Client side of client/server Tic-Tac-Toe program. (Part 5 of 6.)

output.format("%d\n", location); // send location to server
output.flush();

846 Chapter 24 Networking

234
235 // return minimum size of Square
236 public Dimension getMinimumSize()
237 {
238 return getPreferredSize(); // return preferred size
239 } // end method getMinimumSize
240
241 // set mark for Square
242 public void setMark(String newMark)
243 {
244 mark = newMark; // set mark of square
245 repaint(); // repaint square
246 } // end method setMark
247
248 // return Square location
249 public int getSquareLocation()
250 {
251 return location; // return location of square
252 } // end method getSquareLocation
253
254 // draw Square
255 public void paintComponent(Graphics g)
256 {
257 super.paintComponent(g);
258
259 g.drawRect(0, 0, 29, 29); // draw square
260 g.drawString(mark, 11, 20); // draw mark
261 } // end method paintComponent
262 } // end inner-class Square
263 } // end class TicTacToeClient

1 // Fig. 24.16: TicTacToeClientTest.java
2 // Test class for Tic-Tac-Toe client.
3 import javax.swing.JFrame;
4
5 public class TicTacToeClientTest
6 {
7 public static void main(String[] args)
8 {
9 TicTacToeClient application; // declare client application

10
11 // if no command line args
12 if (args.length == 0)
13 application = new TicTacToeClient("127.0.0.1"); // localhost
14 else

15 application = new TicTacToeClient(args[0]); // use args
16
17 application.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
18 } // end main
19 } // end class TicTacToeClientTest

Fig. 24.16 | Test class for Tic-Tac-Toe client.

Fig. 24.15 | Client side of client/server Tic-Tac-Toe program. (Part 6 of 6.)

24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server 847

If the message received is "Valid move.", lines 134–135 display the message "Valid

move, please wait." and call method setMark (lines 173–184) to set the client’s mark in
the current square (the one in which the user clicked), using SwingUtilities method
invokeLater to ensure that the GUI updates occur in the event-dispatch thread. If the
message received is "Invalid move, try again.", line 139 displays the message so that the
user can click a different square. If the message received is "Opponent moved.", line 144
reads an integer from the server indicating where the opponent moved, and lines 149–150
place a mark in that square of the board (again using SwingUtilities method invoke-

Later to ensure that the GUI updates occur in the event-dispatch thread). If any other
message is received, line 155 simply displays the message.

Fig. 24.17 | Sample outputs from the client/server Tic-Tac-Toe program. (Part 1 of 2.)

a) Player X connected to server. b) Player O connected to server.

c) Player X moved. d) Player O sees Player X’s move.

e) Player O moved. f) Player X sees Player O’s move.

848 Chapter 24 Networking

24.9 [Web Bonus] Case Study: DeitelMessenger
This case study is available at www.deitel.com/books/javafp2/. Chat rooms provide a
central location where users can chat with each other via short text messages. Each partic-
ipant can see all the messages that the other users post, and each user can post messages.
This case study integrates many of the Java networking, multithreading and Swing GUI
features you’ve learned thus far to build an online chat system. We also introduce multi-
casting, which enables an application to send DatagramPackets to groups of clients.

The DeitelMessenger case study is a significant application that uses many interme-
diate Java features, such as networking with Sockets, DatagramPackets and Multicast-

Sockets, multithreading and Swing GUI. The case study also demonstrates good software
engineering practices by separating interface from implementation and enabling devel-
opers to support different network protocols and provide different user interfaces. After
reading this case study, you’ll be able to build more significant networking applications.

24.10 Wrap-Up
In this chapter, you learned the basics of network programming in Java. We began with a
simple applet and application in which Java performed the networking for you. You then
learned two different methods of sending data over a network—streams-based networking
using TCP/IP and datagrams-based networking using UDP. We showed how to build
simple client/server chat programs using both streams-based and datagram-based net-
working. You then saw a client/server Tic-Tac-Toe game that enables two clients to play
by interacting with a multithreaded server that maintains the game’s state and logic. In the
next chapter, you’ll learn basic database concepts, how to interact with data in a database
using SQL and how to use JDBC to allow Java applications to manipulate database data.

Fig. 24.17 | Sample outputs from the client/server Tic-Tac-Toe program. (Part 2 of 2.)

g) Player X moved. h) Player O sees Player X’s last move.

www.deitel.com/books/javafp2/

25
Accessing Databases
with JDBC

O b j e c t i v e s
In this chapter you’ll learn:

� Relational database concepts.

� To use Structured Query Language (SQL) to retrieve data
from and manipulate data in a database.

� To use the JDBC™ API to access databases.

� To use the RowSet interface from package javax.sql to
manipulate databases.

� To use JDBC 4’s automatic JDBC driver discovery.

� To create precompiled SQL statements with parameters via
PreparedStatements.

� How transaction processing makes database applications
more robust.

It is a capital mistake to
theorize before one has
data.
—Arthur Conan Doyle

Now go, write it before
them in a table, and note it
in a book, that it may be for
the time to come for ever
and ever.
—The Holy Bible, Isaiah 30:8

Get your facts first, and
then you can distort them
as much as you please.
—Mark Twain

I like two kinds of men:
domestic and foreign.
—Mae West

850 Chapter 25 Accessing Databases with JDBC

25.1 Introduction1

A database is an organized collection of data. There are many different strategies for orga-
nizing data to facilitate easy access and manipulation. A database management system
(DBMS) provides mechanisms for storing, organizing, retrieving and modifying data for
many users. Database management systems allow for the access and storage of data with-
out concern for the internal representation of data.

Today’s most popular database systems are relational databases (Section 25.2). A lan-
guage called SQL—pronounced “sequel,” or as its individual letters—is the international
standard language used almost universally with relational databases to perform queries
(i.e., to request information that satisfies given criteria) and to manipulate data. [Note: As
you learn about SQL, you’ll see some authors writing “a SQL statement” (which assumes
the pronunciation “sequel”) and others writing “an SQL statement” (which assumes that
the individual letters are pronounced). In this book we pronounce SQL as “sequel.”]

Some popular relational database management systems (RDBMSs) are Microsoft
SQL Server, Oracle, Sybase, IBM DB2, Informix, PostgreSQL and MySQL. The JDK
now comes with a pure-Java RDBMS called Java DB—Oracles’s version of Apache Derby.
In this chapter, we present examples using MySQL and Java DB.

Java programs communicate with databases and manipulate their data using the Java
Database Connectivity (JDBC™) API. A JDBC driver enables Java applications to con-
nect to a database in a particular DBMS and allows you to manipulate that database using
the JDBC API.

25.1 Introduction
25.2 Relational Databases
25.3 Relational Database Overview:

The books Database
25.4 SQL

25.4.1 Basic SELECT Query
25.4.2 WHERE Clause
25.4.3 ORDER BY Clause
25.4.4 Merging Data from Multiple

Tables: INNER JOIN
25.4.5 INSERT Statement
25.4.6 UPDATE Statement
25.4.7 DELETE Statement

25.5 Instructions for Installing MySQL
and MySQL Connector/J

25.6 Instructions for Setting Up a
MySQL User Account

25.7 Creating Database books in MySQL
25.8 Manipulating Databases with JDBC

25.8.1 Connecting to and Querying a Database
25.8.2 Querying the books Database

25.9 RowSet Interface
25.10 Java DB/Apache Derby
25.11 PreparedStatements
25.12 Stored Procedures
25.13 Transaction Processing
25.14 Wrap-Up
25.15 Web Resources

1. Before using this chapter, please review the Before You Begin section of the book.

Software Engineering Observation 25.1
Using the JDBC API enables developers to change the underlying DBMS (for example,
from Java DB to MySQL) without modifying the Java code that accesses the database.

25.2 Relational Databases 851

Most popular database management systems now provide JDBC drivers. There are
also many third-party JDBC drivers available. In this chapter, we introduce JDBC and use
it to manipulate MySQL and Java DB databases. The techniques demonstrated here can
also be used to manipulate other databases that have JDBC drivers. Check your DBMS’s
documentation to determine whether your DBMS comes with a JDBC driver. If not,
third-party vendors provide JDBC drivers for many DBMSs.

For more information on JDBC, visit

which contains JDBC information including the JDBC specification, FAQs, a learning re-
source center and software downloads.

25.2 Relational Databases
A relational database is a logical representation of data that allows the data to be accessed
without consideration of its physical structure. A relational database stores data in tables.
Figure 25.1 illustrates a sample table that might be used in a personnel system. The table
name is Employee, and its primary purpose is to store the attributes of employees. Tables
are composed of rows, and rows are composed of columns in which values are stored. This
table consists of six rows. The Number column of each row is the table’s primary key—a
column (or group of columns) with a unique value that cannot be duplicated in other rows.
This guarantees that each row can be identified by its primary key. Good examples of pri-
mary-key columns are a social security number, an employee ID number and a part num-
ber in an inventory system, as values in each of these columns are guaranteed to be unique.
The rows in Fig. 25.1 are displayed in order by primary key. In this case, the rows are listed
in increasing order, but we could also use decreasing order.

Rows in tables are not guaranteed to be stored in any particular order. As we’ll dem-
onstrate in an upcoming example, programs can specify ordering criteria when requesting
data from a database.

Software Engineering Observation 25.2
Most major database vendors provide their own JDBC database drivers, and many third-
party vendors provide JDBC drivers as well.

www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html

Fig. 25.1 | Employee table sample data.

23603

24568

34589

35761

47132

78321

Jones

Kerwin

Larson

Myers

Neumann

Stephens

Number

Primary key

Row

Column

Name

413

413

642

611

413

611

Department

1100

2000

1800

1400

9000

8500

Salary

New Jersey

New Jersey

Los Angeles

Orlando

New Jersey

Orlando

Location

www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html

852 Chapter 25 Accessing Databases with JDBC

Each column represents a different data attribute. Rows are normally unique (by pri-
mary key) within a table, but particular column values may be duplicated between rows.
For example, three different rows in the Employee table’s Department column contain
number 413.

Different users of a database are often interested in different data and different rela-
tionships among the data. Most users require only subsets of the rows and columns. Que-
ries specify which subsets of the data to select from a table. You use SQL to define queries.
For example, you might select data from the Employee table to create a result that shows
where each department is located, presenting the data sorted in increasing order by depart-
ment number. This result is shown in Fig. 25.2. SQL is discussed in Section 25.4.

25.3 Relational Database Overview: The books
Database
We now overview relational databases in the context of a sample books database we created
for this chapter. Before we discuss SQL, we discuss the tables of the books database. We
use this database to introduce various database concepts, including how to use SQL to ob-
tain information from the database and to manipulate the data. We provide a script to cre-
ate the database. You can find the script in the examples directory for this chapter.
Section 25.7 explains how to use this script. The database consists of three tables: Authors,
AuthorISBN and Titles.

Authors Table
The Authors table (described in Fig. 25.3) consists of three columns that maintain each
author’s unique ID number, first name and last name. Figure 25.4 contains sample data
from the Authors table of the books database.

Fig. 25.2 | Result of selecting distinct Department and Location data from table
Employee.

Column Description

AuthorID Author’s ID number in the database. In the books database, this integer col-
umn is defined as autoincremented—for each row inserted in this table, the
AuthorID value is increased by 1 automatically to ensure that each row has a
unique AuthorID. This column represents the table’s primary key.

FirstName Author’s first name (a string).

LastName Author’s last name (a string).

Fig. 25.3 | Authors table from the books database.

413
611
642

New Jersey
Orlando
Los Angeles

Department Location

25.3 Relational Database Overview: The books Database 853

AuthorISBN Table
The AuthorISBN table (described in Fig. 25.5) consists of two columns that maintain each
ISBN and the corresponding author’s ID number. This table associates authors with their
books. Both columns are foreign keys that represent the relationship between the tables
Authors and Titles—one row in table Authors may be associated with many rows in ta-
ble Titles, and vice versa. The combined columns of the AuthorISBN table represent the
table’s primary key—thus, each row in this table must be a unique combination of an Au-

thorID and an ISBN. Figure 25.6 contains sample data from the AuthorISBN table of the
books database. [Note: To save space, we have split the contents of this table into two col-
umns, each containing the AuthorID and ISBN columns.] The AuthorID column is a for-
eign key—a column in this table that matches the primary-key column in another table
(i.e., AuthorID in the Authors table). Foreign keys are specified when creating a table. The
foreign key helps maintain the Rule of Referential Integrity—every foreign-key value
must appear as another table’s primary-key value. This enables the DBMS to determine
whether the AuthorID value for a particular book is valid. Foreign keys also allow related
data in multiple tables to be selected from those tables for analytic purposes—this is
known as joining the data.

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

Fig. 25.4 | Sample data from the Authors table.

Column Description

AuthorID The author’s ID number, a foreign key to the Authors table.

ISBN The ISBN for a book, a foreign key to the Titles table.

Fig. 25.5 | AuthorISBN table from the books database.

AuthorID ISBN AuthorID ISBN

1 0132152134 2 0132575663

2 0132152134 1 0132662361

1 0132151421 2 0132662361

2 0132151421 1 0132404168

1 0132575663 2 0132404168

Fig. 25.6 | Sample data from the AuthorISBN table of books. (Part 1 of 2.)

854 Chapter 25 Accessing Databases with JDBC

Titles Table
The Titles table described in Fig. 25.7 consists of four columns that stand for the ISBN,
the title, the edition number and the copyright year. The table is in Fig. 25.8.

Entity-Relationship (ER) Diagram
There’s a one-to-many relationship between a primary key and a corresponding foreign
key (e.g., one author can write many books). A foreign key can appear many times in its
own table, but only once (as the primary key) in another table. Figure 25.9 is an entity-
relationship (ER) diagram for the books database. This diagram shows the database tables

1 013705842X 1 0132121360

2 013705842X 2 0132121360

3 013705842X 3 0132121360

4 013705842X 4 0132121360

5 013705842X

Column Description

ISBN ISBN of the book (a string). The table’s primary key. ISBN is an abbrevia-
tion for “International Standard Book Number”—a numbering scheme
that publishers use to give every book a unique identification number.

Title Title of the book (a string).

EditionNumber Edition number of the book (an integer).

Copyright Copyright year of the book (a string).

Fig. 25.7 | Titles table from the books database.

ISBN Title EditionNumber Copyright

0132152134 Visual Basic 2010 How to Program 5 2011

0132151421 Visual C# 2010 How to Program 4 2011

0132575663 Java How to Program 9 2012

0132662361 C++ How to Program 8 2012

0132404168 C How to Program 6 2010

013705842X iPhone for Programmers: An App-
Driven Approach

1 2010

0132121360 Android for Programmers: An App-
Driven Approach

1 2012

Fig. 25.8 | Sample data from the Titles table of the books database .

AuthorID ISBN AuthorID ISBN

Fig. 25.6 | Sample data from the AuthorISBN table of books. (Part 2 of 2.)

25.4 SQL 855

and the relationships among them. The first compartment in each box contains the table’s
name and the remaining compartments contain the table’s columns. The names in italic
are primary keys. A table’s primary key uniquely identifies each row in the table. Every row
must have a primary-key value, and that value must be unique in the table. This is known
as the Rule of Entity Integrity. Again, for the AuthorISBN table, the primary key is the
combination of both columns.

The lines connecting the tables (Fig. 25.9) represent the relationships between the
tables. Consider the line between the AuthorISBN and Authors tables. On the Authors end
of the line is a 1, and on the AuthorISBN end is an infinity symbol (∞), indicating a one-
to-many relationship in which every author in the Authors table can have an arbitrary
number of books in the AuthorISBN table. The relationship line links the AuthorID

column in Authors (i.e., its primary key) to the AuthorID column in AuthorISBN (i.e., its
foreign key). The AuthorID column in the AuthorISBN table is a foreign key.

The line between Titles and AuthorISBN illustrates another one-to-many relationship;
a title can be written by any number of authors. In fact, the sole purpose of the AuthorISBN
table is to provide a many-to-many relationship between Authors and Titles—an author
can write many books and a book can have many authors.

25.4 SQL
We now overview SQL in the context of our books database. You’ll be able to use the SQL
discussed here in the examples later in the chapter and in examples in Chapters 27–28.

The next several subsections discuss the SQL keywords listed in Fig. 25.10 in the con-
text of SQL queries and statements. Other SQL keywords are beyond this text’s scope. To

Fig. 25.9 | Table relationships in the books database.

Common Programming Error 25.1
Not providing a value for every column in a primary key breaks the Rule of Entity Integ-
rity and causes the DBMS to report an error.

Common Programming Error 25.2
Providing the same primary-key value in multiple rows causes the DBMS to report an
error.

Common Programming Error 25.3
Providing a foreign-key value that does not appear as a primary-key value in another table
breaks the Rule of Referential Integrity and causes the DBMS to report an error.

1 1
Titles

Copyright

EditionNumber

Title

ISBN

AuthorISBN

ISBN

AuthorID

Authors

LastName

FirstName

AuthorID

856 Chapter 25 Accessing Databases with JDBC

learn other keywords, refer to the SQL reference guide supplied by the vendor of the
RDBMS you’re using.

25.4.1 Basic SELECT Query
Let us consider several SQL queries that extract information from database books. A SQL
query “selects” rows and columns from one or more tables in a database. Such selections
are performed by queries with the SELECT keyword. The basic form of a SELECT query is

in which the asterisk (*) wildcard character indicates that all columns from the tableName
table should be retrieved. For example, to retrieve all the data in the Authors table, use

Most programs do not require all the data in a table. To retrieve only specific columns,
replace the * with a comma-separated list of column names. For example, to retrieve only
the columns AuthorID and LastName for all rows in the Authors table, use the query

This query returns the data listed in Fig. 25.11.

SQL keyword Description

SELECT Retrieves data from one or more tables.
FROM Tables involved in the query. Required in every SELECT.
WHERE Criteria for selection that determine the rows to be retrieved,

deleted or updated. Optional in a SQL query or a SQL statement.
GROUP BY Criteria for grouping rows. Optional in a SELECT query.
ORDER BY Criteria for ordering rows. Optional in a SELECT query.
INNER JOIN Merge rows from multiple tables.
INSERT Insert rows into a specified table.
UPDATE Update rows in a specified table.
DELETE Delete rows from a specified table.

Fig. 25.10 | SQL query keywords.

SELECT * FROM tableName

SELECT * FROM Authors

SELECT AuthorID, LastName FROM Authors

AuthorID LastName

1 Deitel
2 Deitel
3 Deitel
4 Morgano
5 Kern

Fig. 25.11 | Sample AuthorID and
LastName data from the Authors table.

25.4 SQL 857

25.4.2 WHERE Clause
In most cases, it’s necessary to locate rows in a database that satisfy certain selection crite-
ria. Only rows that satisfy the selection criteria (formally called predicates) are selected.
SQL uses the optional WHERE clause in a query to specify the selection criteria for the query.
The basic form of a query with selection criteria is

For example, to select the Title, EditionNumber and Copyright columns from table
Titles for which the Copyright date is greater than 2010, use the query

Strings in SQL are delimited by single (') rather than double (") quotes.Figure 25.12
shows the result of the preceding query.

Pattern Matching: Zero or More Characters
The WHERE clause criteria can contain the operators <, >, <=, >=, =, <> and LIKE. Operator
LIKE is used for pattern matching with wildcard characters percent (%) and underscore
(_). Pattern matching allows SQL to search for strings that match a given pattern.

Software Engineering Observation 25.3
In general, you process results by knowing in advance the order of the columns in the
result—for example, selecting AuthorID and LastName from table Authors ensures that
the columns will appear in the result with AuthorID as the first column and LastName as
the second column. Programs typically process result columns by specifying the column
number in the result (starting from number 1 for the first column). Selecting columns by
name avoids returning unneeded columns and protects against changes in the actual order
of the columns in the table(s) by returning the columns in the exact order specified.

Common Programming Error 25.4
If you assume that the columns are always returned in the same order from a query that
uses the asterisk (*), the program may process the results incorrectly. If the column order
in the table(s) changes or if additional columns are added at a later time, the order of the
columns in the result will change accordingly.

SELECT columnName1, columnName2, … FROM tableName WHERE criteria

SELECT Title, EditionNumber, Copyright
FROM Titles
WHERE Copyright > '2010'

Title EditionNumber Copyright

Visual Basic 2010 How to Program 5 2011

Visual C# 2010 How to Program 4 2011

Java How to Program 9 2012

C++ How to Program 8 2012

Android for Programmers: An App-
Driven Approach

1 2012

Fig. 25.12 | Sampling of titles with copyrights after 2005 from table Titles.

858 Chapter 25 Accessing Databases with JDBC

A pattern that contains a percent character (%) searches for strings that have zero or
more characters at the percent character’s position in the pattern. For example, the next
query locates the rows of all the authors whose last name starts with the letter D:

This query selects the two rows shown in Fig. 25.13—three of the five authors have a last
name starting with the letter D (followed by zero or more characters). The % symbol in the
WHERE clause’s LIKE pattern indicates that any number of characters can appear after the
letter D in the LastName. The pattern string is surrounded by single-quote characters.

Pattern Matching: Any Character
An underscore (_) in the pattern string indicates a single wildcard character at that posi-
tion in the pattern. For example, the following query locates the rows of all the authors
whose last names start with any character (specified by _), followed by the letter o, followed
by any number of additional characters (specified by %):

The preceding query produces the row shown in Fig. 25.14, because only one author in
our database has a last name that contains the letter o as its second letter.

SELECT AuthorID, FirstName, LastName
FROM Authors
WHERE LastName LIKE 'D%'

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

Fig. 25.13 | Authors whose last name starts with D from the Authors table.

Portability Tip 25.1
See the documentation for your database system to determine whether SQL is case sensitive
on your system and to determine the syntax for SQL keywords.

Portability Tip 25.2
Read your database system’s documentation carefully to determine whether it supports the
LIKE operator as discussed here.

SELECT AuthorID, FirstName, LastName
FROM Authors
WHERE LastName LIKE '_o%'

AuthorID FirstName LastName

4 Michael Morgano

Fig. 25.14 | The only author from the Authors table
whose last name contains o as the second letter.

25.4 SQL 859

25.4.3 ORDER BY Clause
The rows in the result of a query can be sorted into ascending or descending order by using
the optional ORDER BY clause. The basic form of a query with an ORDER BY clause is

where ASC specifies ascending order (lowest to highest), DESC specifies descending order
(highest to lowest) and column specifies the column on which the sort is based. For exam-
ple, to obtain the list of authors in ascending order by last name (Fig. 25.15), use the query

Sorting in Descending Order
The default sorting order is ascending, so ASC is optional. To obtain the same list of au-
thors in descending order by last name (Fig. 25.16), use the query

Sorting By Multiple Columns
Multiple columns can be used for sorting with an ORDER BY clause of the form

SELECT columnName1, columnName2, … FROM tableName ORDER BY column ASC

SELECT columnName1, columnName2, … FROM tableName ORDER BY column DESC

SELECT AuthorID, FirstName, LastName
FROM Authors
ORDER BY LastName ASC

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

5 Eric Kern

4 Michael Morgano

Fig. 25.15 | Sample data from table Authors in ascending order by LastName.

SELECT AuthorID, FirstName, LastName
FROM Authors
ORDER BY LastName DESC

AuthorID FirstName LastName

4 Michael Morgano

5 Eric Kern

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

Fig. 25.16 | Sample data from table Authors in descending order by LastName.

ORDER BY column1 sortingOrder, column2 sortingOrder, …

860 Chapter 25 Accessing Databases with JDBC

where sortingOrder is either ASC or DESC. The sortingOrder does not have to be identical for
each column. The query

sorts all the rows in ascending order by last name, then by first name. If any rows have the
same last-name value, they’re returned sorted by first name (Fig. 25.17).

Combining the WHERE and ORDER BY Clauses
The WHERE and ORDER BY clauses can be combined in one query, as in

which returns the ISBN, Title, EditionNumber and Copyright of each book in the Titles
table that has a Title ending with "How to Program" and sorts them in ascending order
by Title. The query results are shown in Fig. 25.18.

25.4.4 Merging Data from Multiple Tables: INNER JOIN
Database designers often split related data into separate tables to ensure that a database does
not store data redundantly. For example, in the books database, we use an AuthorISBN table
to store the relationship data between authors and their corresponding titles. If we did not

SELECT AuthorID, FirstName, LastName
FROM Authors
ORDER BY LastName, FirstName

AuthorID FirstName LastName

3 Abbey Deitel

2 Harvey Deitel

1 Paul Deitel

5 Eric Kern

4 Michael Morgano

Fig. 25.17 | Sample data from Authors in ascending order by LastName and FirstName.

SELECT ISBN, Title, EditionNumber, Copyright
FROM Titles
WHERE Title LIKE '%How to Program'
ORDER BY Title ASC

ISBN Title
Edition-
Number

Copy-
right

0132404168 C How to Program 6 2010

0132662361 C++ How to Program 8 2012

0132575663 Java How to Program 9 2012

0132152134 Visual Basic 2005 How to Program 5 2011

0132151421 Visual C# 2005 How to Program 4 2011

Fig. 25.18 | Sampling of books from table Titles whose titles end with How to Program in
ascending order by Title.

25.4 SQL 861

separate this information into individual tables, we’d need to include author information
with each entry in the Titles table. This would result in the database’s storing duplicate au-
thor information for authors who wrote multiple books. Often, it’s necessary to merge data
from multiple tables into a single result. Referred to as joining the tables, this is specified by
an INNER JOIN operator, which merges rows from two tables by matching values in columns
that are common to the tables. The basic form of an INNER JOIN is:

The ON clause of the INNER JOIN specifies the columns from each table that are com-
pared to determine which rows are merged. For example, the following query produces a
list of authors accompanied by the ISBNs for books written by each author:

The query merges the FirstName and LastName columns from table Authors with the
ISBN column from table AuthorISBN, sorting the result in ascending order by LastName

and FirstName. Note the use of the syntax tableName.columnName in the ON clause. This
syntax, called a qualified name, specifies the columns from each table that should be com-
pared to join the tables. The “tableName.” syntax is required if the columns have the same
name in both tables. The same syntax can be used in any SQL statement to distinguish
columns in different tables that have the same name. In some systems, table names quali-
fied with the database name can be used to perform cross-database queries. As always, the
query can contain an ORDER BY clause. Figure 25.19 shows the results of the preceding
query, ordered by LastName and FirstName. [Note: To save space, we split the result of the
query into two columns, each containing the FirstName, LastName and ISBN columns.]

SELECT columnName1, columnName2, …
FROM table1
INNER JOIN table2

ON table1.columnName = table2.columnName

SELECT FirstName, LastName, ISBN
FROM Authors
INNER JOIN AuthorISBN

ON Authors.AuthorID = AuthorISBN.AuthorID
ORDER BY LastName, FirstName

FirstName LastName ISBN FirstName LastName ISBN

Abbey Deitel 013705842X Paul Deitel 0132151421

Abbey Deitel 0132121360 Paul Deitel 0132575663
Harvey Deitel 0132152134 Paul Deitel 0132662361

Harvey Deitel 0132151421 Paul Deitel 0132404168

Harvey Deitel 0132575663 Paul Deitel 013705842X
Harvey Deitel 0132662361 Paul Deitel 0132121360

Harvey Deitel 0132404168 Eric Kern 013705842X

Harvey Deitel 013705842X Michael Morgano 013705842X
Harvey Deitel 0132121360 Michael Morgano 0132121360

Paul Deitel 0132152134

Fig. 25.19 | Sampling of authors and ISBNs for the books they have written in ascending
order by LastName and FirstName.

862 Chapter 25 Accessing Databases with JDBC

25.4.5 INSERT Statement
The INSERT statement inserts a row into a table. The basic form of this statement is

where tableName is the table in which to insert the row. The tableName is followed by a
comma-separated list of column names in parentheses (this list is not required if the IN-

SERT operation specifies a value for every column of the table in the correct order). The list
of column names is followed by the SQL keyword VALUES and a comma-separated list of
values in parentheses. The values specified here must match the columns specified after the
table name in both order and type (e.g., if columnName1 is supposed to be the FirstName
column, then value1 should be a string in single quotes representing the first name). Al-
ways explicitly list the columns when inserting rows. If the table’s column order changes
or a new column is added, using only VALUES may cause an error. The INSERT statement

inserts a row into the Authors table. The statement indicates that values are provided for
the FirstName and LastName columns. The corresponding values are 'Sue' and 'Smith'.
We do not specify an AuthorID in this example because AuthorID is an autoincremented
column in the Authors table. For every row added to this table, the DBMS assigns a
unique AuthorID value that is the next value in the autoincremented sequence (i.e., 1, 2,
3 and so on). In this case, Sue Red would be assigned AuthorID number 6. Figure 25.20
shows the Authors table after the INSERT operation. [Note: Not every database manage-
ment system supports autoincremented columns. Check the documentation for your
DBMS for alternatives to autoincremented columns.]

Software Engineering Observation 25.4
If a SQL statement includes columns with the same name from multiple tables, the
statement must precede those column names with their table names and a dot (e.g.,
Authors.AuthorID).

Common Programming Error 25.5
Failure to qualify names for columns that have the same name in two or more tables is an
error.

INSERT INTO tableName (columnName1, columnName2, …, columnNameN)
VALUES (value1, value2, …, valueN)

INSERT INTO Authors (FirstName, LastName)
VALUES ('Sue', 'Red')

AuthorID FirstName LastName

1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Michael Morgano
5 Eric Kern
6 Sue Red

Fig. 25.20 | Sample data from table Authors after an INSERT operation.

25.4 SQL 863

25.4.6 UPDATE Statement
An UPDATE statement modifies data in a table. Its basic form is

where tableName is the table to update. The tableName is followed by keyword SET and a
comma-separated list of column name/value pairs in the format columnName = value. The
optional WHERE clause provides criteria that determine which rows to update. Though not
required, the WHERE clause is typically used, unless a change is to be made to every row.
The UPDATE statement

updates a row in the Authors table. The statement indicates that LastName will be assigned
the value Black for the row in which LastName is equal to Red and FirstName is equal to
Sue. [Note: If there are multiple rows with the first name “Sue” and the last name “Red,”
this statement will modify all such rows to have the last name “Black.”] If we know the
AuthorID in advance of the UPDATE operation (possibly because we searched for it previ-
ously), the WHERE clause can be simplified as follows:

Figure 25.21 shows the Authors table after the UPDATE operation has taken place.

Common Programming Error 25.6
It’s normally an error to specify a value for an autoincrement column.

Common Programming Error 25.7
SQL delimits strings with single quotes ('). A string containing a single quote (e.g.,
O’Malley) must have two single quotes in the position where the single quote appears (e.g.,
'O''Malley'). The first acts as an escape character for the second. Not escaping single-
quote characters in a string that’s part of a SQL statement is a SQL syntax error.

UPDATE tableName
SET columnName1 = value1, columnName2 = value2, …, columnNameN = valueN
WHERE criteria

UPDATE Authors
SET LastName = 'Black'
WHERE LastName = 'Red' AND FirstName = 'Sue'

WHERE AuthorID = 6

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

6 Sue Black

Fig. 25.21 | Sample data from table Authors after an UPDATE operation.

864 Chapter 25 Accessing Databases with JDBC

25.4.7 DELETE Statement
A SQL DELETE statement removes rows from a table. Its basic form is

where tableName is the table from which to delete. The optional WHERE clause specifies the
criteria used to determine which rows to delete. If this clause is omitted, all the table’s rows
are deleted. The DELETE statement

deletes the row for Sue Black in the Authors table. If we know the AuthorID in advance
of the DELETE operation, the WHERE clause can be simplified as follows:

Figure 25.22 shows the Authors table after the DELETE operation has taken place.

25.5 Instructions for Installing MySQL and MySQL
Connector/J
MySQL Community Edition is an open-source database management system that exe-
cutes on many platforms, including Windows, Linux, and Mac OS X. Complete informa-
tion about MySQL is available from www.mysql.com. The examples in Sections 25.8–25.9
manipulate MySQL databases using MySQL 5.5.8—the latest release at the time of this
writing.

Installing MySQL
To install MySQL Community Edition on Windows, Linux or Mac OS X, see the instal-
lation overview for your platform at:

• Windows: dev.mysql.com/doc/refman/5.5/en/windows-installation.html

• Linux: dev.mysql.com/doc/refman/5.5/en/linux-installation-rpm.html

• Mac OS X: dev.mysql.com/doc/refman/5.5/en/macosx-installation.html

Carefully follow the instructions for downloading and installing the software on your plat-
form. The downloads are available from:

DELETE FROM tableName WHERE criteria

DELETE FROM Authors
WHERE LastName = 'Black' AND FirstName = 'Sue'

WHERE AuthorID = 5

AuthorID FirstName LastName

1 Paul Deitel

2 Harvey Deitel

3 Abbey Deitel

4 Michael Morgano

5 Eric Kern

Fig. 25.22 | Sample data from table Authors after a DELETE operation.

dev.mysql.com/downloads/mysql/

www.mysql.com

25.6 Instructions for Setting Up a MySQL User Account 865

For the following steps, we assume that you’re installing MySQL on Windows. When
you execute the installer, the MySQL Server 5.5 Setup Wizard window will appear. Perform
the following steps:

1. Click the Next button.

2. Read the license agreement, then check the I accept the terms in the License
Agreement checkbox and click the Next button. [Note: If you do not accept the
license terms, you will not be able to install MySQL.]

3. Click the Typical button in the Choose Setup Type screen then click Install.

4. When the installation completes, click Next > twice.

5. In the Completed the MySQL Server 5.5 Setup Wizard screen, ensure that the
Launch the MySQL Instance Configuration Wizard checkbox is checked, then click
Finish to begin configuring the server.

The MySQL Instance Configuration Wizard window appears. To configure the server:

1. Click Next >, then select Standard Configuration and click Next > again.

2. You have the option of installing MySQL as a Windows service, which enables
the MySQL server to begin executing automatically each time your system starts.
For our examples, this is unnecessary, so you can uncheck Install as a Windows
Service if you wish. Check Include Bin Directory in Windows PATH. This will en-
able you to use the MySQL commands in the Windows Command Prompt.
Click Next >, then click Execute to perform the server configuration.

3. Click Finish to close the wizard.

You’ve now completed the MySQL installation.

Installing MySQL Connector/J
To use MySQL with JDBC, you also need to install MySQL Connector/J (the J stands
for Java)—a JDBC driver that allows programs to use JDBC to interact with MySQL.
MySQL Connector/J can be downloaded from

The documentation for Connector/J is located at

At the time of this writing, the current generally available release of MySQL Connector/J
is 5.1.14. To install MySQL Connector/J, carefully follow the installation instructions at:

We do not recommend modifying your system’s CLASSPATH environment variable, which
is discussed in the installation instructions. Instead, we’ll show you how use MySQL Con-
nector/J by specifying it as a command-line option when you execute your applications.

25.6 Instructions for Setting Up a MySQL User Account
For the MySQL examples to execute correctly, you need to set up a user account that al-
lows users to create, delete and modify a database. After MySQL is installed, follow the

dev.mysql.com/downloads/connector/j/

dev.mysql.com/doc/refman/5.5/en/connector-j.html

dev.mysql.com/doc/refman/5.5/en/connector-j-installing.html

866 Chapter 25 Accessing Databases with JDBC

steps below to set up a user account (these steps assume MySQL is installed in its default
installation directory):

1. Open a Command Prompt and start the database server by executing the com-
mand mysqld.exe. This command has no output—it simply starts the MySQL
server. Do not close this window—doing so terminates the server.

1. Next, you’ll start the MySQL monitor so you can set up a user account, open an-
other Command Prompt and execute the command

The -h option indicates the host (i.e., computer) on which the MySQL server is
running—in this case your local computer (localhost). The -u option indicates
the user account that will be used to log in to the server—root is the default user
account that is created during installation to allow you to configure the server.
Once you’ve logged in, you’ll see a mysql> prompt at which you can type com-
mands to interact with the MySQL server.

1. At the mysql> prompt, type

and press Enter to select the built-in database named mysql, which stores server
information, such as user accounts and their privileges for interacting with the
server. Each command must end with a semicolon. To confirm the command,
MySQL issues the message “Database changed.”

1. Next, you’ll add the deitel user account to the mysql built-in database. The
mysql database contains a table called user with columns that represent the user’s
name, password and various privileges. To create the deitel user account with
the password deitel, execute the following commands from the mysql> prompt:

This creates the deitel user with the privileges needed to create the databases
used in this chapter and manipulate them.

1. Type the command

to terminate the MySQL monitor.

25.7 Creating Database books in MySQL
For each MySQL database we discuss, we provide a SQL script in a .sql file that sets up
the database and its tables. You can execute these scripts in the MySQL monitor. In this
chapter’s examples directory, you’ll find the script books.sql to create the books database.
For the following steps, we assume that the MySQL server (mysqld.exe) is still running.
To execute the books.sql script:

1. Open a Command Prompt and use the cd command to change directories to the
location that contains the books.sql script.

mysql -h localhost -u root

USE mysql;

create user 'deitel'@'localhost' identified by 'deitel';
grant select, insert, update, delete, create, drop, references,

execute on *.* to 'deitel'@'localhost';

exit;

25.8 Manipulating Databases with JDBC 867

2. Start the MySQL monitor by typing

The -p option prompts you for the password for the deitel user account. When
prompted, enter the password deitel.

3. Execute the script by typing

This creates a new directory named books in the server’s data directory—located
by default on Windows at C:\ProgramData\MySQL\MySQL Server 5.5\data.
This new directory contains the books database.

4. Type the command

to terminate the MySQL monitor. You’re now ready to proceed to the first JDBC
example.

25.8 Manipulating Databases with JDBC
This section presents two examples. The first introduces how to connect to a database and
query it. The second demonstrates how to display the result of the query in a JTable.

25.8.1 Connecting to and Querying a Database
The example of Fig. 25.23 performs a simple query on the books database that retrieves
the entire Authors table and displays the data. The program illustrates connecting to the
database, querying the database and processing the result. The discussion that follows pres-
ents the key JDBC aspects of the program. [Note: Sections 25.5–25.7 demonstrate how to
start the MySQL server, configure a user account and create the books database. These
steps must be performed before executing the program of Fig. 25.23.]

mysql -h localhost -u deitel -p

source books.sql;

exit;

1 // Fig. 25.23: DisplayAuthors.java
2 // Displaying the contents of the Authors table.
3 import java.sql.Connection;
4 import java.sql.Statement;
5 import java.sql.DriverManager;
6 import java.sql.ResultSet;
7 import java.sql.ResultSetMetaData;
8 import java.sql.SQLException;
9

10 public class DisplayAuthors
11 {
12
13
14
15 // launch the application
16 public static void main(String args[])
17 {

Fig. 25.23 | Displaying the contents of the Authors table. (Part 1 of 3.)

// database URL
static final String DATABASE_URL = "jdbc:mysql://localhost/books";

868 Chapter 25 Accessing Databases with JDBC

18 Connection connection = null; // manages connection
19 Statement statement = null; // query statement
20 ResultSet resultSet = null; // manages results
21
22 // connect to database books and query database
23 try

24 {
25
26
27
28
29
30
31
32
33
34
35
36 // process query results
37
38
39 System.out.println("Authors Table of Books Database:\n");
40
41 for (int i = 1; i <= numberOfColumns; i++)
42 System.out.printf("%-8s\t",);
43 System.out.println();
44
45 while ()
46 {
47 for (int i = 1; i <= numberOfColumns; i++)
48 System.out.printf("%-8s\t",);
49 System.out.println();
50 } // end while
51 } // end try
52 catch ()
53 {
54 sqlException.printStackTrace();
55 } // end catch
56
57
58
59
60
61
62
63
64
65
66
67
68
69 } // end main
70 } // end class DisplayAuthors

Fig. 25.23 | Displaying the contents of the Authors table. (Part 2 of 3.)

// establish connection to database
connection = DriverManager.getConnection(

DATABASE_URL, "deitel", "deitel");

// create Statement for querying database
statement = connection.createStatement();

// query database
resultSet = statement.executeQuery(

"SELECT AuthorID, FirstName, LastName FROM Authors");

ResultSetMetaData metaData = resultSet.getMetaData();
int numberOfColumns = metaData.getColumnCount();

metaData.getColumnName(i)

resultSet.next()

resultSet.getObject(i)

SQLException sqlException

finally // ensure resultSet, statement and connection are closed
{

try

{
resultSet.close();
statement.close();
connection.close();

} // end try
catch (Exception exception)
{

exception.printStackTrace();
} // end catch

} // end finally

25.8 Manipulating Databases with JDBC 869

Lines 3–8 import the JDBC interfaces and classes from package java.sql used in this
program. Line 13 declares a string constant for the database URL. This identifies the name
of the database to connect to, as well as information about the protocol used by the JDBC
driver (discussed shortly). Method main (lines 16–69) connects to the books database,
queries the database, displays the result of the query and closes the database connection.

In past versions of Java, programs were required to load an appropriate database driver
before connecting to a database. JDBC 4.0 and higher support automatic driver dis-
covery—you’re no longer required to load the database driver in advance. To ensure that
the program can locate the database driver class, you must include the class’s location in
the program’s classpath when you execute the program. For MySQL, you include the file
mysql-connector-java-5.1.14-bin.jar (in the C:\mysql-connector-java-5.1.14

directory) in your program’s classpath, as in:

If the period (.) at the beginning of the classpath information is missing, the JVM will not
look for classes in the current directory and thus will not find the DisplayAuthors class file.
You may also copy the mysql-connector-java-5.1.14-bin.jar file to your JDK’s
\jre\lib\ext folder. After doing so, you can run the application simply using the command

Connecting to the Database
Lines 26–27 of Fig. 25.23 create a Connection object (package java.sql) referenced by
connection. An object that implements interface Connection manages the connection be-
tween the Java program and the database. Connection objects enable programs to create
SQL statements that manipulate databases. The program initializes connection with the
result of a call to static method getConnection of class DriverManager (package ja-

va.sql), which attempts to connect to the database specified by its URL. Method get-

Connection takes three arguments—a String that specifies the database URL, a String

that specifies the username and a String that specifies the password. The username and
password are set in Section 25.6. If you used a different username and password, you need
to replace the username (second argument) and password (third argument) passed to
method getConnection in line 27. The URL locates the database (possibly on a network
or in the local file system of the computer). The URL jdbc:mysql://localhost/books

specifies the protocol for communication (jdbc), the subprotocol for communication
(mysql) and the location of the database (//localhost/books, where localhost is the
host running the MySQL server and books is the database name). The subprotocol mysql

Authors Table of Books Database:

AuthorID FirstName LastName
1 Harvey Deitel
2 Paul Deitel
3 Andrew Goldberg
4 David Choffnes

java -classpath .;c:\mysql-connector-java-5.1.14\mysql-connector-
java-5.1.14-bin.jar DisplayAuthors

java DisplayAuthors

Fig. 25.23 | Displaying the contents of the Authors table. (Part 3 of 3.)

870 Chapter 25 Accessing Databases with JDBC

indicates that the program uses a MySQL-specific subprotocol to connect to the MySQL
database. If the DriverManager cannot connect to the database, method getConnection

throws a SQLException (package java.sql). Figure 25.24 lists the JDBC driver names
and database URL formats of several popular RDBMSs.

Creating a Statement for Executing Queries
Line 30 invokes Connection method createStatement to obtain an object that imple-
ments interface Statement (package java.sql). The program uses the Statement object
to submit SQL statements to the database.

Executing a Query
Lines 33–34 use the Statement object’s executeQuery method to submit a query that se-
lects all the author information from table Authors. This method returns an object that
implements interface ResultSet and contains the query results. The ResultSet methods
enable the program to manipulate the query result.

Processing a Query’s ResultSet
Lines 37–50 process the ResultSet. Line 37 obtains the metadata for the ResultSet as a
ResultSetMetaData (package java.sql) object. The metadata describes the ResultSet’s
contents. Programs can use metadata programmatically to obtain information about the
ResultSet’s column names and types. Line 38 uses ResultSetMetaData method getCol-

umnCount to retrieve the number of columns in the ResultSet. Lines 41–42 display the
column names.

RDBMS Database URL format

MySQL jdbc:mysql://hostname:portNumber/databaseName

ORACLE jdbc:oracle:thin:@hostname:portNumber:databaseName

DB2 jdbc:db2:hostname:portNumber/databaseName

PostgreSQL jdbc:postgresql://hostname:portNumber/databaseName

Java DB/Apache
Derby

jdbc:derby:dataBaseName (embedded)
jdbc:derby://hostname:portNumber/databaseName (network)

Microsoft SQL
Server

jdbc:sqlserver://hostname:portNumber;databaseName=dataBaseName

Sybase jdbc:sybase:Tds:hostname:portNumber/databaseName

Fig. 25.24 | Popular JDBC database URL formats.

Software Engineering Observation 25.5
Most database management systems require the user to log in before accessing the database
contents. DriverManager method getConnection is overloaded with versions that enable
the program to supply the user name and password to gain access.

Software Engineering Observation 25.6
Metadata enables programs to process ResultSet contents dynamically when detailed
information about the ResultSet is not known in advance.

25.8 Manipulating Databases with JDBC 871

Lines 45–50 display the data in each ResultSet row. First, the program positions the
ResultSet cursor (which points to the row being processed) to the first row in the
ResultSet with method next (line 45). Method next returns boolean value true if it’s
able to position to the next row; otherwise, the method returns false.

If there are rows in the ResultSet, lines 47–48 extract and display the contents of
each column in the current row. When a ResultSet is processed, each column can be
extracted as a specific Java type. In fact, ResultSetMetaData method getColumnType

returns a constant integer from class Types (package java.sql) indicating the type of a
specified column. Programs can use these values in a switch statement to invoke
ResultSet methods that return the column values as appropriate Java types. If the type of
a column is Types.INTEGER, ResultSet method getInt returns the column value as an
int. ResultSet get methods typically receive as an argument either a column number (as
an int) or a column name (as a String) indicating which column’s value to obtain. Visit

for detailed mappings of SQL data types to Java types and to determine the appropriate
ResultSet method to call for each SQL data type.

For simplicity, this example treats each value as an Object. We retrieve each column
value with ResultSet method getObject (line 48) then print the Object’s String repre-
sentation. Unlike array indices, ResultSet column numbers start at 1. The finally block
(lines 56–68) closes the ResultSet, the Statement and the database Connection. [Note:
Lines 60–62 will throw NullPointerExceptions if the ResultSet, Statement or Connec-
tion objects were not created properly. For code used in industry, you should check the
variables that refer to these objects to see if they’re null before you call close.]

Common Programming Error 25.8
Initially, a ResultSet cursor is positioned before the first row. A SQLException occurs if
you attempt to access a ResultSet’s contents before positioning the ResultSet cursor to
the first row with method next.

java.sun.com/javase/6/docs/technotes/guides/jdbc/getstart/
GettingStartedTOC.fm.html

Performance Tip 25.1
If a query specifies the exact columns to select from the database, the ResultSet contains
the columns in the specified order. In this case, using the column number to obtain the
column’s value is more efficient than using the column name. The column number pro-
vides direct access to the specified column. Using the column name requires a search of the
column names to locate the appropriate column.

Error-Prevention Tip 25.1
Using column names to obtain values from a ResultSet produces code that is less error
prone than obtaining values by column number—you don’t need to remember the col-
umn order. Also, if the column order changes, your code does not have to change.

Common Programming Error 25.9
Specifying column 0 when obtaining values from a ResultSet causes a SQLException.

872 Chapter 25 Accessing Databases with JDBC

Java SE 7: Automatically Closing Connections, Statements and ResultSets
As of Java SE 7, the interfaces Connection, Statement and ResultSet each extend the
AutoCloseable interface, so you can use objects that implement these interfaces with the
new try-with-resources statement, which was introduced in Section 11.13. In the folder
for the example of Fig. 25.23, the subfolder JavaSE7Version contains a version of the ex-
ample that uses the try-with-resources statement to allocate the Connection, Statement
and ResultSet objects. These objects are automatically closed at the end of the try block
or if an exception occurs while executing the code in the try block.

25.8.2 Querying the books Database
The next example (Fig. 25.25 and Fig. 25.28) allows the user to enter any query into the
program. The example displays the result of a query in a JTable, using a TableModel ob-
ject to provide the ResultSet data to the JTable. A JTable is a swing GUI component
that can be bound to a database to display the results of a query. Class ResultSetTable-
Model (Fig. 25.25) performs the connection to the database via a TableModel and main-
tains the ResultSet. Class DisplayQueryResults (Fig. 25.28) creates the GUI and
specifies an instance of class ResultSetTableModel to provide data for the JTable.

ResultSetTableModel Class
Class ResultSetTableModel (Fig. 25.25) extends class AbstractTableModel (package
javax.swing.table), which implements interface TableModel. ResultSetTableModel

overrides TableModel methods getColumnClass, getColumnCount, getColumnName, get-
RowCount and getValueAt. The default implementations of TableModel methods is-

CellEditable and setValueAt (provided by AbstractTableModel) are not overridden,
because this example does not support editing the JTable cells. The default implementa-
tions of TableModel methods addTableModelListener and removeTableModelListener

(provided by AbstractTableModel) are not overridden, because the implementations of
these methods in AbstractTableModel properly add and remove event listeners.

Common Programming Error 25.10
A SQLException occurs if you attempt to manipulate a ResultSet after closing the
Statement that created it. The ResultSet is discarded when the Statement is closed.

Software Engineering Observation 25.7
Each Statement object can open only one ResultSet object at a time. When a Statement

returns a new ResultSet, the Statement closes the prior ResultSet. To use multiple
ResultSets in parallel, separate Statement objects must return the ResultSets.

1 // Fig. 25.25: ResultSetTableModel.java
2 // A TableModel that supplies ResultSet data to a JTable.
3 import java.sql.Connection;
4 import java.sql.Statement;
5 import java.sql.DriverManager;
6 import java.sql.ResultSet;
7 import java.sql.ResultSetMetaData;

Fig. 25.25 | A TableModel that supplies ResultSet data to a JTable. (Part 1 of 5.)

25.8 Manipulating Databases with JDBC 873

8 import java.sql.SQLException;
9 import javax.swing.table.AbstractTableModel;

10
11 // ResultSet rows and columns are counted from 1 and JTable
12 // rows and columns are counted from 0. When processing
13 // ResultSet rows or columns for use in a JTable, it is
14 // necessary to add 1 to the row or column number to manipulate
15 // the appropriate ResultSet column (i.e., JTable column 0 is
16 // ResultSet column 1 and JTable row 0 is ResultSet row 1).
17
18 {
19 private Connection connection;
20 private Statement statement;
21 private ResultSet resultSet;
22 private ResultSetMetaData metaData;
23 private int numberOfRows;
24
25
26
27
28 // constructor initializes resultSet and obtains its meta data object;
29 // determines number of rows
30 public ResultSetTableModel(String url, String username,
31 String password, String query) throws SQLException
32 {
33 // connect to database
34 connection = DriverManager.getConnection(url, username, password);
35
36
37
38
39
40
41
42
43
44 // set query and execute it
45 setQuery(query);
46 } // end constructor ResultSetTableModel
47
48 // get class that represents column type
49 throws IllegalStateException
50 {
51
52
53
54
55 // determine Java class of column
56 try

57 {
58
59

Fig. 25.25 | A TableModel that supplies ResultSet data to a JTable. (Part 2 of 5.)

public class ResultSetTableModel extends AbstractTableModel

// keep track of database connection status
private boolean connectedToDatabase = false;

// create Statement to query database
statement = connection.createStatement(

ResultSet.TYPE_SCROLL_INSENSITIVE,
ResultSet.CONCUR_READ_ONLY);

// update database connection status
connectedToDatabase = true;

public Class getColumnClass(int column)

// ensure database connection is available
if (!connectedToDatabase)

throw new IllegalStateException("Not Connected to Database");

String className = metaData.getColumnClassName(column + 1);

874 Chapter 25 Accessing Databases with JDBC

60
61
62 } // end try
63 catch (Exception exception)
64 {
65 exception.printStackTrace();
66 } // end catch
67
68 return Object.class; // if problems occur above, assume type Object
69 } // end method getColumnClass
70
71 // get number of columns in ResultSet
72 throws IllegalStateException
73 {
74 // ensure database connection is available
75 if (!connectedToDatabase)
76 throw new IllegalStateException("Not Connected to Database");
77
78 // determine number of columns
79 try

80 {
81 return metaData.getColumnCount();
82 } // end try
83 catch (SQLException sqlException)
84 {
85 sqlException.printStackTrace();
86 } // end catch
87
88 return 0; // if problems occur above, return 0 for number of columns
89 } // end method getColumnCount
90
91 // get name of a particular column in ResultSet
92 throws IllegalStateException
93 {
94 // ensure database connection is available
95 if (!connectedToDatabase)
96 throw new IllegalStateException("Not Connected to Database");
97
98 // determine column name
99 try

100 {
101 return metaData.getColumnName(column + 1);
102 } // end try
103 catch (SQLException sqlException)
104 {
105 sqlException.printStackTrace();
106 } // end catch
107
108 return ""; // if problems, return empty string for column name
109 } // end method getColumnName
110

Fig. 25.25 | A TableModel that supplies ResultSet data to a JTable. (Part 3 of 5.)

// return Class object that represents className
return Class.forName(className);

public int getColumnCount()

public String getColumnName(int column)

25.8 Manipulating Databases with JDBC 875

111 // return number of rows in ResultSet
112 throws IllegalStateException
113 {
114 // ensure database connection is available
115 if (!connectedToDatabase)
116 throw new IllegalStateException("Not Connected to Database");
117
118 return numberOfRows;
119 } // end method getRowCount
120
121 // obtain value in particular row and column
122
123 throws IllegalStateException
124 {
125 // ensure database connection is available
126 if (!connectedToDatabase)
127 throw new IllegalStateException("Not Connected to Database");
128
129 // obtain a value at specified ResultSet row and column
130 try

131 {
132
133
134 } // end try
135 catch (SQLException sqlException)
136 {
137 sqlException.printStackTrace();
138 } // end catch
139
140 return ""; // if problems, return empty string object
141 } // end method getValueAt
142
143 // set new database query string
144 public void setQuery(String query)
145 throws SQLException, IllegalStateException
146 {
147 // ensure database connection is available
148 if (!connectedToDatabase)
149 throw new IllegalStateException("Not Connected to Database");
150
151 // specify query and execute it
152 resultSet = statement.executeQuery(query);
153
154 // obtain meta data for ResultSet
155 metaData = resultSet.getMetaData();
156
157 // determine number of rows in ResultSet
158 resultSet.last(); // move to last row
159 numberOfRows = resultSet.getRow(); // get row number
160
161
162
163 } // end method setQuery

Fig. 25.25 | A TableModel that supplies ResultSet data to a JTable. (Part 4 of 5.)

public int getRowCount()

public Object getValueAt(int row, int column)

resultSet.absolute(row + 1);
return resultSet.getObject(column + 1);

// notify JTable that model has changed
fireTableStructureChanged();

876 Chapter 25 Accessing Databases with JDBC

ResultSetTableModel Constructor
The ResultSetTableModel constructor (lines 30–46) accepts four String arguments—
the URL of the database, the username, the password and the default query to perform. The
constructor throws any exceptions that occur in its body back to the application that created
the ResultSetTableModel object, so that the application can determine how to handle the
exception (e.g., report an error and terminate the application). Line 34 establishes a connec-
tion to the database. Lines 37–39 invoke Connection method createStatement to create a
Statement object. This example uses a version of method createStatement that takes two
arguments—the result set type and the result set concurrency. The result set type
(Fig. 25.26) specifies whether the ResultSet’s cursor is able to scroll in both directions or
forward only and whether the ResultSet is sensitive to changes made to the underlying data.

164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187 } // end class ResultSetTableModel

ResultSet constant Description

TYPE_FORWARD_ONLY Specifies that a ResultSet’s cursor can move only in the forward
direction (i.e., from the first to the last row in the ResultSet).

TYPE_SCROLL_INSENSITIVE Specifies that a ResultSet’s cursor can scroll in either direction
and that the changes made to the underlying data during
ResultSet processing are not reflected in the ResultSet unless
the program queries the database again.

Fig. 25.26 | ResultSet constants for specifying ResultSet type. (Part 1 of 2.)

Fig. 25.25 | A TableModel that supplies ResultSet data to a JTable. (Part 5 of 5.)

// close Statement and Connection
public void disconnectFromDatabase()
{

if (connectedToDatabase)
{

// close Statement and Connection
try

{
resultSet.close();
statement.close();
connection.close();

} // end try
catch (SQLException sqlException)
{

sqlException.printStackTrace();
} // end catch
finally // update database connection status
{

connectedToDatabase = false;
} // end finally

} // end if
} // end method disconnectFromDatabase

25.8 Manipulating Databases with JDBC 877

ResultSets that are sensitive to changes reflect those changes immediately after they’re
made with methods of interface ResultSet. If a ResultSet is insensitive to changes, the
query that produced the ResultSet must be executed again to reflect any changes made.
The result set concurrency (Fig. 25.27) specifies whether the ResultSet can be updated
with ResultSet’s update methods.

This example uses a ResultSet that is scrollable, insensitive to changes and read only.
Line 45 invokes our method setQuery (lines 144–163) to perform the default query.

TYPE_SCROLL_SENSITIVE Specifies that a ResultSet’s cursor can scroll in either direction and
that the changes made to the underlying data during ResultSet

processing are reflected immediately in the ResultSet.

Portability Tip 25.3
Some JDBC drivers do not support scrollable ResultSets. In such cases, the driver typi-
cally returns a ResultSet in which the cursor can move only forward. For more informa-
tion, see your database driver documentation.

Common Programming Error 25.11
Attempting to move the cursor backward through a ResultSet when the database driver
does not support backward scrolling causes a SQLFeatureNotSupportedException.

ResultSet static
concurrency constant Description

CONCUR_READ_ONLY Specifies that a ResultSet cannot be updated (i.e., changes to
the ResultSet contents cannot be reflected in the database with
ResultSet’s update methods).

CONCUR_UPDATABLE Specifies that a ResultSet can be updated (i.e., changes to its
contents can be reflected in the database with ResultSet’s
update methods).

Fig. 25.27 | ResultSet constants for specifying result properties.

Portability Tip 25.4
Some JDBC drivers do not support updatable ResultSets. In such cases, the driver typi-
cally returns a read-only ResultSet. For more information, see your database driver doc-
umentation.

Common Programming Error 25.12
Attempting to update a ResultSet when the database driver does not support updatable
ResultSets causes SQLFeatureNotSupportedExceptions.

ResultSet constant Description

Fig. 25.26 | ResultSet constants for specifying ResultSet type. (Part 2 of 2.)

878 Chapter 25 Accessing Databases with JDBC

ResultSetTableModel Method getColumnClass

Method getColumnClass (lines 49–69) returns a Class object that represents the superclass
of all objects in a particular column. The JTable uses this information to configure the de-
fault cell renderer and cell editor for that column in the JTable. Line 58 uses ResultSet-
MetaData method getColumnClassName to obtain the fully qualified class name for the
specified column. Line 61 loads the class and returns the corresponding Class object. If an
exception occurs, the catch in lines 63–66 prints a stack trace and line 68 returns Ob-

ject.class—the Class instance that represents class Object—as the default type. [Note:
Line 58 uses the argument column + 1. Like arrays, JTable row and column numbers are
counted from 0. However, ResultSet row and column numbers are counted from 1. Thus,
when processing ResultSet rows or columns for use in a JTable, it’s necessary to add 1 to
the row or column number to manipulate the appropriate ResultSet row or column.]

ResultSetTableModel Method getColumnCount

Method getColumnCount (lines 72–89) returns the number of columns in the model’s un-
derlying ResultSet. Line 81 uses ResultSetMetaData method getColumnCount to obtain
the number of columns in the ResultSet. If an exception occurs, the catch in lines 83–
86 prints a stack trace and line 88 returns 0 as the default number of columns.

ResultSetTableModel Method getColumnName

Method getColumnName (lines 92–109) returns the name of the column in the model’s un-
derlying ResultSet. Line 101 uses ResultSetMetaData method getColumnName to obtain
the column name from the ResultSet. If an exception occurs, the catch in lines 103–106
prints a stack trace and line 108 returns the empty string as the default column name.

ResultSetTableModel Method getRowCount

Method getRowCount (lines 112–119) returns the number of rows in the model’s under-
lying ResultSet. When method setQuery (lines 144–163) performs a query, it stores the
number of rows in variable numberOfRows.

ResultSetTableModel Method getValueAt

Method getValueAt (lines 122–141) returns the Object in a particular row and column of
the model’s underlying ResultSet. Line 132 uses ResultSet method absolute to position
the ResultSet cursor at a specific row. Line 133 uses ResultSet method getObject to ob-
tain the Object in a specific column of the current row. If an exception occurs, the catch in
lines 135–138 prints a stack trace and line 140 returns an empty string as the default value.

ResultSetTableModel Method setQuery

Method setQuery (lines 144–163) executes the query it receives as an argument to obtain
a new ResultSet (line 152). Line 155 gets the ResultSetMetaData for the new Result-

Set. Line 158 uses ResultSet method last to position the ResultSet cursor at the last
row in the ResultSet. [Note: This can be slow if the table contains many rows.] Line 159
uses ResultSet method getRow to obtain the row number for the current row in the Re-

sultSet. Line 162 invokes method fireTableStructureChanged (inherited from class
AbstractTableModel) to notify any JTable using this ResultSetTableModel object as its
model that the structure of the model has changed. This causes the JTable to repopulate
its rows and columns with the new ResultSet data. Method setQuery throws any excep-
tions that occur in its body back to the application that invoked setQuery.

25.8 Manipulating Databases with JDBC 879

ResultSetTableModel Method disconnectFromDatabase

Method disconnectFromDatabase (lines 166–186) implements an appropriate termina-
tion method for class ResultSetTableModel. A class designer should provide a public

method that clients of the class must invoke explicitly to free resources that an object has
used. In this case, method disconnectFromDatabase closes the ResultSet, Statement
and Connection (lines 173–175), which are considered limited resources. Clients of the
ResultSetTableModel class should always invoke this method when the instance of this
class is no longer needed. Before releasing resources, line 168 verifies whether the connec-
tion is already terminated. If not, the method proceeds. The other methods in class Re-
sultSetTableModel each throw an IllegalStateException if connectedToDatabase is
false. Method disconnectFromDatabase sets connectedToDatabase to false (line 183)
to ensure that clients do not use an instance of ResultSetTableModel after that instance
has already been terminated. IllegalStateException is an exception from the Java librar-
ies that is appropriate for indicating this error condition.

DisplayQueryResults Class
Class DisplayQueryResults (Fig. 25.28) implements the application’s GUI and interacts
with the ResultSetTableModel via a JTable object. This application also demonstrates
the JTable sorting and filtering capabilities.

1 // Fig. 25.28: DisplayQueryResults.java
2 // Display the contents of the Authors table in the books database.
3 import java.awt.BorderLayout;
4 import java.awt.event.ActionListener;
5 import java.awt.event.ActionEvent;
6 import java.awt.event.WindowAdapter;
7 import java.awt.event.WindowEvent;
8 import java.sql.SQLException;
9 import java.util.regex.PatternSyntaxException;

10 import javax.swing.JFrame;
11 import javax.swing.JTextArea;
12 import javax.swing.JScrollPane;
13 import javax.swing.ScrollPaneConstants;
14
15 import javax.swing.JOptionPane;
16 import javax.swing.JButton;
17 import javax.swing.Box;
18 import javax.swing.JLabel;
19 import javax.swing.JTextField;
20
21
22
23
24 public class DisplayQueryResults extends JFrame
25 {
26 // database URL, username and password
27 static final String DATABASE_URL = "jdbc:mysql://localhost/books";
28 static final String USERNAME = "deitel";
29 static final String PASSWORD = "deitel";

Fig. 25.28 | Displays contents of the database books. (Part 1 of 5.)

import javax.swing.JTable;

import javax.swing.RowFilter;
import javax.swing.table.TableRowSorter;
import javax.swing.table.TableModel;

880 Chapter 25 Accessing Databases with JDBC

30
31 // default query retrieves all data from Authors table
32 static final String DEFAULT_QUERY = "SELECT * FROM Authors";
33
34
35 private JTextArea queryArea;
36
37 // create ResultSetTableModel and GUI
38 public DisplayQueryResults()
39 {
40 super("Displaying Query Results");
41
42 // create ResultSetTableModel and display database table
43 try

44 {
45
46
47
48
49 // set up JTextArea in which user types queries
50 queryArea = new JTextArea(DEFAULT_QUERY, 3, 100);
51 queryArea.setWrapStyleWord(true);
52 queryArea.setLineWrap(true);
53
54 JScrollPane scrollPane = new JScrollPane(queryArea,
55 ScrollPaneConstants.VERTICAL_SCROLLBAR_AS_NEEDED,
56 ScrollPaneConstants.HORIZONTAL_SCROLLBAR_NEVER);
57
58 // set up JButton for submitting queries
59 JButton submitButton = new JButton("Submit Query");
60
61 // create Box to manage placement of queryArea and
62 // submitButton in GUI
63 Box boxNorth = Box.createHorizontalBox();
64 boxNorth.add(scrollPane);
65 boxNorth.add(submitButton);
66
67
68
69
70 JLabel filterLabel = new JLabel("Filter:");
71 final JTextField filterText = new JTextField();
72 JButton filterButton = new JButton("Apply Filter");
73 Box boxSouth = Box.createHorizontalBox();
74
75 boxSouth.add(filterLabel);
76 boxSouth.add(filterText);
77 boxSouth.add(filterButton);
78
79 // place GUI components on content pane
80 add(boxNorth, BorderLayout.NORTH);
81 add(new JScrollPane(resultTable), BorderLayout.CENTER);
82 add(boxSouth, BorderLayout.SOUTH);

Fig. 25.28 | Displays contents of the database books. (Part 2 of 5.)

private ResultSetTableModel tableModel;

// create TableModel for results of query SELECT * FROM Authors
tableModel = new ResultSetTableModel(DATABASE_URL,

USERNAME, PASSWORD, DEFAULT_QUERY);

// create JTable based on the tableModel
JTable resultTable = new JTable(tableModel);

25.8 Manipulating Databases with JDBC 881

83
84 // create event listener for submitButton
85 submitButton.addActionListener(
86
87 new ActionListener()
88 {
89 // pass query to table model
90 public void actionPerformed(ActionEvent event)
91 {
92 // perform a new query
93 try

94 {
95
96 } // end try
97 catch (SQLException sqlException)
98 {
99 JOptionPane.showMessageDialog(null,
100 sqlException.getMessage(), "Database error",
101 JOptionPane.ERROR_MESSAGE);
102
103 // try to recover from invalid user query
104 // by executing default query
105 try

106 {
107
108 queryArea.setText(DEFAULT_QUERY);
109 } // end try
110 catch (SQLException sqlException2)
111 {
112 JOptionPane.showMessageDialog(null,
113 sqlException2.getMessage(), "Database error",
114 JOptionPane.ERROR_MESSAGE);
115
116
117
118
119 System.exit(1); // terminate application
120 } // end inner catch
121 } // end outer catch
122 } // end actionPerformed
123 } // end ActionListener inner class
124); // end call to addActionListener
125
126
127
128
129 setSize(500, 250); // set window size
130 setVisible(true); // display window
131
132 // create listener for filterButton
133 filterButton.addActionListener(
134 new ActionListener()
135 {

Fig. 25.28 | Displays contents of the database books. (Part 3 of 5.)

tableModel.setQuery(queryArea.getText());

tableModel.setQuery(DEFAULT_QUERY);

// ensure database connection is closed
tableModel.disconnectFromDatabase();

final TableRowSorter< TableModel > sorter =
new TableRowSorter< TableModel >(tableModel);

resultTable.setRowSorter(sorter);

882 Chapter 25 Accessing Databases with JDBC

136 // pass filter text to listener
137 public void actionPerformed(ActionEvent e)
138 {
139 String text = filterText.getText();
140
141 if (text.length() == 0)
142
143 else

144 {
145 try

146 {
147
148
149 } // end try
150 catch (PatternSyntaxException pse)
151 {
152 JOptionPane.showMessageDialog(null,
153 "Bad regex pattern", "Bad regex pattern",
154 JOptionPane.ERROR_MESSAGE);
155 } // end catch
156 } // end else
157 } // end method actionPerfomed
158 } // end annonymous inner class
159); // end call to addActionLister
160 } // end try
161 catch (SQLException sqlException)
162 {
163 JOptionPane.showMessageDialog(null, sqlException.getMessage(),
164 "Database error", JOptionPane.ERROR_MESSAGE);
165
166
167
168
169 System.exit(1); // terminate application
170 } // end catch
171
172 // dispose of window when user quits application (this overrides
173 // the default of HIDE_ON_CLOSE)
174 setDefaultCloseOperation(DISPOSE_ON_CLOSE);
175
176 // ensure database connection is closed when user quits application
177 addWindowListener(
178
179 new WindowAdapter()
180 {
181
182
183
184
185
186
187 } // end WindowAdapter inner class

Fig. 25.28 | Displays contents of the database books. (Part 4 of 5.)

sorter.setRowFilter(null);

sorter.setRowFilter(
RowFilter.regexFilter(text));

// ensure database connection is closed
tableModel.disconnectFromDatabase();

// disconnect from database and exit when window has closed
public void windowClosed(WindowEvent event)
{

tableModel.disconnectFromDatabase();
System.exit(0);

} // end method windowClosed

25.8 Manipulating Databases with JDBC 883

Lines 27–29 and 32 declare the URL, username, password and default query that are
passed to the ResultSetTableModel constructor to make the initial connection to the
database and perform the default query. The DisplayQueryResults constructor (lines 38–

188); // end call to addWindowListener
189 } // end DisplayQueryResults constructor
190
191 // execute application
192 public static void main(String args[])
193 {
194 new DisplayQueryResults();
195 } // end main
196 } // end class DisplayQueryResults

Fig. 25.28 | Displays contents of the database books. (Part 5 of 5.)

a) Displaying all authors from
the Authors table

b) Displaying the the authors’
first and last names joined with

the titles and edition numbers
of the books they’ve authored

c) Filtering the results of the
previous query to show only the

books with Java in the title

884 Chapter 25 Accessing Databases with JDBC

189) creates a ResultSetTableModel object and the GUI for the application. Line 68 cre-
ates the JTable object and passes a ResultSetTableModel object to the JTable con-
structor, which then registers the JTable as a listener for TableModelEvents generated by
the ResultSetTableModel.

The local variables filterText (line 71) and sorter (lines 126–127) are declared
final. These are both used from an event handler that is implemented as an anonymous
inner class (lines 134–158). Any local variable that will be used in an anonymous inner
class must be declared final; otherwise, a compilation error occurs.

Lines 85–124 register an event handler for the submitButton that the user clicks to
submit a query to the database. When the user clicks the button, method actionPer-

formed (lines 90–122) invokes method setQuery from the class ResultSetTableModel to
execute the new query (line 95). If the user’s query fails (e.g., because of a syntax error in
the user’s input), lines 107–108 execute the default query. If the default query also fails,
there could be a more serious error, so line 117 ensures that the database connection is
closed and line 119 exits the program. The screen captures in Fig. 25.28 show the results
of two queries. The first screen capture shows the default query that retrieves all the data
from table Authors of database books. The second screen capture shows a query that
selects each author’s first name and last name from the Authors table and combines that
information with the title and edition number from the Titles table. Try entering your
own queries in the text area and clicking the Submit Query button to execute the query.

Lines 177–188 register a WindowListener for the windowClosed event, which occurs
when the user closes the window. Since WindowListeners can handle several window
events, we extend class WindowAdapter and override only the windowClosed event handler.

Sorting Rows in a JTable

JTables allow users to sort rows by the data in a specific column. Lines 126–127 use the
TableRowSorter class (from package javax.swing.table) to create an object that uses our
ResultSetTableModel to sort rows in the JTable that displays query results. When the
user clicks the title of a particular JTable column, the TableRowSorter interacts with the
underlying TableModel to reorder the rows based on the data in that column. Line 128
uses JTable method setRowSorter to specify the TableRowSorter for resultTable.

Filtering Rows in a JTable

JTables can now show subsets of the data from the underlying TableModel. This is known
as filtering the data. Lines 133–159 register an event handler for the filterButton that
the user clicks to filter the data. In method actionPerformed (lines 137–157), line 139
obtains the filter text. If the user did not specify filter text, line 142 uses JTable method
setRowFilter to remove any prior filter by setting the filter to null. Otherwise, lines 147–
148 use setRowFilter to specify a RowFilter (from package javax.swing) based on the
user’s input. Class RowFilter provides several methods for creating filters. The static

method regexFilter receives a String containing a regular expression pattern as its argu-
ment and an optional set of indices that specify which columns to filter. If no indices are
specified, then all the columns are searched. In this example, the regular expression pattern
is the text the user typed. Once the filter is set, the data displayed in the JTable is updated
based on the filtered TableModel.

25.9 RowSet Interface 885

25.9 RowSet Interface
In the preceding examples, you learned how to query a database by explicitly establishing
a Connection to the database, preparing a Statement for querying the database and exe-
cuting the query. In this section, we demonstrate the RowSet interface, which configures
the database connection and prepares query statements automatically. The interface Row-

Set provides several set methods that allow you to specify the properties needed to establish
a connection (such as the database URL, user name and password of the database) and cre-
ate a Statement (such as a query). RowSet also provides several get methods that return
these properties.

Connected and Disconnected RowSets
There are two types of RowSet objects—connected and disconnected. A connected RowSet

object connects to the database once and remains connected while the object is in use. A
disconnected RowSet object connects to the database, executes a query to retrieve the data
from the database and then closes the connection. A program may change the data in a
disconnected RowSet while it’s disconnected. Modified data can be updated in the data-
base after a disconnected RowSet reestablishes the connection with the database.

Package javax.sql.rowset contains two subinterfaces of RowSet—JdbcRowSet and
CachedRowSet. JdbcRowSet, a connected RowSet, acts as a wrapper around a ResultSet

object and allows you to scroll through and update the rows in the ResultSet. Recall that
by default, a ResultSet object is nonscrollable and read only—you must explicitly set the
result set type constant to TYPE_SCROLL_INSENSITIVE and set the result set concurrency
constant to CONCUR_UPDATABLE to make a ResultSet object scrollable and updatable. A
JdbcRowSet object is scrollable and updatable by default. CachedRowSet, a disconnected
RowSet, caches the data of a ResultSet in memory and disconnects from the database.
Like JdbcRowSet, a CachedRowSet object is scrollable and updatable by default. A Cached-

RowSet object is also serializable, so it can be passed between Java applications through a
network, such as the Internet. However, CachedRowSet has a limitation—the amount of
data that can be stored in memory is limited. Package javax.sql.rowset contains three
other subinterfaces of RowSet.

Using a RowSet

Figure 25.29 reimplements the example of Fig. 25.23 using a RowSet. Rather than estab-
lish the connection and create a Statement explicitly, Fig. 25.29 uses a JdbcRowSet object
to create a Connection and a Statement automatically.

Portability Tip 25.5
A RowSet can provide scrolling capability for drivers that do not support scrollable Re-

sultSets.

1 // Fig. 25.29: JdbcRowSetTest.java
2 // Displaying the contents of the Authors table using JdbcRowSet.
3 import java.sql.ResultSetMetaData;
4 import java.sql.SQLException;

Fig. 25.29 | Displaying the Authors table using JdbcRowSet. (Part 1 of 3.)

886 Chapter 25 Accessing Databases with JDBC

5
6
7
8 public class JdbcRowSetTest
9 {

10 // JDBC driver name and database URL
11 static final String DATABASE_URL = "jdbc:mysql://localhost/books";
12 static final String USERNAME = "deitel";
13 static final String PASSWORD = "deitel";
14
15 // constructor connects to database, queries database, processes
16 // results and displays results in window
17 public JdbcRowSetTest()
18 {
19 // connect to database books and query database
20 try

21 {
22
23
24
25
26
27
28
29
30 // process query results
31
32 int numberOfColumns = metaData.getColumnCount();
33 System.out.println("Authors Table of Books Database:\n");
34
35 // display rowset header
36 for (int i = 1; i <= numberOfColumns; i++)
37 System.out.printf("%-8s\t", metaData.getColumnName(i));
38 System.out.println();
39
40 // display each row
41 while ()
42 {
43 for (int i = 1; i <= numberOfColumns; i++)
44 System.out.printf("%-8s\t",);
45 System.out.println();
46 } // end while
47
48
49
50 } // end try
51 catch (SQLException sqlException)
52 {
53 sqlException.printStackTrace();
54 System.exit(1);
55 } // end catch
56 } // end DisplayAuthors constructor
57

Fig. 25.29 | Displaying the Authors table using JdbcRowSet. (Part 2 of 3.)

import javax.sql.rowset.JdbcRowSet;
import com.sun.rowset.JdbcRowSetImpl; // Sun's JdbcRowSet implementation

// specify properties of JdbcRowSet
JdbcRowSet rowSet = new JdbcRowSetImpl();
rowSet.setUrl(DATABASE_URL); // set database URL
rowSet.setUsername(USERNAME); // set username
rowSet.setPassword(PASSWORD); // set password
rowSet.setCommand("SELECT * FROM Authors"); // set query
rowSet.execute(); // execute query

ResultSetMetaData metaData = rowSet.getMetaData();

rowSet.next()

rowSet.getObject(i)

// close the underlying ResultSet, Statement and Connection
rowSet.close();

25.10 Java DB/Apache Derby 887

The package com.sun.rowset provides Oracle’s reference implementations of the
interfaces in package javax.sql.rowset. Line 23 uses Sun’s reference implementation of
the JdbcRowSet interface—JdbcRowSetImpl—to create a JdbcRowSet object. We used
class JdbcRowSetImpl here to demonstrate the capability of the JdbcRowSet interface.
Other databases may provide their own RowSet implementations.

Lines 24–26 set the RowSet properties that the DriverManager uses to establish a data-
base connection. Line 24 invokes JdbcRowSet method setUrl to specify the database
URL. Line 25 invokes JdbcRowSet method setUsername to specify the username. Line 26
invokes JdbcRowSet method setPassword to specify the password. Line 27 invokes Jdbc-
RowSet method setCommand to specify the SQL query that will be used to populate the
RowSet. Line 28 invokes JdbcRowSet method execute to execute the SQL query. Method
execute performs four actions—it establishes a Connection to the database, prepares the
query Statement, executes the query and stores the ResultSet returned by query. The
Connection, Statement and ResultSet are encapsulated in the JdbcRowSet object.

The remaining code is almost identical to Fig. 25.23, except that line 31 obtains a
ResultSetMetaData object from the JdbcRowSet, line 41 uses the JdbcRowSet’s next

method to get the next row of the result and line 44 uses the JdbcRowSet’s getObject

method to obtain a column’s value. Line 49 invokes JdbcRowSet method close, which
closes the RowSet’s encapsulated ResultSet, Statement and Connection. In a Cached-

RowSet, invoking close also releases the resources held by that RowSet. The output of this
application is the same as that of Fig. 25.23.

25.10 Java DB/Apache Derby
In this section and Section 25.11, we use Oracle’s pure Java database Java DB. Please refer
to the Before You Begin section after the Preface for information on installing Java DB.
Section 25.11 uses the embedded version of Java DB. There’s also a network version that
executes similarly to the MySQL DBMS introduced earlier in the chapter.

Before you can execute the application in Section 25.11, you must set up the
AddressBook database in Java DB. For the purpose of the following steps, we assume

58 // launch the application
59 public static void main(String args[])
60 {
61 JdbcRowSetTest application = new JdbcRowSetTest();
62 } // end main
63 } // end class JdbcRowSetTest

Authors Table of Books Database:

AuthorID FirstName LastName
1 Paul Deitel
2 Harvey Deitel
3 Abbey Deitel
4 Michael Morgano
5 Eric Kern

Fig. 25.29 | Displaying the Authors table using JdbcRowSet. (Part 3 of 3.)

888 Chapter 25 Accessing Databases with JDBC

you’re running Microsoft Windows with Java installed in its default location. Mac OS X
and Linux will need to perform similar steps.

1. Java DB comes with several batch files to configure and run it. Before executing
these batch files from a command prompt, you must set the environment variable
JAVA_HOME to refer to the JDK’s installation directory—for example, C:\Program
Files\Java\jdk1.6.0_23. Be sure to use the exact installation directory of the
JDK on your computer.

2. Open the batch file setEmbeddedCP.bat (typically located in C:\Program Files\

Sun\JavaDB\bin) in a text editor such as Notepad. Locate the line

and change it to

Save your changes and close this file. [Note: You might need to run Notepad as
an Administrator to edit this file. To do so, open the Start menu and type Note-

pad in the Search programs and files field. Then, right click Notepad at the top of
the menu and select Run as administrator.]

3. Open a Command Prompt as an administrator (as you did for Notepad in the
previous step) and change directories to

Then, type setEmbeddedCP.bat and press Enter to set the environment variables
required by Java DB.

4. An embedded Java DB database must reside in the same location as the applica-
tion that manipulates the database. For this reason, change to the directory that
contains the code for Figs. 25.30–25.32. This directory contains a SQL script
address.sql that builds the AddressBook database.

5. Execute the command

to start the command-line tool for interacting with Java DB. The double quotes
are necessary because the path contains a space. This will display the ij> prompt.

6. At the ij> prompt type

and press Enter to create the AddressBook database in the current directory and
to create the user deitel with the password deitel for accessing the database.

7. To create the database table and insert sample data in it, we’ve provided the file
address.sql in this example’s directory. To execute this SQL script, type

8. To terminate the Java DB command-line tool, type

@rem set DERBY_INSTALL=

@set DERBY_INSTALL=C:\Program Files\Sun\JavaDB

C:\Program Files\Sun\JavaDB\bin

"C:\Program Files\Sun\JavaDB\bin\ij"

connect 'jdbc:derby:AddressBook;create=true;user=deitel;
password=deitel';

run 'address.sql';

exit;

25.11 PreparedStatements 889

You’re now ready to execute the AddressBook application in Section 25.11. MySQL or
any other database that supports JDBC PreparedStatements could also be used.

25.11 PreparedStatements
A PreparedStatement enables you to create compiled SQL statements that execute more
efficiently than Statements. PreparedStatements can also specify parameters, making
them more flexible than Statements—you can execute the same query repeatedly with dif-
ferent parameter values. For example, in the books database, you might want to locate all
book titles for an author with a specific last and first name, and you might want to execute
that query for several authors. With a PreparedStatement, that query is defined as follows:

The two question marks (?) in the the preceding SQL statement’s last line are placeholders
for values that will be passed as part of the query to the database. Before executing a Pre-

paredStatement, the program must specify the parameter values by using the Prepared-

Statement interface’s set methods.
For the preceding query, both parameters are strings that can be set with Prepared-

Statement method setString as follows:

Method setString’s first argument represents the parameter number being set, and the
second argument is that parameter’s value. Parameter numbers are counted from 1, starting
with the first question mark (?). When the program executes the preceding Prepared-

Statement with the parameter values set above, the SQL passed to the database is

Method setString automatically escapes String parameter values as necessary. For exam-
ple, if the last name is O’Brien, the statement

escapes the ' character in O’Brien by replacing it with two single-quote characters, so that
the ' appears correctly in the database.

PreparedStatement authorBooks = connection.prepareStatement(
"SELECT LastName, FirstName, Title " +
"FROM Authors INNER JOIN AuthorISBN " +

"ON Authors.AuthorID=AuthorISBN.AuthorID " +
"INNER JOIN Titles " +

"ON AuthorISBN.ISBN=Titles.ISBN " +
"WHERE LastName = ? AND FirstName = ?");

authorBooks.setString(1, "Deitel");
authorBooks.setString(2, "Paul");

SELECT LastName, FirstName, Title
FROM Authors INNER JOIN AuthorISBN

ON Authors.AuthorID=AuthorISBN.AuthorID
INNER JOIN Titles

ON AuthorISBN.ISBN=Titles.ISBN
WHERE LastName = 'Deitel' AND FirstName = 'Paul'

authorBooks.setString(1, "O'Brien");

Performance Tip 25.2
PreparedStatements are more efficient than Statements when executing SQL statements
multiple times and with different parameter values.

890 Chapter 25 Accessing Databases with JDBC

Interface PreparedStatement provides set methods for each supported SQL type. It’s
important to use the set method that is appropriate for the parameter’s SQL type in the
database—SQLExceptions occur when a program attempts to convert a parameter value to
an incorrect type.

Address Book Application that Uses PreparedStatements
We now present an address book application that enables you to browse existing entries,
add new entries and search for entries with a specific last name. Our AddressBook Java DB
database contains an Addresses table with the columns addressID, FirstName, LastName,
Email and PhoneNumber. The column addressID is a so-called identity column. This is the
SQL standard way to represent an autoincremented column. The SQL script we provide for
this database uses the SQL IDENTITY keyword to mark the addressID column as an iden-
tity column. For more information on using the IDENTITY keyword and creating
databases, see the Java DB Developer’s Guide at download.oracle.com/javadb/

10.6.1.0/devguide/devguide-single.html.

Class Person
Our address book application consists of three classes—Person (Fig. 25.30), PersonQue-
ries (Fig. 25.31) and AddressBookDisplay (Fig. 25.32). Class Person is a simple class
that represents one person in the address book. The class contains fields for the address
ID, first name, last name, email address and phone number, as well as set and get methods
for manipulating these fields.

Error-Prevention Tip 25.2
Use PreparedStatements with parameters for queries that receive String values as ar-
guments to ensure that the Strings are quoted properly in the SQL statement.

1 // Fig. 25.30: Person.java
2 // Person class that represents an entry in an address book.
3 public class Person
4 {
5 private int addressID;
6 private String firstName;
7 private String lastName;
8 private String email;
9 private String phoneNumber;

10
11 // no-argument constructor
12 public Person()
13 {
14 } // end no-argument Person constructor
15
16 // constructor
17 public Person(int id, String first, String last,
18 String emailAddress, String phone)
19 {
20 setAddressID(id);
21 setFirstName(first);

Fig. 25.30 | Person class that represents an entry in an AddressBook. (Part 1 of 3.)

25.11 PreparedStatements 891

22 setLastName(last);
23 setEmail(emailAddress);
24 setPhoneNumber(phone);
25 } // end five-argument Person constructor
26
27 // sets the addressID
28 public void setAddressID(int id)
29 {
30 addressID = id;
31 } // end method setAddressID
32
33 // returns the addressID
34 public int getAddressID()
35 {
36 return addressID;
37 } // end method getAddressID
38
39 // sets the firstName
40 public void setFirstName(String first)
41 {
42 firstName = first;
43 } // end method setFirstName
44
45 // returns the first name
46 public String getFirstName()
47 {
48 return firstName;
49 } // end method getFirstName
50
51 // sets the lastName
52 public void setLastName(String last)
53 {
54 lastName = last;
55 } // end method setLastName
56
57 // returns the last name
58 public String getLastName()
59 {
60 return lastName;
61 } // end method getLastName
62
63 // sets the email address
64 public void setEmail(String emailAddress)
65 {
66 email = emailAddress;
67 } // end method setEmail
68
69 // returns the email address
70 public String getEmail()
71 {
72 return email;
73 } // end method getEmail
74

Fig. 25.30 | Person class that represents an entry in an AddressBook. (Part 2 of 3.)

892 Chapter 25 Accessing Databases with JDBC

Class PersonQueries
Class PersonQueries (Fig. 25.31) manages the address book application’s database con-
nection and creates the PreparedStatements that the application uses to interact with the
database. Lines 18–20 declare three PreparedStatement variables. The constructor (lines
23–49) connects to the database at lines 27–28.

75 // sets the phone number
76 public void setPhoneNumber(String phone)
77 {
78 phoneNumber = phone;
79 } // end method setPhoneNumber
80
81 // returns the phone number
82 public String getPhoneNumber()
83 {
84 return phoneNumber;
85 } // end method getPhoneNumber
86 } // end class Person

1 // Fig. 25.31: PersonQueries.java
2 // PreparedStatements used by the Address Book application.
3 import java.sql.Connection;
4 import java.sql.DriverManager;
5
6 import java.sql.ResultSet;
7 import java.sql.SQLException;
8 import java.util.List;
9 import java.util.ArrayList;

10
11 public class PersonQueries
12 {
13 private static final String URL = "jdbc:derby:AddressBook";
14 private static final String USERNAME = "deitel";
15 private static final String PASSWORD = "deitel";
16
17 private Connection connection = null; // manages connection
18
19
20
21
22 // constructor
23 public PersonQueries()
24 {
25 try

26 {
27 connection =
28 DriverManager.getConnection(URL, USERNAME, PASSWORD);
29

Fig. 25.31 | PreparedStatements used by the Address Book application. (Part 1 of 4.)

Fig. 25.30 | Person class that represents an entry in an AddressBook. (Part 3 of 3.)

import java.sql.PreparedStatement;

private PreparedStatement selectAllPeople = null;
private PreparedStatement selectPeopleByLastName = null;
private PreparedStatement insertNewPerson = null;

25.11 PreparedStatements 893

30
31
32
33
34
35
36
37
38
39
40
41
42
43 } // end try
44 catch (SQLException sqlException)
45 {
46 sqlException.printStackTrace();
47 System.exit(1);
48 } // end catch
49 } // end PersonQueries constructor
50
51 // select all of the addresses in the database
52 public List< Person > getAllPeople()
53 {
54 List< Person > results = null;
55 ResultSet resultSet = null;
56
57 try

58 {
59
60
61 results = new ArrayList< Person >();
62
63 while (resultSet.next())
64 {
65 results.add(new Person(
66 resultSet.getInt("addressID"),
67 resultSet.getString("FirstName"),
68 resultSet.getString("LastName"),
69 resultSet.getString("Email"),
70 resultSet.getString("PhoneNumber")));
71 } // end while
72 } // end try
73 catch (SQLException sqlException)
74 {
75 sqlException.printStackTrace();
76 } // end catch
77 finally

78 {
79 try

80 {
81 resultSet.close();
82 } // end try

Fig. 25.31 | PreparedStatements used by the Address Book application. (Part 2 of 4.)

// create query that selects all entries in the AddressBook
selectAllPeople =

connection.prepareStatement("SELECT * FROM Addresses");

// create query that selects entries with a specific last name
selectPeopleByLastName = connection.prepareStatement(

"SELECT * FROM Addresses WHERE LastName = ?");

// create insert that adds a new entry into the database
insertNewPerson = connection.prepareStatement(

"INSERT INTO Addresses " +
"(FirstName, LastName, Email, PhoneNumber) " +
"VALUES (?, ?, ?, ?)");

// executeQuery returns ResultSet containing matching entries
resultSet = selectAllPeople.executeQuery();

894 Chapter 25 Accessing Databases with JDBC

83 catch (SQLException sqlException)
84 {
85 sqlException.printStackTrace();
86 close();
87 } // end catch
88 } // end finally
89
90 return results;
91 } // end method getAllPeople
92
93 // select person by last name
94 public List< Person > getPeopleByLastName(String name)
95 {
96 List< Person > results = null;
97 ResultSet resultSet = null;
98
99 try

100 {
101
102
103
104
105
106 results = new ArrayList< Person >();
107
108 while (resultSet.next())
109 {
110 results.add(new Person(resultSet.getInt("addressID"),
111 resultSet.getString("FirstName"),
112 resultSet.getString("LastName"),
113 resultSet.getString("Email"),
114 resultSet.getString("PhoneNumber")));
115 } // end while
116 } // end try
117 catch (SQLException sqlException)
118 {
119 sqlException.printStackTrace();
120 } // end catch
121 finally

122 {
123 try

124 {
125 resultSet.close();
126 } // end try
127 catch (SQLException sqlException)
128 {
129 sqlException.printStackTrace();
130 close();
131 } // end catch
132 } // end finally
133
134 return results;
135 } // end method getPeopleByName

Fig. 25.31 | PreparedStatements used by the Address Book application. (Part 3 of 4.)

selectPeopleByLastName.setString(1, name); // specify last name

// executeQuery returns ResultSet containing matching entries
resultSet = selectPeopleByLastName.executeQuery();

25.11 PreparedStatements 895

Creating PreparedStatements
Lines 31–32 invoke Connection method prepareStatement to create the Prepared-

Statement named selectAllPeople that selects all the rows in the Addresses table. Lines
35–36 create the PreparedStatement named selectPeopleByLastName with a parameter.
This statement selects all the rows in the Addresses table that match a particular last
name. Notice the ? character that’s used to specify the last-name parameter. Lines 39–42
create the PreparedStatement named insertNewPerson with four parameters that repre-
sent the first name, last name, email address and phone number for a new entry. Again,
notice the ? characters used to represent these parameters.

136
137 // add an entry
138 public int addPerson(
139 String fname, String lname, String email, String num)
140 {
141 int result = 0;
142
143 // set parameters, then execute insertNewPerson
144 try

145 {
146
147
148
149
150
151
152
153 } // end try
154 catch (SQLException sqlException)
155 {
156 sqlException.printStackTrace();
157 close();
158 } // end catch
159
160 return result;
161 } // end method addPerson
162
163 // close the database connection
164 public void close()
165 {
166 try

167 {
168 connection.close();
169 } // end try
170 catch (SQLException sqlException)
171 {
172 sqlException.printStackTrace();
173 } // end catch
174 } // end method close
175 } // end class PersonQueries

Fig. 25.31 | PreparedStatements used by the Address Book application. (Part 4 of 4.)

insertNewPerson.setString(1, fname);
insertNewPerson.setString(2, lname);
insertNewPerson.setString(3, email);
insertNewPerson.setString(4, num);

// insert the new entry; returns # of rows updated
result = insertNewPerson.executeUpdate();

896 Chapter 25 Accessing Databases with JDBC

PersonQueries Method getAllPeople

Method getAllPeople (lines 52–91) executes PreparedStatement selectAllPeople

(line 60) by calling method executeQuery, which returns a ResultSet containing the rows
that match the query (in this case, all the rows in the Addresses table). Lines 61–71 place
the query results in an ArrayList of Person objects, which is returned to the caller at line
90. Method getPeopleByLastName (lines 94–135) uses PreparedStatement method set-

String to set the parameter to selectPeopleByLastName (line 101). Then, line 104 exe-
cutes the query and lines 106–115 place the query results in an ArrayList of Person

objects. Line 134 returns the ArrayList to the caller.

PersonQueries Methods addPerson and Close

Method addPerson (lines 138–161) uses PreparedStatement method setString (lines
146–149) to set the parameters for the insertNewPerson PreparedStatement. Line 152
uses PreparedStatement method executeUpdate to insert the new record. This method
returns an integer indicating the number of rows that were updated (or inserted) in the
database. Method close (lines 164–174) simply closes the database connection.

Class AddressBookDisplay
The AddressBookDisplay (Fig. 25.32) application uses a PersonQueries object to inter-
act with the database. Line 59 creates the PersonQueries object. When the user presses
the Browse All Entries JButton, the browseButtonActionPerformed handler (lines 309–
335) is called. Line 313 calls the method getAllPeople on the PersonQueries object to
obtain all the entries in the database. The user can then scroll through the entries using the
Previous and Next JButtons. When the user presses the Find JButton, the queryButtonAc-
tionPerformed handler (lines 265–287) is called. Lines 267–268 call method getPeo-

pleByLastName on the PersonQueries object to obtain the entries in the database that
match the specified last name. If there are several such entries, the user can then scroll
through them using the Previous and Next JButtons.

1 // Fig. 25.32: AddressBookDisplay.java
2 // A simple address book
3 import java.awt.event.ActionEvent;
4 import java.awt.event.ActionListener;
5 import java.awt.event.WindowAdapter;
6 import java.awt.event.WindowEvent;
7 import java.awt.FlowLayout;
8 import java.awt.GridLayout;
9 import java.util.List;

10 import javax.swing.JButton;
11 import javax.swing.Box;
12 import javax.swing.JFrame;
13 import javax.swing.JLabel;
14 import javax.swing.JPanel;
15 import javax.swing.JTextField;
16 import javax.swing.WindowConstants;
17 import javax.swing.BoxLayout;
18 import javax.swing.BorderFactory;
19 import javax.swing.JOptionPane;

Fig. 25.32 | A simple address book. (Part 1 of 9.)

25.11 PreparedStatements 897

20
21 public class AddressBookDisplay extends JFrame
22 {
23 private Person currentEntry;
24
25 private List< Person > results;
26 private int numberOfEntries = 0;
27 private int currentEntryIndex;
28
29 private JButton browseButton;
30 private JLabel emailLabel;
31 private JTextField emailTextField;
32 private JLabel firstNameLabel;
33 private JTextField firstNameTextField;
34 private JLabel idLabel;
35 private JTextField idTextField;
36 private JTextField indexTextField;
37 private JLabel lastNameLabel;
38 private JTextField lastNameTextField;
39 private JTextField maxTextField;
40 private JButton nextButton;
41 private JLabel ofLabel;
42 private JLabel phoneLabel;
43 private JTextField phoneTextField;
44 private JButton previousButton;
45 private JButton queryButton;
46 private JLabel queryLabel;
47 private JPanel queryPanel;
48 private JPanel navigatePanel;
49 private JPanel displayPanel;
50 private JTextField queryTextField;
51 private JButton insertButton;
52
53 // no-argument constructor
54 public AddressBookDisplay()
55 {
56 super("Address Book");
57
58
59
60
61 // create GUI
62 navigatePanel = new JPanel();
63 previousButton = new JButton();
64 indexTextField = new JTextField(2);
65 ofLabel = new JLabel();
66 maxTextField = new JTextField(2);
67 nextButton = new JButton();
68 displayPanel = new JPanel();
69 idLabel = new JLabel();
70 idTextField = new JTextField(10);
71 firstNameLabel = new JLabel();
72 firstNameTextField = new JTextField(10);

Fig. 25.32 | A simple address book. (Part 2 of 9.)

private PersonQueries personQueries;

// establish database connection and set up PreparedStatements
personQueries = new PersonQueries();

898 Chapter 25 Accessing Databases with JDBC

73 lastNameLabel = new JLabel();
74 lastNameTextField = new JTextField(10);
75 emailLabel = new JLabel();
76 emailTextField = new JTextField(10);
77 phoneLabel = new JLabel();
78 phoneTextField = new JTextField(10);
79 queryPanel = new JPanel();
80 queryLabel = new JLabel();
81 queryTextField = new JTextField(10);
82 queryButton = new JButton();
83 browseButton = new JButton();
84 insertButton = new JButton();
85
86 setLayout(new FlowLayout(FlowLayout.CENTER, 10, 10));
87 setSize(400, 300);
88 setResizable(false);
89
90 navigatePanel.setLayout(
91 new BoxLayout(navigatePanel, BoxLayout.X_AXIS));
92
93 previousButton.setText("Previous");
94 previousButton.setEnabled(false);
95 previousButton.addActionListener(
96 new ActionListener()
97 {
98 public void actionPerformed(ActionEvent evt)
99 {
100 previousButtonActionPerformed(evt);
101 } // end method actionPerformed
102 } // end anonymous inner class
103); // end call to addActionListener
104
105 navigatePanel.add(previousButton);
106 navigatePanel.add(Box.createHorizontalStrut(10));
107
108 indexTextField.setHorizontalAlignment(
109 JTextField.CENTER);
110 indexTextField.addActionListener(
111 new ActionListener()
112 {
113 public void actionPerformed(ActionEvent evt)
114 {
115 indexTextFieldActionPerformed(evt);
116 } // end method actionPerformed
117 } // end anonymous inner class
118); // end call to addActionListener
119
120 navigatePanel.add(indexTextField);
121 navigatePanel.add(Box.createHorizontalStrut(10));
122
123 ofLabel.setText("of");
124 navigatePanel.add(ofLabel);
125 navigatePanel.add(Box.createHorizontalStrut(10));

Fig. 25.32 | A simple address book. (Part 3 of 9.)

25.11 PreparedStatements 899

126
127 maxTextField.setHorizontalAlignment(
128 JTextField.CENTER);
129 maxTextField.setEditable(false);
130 navigatePanel.add(maxTextField);
131 navigatePanel.add(Box.createHorizontalStrut(10));
132
133 nextButton.setText("Next");
134 nextButton.setEnabled(false);
135 nextButton.addActionListener(
136 new ActionListener()
137 {
138 public void actionPerformed(ActionEvent evt)
139 {
140 nextButtonActionPerformed(evt);
141 } // end method actionPerformed
142 } // end anonymous inner class
143); // end call to addActionListener
144
145 navigatePanel.add(nextButton);
146 add(navigatePanel);
147
148 displayPanel.setLayout(new GridLayout(5, 2, 4, 4));
149
150 idLabel.setText("Address ID:");
151 displayPanel.add(idLabel);
152
153 idTextField.setEditable(false);
154 displayPanel.add(idTextField);
155
156 firstNameLabel.setText("First Name:");
157 displayPanel.add(firstNameLabel);
158 displayPanel.add(firstNameTextField);
159
160 lastNameLabel.setText("Last Name:");
161 displayPanel.add(lastNameLabel);
162 displayPanel.add(lastNameTextField);
163
164 emailLabel.setText("Email:");
165 displayPanel.add(emailLabel);
166 displayPanel.add(emailTextField);
167
168 phoneLabel.setText("Phone Number:");
169 displayPanel.add(phoneLabel);
170 displayPanel.add(phoneTextField);
171 add(displayPanel);
172
173 queryPanel.setLayout(
174 new BoxLayout(queryPanel, BoxLayout.X_AXIS));
175
176 queryPanel.setBorder(BorderFactory.createTitledBorder(
177 "Find an entry by last name"));
178 queryLabel.setText("Last Name:");

Fig. 25.32 | A simple address book. (Part 4 of 9.)

900 Chapter 25 Accessing Databases with JDBC

179 queryPanel.add(Box.createHorizontalStrut(5));
180 queryPanel.add(queryLabel);
181 queryPanel.add(Box.createHorizontalStrut(10));
182 queryPanel.add(queryTextField);
183 queryPanel.add(Box.createHorizontalStrut(10));
184
185 queryButton.setText("Find");
186 queryButton.addActionListener(
187 new ActionListener()
188 {
189 public void actionPerformed(ActionEvent evt)
190 {
191 queryButtonActionPerformed(evt);
192 } // end method actionPerformed
193 } // end anonymous inner class
194); // end call to addActionListener
195
196 queryPanel.add(queryButton);
197 queryPanel.add(Box.createHorizontalStrut(5));
198 add(queryPanel);
199
200 browseButton.setText("Browse All Entries");
201 browseButton.addActionListener(
202 new ActionListener()
203 {
204 public void actionPerformed(ActionEvent evt)
205 {
206 browseButtonActionPerformed(evt);
207 } // end method actionPerformed
208 } // end anonymous inner class
209); // end call to addActionListener
210
211 add(browseButton);
212
213 insertButton.setText("Insert New Entry");
214 insertButton.addActionListener(
215 new ActionListener()
216 {
217 public void actionPerformed(ActionEvent evt)
218 {
219 insertButtonActionPerformed(evt);
220 } // end method actionPerformed
221 } // end anonymous inner class
222); // end call to addActionListener
223
224 add(insertButton);
225
226 addWindowListener(
227 new WindowAdapter()
228 {
229 public void windowClosing(WindowEvent evt)
230 {
231 personQueries.close(); // close database connection

Fig. 25.32 | A simple address book. (Part 5 of 9.)

25.11 PreparedStatements 901

232 System.exit(0);
233 } // end method windowClosing
234 } // end anonymous inner class
235); // end call to addWindowListener
236
237 setVisible(true);
238 } // end no-argument constructor
239
240 // handles call when previousButton is clicked
241 private void previousButtonActionPerformed(ActionEvent evt)
242 {
243 currentEntryIndex--;
244
245 if (currentEntryIndex < 0)
246 currentEntryIndex = numberOfEntries - 1;
247
248 indexTextField.setText("" + (currentEntryIndex + 1));
249 indexTextFieldActionPerformed(evt);
250 } // end method previousButtonActionPerformed
251
252 // handles call when nextButton is clicked
253 private void nextButtonActionPerformed(ActionEvent evt)
254 {
255 currentEntryIndex++;
256
257 if (currentEntryIndex >= numberOfEntries)
258 currentEntryIndex = 0;
259
260 indexTextField.setText("" + (currentEntryIndex + 1));
261 indexTextFieldActionPerformed(evt);
262 } // end method nextButtonActionPerformed
263
264 // handles call when queryButton is clicked
265 private void queryButtonActionPerformed(ActionEvent evt)
266 {
267
268
269 numberOfEntries = results.size();
270
271 if (numberOfEntries != 0)
272 {
273 currentEntryIndex = 0;
274 currentEntry = results.get(currentEntryIndex);
275 idTextField.setText("" + currentEntry.getAddressID());
276 firstNameTextField.setText(currentEntry.getFirstName());
277 lastNameTextField.setText(currentEntry.getLastName());
278 emailTextField.setText(currentEntry.getEmail());
279 phoneTextField.setText(currentEntry.getPhoneNumber());
280 maxTextField.setText("" + numberOfEntries);
281 indexTextField.setText("" + (currentEntryIndex + 1));
282 nextButton.setEnabled(true);
283 previousButton.setEnabled(true);
284 } // end if

Fig. 25.32 | A simple address book. (Part 6 of 9.)

results =
personQueries.getPeopleByLastName(queryTextField.getText());

902 Chapter 25 Accessing Databases with JDBC

285 else

286 browseButtonActionPerformed(evt);
287 } // end method queryButtonActionPerformed
288
289 // handles call when a new value is entered in indexTextField
290 private void indexTextFieldActionPerformed(ActionEvent evt)
291 {
292 currentEntryIndex =
293 (Integer.parseInt(indexTextField.getText()) - 1);
294
295 if (numberOfEntries != 0 && currentEntryIndex < numberOfEntries)
296 {
297 currentEntry = results.get(currentEntryIndex);
298 idTextField.setText("" + currentEntry.getAddressID());
299 firstNameTextField.setText(currentEntry.getFirstName());
300 lastNameTextField.setText(currentEntry.getLastName());
301 emailTextField.setText(currentEntry.getEmail());
302 phoneTextField.setText(currentEntry.getPhoneNumber());
303 maxTextField.setText("" + numberOfEntries);
304 indexTextField.setText("" + (currentEntryIndex + 1));
305 } // end if
306 } // end method indexTextFieldActionPerformed
307
308 // handles call when browseButton is clicked
309 private void browseButtonActionPerformed(ActionEvent evt)
310 {
311 try

312 {
313
314 numberOfEntries = results.size();
315
316 if (numberOfEntries != 0)
317 {
318 currentEntryIndex = 0;
319 currentEntry = results.get(currentEntryIndex);
320 idTextField.setText("" + currentEntry.getAddressID());
321 firstNameTextField.setText(currentEntry.getFirstName());
322 lastNameTextField.setText(currentEntry.getLastName());
323 emailTextField.setText(currentEntry.getEmail());
324 phoneTextField.setText(currentEntry.getPhoneNumber());
325 maxTextField.setText("" + numberOfEntries);
326 indexTextField.setText("" + (currentEntryIndex + 1));
327 nextButton.setEnabled(true);
328 previousButton.setEnabled(true);
329 } // end if
330 } // end try
331 catch (Exception e)
332 {
333 e.printStackTrace();
334 } // end catch
335 } // end method browseButtonActionPerformed
336

Fig. 25.32 | A simple address book. (Part 7 of 9.)

results = personQueries.getAllPeople();

25.11 PreparedStatements 903

337 // handles call when insertButton is clicked
338 private void insertButtonActionPerformed(ActionEvent evt)
339 {
340
341
342
343
344 if (result == 1)
345 JOptionPane.showMessageDialog(this, "Person added!",
346 "Person added", JOptionPane.PLAIN_MESSAGE);
347 else

348 JOptionPane.showMessageDialog(this, "Person not added!",
349 "Error", JOptionPane.PLAIN_MESSAGE);
350
351 browseButtonActionPerformed(evt);
352 } // end method insertButtonActionPerformed
353
354 // main method
355 public static void main(String args[])
356 {
357 new AddressBookDisplay();
358 } // end method main
359 } // end class AddressBookDisplay

Fig. 25.32 | A simple address book. (Part 8 of 9.)

int result = personQueries.addPerson(firstNameTextField.getText(),
lastNameTextField.getText(), emailTextField.getText(),
phoneTextField.getText());

a) Initial Address Book screen. b) Results of clicking Browse All Entries.

c) Browsing to the next entry. d) Finding entries with the last name Green.

904 Chapter 25 Accessing Databases with JDBC

To add a new entry into the AddressBook database, the user can enter the first name,
last name, email and phone number (the AddressID will autoincrement) in the JText-

Fields and press the Insert New Entry JButton. The insertButtonActionPerformed han-
dler (lines 338–352) is called. Lines 340–342 call the method addPerson on the
PersonQueries object to add a new entry to the database. Line 351 calls browseButtonAc-
tionPerformed to obtain the updated set of people in the address book and update the
GUI accordingly.

The user can then view different entries by pressing the Previous JButton or Next
JButton, which results in calls to methods previousButtonActionPerformed (lines 241–
250) or nextButtonActionPerformed (lines 253–262), respectively. Alternatively, the
user can enter a number in the indexTextField and press Enter to view a particular entry.
This results in a call to method indexTextFieldActionPerformed (lines 290–306) to dis-
play the specified record.

25.12 Stored Procedures
Many database management systems can store individual or sets of SQL statements in a
database, so that programs accessing that database can invoke them. Such named collec-
tions of SQL statements are called stored procedures. JDBC enables programs to invoke
stored procedures using objects that implement the interface CallableStatement.
CallableStatements can receive arguments specified with the methods inherited from in-
terface PreparedStatement. In addition, CallableStatements can specify output param-
eters in which a stored procedure can place return values. Interface CallableStatement

includes methods to specify which parameters in a stored procedure are output parameters.
The interface also includes methods to obtain the values of output parameters returned
from a stored procedure.

Portability Tip 25.6
Although the syntax for creating stored procedures differs across database management sys-
tems, the interface CallableStatement provides a uniform interface for specifying input
and output parameters for stored procedures and for invoking stored procedures.

Fig. 25.32 | A simple address book. (Part 9 of 9.)

e) After adding a new entry and browsing to it.

25.13 Transaction Processing 905

25.13 Transaction Processing
Many database applications require guarantees that a series of database insertions, updates
and deletions executes properly before the application continues processing the next data-
base operation. For example, when you transfer money electronically between bank ac-
counts, several factors determine if the transaction is successful. You begin by specifying
the source account and the amount you wish to transfer from that account to a destination
account. Next, you specify the destination account. The bank checks the source account
to determine whether its funds are sufficient to complete the transfer. If so, the bank with-
draws the specified amount and, if all goes well, deposits it into the destination account to
complete the transfer. What happens if the transfer fails after the bank withdraws the mon-
ey from the source account? In a proper banking system, the bank redeposits the money
in the source account. How would you feel if the money was subtracted from your source
account and the bank did not deposit the money in the destination account?

Transaction processing enables a program that interacts with a database to treat a
database operation (or set of operations) as a single operation. Such an operation also is known
as an atomic operation or a transaction. At the end of a transaction, a decision can be
made either to commit the transaction or roll back the transaction. Committing the
transaction finalizes the database operation(s); all insertions, updates and deletions per-
formed as part of the transaction cannot be reversed without performing a new database
operation. Rolling back the transaction leaves the database in its state prior to the database
operation. This is useful when a portion of a transaction fails to complete properly. In our
bank-account-transfer discussion, the transaction would be rolled back if the deposit could
not be made into the destination account.

Java provides transaction processing via methods of interface Connection. Method
setAutoCommit specifies whether each SQL statement commits after it completes (a true

argument) or whether several SQL statements should be grouped as a transaction (a false
argument). If the argument to setAutoCommit is false, the program must follow the last
SQL statement in the transaction with a call to Connection method commit (to commit
the changes to the database) or Connection method rollback (to return the database to
its state prior to the transaction). Interface Connection also provides method getAuto-

Commit to determine the autocommit state for the Connection.

25.14 Wrap-Up
In this chapter, you learned basic database concepts, how to query and manipulate data in
a database using SQL and how to use JDBC to allow Java applications to interact with
MySQL and Java DB databases. You learned about the SQL commands SELECT, INSERT,
UPDATE and DELETE, as well as clauses such as WHERE, ORDER BY and INNER JOIN. You learned
the steps for obtaining a Connection to the database, creating a Statement to interact with

Portability Tip 25.7
According to the Java API documentation for interface CallableStatement, for maxi-
mum portability between database systems, programs should process the update counts
(which indicate how many rows were updated) or ResultSets returned from a Call-

ableStatement before obtaining the values of any output parameters.

906 Chapter 25 Accessing Databases with JDBC

the database’s data, executing the statement and processing the results. Then you used a
RowSet to simplify the process of connecting to a database and creating statements. You
used PreparedStatements to create precompiled SQL statements. You also learned how
to create and configure databases in both MySQL and Java DB by using predefined SQL
scripts. We also provided overviews of CallableStatements and transaction processing.
In the next chapter, you’ll learn about web application development with JavaServer Faces.

25.15 Web Resources
www.oracle.com/technetwork/java/javadb/overview/index.html

Oracle Java DB home page.
db.apache.org/derby/papers/DerbyTut/index.html

Apache Derby tutorial. Includes Linux installation instructions.
download.oracle.com/javase/tutorial/jdbc/index.html

The Java Tutorial’s JDBC track.
www.sql.org

This SQL portal provides links to many resources, including SQL syntax, tips, tutorials, books,
magazines, discussion groups, companies with SQL services, SQL consultants and free software.
download.oracle.com/javase/6/docs/technotes/guides/jdbc/index.html

Oracle JDBC API documentation.
www.mysql.com

This site is the MySQL database home page. You can download the latest versions of MySQL and
MySQL Connector/J and access their online documentation.
dev.mysql.com/doc/refman/5.5/en/index.html

MySQL reference manual.
download.oracle.com/javase/6/docs/technotes/guides/jdbc/getstart/rowsetImpl.html

Overviews the RowSet interface and its subinterfaces. This site also discusses the reference imple-
mentations of these interfaces from Sun and their usage.

www.oracle.com/technetwork/java/javadb/overview/index.html
www.sql.org
www.mysql.com

26
JavaServer™ Faces Web
Apps: Part 1

O b j e c t i v e s
In this chapter you’ll learn:

� To create JavaServer Faces web apps.

� To create web apps consisting of multiple pages.

� To validate user input on a web page.

� To maintain user-specific state information throughout a
web app with session tracking.

If any man will draw up his
case, and put his name at the
foot of the first page, I will
give him an immediate reply.
Where he compels me to turn
over the sheet, he must wait
my leisure.
—Lord Sandwich

Rule One:
Our client is always right.
Rule Two: If you think our
client is wrong, see Rule One.
—Anonymous

A fair question should be
followed by a deed in silence.
—Dante Alighieri

You will come here and get
books that will open your
eyes, and your ears, and your
curiosity, and turn you
inside out or outside in.
—Ralph Waldo Emerson

908 Chapter 26 JavaServer™ Faces Web Apps: Part 1

26.1 Introduction
In this chapter, we introduce web app development in Java with JavaServer Faces (JSF).
Web-based apps create content for web browser clients. This content includes eXtensible
HyperText Markup Language (XHTML), JavaScript client-side scripting, Cascading
Style Sheets (CSS), images and binary data. XHTML is an XML (eXtensible Markup Lan-
guage) vocabulary that is based on HTML (HyperText Markup Language). We discuss
only the features of these technologies that are required to understand the examples in this
chapter. If you’d like more information on XHTML, XML, JavaScript and CSS, please
visit our Resource Centers on each of these topics at

where you’ll find links to introductions, tutorials and other valuable resources.
This chapter begins with an overview of how interactions between a web browser and

web server work. We then present several web apps implemented with JSF. We continue
this discussion in Chapter 27 with more advanced web applications.

Java multitier applications are typically implemented using Java Enterprise Edition
(Java EE). The technologies we use to develop web apps here and in Chapter 27 are part of
Java EE 6 (www.oracle.com/technetwork/java/javaee/overview/index.html). After
you study this chapter and the next, you can learn more about JavaServer Faces 2.0 in
Oracle’s extensive Java EE 6 tutorial at download.oracle.com/javaee/6/tutorial/doc/.

We focus on the JavaServer Faces 2.01 subset of Java EE. JavaServer Faces is a web-
application framework that enables you to build multitier web apps by extending the
framework with your application-specific capabilities. The framework handles the details
of receiving client requests and returning responses for you so that you can focus on your
application’s functionality.

Required Software for This Chapter
To work with and implement the examples in this chapter and Chapters 27–28, you must
install the NetBeans 6.9.1 IDE and the GlassFish 3.0.1 open-source application server.
Both are available in a bundle from netbeans.org/downloads/index.html. You’re prob-
ably using a computer with the Windows, Linux or Max OS X operating system—install-

26.1 Introduction
26.2 HyperText Transfer Protocol (HTTP)

Transactions
26.3 Multitier Application Architecture
26.4 Your First JSF Web App

26.4.1 The Default index.xhtml
Document: Introducing Facelets

26.4.2 Examining the WebTimeBean Class
26.4.3 Building the WebTime JSF Web App

in NetBeans
26.5 Model-View-Controller Architecture

of JSF Apps

26.6 Common JSF Components
26.7 Validation Using JSF Standard

Validators
26.8 Session Tracking

26.8.1 Cookies
26.8.2 Session Tracking with

@SessionScoped Beans
26.9 Wrap-Up

www.deitel.com/ResourceCenters.html

1. The JavaServer Faces Specification: http://bit.ly/JSF20Spec.

www.oracle.com/technetwork/java/javaee/overview/index.html
www.deitel.com/ResourceCenters.html
http://bit.ly/JSF20Spec

26.2 HyperText Transfer Protocol (HTTP) Transactions 909

ers are provided for each of these platforms. Download and execute the installer for the
Java or All version—both include the required Java Web and EE and Glassfish Server Open
Source Edition options. We assume you use the default installation options for your plat-
form. Once you’ve installed NetBeans, run it. Then, use the Help menu’s Check for Up-
dates option to make sure you have the most up-to-date components.

26.2 HyperText Transfer Protocol (HTTP) Transactions
To learn how JSF web apps work, it’s important to understand the basics of what occurs
behind the scenes when a user requests a web page in a web browser. If you’re already fa-
miliar with this and with multitier application architecture, you can skip to Section 26.4.

XHTML Documents
In its simplest form, a web page is nothing more than an XHTML document (also called
an XHTML page) that describes content to display in a web browser. HTML documents
normally contain hyperlinks that link to different pages or to other parts of the same page.
When the user clicks a hyperlink, the requested web page loads into the user’s web brows-
er. Similarly, the user can type the address of a page into the browser’s address field.

URLs
Computers that run web-server software make resources available, such as web pages, im-
ages, PDF documents and even objects that perform complex tasks such as database look-
ups and web searches. The HyperText Transfer Protocol (HTTP) is used by web browsers
to communicate with web servers, so they can exchange information in a uniform and re-
liable manner. URLs (Uniform Resource Locators) identify the locations on the Internet
of resources, such as those mentioned above. If you know the URL of a publicly available
web resource, you can access it through HTTP.

Parts of a URL
When you enter a URL into a web browser, the browser uses the information in the URL
to locate the web server that contains the resource and to request that resource from the
server. Let’s examine the components of the URL

The http:// indicates that the resource is to be obtained using the HTTP protocol. The
next portion, www.deitel.com, is the server’s fully qualified hostname—the name of the
server on which the resource resides. The computer that houses and maintains resources is
usually is referred to as the host. The hostname www.deitel.com is translated into an IP
(Internet Protocol) address—a unique numerical value that identifies the server, much as
a telephone number uniquely defines a particular phone line. This translation is performed
by a domain-name system (DNS) server—a computer that maintains a database of host-
names and their corresponding IP addresses—and the process is called a DNS lookup. To
test web apps, you’ll often use your computer as the host. This host is referred to using the
reserved domain name localhost, which translates to the IP address 127.0.0.1. The fully
qualified hostname can be followed by a colon (:) and a port number. Web servers typi-
cally await requests on port 80 by default; however, many development web servers use a
different port number, such as 8080—as you’ll see in Section 26.4.3.

http://www.deitel.com/books/downloads.html

www.deitel.com
www.deitel.com
http://www.deitel.com/books/downloads.html

910 Chapter 26 JavaServer™ Faces Web Apps: Part 1

The remainder of the URL (i.e., /books/downloads.html) specifies both the name of
the requested resource (the HTML document downloads.html) and its path, or location
(/books), on the web server. The path could specify the location of an actual directory on
the web server’s file system. For security reasons, however, the path normally specifies the
location of a virtual directory. The server translates the virtual directory into a real location
on the server (or on another computer on the server’s network), thus hiding the resource’s
true location. Some resources are created dynamically using other information, such as
data from a database.

Making a Request and Receiving a Response
When given a URL, a web browser performs an HTTP transaction to retrieve and display
the web page at that address. Figure 26.1 illustrates the transaction, showing the interac-
tion between the web browser (the client) and the web server (the server).

In Fig. 26.1, the web browser sends an HTTP request to the server. Underneath the
hood, the request (in its simplest form) is

The word GET is an HTTP method indicating that the client wishes to obtain a resource
from the server. The remainder of the request provides the path name of the resource (e.g.,
an HTML document) and the protocol’s name and version number (HTTP/1.1). As part
of the client request, the browser also sends other required and optional information, such
as the Host (which identifies the server computer) or the User-Agent (which identifies the
web browser type and version number).

Any server that understands HTTP (version 1.1) can translate this request and
respond appropriately. Figure 26.2 depicts the server responding to a request.

The server first responds by sending a line of text that indicates the HTTP version, fol-
lowed by a numeric code and a phrase describing the status of the transaction. For example,

indicates success, whereas

Fig. 26.1 | Client interacting with the web server. Step 1: The GET request.

GET /books/downloads.html HTTP/1.1

HTTP/1.1 200 OK

HTTP/1.1 404 Not found

After it receives

the request, the

web server

searches through

its system for the

resource

(b)

The GET request is

sent from the

client to the web

server

(a)

Web Server

Internet

Client

26.2 HyperText Transfer Protocol (HTTP) Transactions 911

informs the client that the web server could not locate the requested resource. On a suc-
cessful request, the server appends the requested resource to the HTTP response. A com-
plete list of numeric codes indicating the status of an HTTP transaction can be found at
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html.

HTTP Headers
The server then sends one or more HTTP headers, which provide additional information
about the data that will be sent. If the server is sending an HTML text document, one
HTTP header would read:

The information provided in this header specifies the Multipurpose Internet Mail Exten-
sions (MIME) type of the content that the server is transmitting to the browser. MIME is
an Internet standard that specifies data formats so that programs can interpret data correct-
ly. For example, the MIME type text/plain indicates that the sent information is text
that can be displayed directly, without any interpretation of the content as HTML mark-
up. Similarly, the MIME type image/jpeg indicates that the content is a JPEG image.
When the browser receives this MIME type, it attempts to display the image. For a list of
available MIME types, visit www.w3schools.com/media/media_mimeref.asp.

The header or set of headers is followed by a blank line, which indicates to the client
browser that the server is finished sending HTTP headers. The server then sends the contents
of the requested resource (such as, downloads.html). In the case of an HTML document,
the web browser parses the HTML markup it receives and renders (or displays) the results.

HTTP GET and POST Requests
The two most common HTTP request types (also known as request methods) are GET

and POST. A GET request typically asks for a resource on a server. Common uses of GET re-
quests are to retrieve an HTML document or an image or to fetch search results from a
search engine based on a user-submitted search term. A POST request typically sends data
to a server. Common uses of POST requests are to send form data or documents to a server.

When a web page contains an HTML form in which the user can enter data, an
HTTP request typically posts that data to a server-side form handler for processing. For
example, when a user performs a search or participates in a web-based survey, the web
server receives the information specified in the form as part of the request.

Fig. 26.2 | Client interacting with the web server. Step 2: The HTTP response.

Content-type: text/html

The server
responds to the
request with an
appropriate
message and
the resource's
contents

Web Server

Internet

Client

www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
www.w3schools.com/media/media_mimeref.asp

912 Chapter 26 JavaServer™ Faces Web Apps: Part 1

GET requests and POST requests can both send form data to a web server, yet each
request type sends the information differently. A GET request sends information to the
server in the URL, as in www.google.com/search?q=deitel. Here, search is the name of
Google’s server-side form handler, q is the name of a variable in Google’s search form and
deitel is the search term. A ? separates the query string from the rest of the URL in a
request. A name/value pair is passed to the server with the name and the value separated by
an equals sign (=). If more than one name/value pair is submitted, each is separated from
the next by an ampersand (&). The server uses data passed in a query string to retrieve an
appropriate resource. The server then sends a response to the client. A GET request may be
initiated by submitting an HTML form whose method attribute is set to "get", by typing
the URL (possibly containing a query string) directly into the browser’s address bar or
through a hyperlink when the user clicks the link.

A POST request sends form data as part of the HTTP message, not as part of the URL.
The specification for GET requests does not limit the query string’s number of characters,
but some web browsers do—for example, Internet Explorer restricts the length to 2083
characters), so it’s often necessary to send large pieces of information using POST. Some-
times POST is preferred because it hides the submitted data from the user by embedding it
in an HTTP message.

Client-Side Caching
Browsers often cache (save on disk) web pages for quick reloading. If there are no changes
between the version stored in the cache and the current version on the web, the browser
uses the cached copy to speed up your browsing experience. An HTTP response can indi-
cate the length of time for which the content remains “fresh.” If this amount of time has
not been reached, the browser can avoid another request to the server. Otherwise, the
browser requests the document from the server. Thus, the browser minimizes the amount
of data that must be downloaded for you to view a web page. Browsers typically do not
cache the server’s response to a POST request, because the next POST might not return the
same result. For example, in a survey, many users could visit the same web page and answer
a question. The survey results could then be displayed for the user. Each new answer
changes the survey results.

When you use a web-based search engine, the browser normally supplies the informa-
tion you specify in an HTML form to the search engine with a GET request. The search
engine performs the search, then returns the results to you as a web page. Such pages are
sometimes cached by the browser in case you perform the same search again.

26.3 Multitier Application Architecture
Web apps are multitier applications (sometimes referred to as n-tier applications). Multi-
tier applications divide functionality into separate tiers (i.e., logical groupings of function-
ality). Although tiers can be located on the same computer, the tiers of web apps often reside
on separate computers. Figure 26.3 presents the basic structure of a three-tier web app.

Software Engineering Observation 26.1
The data sent in a POST request is not part of the URL, and the user can’t see the data by
default. However, tools are available that expose this data, so you should not assume that
the data is secure just because a POST request is used.

www.google.com/search?q=deitel

26.4 Your First JSF Web App 913

The information tier (also called the data tier or the bottom tier) maintains data per-
taining to the application. This tier typically stores data in a relational database manage-
ment system (RDBMS). We discussed RDBMSs in Chapter 25. For example, a retail store
might have a database for storing product information, such as descriptions, prices and
quantities in stock. The same database also might contain customer information, such as
user names, billing addresses and credit card numbers. This tier can contain multiple data-
bases, which together comprise the data needed for our application.

The middle tier implements business logic, controller logic and presentation logic
to control interactions between the application’s clients and the application’s data. The
middle tier acts as an intermediary between data in the information tier and the applica-
tion’s clients. The middle-tier controller logic processes client requests (such as requests to
view a product catalog) and retrieves data from the database. The middle-tier presentation
logic then processes data from the information tier and presents the content to the client.
Web apps typically present data to clients as HTML documents.

Business logic in the middle tier enforces business rules and ensures that data is reli-
able before the server application updates the database or presents the data to users. Busi-
ness rules dictate how clients can and cannot access application data, and how applications
process data. For example, a business rule in the middle tier of a retail store’s web app
might ensure that all product quantities remain positive. A client request to set a negative
quantity in the bottom tier’s product-information database would be rejected by the
middle tier’s business logic.

The client tier, or top tier, is the application’s user interface, which gathers input and
displays output. Users interact directly with the application through the user interface
(typically viewed in a web browser), keyboard and mouse. In response to user actions (e.g.,
clicking a hyperlink), the client tier interacts with the middle tier to make requests and to
retrieve data from the information tier. The client tier then displays the data retrieved from
the middle tier to the user. The client tier never directly interacts with the information tier.

26.4 Your First JSF Web App
Let’s begin with a simple example. Figure 26.4 shows the output of our WebTime app.
When you invoke this app from a web browser, the browser requests the app’s default JSF
page. The web server receives this request and passes it to the JSF web-application frame-
work for processing. This framework is available in any Java EE 6-compliant application
server (such as the GlassFish application server used in this chapter) or any JavaServer

Fig. 26.3 | Three-tier architecture.

Web server Database

The middle tier
contains the application’s

business logic

The bottom tier
contains the application’s

data (typically in a database)

The top tier
is the user interface

on the client computer

Browser XHTML JDBC

914 Chapter 26 JavaServer™ Faces Web Apps: Part 1

Faces 2.0-compliant container (such as Apache Tomcat). The framework includes the
Faces servlet—a software component running on the server that processes each requested
JSF page so that the server can eventually return a response to the client. In this example,
the Faces servlet processes the JSF document in Fig. 26.5 and forms a response containing
the text "Current time on the web server:" followed by the web server’s local time. We
demonstrate this chapter’s examples on the GlassFish server that you installed with Net-
Beans locally on your computer.

Executing the WebTime App
To run this example on your own computer, perform the following steps:

1. Open the NetBeans IDE.

2. Select File > Open Project… to display the Open Project dialog.

3. Navigate to the ch29 folder in the book’s examples and select WebTime.

4. Click the Open Project button.

5. Right click the project’s name in the Projects tab (in the upper-left corner of the
IDE, below the toolbar) and select Run from the pop-up menu.

This launches the GlassFish application server (if it isn’t already running), installs the web
app onto the server, then opens your computer’s default web browser which requests the
WebTime app’s default JSF page. The browser should display a web page similar to that in
Fig. 26.4.

26.4.1 The Default index.xhtml Document: Introducing Facelets
This app contains a single web page and consists of two related files—a JSF document
named index.xhtml (Fig. 26.5) and a supporting Java source-code file (Fig. 26.6), which
we discuss in Section 26.4.2. First we discuss the markup in index.xhtml and the support-
ing source code, then we provide step-by-step instructions for creating this web app in
Section 26.4.3. Most of the markup in Fig. 26.5 was generated by NetBeans. We’ve refor-
matted the generated code to match our coding conventions used throughout the book.

Fig. 26.4 | Sample output of the WebTime app.

1 <?xml version='1.0' encoding='UTF-8' ?>

2
3 <!-- index.xhtml -->
4 <!-- JSF page that displays the current time on the web server -->

Fig. 26.5 | JSF page that displays the current time on the web server. (Part 1 of 2.)

26.4 Your First JSF Web App 915

Facelets: XHTML and JSF Markup
You present your web app’s content in JSF using Facelets—a combination of XHTML
markup and JSF markup. XHTML—the Extensible HyperText Markup Language—
specifies the content of a web page that is displayed in a web browser. XHTML separates
the presentation of a document (that is, the document’s appearance when rendered by a
browser) from the structure of the document’s data. A document’s presentation might
specify where the browser should place an element in a web page or what fonts and colors
should be used to display an element. The XHTML 1.0 Strict Recommendation allows
only a document’s structure to appear in a valid XHTML document, and not its presen-
tation. Presentation is specified with Cascading Style Sheets (CSS). JSF uses the XHTML
1.0 Transitional Recommendation by default. Transitional markup may include some
non-CSS formatting, but this is not recommended.

XML Declaration, Comments and the DOCTYPE Declaration
With the exception of lines 3–4, 10–11 and 14, the code shown in Fig. 26.5 was generated
by NetBeans. Line 1 is an XML declaration, indicating that the JSF document is expressed
in XML 1.0 syntax. Lines 3–4 are comments that we added to the document to indicate
its file name and purpose. Lines 5–6 are a DOCTYPE declaration indicating the version of
XHTML used in the markup. This can be used by a web browser to validate the syntax of
the document.

Specifying the XML Namespaces Used in the Document
Line 7 begins the document’s root html element, which spans lines 7–16. Each element
typically consists of a starting and ending tag. The starting <html> tag (lines 7–8) may con-
tain one or more xmlns attributes. Each xmlns attribute has a name and a value separated
by an equal sign (=), and specifies an XML namespace of elements that are used in the doc-
ument. Just as Java packages can be used to differentiate class names, XML namespaces
can be used to differentiate sets of elements. When there’s a naming conflict, fully quali-
fied tag names can be used to resolve the conflict.

Line 7 specifies a required xmlns attribute and its value (http://www.w3.org/1999/
xhtml) for the html element. This indicates that the html element and any other unqual-
ified element names are part of the default XML namespace that’s used in this document.

The xmlns:h attribute (line 8) specifies a prefix and a URL for JSF’s HTML Tag
Library, allowing the document to use JSF’s elements from that library. A tag library defines

5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 >

9
10 <title>WebTime: A Simple Example</title>
11 <meta http-equiv="refresh" content="60" />

12
13
14 <h1>Current time on the web server: </h1>

15
16 </html>

Fig. 26.5 | JSF page that displays the current time on the web server. (Part 2 of 2.)

xmlns:h="http://java.sun.com/jsf/html"
<h:head>

</h:head>

<h:body>

#{webTimeBean.time}
</h:body>

http://www.w3.org/1999/xhtml
http://www.w3.org/1999/xhtml

916 Chapter 26 JavaServer™ Faces Web Apps: Part 1

a set of elements that can be inserted into the XHTML markup. The elements in the HTML
Tag Library generate XHTML elements. Based on line 7, each element we use from the
HTML Tag Library must be preceded by the h: prefix. This tag library is one of several sup-
poorted by JSF that can be used to create Facelets pages. We’ll discuss others as we use them.
For a complete list of JSF tag libraries and their elements and attributes, visit

The h:head and h:body Elements
The h:head element (lines 9–12) defines the XHTML page’s head element. In this exam-
ple the head contains an HTML title element and a meta element. The document’s
title (line 10) typically appears in the browser window’s title bar, or a browser tab if you
have multiple web pages open in the browser at once. The title is also used when search
engines index your web pages. The meta element (line 11) tells the browser to refresh the
page every 60 seconds. This forces the browser to re-request the page once per minute.

The h:body element (lines 13–15) represent’s the page’s content. In this example, it
contains a XHTML h1 header element (line 14) that represents the text to display when
this document is rendered in the web browser. The h1 element contains some literal text
(Current time on the web server:) that’s simply placed into the response to the client and
a JSF Expression Language (EL) expression that obtains a value dynamically and inserts
it into the response. The expression

indicates that the web app has an object named webTimeBean which contains a property
named time. The property’s value replaces the expression in the response that’s sent to the
client. We’ll discuss this EL expression in more detail shortly.

26.4.2 Examining the WebTimeBean Class
JSF documents typically interact with one or more Java objects to perform the app’s tasks.
As you saw, this example obtains the time on the server and sends it as part of the response.

JavaBeans
JavaBeans objects are instances of classes that follow certain conventions for class design.
Each JavaBean class typically contains data and methods. A JavaBean exposes its data to a
JSF document as properties. Depending on their use, these properties can be read/write,
read-only or write-only. To define a read/write property, a JavaBean class provides set and
get methods for that property. For example, to create a String property firstName, the
class would provide methods with the following first lines:

The fact that both method names contain “FirstName” with an uppercase “F” indicates
that the class exposes a firstName property with a lowercase “F.” This naming convention
is part of the JavaBeans Specification (available at bit.ly/JavaBeansSpecification). A
read-only property would have only a get method and a write-only property only a set
method. The JavaBeans used in JSF are also POJOs (plain old Java objects), meaning
that—unlike prior versions of JSF—you do not need to extend a special class to create the
beans used in JSF applications. Instead various annotations are used to “inject” function-

javaserverfaces.java.net/nonav/docs/2.0/pdldocs/facelets/

#{webTimeBean.time}

public String getFirstName()
public void setFirstName(String name)

26.4 Your First JSF Web App 917

ality into your beans so they can be used easily in JSF applications. The JSF framework is
responsible for creating and managing objects of your JavaBean classes for you—you’ll see
how to enable this momentarily.

Class WebTimeBean
Figure 26.6 presents the WebTimeBean class that allows the JSF document to obtain the
web server’s time. You can name your bean classes like any other class. We chose to end
the class name with “Bean” to indicate that the class represents a JavaBean. The class con-
tains just a getTime method (lines 13–17), which defines the read-only time property of
the class. Recall that we access this property at line 14 of Fig. 26.5. Lines 15–16 create a
Date object, then format and return the time as a String.

The @ManagedBean Annotation
Line 9 uses the @ManagedBean annotation (from the package javax.faces.bean) to indi-
cate that the JSF framework should create and manage the WebTimeBean object(s) used in
the application. The parentheses following the annotation contain the optional name at-
tribute—in this case, indicating that the bean object created by the JSF framework should
be called webTimeBean. If you specify the annotation without the parentheses and the name
attribute, the JSF framework will use the class name with a lowercase first letter (that is,
webTimeBean) as the default bean name.

Processing the EL Expression
When the Faces servlet encounters an EL expression that accesses a bean property, it au-
tomatically invokes the property’s set or get method based on the context in which the
property is used. In line 14 of Fig. 26.5, accessing the property webTimeBean.time results
in a call to the bean’s getTime method, which returns the web server’s time. If this bean
object does not yet exist, the JSF framework instantiates it, then calls the getTime method
on the bean object. The framework can also discard beans that are no longer being used.
[Note: We discuss only the EL expressions that we use in this chapter. For more EL details,

1 // WebTimeBean.java
2 // Bean that enables the JSF page to retrieve the time from the server
3 package webtime;
4
5 import java.text.DateFormat;
6 import java.util.Date;
7 import javax.faces.bean.ManagedBean;
8
9

10 public class WebTimeBean
11 {
12 // return the time on the server at which the request was received
13 public String getTime()
14 {
15 return DateFormat.getTimeInstance(DateFormat.LONG).format(
16 new Date());
17 } // end method getTime
18 } // end class WebTimeBean

Fig. 26.6 | Bean that enables the JSF page to retrieve the time from the server.

@ManagedBean(name="webTimeBean")

918 Chapter 26 JavaServer™ Faces Web Apps: Part 1

see Chapter 6 of the Java EE 6 tutorial at download.oracle.com/javaee/6/tutorial/

doc/ and Chapter 5 of the JSF 2.0 specification at bit.ly/JSF20Spec.]

26.4.3 Building the WebTime JSF Web App in NetBeans
We’ll now build the WebTime app from scratch using NetBeans.

Creating the JSF Web Application Project
Begin by opening the NetBeans IDE and performing the following steps:

1. Select File > New Project... to display the New Project dialog. Select Java Web in
the Categories pane, Web Application in the Projects pane and click Next >.

2. In the dialog’s Name and Location step, specify WebTime as the Project Name. In
the Project Location field, specify where you’d like to store the project (or keep
the default location). These settings will create a WebTime directory to store the
project’s files in the parent directory you specified. Keep the other default settings
and click Next >.

3. In the dialog’s Server and Settings step, specify GlassFish Server 3 as the Server
and Java EE 6 Web as the Java EE Version (these may be the default). Keep the
default Context Path and click Next >.

4. In the dialog’s Frameworks step, select JavaServer Faces, then click Finish to cre-
ate the web application project.

Examining the NetBeans Projects Window
Figure 26.7 displays the Projects window, which appears in the upper-left corner of the
IDE. This window displays the contents of the project. The app’s XHTML documents are
placed in the Web Pages node. NetBeans supplies the default web page index.xhtml that
will be displayed when a user requests this web app from a browser. When you add Java
source code to the project, it will be placed in the Source Packages node.

Examining the Default index.xhtml Page
Figure 26.8 displays index.xthml—the default page that will be displayed when a user re-
quests this web app. We reformatted the code to match our coding conventions. When
this file is first created, it contains elements for setting up the page, including linking to
the page’s style sheet and declaring the JSF libraries that will be used. By default, NetBeans

Fig. 26.7 | Projects window for the WebTime project.

JSF app’s default web page

26.4 Your First JSF Web App 919

does not show line numbers in the source-code editor. To view the line numbers, select
View > Show Line Numbers.

Editing the h:head Element’s Contents
Modify line 7 of Fig. 26.8 by changing the title element’s content from "Facelet

Title" to "Web Time: A Simple Example". After the closing </title> tag, press Enter, then
insert the meta element

which will cause the browser to refresh this page once per minute. As you type, notice that
NetBeans provides a code-completion window to help you write your code. For example,
after typing “<meta” and a space, the IDE displays the code-completion window in
Fig. 26.9, which shows the list of valid attributes for the starting tag of a meta element.
You can then double click an item in the list to insert it into your code. Code-completion
support is provided for XHTML elements, JSF elements and Java code.

Editing the h:body Element’s Contents
In the h:body element, replace "Hello from Facelets" with the h1 header element

Don’t insert the expression #{webTimeBean.time} yet. After we define the WebTimeBean

class, we’ll come back to this file and insert this expression to demonstrate that the IDE
provides code-completion support for the Java classes you define in your project.

Fig. 26.8 | Default index.xhtml page generated by NetBeans for the web app.

<meta http-equiv="refresh" content="60" />

Fig. 26.9 | NetBeans code-completion window.

<h1>Current time on the web server: </h1>

920 Chapter 26 JavaServer™ Faces Web Apps: Part 1

Defining the Page’s Logic: Class WebTimeBean
We’ll now create the WebTimeBean class—the @ManagedBean class that will allow the JSF
page to obtain the web server’s time. To create the class, perform the following steps:

1. In the NetBeans Projects tab, right click the WebTime project’s Source Packages
node and select New > Other… to display the New File dialog.

2. In the Categories list, select JavaServer Faces, then in the File Types list select JSF
Managed Bean. Click Next >.

3. In the Name and Location step, specify WebTimeBean as the Class Name and
webtime as the Package, then click Finish.

NetBeans creates the WebTimeBean.java file and places it within the webtime package in
the project’s Source Packages node. Figure 26.10 shows this file’s default source code dis-
played in the IDE. At line 16, notice that NetBeans added the @RequestScoped annota-
tion to the class—this indicates that an object of this class exists only for the duration of
the request that’s being processed. (We’ll discuss @RequestScoped and other bean scopes
in more detail in Section 26.8.) We did not include this annotation in Fig. 26.6, because
all JSF beans are request scoped by default. Replace the code in Fig. 26.10 with the code
in Fig. 26.6.

Adding the EL Expression to the index.xhtml Page
Now that you’ve created the WebTimeBean, let’s go back to the index.xhtml file and add
the EL expression that will obtain the time. In the index.xhtml file, modify the line

by inserting the expression #{webTimeBean.time} before the h1 element’s closing tag. Af-
ter you type the characters # and {, the IDE automatically inserts the closing }, inserts the

Fig. 26.10 | Default source code for the WebTimeBean class.

<h1>Current time on the web server: </h1>

26.4 Your First JSF Web App 921

cursor between the braces and displays the code-completion window. This shows various
items that could be placed in the braces of the EL expression, including the webTimeBean

object (of type WebTimeBean). To insert webTimeBean in the code, you can type the object’s
name or double click it in the code-completion window. As you type, the list of items in
the code-completion window is filtered by what you’ve typed so far.

When you type the dot (.) after webTimeBean, the code-completion window
reappears, showing you the WebTimeBean methods and properties that can be used in this
context (Fig. 26.11). In this list, you can double click the time property, or you can simply
type its name.

Running the Application
You’ve now completed the WebTime app. To test it, right click the project’s name in the
Projects tab and select Run from the pop-up menu. The IDE will compile the code and
deploy (that is, install) the WebTime app on the GlassFish application server running on
your local machine. Then, the IDE will launch your default web browser and request the
WebTime app’s default web page (index.xhtml). Because GlassFish is installed on your
local computer, the URL displayed in the browser’s address bar will be

where 8080 is the port number on which the GlassFish server runs by default. Depending
on your web browser, the http:// may not be displayed (Fig. 26.5).

Debugging the Application
If there’s a problem with your web app’s logic, you can press <Ctrl> F5 to build the appli-
cation and run it in debug mode—the NetBeans built-in debugger can help you trouble-
shoot applications. If you press F6, the program executes without debugging enabled.

Testing the Application from Other Web Browsers
After deploying your project, you can test it from another web browser on your computer
by entering the app’s URL into the other browser’s address field. Since your application
resides on the local file system, GlassFish must be running. If you’ve already executed the
application using one of the techniques above and have not closed NetBeans, GlassFish
will still be running. Otherwise, you can start the server from the IDE by opening the Ser-
vices tab (located in the same panel as the Projects), expanding the Servers node, right
clicking GlassFish Server 3 and selecting Start. Then you can type the URL in the browser
to execute the application.

Fig. 26.11 | NetBeans code-completion window for the webTimeBean object.

http://localhost:8080/WebTime/

922 Chapter 26 JavaServer™ Faces Web Apps: Part 1

26.5 Model-View-Controller Architecture of JSF Apps
JSF applications adhere to the Model-View-Controller (MVC) architecture, which sepa-
rates an application’s data (contained in the model) from the graphical presentation (the
view) and the processing logic (the controller). Figure 26.12 shows the relationships be-
tween components in MVC.

In JSF, the controller is the JSF framework and is responsible for coordinating inter-
actions between the view and the model. The model contains the application’s data (typ-
ically in a database), and the view presents the data stored in the model (typically as web
pages). When a user interacts with a JSF web app’s view, the framework interacts with the
model to store and/or retrieve data. When the model changes, the view is updated with
the changed data.

26.6 Common JSF Components
As mentioned in Section 26.4, JSF supports several tag libraries. In this section, we intro-
duce several of the JSF HTML Tag Library’s elements and one element from the JSF Core
Tag Library. Figure 26.13 summarizes elements discussed in this section.

Fig. 26.12 | Model-View-Controller architecture.

JSF component Description

h:form Inserts an XHTML form element into a page.

h:commandButton Displays a button that triggers an event when
clicked. Typically, such a button is used to submit a
form’s user input to the server for processing.

h:graphicImage Displays an image (e.g., GIF and JPG).

h:inputText Displays a text box in which the user can enter input.

h:outputLink Displays a hyperlink.

h:panelGrid Displays an XHTML table element.

h:selectOneMenu Displays a drop-down list of choices from which the
user can make a selection.

h:selectOneRadio Displays a set of radio buttons.

f:selectItem Specifies an item in an h:selectOneMenu or
h:selectOneRadio (and other similar components).

Fig. 26.13 | Commonly used JSF components.

ViewController
modifies notifies

Model

26.6 Common JSF Components 923

All of these elements are mapped by JSF framework to a combination of XHTML ele-
ments and JavaScript code that enables the browser to render the page. JavaScript is a
scripting language that’s interpreted in all of today’s popular web browsers. It can be used
to perform tasks that manipulate web-page elements in a web browser and provide inter-
activity with the user. You can learn more about JavaScript in our JavaScript Resource
Center at www.deitel.com/JavaScript/.

Figure 26.14 displays a form for gathering user input. [Note: To create this applica-
tion from scratch, review the steps in Section 26.4.3 and name the application WebCompo-

nents.] The h:form element (lines 14–55) contains the components with which a user
interacts to provide data, such as registration or login information, to a JSF app. This
example uses the components summarized in Fig. 26.13. This example does not perform
a task when the user clicks the Register button. Later, we demonstrate how to add func-
tionality to many of these components.

1 <?xml version='1.0' encoding='UTF-8' ?>

2
3 <!-- index.xhtml -->
4 <!-- Registration form that demonstrates various JSF components -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 >

10 <h:head>

11 <title>Sample Registration Form</title>
12 </h:head>

13 <h:body>

14
15 <h1>Registration Form</h1>
16 <p>Please fill in all fields and click Register</p>
17
18
19
20 <h:graphicImage name="lname.png" library="images"/>
21 <h:inputText id="lastNameInputText"/>
22 <h:graphicImage name="email.png" library="images"/>
23 <h:inputText id="emailInputText"/>
24 <h:graphicImage name="phone.png" library="images"/>
25 <h:inputText id="phoneInputText"/>
26
27 <p><h:graphicImage name="publications.png" library="images"/>
28
Which book would you like information about?</p>
29
30
31
32 <f:selectItem itemValue="CPPHTP"
33 itemLabel="C++ How to Program" />

34 <f:selectItem itemValue="IW3HTP"
35 itemLabel="Internet & World Wide Web How to Program" />

Fig. 26.14 | Registration form that demonstrates various JSF components. (Part 1 of 2.)

xmlns:f="http://java.sun.com/jsf/core"

<h:form>

<h:panelGrid columns="4" style="height: 96px; width:456px;">

<h:graphicImage name="fname.png" library="images"/>
<h:inputText id="firstNameInputText"/>

</h:panelGrid>

<h:selectOneMenu id="booksSelectOneMenu">
<f:selectItem itemValue="CHTP"

itemLabel="C How to Program" />

www.deitel.com/JavaScript/

924 Chapter 26 JavaServer™ Faces Web Apps: Part 1

h:panelGrid Element
Lines 17–26 define an h:panelGrid element for organizing elements in the page. This
element inserts an XHTML table in the page. The h: prefix indicates that panelGrid is

36 <f:selectItem itemValue="JHTP"
37 itemLabel="Java How to Program" />

38 <f:selectItem itemValue="VBHTP"
39 itemLabel="Visual Basic How to Program" />

40 <f:selectItem itemValue="VCSHTP"
41 itemLabel="Visual C# How to Program" />

42
43 <p><h:outputLink value="http://www.deitel.com">
44 Click here to learn more about our books
45 </h:outputLink></p>

46 <h:graphicImage name="os.png" library="images"/>
47
48 <f:selectItem itemValue="WinVista" itemLabel="Windows Vista"/>

49 <f:selectItem itemValue="Win7" itemLabel="Windows 7"/>

50 <f:selectItem itemValue="OSX" itemLabel="Mac OS X"/>

51 <f:selectItem itemValue="Linux" itemLabel="Linux"/>
52 <f:selectItem itemValue="Other" itemLabel="Other"/>
53
54
55
56 </h:body>

57 </html>

Fig. 26.14 | Registration form that demonstrates various JSF components. (Part 2 of 2.)

</h:selectOneMenu>

<h:selectOneRadio id="osSelectOneRadio">

</h:selectOneRadio>

<h:commandButton value="Register"/>
</h:form>

h:selectOneMenu

h:selectOneRadio

h:inputText

h:graphicImage

h:commandButton

26.6 Common JSF Components 925

from the JSF HTML Tag Library. The columns attribute specifies the number of columns
in the table. The elements between the h:panelGrid’s start tag (line 17) and end tag (line
26) are automatically placed into the table’s columns from left to right in the order they
appear in the JSF page. When the number of elements in a row exceeds the number of
columns, the h:panelGrid creates a new row. We use the h:panelGrid to control the po-
sitions of the h:graphicImage and h:inputText elements in the user information section
of the page. In this case, there are eight elements in the h:panelGrid, so the first four (lines
18–21) are placed in the table’s first row and the last four are placed in the second row.
The h:panelGrid’s style attribute specifies the CSS formatting for the table. We use the
CSS attributes width and height to specify the width and height of the table in pixels
(px).The h:panelGrid contains pairs of h:graphicImage and h:inputText elements.

h:graphicImage Element and Resource Libraries
Each h:graphicImage displays an image in the page. For example, line 18 inserts the im-
age fname.png—as specified by the name attribute. As of JSF 2.0, you add resources that
are used throughout your app—such as images, CSS files, JavaScript files—to your web
apps by placing them in the app’s resources folder within your project’s Web Pages node.
Each subfolder of resources represents a resource library. Typically, images are placed in
an images library and CSS files in a css library. In line 18, we specify that the image is
located in the images library with the library attribute. JSF knows that the value of this
attribute represents a folder within the resources folder.

You can create any library you like in the resources folder. To create this folder:

1. Expand your app’s node in the NetBeans Projects tab.

2. Right click the Web Pages node and select New > Folder… to display the New
Folder dialog. [Note: If the Folder… option is not available in the popup menu,
select Other…, then in the Categories pane select Other and in the File Types pane
select Folder and click Next >.

3. Specify resources as the Folder Name and press Finish.

Next, right click the resources folder you just created and create an images subfolder.
You can then drag the images from your file system onto the images folder to add them
as resources. The images in this example are located in the images directory with the chap-
ter’s examples.

The h:graphicImage in line 18 is a so-called empty element—an element that does
not have content between its start and end tags. In such an element, data is typically spec-
ified as attributes in the start tag, such as the name and library attributes in line 18. You
can close an empty element either by placing a slash immediately preceding the start tag’s
right angle bracket, as shown in line 18, or by explicitly writing an end tag.

h:inputText Element
Line 19 defines an h:inputText element in which the user can enter text or the app can
display text. For any element that might be accessed by other elements of the page or that
might be used in server-side code, you should specify an id attribute. We specified these
attributes in this example, even though the app does not provide any functionality. We’ll
use the id attribute starting with the next example.

926 Chapter 26 JavaServer™ Faces Web Apps: Part 1

h:selectOneMenu Element
Lines 29–42 define an h:selectOneMenu element, which is typically rendered in a web
page as a drop-down list. When a user clicks the drop-down list, it expands and displays a
list from which the user can make a selection. Each item to display appears between the
start and end tags of this element as an f:selectItem element (lines 30–41). This element
is part of the JSF Core Tag Library. The XML namespace for this tag library is specified
in the html element’s start tag at line 9. Each f:selectItem has itemValue and itemLabel

attributes. The itemLabel is the string that the user will see in the browser, and the item-
Value is the value that’s returned when you programmatically retrieve the user’s selection
from the drop-down list (as you’ll see in a later example).

h:outputLink Element
The h:outputLink element (lines 43–45) inserts a hyperlink in a web page. Its value attri-
bute specifies the resource (http://www.deitel.com in this case) that’s requested when a
user clicks the hyperlink. By default, h:outputLink elements cause pages to open in the same
browser window, but you can set the element’s target attribute to change this behavior.

h:selectOneMenu Element
Lines 47–53 define an h:selectOneRadio element, which provides a series of radio but-
tons from which the user can select only one. Like an h:selectOneMenu, an h:selectOne-

Radio displays items that are specified with f:selectItem elements.

h:commandButton Element
Lines 54 defines an h:commandButton element that triggers an action when clicked—in this
example, we don’t specify the action to trigger, so the default action occurs (re-requesting the
same page from the server) when the user clicks this button. An h:commandButton typically
maps to an XHTML input element with its type attribute set to "submit". Such elements
are often used to submit a form’s user input values to the server for processing.

26.7 Validation Using JSF Standard Validators
Validating input is an important step in collecting information from users. Validation
helps prevent processing errors due to incomplete, incorrect or improperly formatted user
input. For example, you may perform validation to ensure that all required fields contain
data or that a zip-code field has the correct number of digits. The JSF Core Tag Library
provides several standard validator components and allows you to create your own custom
validators. Multiple validators can be specified for each input element. The validators are:

• f:validateLength—determines whether a field contains an acceptable number
of characters.

• f:validateDoubleRange and f:validateLongRange—determine whether nu-
meric input falls within acceptable ranges of double or long values, respectively.

• f:validateRequired—determines whether a field contains a value.

• f:validateRegex—determines whether a field contains a string that matches a
specified regular expression pattern.

• f:validateBean—allows you to invoke a bean method that performs custom
validation.

http://www.deitel.com

26.7 Validation Using JSF Standard Validators 927

Validating Form Data in a Web Application
[Note: To create this application from scratch, review the steps in Section 26.4.3 and name
the application Validation.] The example in this section prompts the user to enter a
name, e-mail address and phone number in a form. When the user enters any data and
presses the Submit button to submit the form’s contents to the web server, validation
ensures that the user entered a value in each field, that the entered name does not exceed
30 characters, and that the e-mail address and phone-number values are in an acceptable
format. In this example, (555) 123-4567, 555-123-4567 and 123-4567 are all considered
valid phone numbers. Once valid data is submitted, the JSF framework stores the submit-
ted values in a bean object of class ValidationBean (Fig. 26.15), then sends a response
back to the web browser. We simply display the validated data in the page to demonstrate
that the server received the data. A real business application would typically store the sub-
mitted data in a database or in a file on the server.

Class ValidationBean
Class ValidationBean (Fig. 26.15) provides the read/write properties name, email and
phone, and the read-only property result. Each read/write property has an instance vari-
able (lines 11–13) and corresponding set/get methods (lines 16–25, 28–37 and 40–49) for
manipulating the instance variables. The read-only property response has only a get-

Result method (lines 52–60), which returns a paragraph (p) element containing the vali-
dated data. (You can create the ValidationBean managed bean class by using the steps
presented in Fig. 26.4.3.)

1 // ValidationBean.java
2 // Validating user input.
3 package validation;
4
5 import java.io.Serializable;
6 import javax.faces.bean.ManagedBean;
7
8 @ManagedBean(name="validationBean")
9 public class ValidationBean implements Serializable

10 {
11 private String name;
12 private String email;
13 private String phone;
14
15 // return the name String
16 public String getName()
17 {
18 return name;
19 } // end method getName
20
21 // set the name String
22 public void setName(String name)
23 {
24 this.name = name;
25 } // end method setName

Fig. 26.15 | ValidationBean stores the validated data, which is then used as part of the
response to the client. (Part 1 of 2.)

928 Chapter 26 JavaServer™ Faces Web Apps: Part 1

index.xhtml

Figure 26.16 shows this app’s index.xhtml file. The initial request to this web app dis-
plays the page shown in Fig. 26.16(a). When this app is initially requested, the beginning
of the JSF application lifecycle uses this index.xhtml document to build the app’s facelets
view and sends it as the response to the client browser, which displays the form for user
input. During this initial request, the EL expressions (lines 22, 30, 39 and 49) are evalu-
ated to obtain the values that should be displayed in various parts of the page. Nothing is
displayed initially as a result of these four EL expressions being evaluated, because no de-
fault values are specified for the bean’s properties. The page’s h:form element contains an
h:panelGrid (lines 18–45) with three columns and an h:commandButton (line 46), which
by default submits the contents of the form’s fields to the server.

26
27 // return the email String
28 public String getEmail()
29 {
30 return email;
31 } // end method getEmail
32
33 // set the email String
34 public void setEmail(String email)
35 {
36 this.email = email;
37 } // end method setEmail
38
39 // return the phone String
40 public String getPhone()
41 {
42 return phone;
43 } // end method getPhone
44
45 // set the phone String
46 public void setPhone(String phone)
47 {
48 this.phone = phone;
49 } // end method setPhone
50
51 // returns result for rendering on the client
52 public String getResult()
53 {
54 if (name != null && email != null && phone != null)
55 return "<p style=\"background-color:yellow;width:200px;" +
56 "padding:5px\">Name: " + getName() + "
E-Mail: " +
57 getEmail() + "
Phone: " + getPhone() + "</p>";
58 else

59 return ""; // request has not yet been made
60 } // end method getResult
61 } // end class ValidationBean

Fig. 26.15 | ValidationBean stores the validated data, which is then used as part of the
response to the client. (Part 2 of 2.)

26.7 Validation Using JSF Standard Validators 929

1 <?xml version='1.0' encoding='UTF-8' ?>

2
3 <!-- index.xhtml -->
4 <!-- Validating user input -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>

11 <title>Validating Form Data</title>
12
13 </h:head>

14 <h:body>

15 <h:form>

16 <h1>Please fill out the following form:</h1>
17 <p>All fields are required and must contain valid information</p>
18 <h:panelGrid columns="3">
19
20
21
22
23
24
25
26
27 <h:outputText value="E-mail:"/>
28 <h:inputText id="emailInputText" required="true"
29 requiredMessage="Please enter a valid e-mail address"

30 value="#{validationBean.email}"
31 validatorMessage="Invalid e-mail address format">

32
33
34 </h:inputText>

35
36 <h:outputText value="Phone:"/>
37 <h:inputText id="phoneInputText" required="true"
38 requiredMessage="Please enter a valid phone number"

39 value="#{validationBean.phone}"
40 validatorMessage="Invalid phone number format">

41
42
43 </h:inputText>

44
45 </h:panelGrid>

46 <h:commandButton value="Submit"/>
47
48 </h:form>

49 </h:body>

50 </html>

Fig. 26.16 | Form to demonstrate validating user input. (Part 1 of 3.)

<h:outputStylesheet name="style.css" library="css"/>

<h:outputText value="Name:"/>
<h:inputText id="nameInputText" required="true"

requiredMessage="Please enter your name"

value="#{validationBean.name}"
validatorMessage="Name must be fewer than 30 characters">

<f:validateLength maximum="30" />

</h:inputText>

<h:message for="nameInputText" styleClass="error"/>

<f:validateRegex pattern=
"\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*" />

<h:message for="emailInputText" styleClass="error"/>

<f:validateRegex pattern=
"((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}" />

<h:message for="phoneInputText" styleClass="error"/>

<h:outputText escape="false" value="#{validationBean.response}"/>

930 Chapter 26 JavaServer™ Faces Web Apps: Part 1

Fig. 26.16 | Form to demonstrate validating user input. (Part 2 of 3.)

b) Error messages displayed after submitting the empty form

a) Submitting the form before entering any information

c) Error messages displayed after submitting invalid information

26.7 Validation Using JSF Standard Validators 931

First Row of the h:panelGrid
In this application, we demonstrate several new elements and attributes. The first new el-
ement is the h:outputText element (line 19; from the JSF HTML Tag Library), which
inserts text in the page. In this case, we insert a literal string ("Name:") that is specified with
the element’s value attribute.

The h:inputText element (lines 20–25) displays a text box in which the user can
enter a name. We’ve specified several attributes for this element:

• id—This enables other elements or server-side code to reference this element.

• required—Ensuring that the user has made a selection or entered some text in a
required input element is a basic type of validation. When set to "true", this at-
tribute specifies that the element must contain a value.

• requiredMessage—This specifies the message that should be displayed if the
user submits the form without first providing a value for this required element.

• value—This specifies the value to display in the field or to be saved into a bean
on the server. In this case, the EL expression indicates the bean property that’s
associated with this field.

• validatorMessage—This specifies the message to display if a validator is associ-
ated with this h:inputText and the data the user enters is invalid.

The messages specified by the requiredMessage and validatorMessage attributes are
displayed in an associated h:message element (line 26) when validation fails. The ele-
ment’s for attribute specifies the id of the specific element for which messages will be dis-
played (nameInputText), and the styleClass attribute specifies the name of a CSS style
class that will format the message. For this example, we defined a CSS style sheet, which
was inserted into the document’s head element at line 12 using the h:outputStylesheet

Fig. 26.16 | Form to demonstrate validating user input. (Part 3 of 3.)

d) Successfully submitted form

932 Chapter 26 JavaServer™ Faces Web Apps: Part 1

element. We placed the style sheet in the css library within the resources folder. The
style sheet contains the following CSS rule:

which creates a style class named error (the dot indicates that it’s a style class) and specifies
that any text to which this is applied, such as the error messages, should be red. We use
this CSS style for all the h:message elements in this example.

Validating the nameInputText Element’s Contents
If the user submits the form without a value in the nameInputText, the requiredMessage
"Please enter your name" is displayed in the corresponding h:message element. If the
user specifies a value for the nameInputText, the JSF framework executes the f:validate-
Length validator that’s nested in the h:inputText element. Here, we check that the name
contains no more than 30 characters—as specified by the validator’s maximum attribute.
This might be useful to ensure that a value will fit within a particular database field.

Users can type as much text in the nameInputText as they wish. If the name is too
long, the validatorMessage is displayed in the h:message element after the user submits
the form. It’s also possible to limit the length of user input in an h:inputText without
using validation by setting its maxlength attribute, in which case the element’s cursor will
not advance beyond the maximum allowable number of characters. This would prevent
the user from submitting data that exceeds the length limit.

Second and Third Rows of the h:panelGrid
The next two rows of the h:panelGrid have elements similar to those in the first row. In
addition to being required elements, the h:inputText elements at lines 28–34 and 37–43
are each validated by h:validateRegex validators as described next.

Validating the e-Mail Address
The h:validateRegex element at lines 32–33 uses the regular expression

which indicates that an e-mail address is valid if the part before the @ symbol contains one
or more word characters (that is, alphanumeric characters or underscores), followed by
zero or more strings comprised of a hyphen, plus sign, period or apostrophe and additional
word characters. After the @ symbol, a valid e-mail address must contain one or more
groups of word characters potentially separated by hyphens or periods, followed by a re-
quired period and another group of one or more word characters potentially separated by
hyphens or periods. For example, bob's-personal.email@white.email.com, bob-

white@my-email.com and bob.white@email.com are all valid e-mail addresses. If the ad-
dress the user enters has an invalid format, the validatorMessage (line 31) will be dis-
played in the corresponding h:message element (line 35).

Validating the Phone Number
The h:validateRegex element at lines 41–42 uses the regular expression

.error
{

color:red;
}

\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*

((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}

26.8 Session Tracking 933

which indicates that a phone number can contain a three-digit area code either in paren-
theses and followed by an optional space or without parentheses and followed by a re-
quired hyphen. After an optional area code, a phone number must contain three digits, a
hyphen and another four digits. For example, (555) 123-4567, 555-123-4567 and 123-

4567 are all valid phone numbers. If the phone number the user enters has an invalid for-
mat, the validatorMessage (line 40) will be displayed in the corresponding h:message

element (line 44).

Submitting the Form—More Details of the JSF Lifecycle
As we mentioned earlier in this section, when the app receives the initial request, it returns
the page shown in Fig. 26.16(a). When a request does not contain any request values, such
as those the user enters in a form, the JSF framework simply creates the view and returns it
as the response.

The user submits the form to the server by pressing the Submit h:commandButton

(defined at line 46). Since we did not specify an action attribute for this h:command-

Button, the action is configured by default to perform a postback—the browser re-
requests the page index.xhtml and sends the values of the form’s fields to the server for
processing. Next, the JSF framework performs the validations of all the form elements. If
any of the elements is invalid, the framework renders the appropriate error message as part
of the response.

If the values of all the elements are valid, the framework uses the values of the elements
to set the properties of the validateBean—as specified in the EL expressions in lines 22,
30 and 39. Each property’s set method is invoked, passing the value of the corresponding
element as an argument. The framework then formulates the response to the client. In the
response, the form elements are populated with the values of the validateBean’s proper-
ties (by calling their get methods), and the h:outputText element at line 47 is populated
with the value of the read-only result property. The value of this property is determined
by the getResult method (lines 52–60 of Fig. 26.15), which uses the submitted form data
in the string that it returns.

When you execute this app, try submitting the form with no data (Fig. 26.16(b)),
with invalid data (Fig. 26.16(c)) and with valid data (Fig. 26.16(d)).

26.8 Session Tracking
Originally, critics accused the Internet and e-business of failing to provide the customized
service typically experienced in “brick-and-mortar” stores. To address this problem, busi-
nesses established mechanisms by which they could personalize users’ browsing experienc-
es, tailoring content to individual users. They tracked each customer’s movement through
the Internet and combined the collected data with information the consumer provided,
including billing information, personal preferences, interests and hobbies.

Personalization
Personalization enables businesses to communicate effectively with their customers and
also helps users locate desired products and services. Companies that provide content of
particular interest to users can establish relationships with customers and build on those
relationships over time. Furthermore, by targeting consumers with personal offers, recom-
mendations, advertisements, promotions and services, businesses create customer loyalty.

934 Chapter 26 JavaServer™ Faces Web Apps: Part 1

Websites can use sophisticated technology to allow visitors to customize home pages to
suit their individual needs and preferences. Similarly, online shopping sites often store per-
sonal information for customers, tailoring notifications and special offers to their interests.
Such services encourage customers to visit sites more frequently and make purchases more
regularly.

Privacy
A trade-off exists between personalized business service and protection of privacy. Some
consumers embrace tailored content, but others fear the possible adverse consequences if
the info they provide to businesses is released or collected by tracking technologies. Con-
sumers and privacy advocates ask: What if the business to which we give personal data sells
or gives that information to another organization without our knowledge? What if we do
not want our actions on the Internet—a supposedly anonymous medium—to be tracked
and recorded by unknown parties? What if unauthorized parties gain access to sensitive
private data, such as credit-card numbers or medical history? These are questions that must
be addressed by programmers, consumers, businesses and lawmakers alike.

Recognizing Clients
To provide personalized services, businesses must be able to recognize clients when they
request information from a site. As we have discussed, the request/response system on
which the web operates is facilitated by HTTP. Unfortunately, HTTP is a stateless proto-
col—it does not provide information that would enable web servers to maintain state infor-
mation regarding particular clients. This means that web servers cannot determine
whether a request comes from a particular client or whether the same or different clients
generate a series of requests.

To circumvent this problem, sites can provide mechanisms by which they identify indi-
vidual clients. A session represents a unique client on a website. If the client leaves a site and
then returns later, the client will still be recognized as the same user. When the user closes
the browser, the session typically ends. To help the server distinguish among clients, each
client must identify itself to the server. Tracking individual clients is known as session
tracking. One popular session-tracking technique uses cookies (discussed in Section 26.8.1);
another uses beans that are marked with the @SessionScoped annotation (used in
Section 26.8.2). Additional session-tracking techniques are beyond this book’s scope.

26.8.1 Cookies
Cookies provide you with a tool for personalizing web pages. A cookie is a piece of data
stored by web browsers in a small text file on the user’s computer. A cookie maintains in-
formation about the client during and between browser sessions. The first time a user visits
the website, the user’s computer might receive a cookie from the server; this cookie is then
reactivated each time the user revisits that site. The collected information is intended to
be an anonymous record containing data that is used to personalize the user’s future visits
to the site. For example, cookies in a shopping application might store unique identifiers
for users. When a user adds items to an online shopping cart or performs another task re-
sulting in a request to the web server, the server receives a cookie containing the user’s
unique identifier. The server then uses the unique identifier to locate the shopping cart
and perform any necessary processing.

26.8 Session Tracking 935

In addition to identifying users, cookies also can indicate users’ shopping preferences.
When a Web Form receives a request from a client, the Web Form can examine the
cookie(s) it sent to the client during previous communications, identify the user’s prefer-
ences and immediately display products of interest to the client.

Every HTTP-based interaction between a client and a server includes a header con-
taining information either about the request (when the communication is from the client
to the server) or about the response (when the communication is from the server to the
client). When a Web Form receives a request, the header includes information such as the
request type and any cookies that have been sent previously from the server to be stored
on the client machine. When the server formulates its response, the header information
contains any cookies the server wants to store on the client computer and other informa-
tion, such as the MIME type of the response.

The expiration date of a cookie determines how long the cookie remains on the
client’s computer. If you do not set an expiration date for a cookie, the web browser main-
tains the cookie for the duration of the browsing session. Otherwise, the web browser
maintains the cookie until the expiration date occurs. Cookies are deleted by the web
browser when they expire.

26.8.2 Session Tracking with @SessionScoped Beans
The previous web applications used @RequestScoped beans by default—the beans existed
only for the duration of each request. In the next application, we use a @SessionScoped

bean to maintain selections throughout the user’s session. Such a bean is created when a
session begins and exists throughout the entire session. A @SessionScoped bean can be ac-
cessed by all of the app’s pages during the session, and the app server maintains a separate
@SessionScoped bean for each user. By default a session expires after 30 minutes of inac-
tivity or when the user closes the browser that was used to begin the session. When the
session expires, the server discards the bean associated with that session.

Test-Driving the App
This example consists of a SelectionsBean class that is @SessionScoped and two pages
(index.xhtml and recommendations.xhtml) that store data in and retrieve data from a
SelectionsBean object. To understand how these pieces fit together, let’s walk through a
sample execution of the app. When you first execute the app, the index.xhtml page is dis-
played. The user selects a topic from a group of radio buttons and submits the form
(Fig. 26.17).

Portability Tip 26.1
Users may disable cookies in their web browsers to help ensure their privacy. Such users
will experience difficulty using web applications that depend on cookies to maintain state
information.

Software Engineering Observation 26.2
@SessionScoped beans should implement the Serializable interface. Websites with
heavy traffic often use groups of servers (sometimes hundreds or thousands of them) to
respond to requests. Such groups are known as server farms. Server farms often balance the
number of requests being handled on each server by moving some sessions to other servers.
Making a bean Serializable enables the session to be moved properly among servers.

936 Chapter 26 JavaServer™ Faces Web Apps: Part 1

When the form is submitted, the JSF framework creates a SelectionsBean object that
is specific to this user, stores the selected topic in the bean and returns the index.xhtml

page. The page now shows how many selections have been made (1) and allows the user
to make another selection (Fig. 26.18).

The user makes a second topic selection and submits the form again. The app stores
the selection in this user’s existing SelectionsBean object and returns the index.xhtml

page (Fig. 26.19), which shows how many selections have been made so far (2).
At any time, the user can click the link at the bottom of the index.xhtml page to open

recommendations.xhtml, which obtains the information from this user’s SelectionsBean
object and creates a recommended books list (Fig. 26.20) for the user’s selected topics.

Fig. 26.17 | index.xhtml after the user has made a selection and is about to submit the
form for the first time.

Fig. 26.18 | index.xhtml after the user has submitted the form the first time, made another
selection and is about to submit the form again.

26.8 Session Tracking 937

@SessionScoped Class SelectionsBean
Class SelectionsBean (Fig. 26.21) uses the @SessionScoped annotation (line 13) to in-
dicate that the server should maintain separate instances of this class for each user session.
The class maintains a static HashMap (created at lines 17–18) of topics and their corre-
sponding book titles. We made this object static, because its values can be shared among
all SelectionsBean objects. The static initializer block (lines 23–28) specifies the Hash-
Map’s key/value pairs. Class SelectionsBean maintains each user’s selections in a
Set<String> (line 32), which allows only unique keys, so selecting the same topic multiple
times does not increase the number of selections.

Fig. 26.19 | index.xhtml after the user has submitted the form the second time and is
about to click the link to the recommendations.xhtml page.

Fig. 26.20 | recommendations.hxtml showing book recommendations for the topic
selections made by the user in Figs. 26.18 and 26.19.

1 // SelectionsBean.java
2 // Manages a user's topic selections
3 package sessiontracking;

Fig. 26.21 | @SessionScoped SelectionsBean class. (Part 1 of 3.)

938 Chapter 26 JavaServer™ Faces Web Apps: Part 1

4
5 import java.io.Serializable;
6 import java.util.HashMap;
7 import java.util.Set;
8 import java.util.TreeSet;
9 import javax.faces.bean.ManagedBean;

10
11
12 @ManagedBean(name="selectionsBean")
13
14 public class SelectionsBean implements Serializable
15 {
16 // map of topics to book titles
17 private static final HashMap< String, String > booksMap =
18 new HashMap< String, String >();
19
20 // initialize booksMap
21 static

22 {
23 booksMap.put("java", "Java How to Program");
24 booksMap.put("cpp", "C++ How to Program");
25 booksMap.put("iphone",
26 "iPhone for Programmers: An App-Driven Approach");
27 booksMap.put("android",
28 "Android for Programmers: An App-Driven Approach");
29 } // end static initializer block
30
31 // stores individual user's selections
32 private Set< String > selections = new TreeSet< String >();
33 private String selection; // stores the current selection
34
35 // return number of selections
36 public int getNumberOfSelections()
37 {
38 return selections.size();
39 } // end method getNumberOfSelections
40
41 // returns the current selection
42 public String getSelection()
43 {
44 return selection;
45 } // end method getSelection
46
47 // store user's selection
48 public void setSelection(String topic)
49 {
50 selection = booksMap.get(topic);
51 selections.add(selection);
52 } // end method setSelection
53
54 // return the Set of selections
55 public String[] getSelections()
56 {

Fig. 26.21 | @SessionScoped SelectionsBean class. (Part 2 of 3.)

import javax.faces.bean.SessionScoped;

@SessionScoped

26.8 Session Tracking 939

Methods of Class SelectionsBean
Method getNumberOfSelections (lines 36–39) returns the number of topics the user has
selected and represents the read-only property numberOfSelections. We use this property
in the index.xhtml document to display the number of selections the user has made so far.

Methods getSelection (lines 42–45) and setSelection (lines 48–52) represent the
read/write selection property. When a user makes a selection in index.xhtml and sub-
mits the form, method setSelection looks up the corresponding book title in the booksMap
(line 50), then stores that title in selections (line 51).

Method getSelections (lines 55–58) represents the read-only property selections,
which returns an array of Strings containing the book titles for the topics selected by the
user so far. When the recommendations.xhtml page is requested, it uses the selections

property to get the list of book titles and display them in the page.

index.xhtml

The index.xhtml document (Fig. 26.22) contains an h:selectOneRadio element (lines
19–26) with the options Java, C++, iPhone and Android. The user selects a topic by click-
ing a radio button, then pressing Submit to send the selection. As the user makes each se-
lection and submits the form, the selectionsBean object’s selection property is updated
and this document is returned. The EL expression at line 15 inserts the number of selec-
tions that have been made so far into the page. When the user clicks the h:outputLink

(lines 29–31) the recommendations.xhtml page is requested. The value attribute specifies
only recommendations.xhtml, so the browser assumes that this page is on the same server
and at the same location as index.xhtml.

57 return selections.toArray(new String[selections.size()]);
58 } // end method getSelections
59 } // end class SelectionsBean

1 <?xml version='1.0' encoding='UTF-8' ?>

2
3 <!-- index.xhtml -->
4 <!-- Allow the user to select a topic -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>

11 <title>Topic Selection Page</title>
12 </h:head>

13 <h:body>

14 <h1>Welcome to Sessions!</h1>
15 <p>You have made selection(s)
16 </p>

17 <h3>Make a Selection and Press Submit</h3>

Fig. 26.22 | index.xhtml allows the user to select a topic. (Part 1 of 2.)

Fig. 26.21 | @SessionScoped SelectionsBean class. (Part 3 of 3.)

#{selectionsBean.numberOfSelections}

940 Chapter 26 JavaServer™ Faces Web Apps: Part 1

recommendations.xhtml

When the user clicks the h:outputLink in the index.xhtml page, the browser requests the
recommendations.xhtml (Fig. 26.23), which displays book recommendations in an
XHTML unordered (bulleted) list (lines 15–19). The h:outputLink (lines 20–22) allows
the user to return to index.xhtml to select additional topics.

18 <h:form>

19 <h:selectOneRadio id="topicSelectOneRadio" required="true"
20 requiredMessage="Please choose a topic, then press Submit"

21 >

22 <f:selectItem itemValue="java" itemLabel="Java"/>
23 <f:selectItem itemValue="cpp" itemLabel="C++"/>
24 <f:selectItem itemValue="iphone" itemLabel="iPhone"/>
25 <f:selectItem itemValue="android" itemLabel="Android"/>
26 </h:selectOneRadio>

27 <p><h:commandButton value="Submit"/></p>
28 </h:form>

29 <p>

30 Click here for book recommendations
31 </h:outputLink></p>

32 </h:body>

33 </html>

1 <?xml version='1.0' encoding='UTF-8' ?>

2
3 <!-- recommendations.xhtml -->
4 <!-- Display recommended books based on the user's selected topics -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 >

10 <h:head>

11 <title>Recommended Books</title>
12 </h:head>

13 <h:body>

14 <h1>Book Recommendations</h1>
15

16
17
18
19

20 <p><h:outputLink value="index.xhtml">
21 Click here to choose another topic
22 </h:outputLink></p>

23 </h:body>

24 </html>

Fig. 26.23 | recommendations.xhtml displays book recommendations based on the user’s
selections.

Fig. 26.22 | index.xhtml allows the user to select a topic. (Part 2 of 2.)

value="#{selectionsBean.selection}"

<h:outputLink value="recommendations.xhtml">

xmlns:ui="http://java.sun.com/jsf/facelets"

<ui:repeat value="#{selectionsBean.selections}" var="book">
#{book}

</ui:repeat>

26.9 Wrap-Up 941

Iterating Through the List of Books
Line 9 enables us to use elements from the JSF Facelets Tag Library. This library includes
the ui:repeat element (lines 16–18), which can be thought of as an enhanced for loop
that iterates through collections JSF Expression Language. The element inserts its nested
element(s) once for each element in a collection. The collection is specified by the value

attribute’s EL expression, which must return an array, a List, a java.sql.ResultSet or
an Object. If the EL expression does not return an array, a List or a ResultSet, the
ui:repeat element inserts its nested element(s) only once for the returned Object. In this
example, the ui:repeat element renders the items returned by the selectionsBean’s se-
lections property.

The ui:repeat element’s var attribute creates a variable named book to which each
item in the collection is assigned in sequence. You can use this variable in EL expressions
in the nested elements. For example, the expression #{book} in line 17 inserts between the
 and tags the String representation of one item in the collection. You can also
use the variable to invoke methods on, or access properties of, the referenced object.

26.9 Wrap-Up
In this chapter, we introduced web application development using JavaServer Faces in
NetBeans. We began by discussing the simple HTTP transactions that take place when
you request and receive a web page through a web browser. We then discussed the three
tiers (i.e., the client or top tier, the business logic or middle tier and the information or
bottom tier) that comprise most web applications.

You learned how to use NetBeans and the GlassFish Application Server to create,
compile and execute web applications. We demonstrated several common JSF compo-
nents. We also showed how to use validators to ensure that user input satisfies the require-
ments of an application.

We discussed the benefits of maintaining user information across multiple pages of a
website. We then demonstrated how you can include such functionality in a web applica-
tion using @SessionScoped beans.

In Chapter 27, we continue our discussion of Java web application development with
more advanced concepts. You’ll learn how to access a database from a JSF web application
and how to use AJAX to help web-based applications provide the interactivity and respon-
siveness that users typically expect of desktop applications.

27
JavaServer™ Faces Web
Apps: Part 2

O b j e c t i v e s
In this chapter you’ll learn:

� To access databases from JSF applications.

� The basic principles and advantages of Ajax technology.

� To use Ajax in a JSF web app.

Whatever is in any way
beautiful hath its source of
beauty in itself, and is
complete in itself; praise
forms no part of it.
—Marcus Aurelius Antoninus

There is something in a
face, An air, and a peculiar
grace, Which boldest
painters cannot trace.
—William Somerville

Cato said the best way to
keep good acts in memory
was to refresh them with
new.
—Francis Bacon

I never forget a face, but in
your case I’ll make an
exception.
—Groucho Marx

27.1 Introduction 943

27.1 Introduction
This chapter continues our discussion of JSF web application development with two ad-
ditional examples. In the first, we present a simple address book app that retrieves data
from and inserts data into a Java DB database. The app allows users to view the existing
contacts in the address book and to add new contacts. In the second example, we add so-
called Ajax capabilities to the Validation example from Section 26.7. As you’ll learn, Ajax
improves application performance and responsiveness. This chapter’s examples, like those
in Chapter 26, were developed in NetBeans.

27.2 Accessing Databases in Web Apps
Many web apps access databases to store and retrieve persistent data. In this section, we
build an address book web app that uses a Java DB database display contacts from the ad-
dress book on a web page and to store contacts in the address book. Figure 27.1 shows
sample interactions with the AddressBook app.

27.1 Introduction
27.2 Accessing Databases in Web Apps

27.2.1 Setting Up the Database
27.2.2 @ManagedBean Class AddressBean
27.2.3 index.xhtml Facelets Page
27.2.4 addentry.xhtml Facelets Page

27.3 Ajax

27.4 Adding Ajax Functionality to the
Validation App

27.5 Wrap-Up

Fig. 27.1 | Sample outputs from the AddressBook app. (Part 1 of 2.)

a) Table of addresses displayed when the AddressBook app is first requested

944 Chapter 27 JavaServer™ Faces Web Apps: Part 2

If the app’s database already contains addresses, the initial request to the app displays
those addresses as shown in Fig. 27.1(a). We populated the database with the sample
addresses shown. When the user clicks Add Entry, the addentry.xhtml page is displayed
(Fig. 27.1(b)). When the user clicks Save Address, the form’s fields are validated. If the
validations are successful, the address is added to the database and the app returns to the
index.xhtml page to show the updated list of addresses (Fig. 27.1(c)). This example also
introduces the h:dataTable element for displaying data in tabular format.

Fig. 27.1 | Sample outputs from the AddressBook app. (Part 2 of 2.)

b) Form for adding an entry

c) Table of addresses updated with the new entry added in Part (b)

27.2 Accessing Databases in Web Apps 945

The next several sections explain how to build the AddressBook application. First, we
set up the database (Section 27.2.1). Next, we present class AddressBean (Section 27.2.2),
which enables the app’s Facelets pages to interact with the database. Finally, we present
the index.xthml (Section 27.2.3) and addentry.xhtml (Section 27.2.4) Facelets pages.

27.2.1 Setting Up the Database
You’ll now create a data source that enables the app to interact with the database. As part
of this process, you’ll create the addressbook database and populate it with sample data.

Open NetBeans and Ensure that Java DB and GlassFish Are Running
Before you can create the data source in NetBeans, the IDE must be open and the Java DB
and GlassFish servers must be running. Perform the following steps:

1. Open the NetBeans IDE.

2. On the Services tab, expand the Databases node then right click Java DB. If Java
DB is not already running the Start Server option will be enabled. In this case, Se-
lect Start server to launch the Java DB server.

3. On the Services tab, expand the Servers node then right click GlassFish Server 3.
If GlassFish Server 3 is not already running the Start option will be enabled. In
this case, Start server to launch GlassFish.

You may need to wait a few moments for the servers to begin executing.

Creating a Connection Pool
In web apps that receive many requests, it’s inefficient to create separate database connec-
tions for each request. Instead, you should set up a connection pool to allow the server to
manage a limited number of database connections and share them among requests. To cre-
ate a connection pool for this app, perform the following steps:

1. On the Services tab, expand the Servers node, right click GlassFish Server 3 and
select View Admin Console. This opens your default web browser and displays a
web page for configuring the GlassFish server.

2. In the left column of the page under Common Tasks, expand the Resources node,
then expand its JDBC node to show the JDBC Resources and Connection Pools
nodes (Fig. 27.2).

Fig. 27.2 | Common Tasks window in the GlassFish server configuration web page.

946 Chapter 27 JavaServer™ Faces Web Apps: Part 2

3. Click the Connection Pools node to display the list of existing connection pools,
then click the New… button above the list to create a new connection pool.

4. In the New JDBC Connection Pool (Step 1 of 2) page (Fig. 27.3), specify Address-

BookPool for the Name, select javax.sql.DataSource for the Resource Type and
select JavaDB for the Database Vendor, then click Next.

5. In the New JDBC Connection Pool (Step 2 of 2) page (Fig. 27.4), scroll to the Ad-
ditional Properties table and specify the following values (leave the other entries
in the table unchanged):

• ConnectionAttributes: ;create=true (specifies that the database should be creat-
ed when the connection pool is created)

• DatabaseName: addressbook (specifies the name of the database to create)

• Password: APP (specifies the password for the database—the User name is already
specified as APP in the Additional Properties table; you can specify any User name
and Password you like)

Fig. 27.3 | New JDBC Connection Pool (Step 1 of 2) page.

Fig. 27.4 | New JDBC Connection Pool (Step 2 of 2) page.

27.2 Accessing Databases in Web Apps 947

6. Click Finish to create the connection pool and return to the connection pools list.

7. Click AddressBookPool in the connection pools list to display the Edit JDBC Con-
nection Pool page, then click Ping in that page to test the database connection and
ensure that you set it up correctly.

Creating a Data Source Name
To connect to the database from the web app, you must configure a data source name that
will be used to locate the database. The data source name must be associated with the con-
nection pool that manages the connections to the database. Perform the following steps:

1. In the left column of the GlassFish configuration web page, click the JDBC Re-
sources node to display the list of data source names, then click the New… button
to display the New JDBC Resource page (Fig. 27.5).

2. Specify jdbc/addressbook as the JNDI Name and select AddressBookPool as the
Pool Name. Then click OK. JNDI (Java Naming and Directory Interface) is a
technology for locating application components (such as databases) in a distrib-
uted application (such as a multitier web application). You can now close the
GlassFish configuration web page.

Populate the addressbook Database with Sample Data
You’ll now populate the database with sample data using the AddressBook.sql SQL script
that’s provided with this chapter’s examples. To do so, you must create a connection to
the new addressbook database from NetBeans. Perform the following steps:

1. On the NetBeans Services tab, right click the Databases node and select New
Connection….

2. In the New Database Connection dialog, specify localhost as the Host, 1527 as
the Port, addressbook as the Database, APP as the User Name and APP as the Pass-
word, then select the Remember password checkbox and click OK.

The preceding steps create a new entry in the Databases node showing the database’s URL
(jdbc:derby://localhost:1527/addressbook). The database server that provides access
to this database resides on the local machine and accepts connections on port 1527.

Fig. 27.5 | New JDBC Resource page.

948 Chapter 27 JavaServer™ Faces Web Apps: Part 2

NetBeans must be connected to the database to execute SQL statements. If NetBeans
is already connected to the database, the icon is displayed next to the database’s URL;
otherwise, the icon is displayed. In this case, right click the icon and select Connect….

To populate the database with sample data, perform the following steps:

1. Click the + next to jdbc:derby://localhost:1527/addressbook node to ex-
pand it, then expand the database’s APP node.

2. Right click the Tables node and select Execute Command… to open a SQL Com-
mand editor tab in NetBeans. In a text editor, open the file AddressBook.sql

from this chapter’s examples folder, then copy the SQL statements and paste
them into the SQL Command editor in NetBeans. Next, right click in the SQL
Command editor and select Run File. This will create the Addresses table with the
sample data in Fig. 27.1(a). [Note: The SQL script attempts to remove the data-
base’s Addresses table if it already exists. If it doesn’t exist, you’ll receive an error
message, but the table will still be created properly.] Expand the Tables node to
see the new table. You can view the table’s data by right clicking ADDRESSES and
selecting View Data…. Notice that we named the columns with all capital letters.
We’ll be using these names in Section 27.2.3.

27.2.2 @ManagedBean Class AddressBean
[Note: To build this app from scratch, use the techniques you learned in Chapter 26 to
create a JSF web application named AddressBook and add a second Facelets page named
addentry.xhtml to the app.] Class AddressBean (Fig. 27.6) enables the AddressBook app
to interact with the addressbook database. The class provides properties that represent the
first name, last name, street, city, state and zip code for an entry in the database. These are
used by the addentry.xhtml page when adding a new entry to the database. In addition,
this class declares a DataSource (lines 26–27) for interacting with the database method
getAddresses (lines 102–130) for obtaining the list of addresses from the database and
method save (lines 133–169) for saving a new address into the database. These methods
use various JDBC techniques you learned in Chapter 25.

1 // AddressBean.java
2 // Bean for interacting with the AddressBook database
3 package addressbook;
4
5 import java.sql.Connection;
6 import java.sql.PreparedStatement;
7 import java.sql.ResultSet;
8 import java.sql.SQLException;
9

10 import javax.faces.bean.ManagedBean;
11 import javax.sql.DataSource;
12
13
14 @ManagedBean(name="addressBean")
15 public class AddressBean
16 {

Fig. 27.6 | AddressBean interacts with a database to store and retrieve addresses. (Part 1 of 4.)

import javax.annotation.Resource;

import javax.sql.rowset.CachedRowSet;

27.2 Accessing Databases in Web Apps 949

17 // instance variables that represent one address
18 private String firstName;
19 private String lastName;
20 private String street;
21 private String city;
22 private String state;
23 private String zipcode;
24
25
26
27
28
29 // get the first name
30 public String getFirstName()
31 {
32 return firstName;
33 } // end method getFirstName
34
35 // set the first name
36 public void setFirstName(String firstName)
37 {
38 this.firstName = firstName;
39 } // end method setFirstName
40
41 // get the last name
42 public String getLastName()
43 {
44 return lastName;
45 } // end method getLastName
46
47 // set the last name
48 public void setLastName(String lastName)
49 {
50 this.lastName = lastName;
51 } // end method setLastName
52
53 // get the street
54 public String getStreet()
55 {
56 return street;
57 } // end method getStreet
58
59 // set the street
60 public void setStreet(String street)
61 {
62 this.street = street;
63 } // end method setStreet
64
65 // get the city
66 public String getCity()
67 {
68 return city;
69 } // end method getCity

Fig. 27.6 | AddressBean interacts with a database to store and retrieve addresses. (Part 2 of 4.)

// allow the server to inject the DataSource
@Resource(name="jdbc/addressbook")
DataSource dataSource;

950 Chapter 27 JavaServer™ Faces Web Apps: Part 2

70
71 // set the city
72 public void setCity(String city)
73 {
74 this.city = city;
75 } // end method setCity
76
77 // get the state
78 public String getState()
79 {
80 return state;
81 } // end method getState
82
83 // set the state
84 public void setState(String state)
85 {
86 this.state = state;
87 } // end method setState
88
89 // get the zipcode
90 public String getZipcode()
91 {
92 return zipcode;
93 } // end method getZipcode
94
95 // set the zipcode
96 public void setZipcode(String zipcode)
97 {
98 this.zipcode = zipcode;
99 } // end method setZipcode
100
101 // return a ResultSet of entries
102 public ResultSet getAddresses() throws SQLException
103 {
104 // check whether dataSource was injected by the server
105 if (dataSource == null)
106 throw new SQLException("Unable to obtain DataSource");
107
108 // obtain a connection from the connection pool
109 Connection connection = dataSource.getConnection();
110
111 // check whether connection was successful
112 if (connection == null)
113 throw new SQLException("Unable to connect to DataSource");
114
115 try

116 {
117 // create a PreparedStatement to insert a new address book entry
118 PreparedStatement getAddresses = connection.prepareStatement(
119 "SELECT FIRSTNAME, LASTNAME, STREET, CITY, STATE, ZIP " +
120 "FROM ADDRESSES ORDER BY LASTNAME, FIRSTNAME");
121
122

Fig. 27.6 | AddressBean interacts with a database to store and retrieve addresses. (Part 3 of 4.)

CachedRowSet rowSet = new com.sun.rowset.CachedRowSetImpl();

27.2 Accessing Databases in Web Apps 951

Injecting the DataSource into Class AddressBean
A DataSource (package javax.sql) enables a web application to obtain a Connection to
a database. Lines 26–27 use annotation @Resource to inject a DataSource object into the

123
124
125 } // end try
126 finally

127 {
128 connection.close(); // return this connection to pool
129 } // end finally
130 } // end method getAddresses
131
132 // save a new address book entry
133 public String save() throws SQLException
134 {
135 // check whether dataSource was injected by the server
136 if (dataSource == null)
137 throw new SQLException("Unable to obtain DataSource");
138
139 // obtain a connection from the connection pool
140 Connection connection = dataSource.getConnection();
141
142 // check whether connection was successful
143 if (connection == null)
144 throw new SQLException("Unable to connect to DataSource");
145
146 try

147 {
148 // create a PreparedStatement to insert a new address book entry
149 PreparedStatement addEntry =
150 connection.prepareStatement("INSERT INTO ADDRESSES " +
151 "(FIRSTNAME,LASTNAME,STREET,CITY,STATE,ZIP)" +
152 "VALUES (?, ?, ?, ?, ?, ?)");
153
154 // specify the PreparedStatement's arguments
155 addEntry.setString(1, getFirstName());
156 addEntry.setString(2, getLastName());
157 addEntry.setString(3, getStreet());
158 addEntry.setString(4, getCity());
159 addEntry.setString(5, getState());
160 addEntry.setString(6, getZipcode());
161
162 addEntry.executeUpdate(); // insert the entry
163 return "index"; // go back to index.xhtml page
164 } // end try
165 finally

166 {
167 connection.close(); // return this connection to pool
168 } // end finally
169 } // end method save
170 } // end class AddressBean

Fig. 27.6 | AddressBean interacts with a database to store and retrieve addresses. (Part 4 of 4.)

rowSet.populate(getAddresses.executeQuery());
return rowSet;

952 Chapter 27 JavaServer™ Faces Web Apps: Part 2

AddressBean. The annotation’s name attribute specifies java/addressbook—the JNDI
name from the Creating a Data Source Name step of Section 27.2.1. The @Resource anno-
tation enables the server (GlassFish in our case) to hide all the complex details of locating
the connection pool that we set up for interacting with the addressbook database. The
server creates a DataSource for you that’s configured to use that connection pool and as-
signs the DataSource object to the annotated variable declared at line 27. You can now
trivially obtain a Connection for interacting with the database.

AddressBean Method getAddresses

Method getAddresses (lines 102–130) is called when the index.xhtml page is requested.
The method returns a list of addresses for display in the page (Section 27.2.3). First, we
check whether variable dataSource is null (lines 105–106), which would indicate that the
server was unable to create the DataSource object. If the DataSource was created success-
fully, we use it to obtain a Connection to the database (line 109). Next, we check whether
variable connection is null (lines 112–113), which would indicate that we were unable
to connect. If the connection was successful, lines 118–124 get the set of addresses from
the database and return them.

The PreparedStatement at lines 118–120 obtains all the addresses. Because database
connections are a limited resources, you should use and close them quickly in your web
apps. For this reason, we create a CachedRowSet and populate it with the ResultSet

returned by the PreparedStatement’s executeQuery method (lines 122–123). We then
return the CachedRowSet (a disconnected RowSet) for use in the index.xhtml page (line
124) and close the connection object (line 128) in the finally block.

AddressBean Method save

Method save (lines 133–169) stores a new address in the database (Section 27.2.4). This
occurs when the user submits the addentry.xhtml form—assuming the form’s fields val-
idate successfully. As in getAddresses, we ensure that the DataSource is not null, then
obtain the Connection object and ensure that its not null. Lines 149–152 create a Pre-

paredStatement for inserting a new record in the database. Lines 155–160 specify the val-
ues for each of the parameters in the PreparedStatement. Line 162 then executes the
PreparedStatement to insert the new record. Line 163 returns the string "index", which
as you’ll see in Section 27.2.4 causes the app to display the index.xhtml page again.

27.2.3 index.xhtml Facelets Page
index.xhtml (Fig. 27.7) is the default web page for the AddressBook app. When this page
is requested, it obtains the list of addresses from the AddressBean and displays them in tab-
ular format using an h:dataTable element. The user can click the Add Entry button (line 17)
to view the addentry.xhtml page. Recall that the default action for an h:commandButton is
to submit a form. In this case, we specify the button’s action attribute with the value
"addentry". The JSF framework assumes this is a page in the app, appends .xhtml extension
to the action attribute’s value and returns the addentry.xhtml page to the client browser.

The h:dataTable Element
The h:dataTable element (lines 19–46) inserts tabular data into a page. We discuss only
the attributes and nested elements that we use here. For more details on this element, its
attributes and other JSF tag library elements, visit bit.ly/JSF2TagLibraryReference.

27.2 Accessing Databases in Web Apps 953

The h:dataTable element’s value attribute (line 19) specifies the collection of data
you wish to display. In this case, we use AddressBean’s addresses property, which calls

1 <?xml version='1.0' encoding='UTF-8' ?>

2
3 <!-- index.html -->
4 <!-- Displays an h:dataTable of the addresses in the address book -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>

11 <title>Address Book</title>
12 <h:outputStylesheet name="style.css" library="css"/>
13 </h:head>

14 <h:body>

15 <h1>Address Book</h1>
16 <h:form>

17 <p> </p>

18 </h:form>

19
20
21
22
23
24
25
26 <h:column>

27 <f:facet name="header">Last Name</f:facet>
28
29 </h:column>

30 <h:column>

31 <f:facet name="header">Street</f:facet>
32
33 </h:column>

34 <h:column>

35 <f:facet name="header">City</f:facet>
36
37 </h:column>

38 <h:column>

39 <f:facet name="header">State</f:facet>
40
41 </h:column>

42 <h:column>

43 <f:facet name="header">Zip code</f:facet>
44
45 </h:column>

46 </h:dataTable>

47 </h:body>

48 </html>

Fig. 27.7 | Displays an h:dataTable of the addresses in the address book.

<h:commandButton value="Add Entry" action="addentry"/>

<h:dataTable value="#{addressBean.addresses}" var="address"
rowClasses="oddRows,evenRows" headerClass="header"
styleClass="table" cellpadding="5" cellspacing="0">
<h:column>

<f:facet name="header">First Name</f:facet>
#{address.FIRSTNAME}

</h:column>

#{address.LASTNAME}

#{address.STREET}

#{address.CITY}

#{address.STATE}

#{address.ZIP}

954 Chapter 27 JavaServer™ Faces Web Apps: Part 2

the getAddresses method (Fig. 27.6). The collection returned by this method is a
CachedRowSet, which is a type of ResultSet.

The h:dataTable iterates over its value collection and, one at a time, assigns each ele-
ment to the variable specified by the var attribute. This variable is used in the h:data-

Table’s nested elements to access each element of the collection—each element in this case
represents one row (i.e., address) in the CachedRowSet.

The rowClasses attribute (line 20) is a space-separated list of CSS style class names
that are used to style the rows in the tabular output. These style classes are defined in the
app’s styles.css file in the css library (which is inserted into the document at line 12).
You can open this file to view the various style class definitions. We specified two style
classes— all the odd numbered rows will have the first style (oddRows) and all the even
numbered rows the second style (evenRows). You can specify as many styles as you like—
they’ll be applied in the order you list them one row at a time until all the styles have been
applied, then the h:DataTable will automatically cycle through the styles again for the
next set of rows. The columnClasses attribute works similarly for columns in the table.

The headerClass attribute (line 20) specifies the column header CSS style. Headers
are defined with f:facet elements nested in h:column elements (discussed momentarily).
The footerClass attribute works similarly for column footers in the table.

The styleClass attribute (line 21) specifies the CSS styles for the entire table. The
cellpadding and cellspacing attributes (line 21) specify the number of pixels around
each table cell’s contents and the number of pixels between table cells, respectively.

The h:column Elements
Lines 22–45 define the table’s columns with six nested h:column elements. We focus here
on the one at lines 22–25. When the CachedRowSet is populated in the AddressBean class,
it automatically uses the database’s column names as property names for each row object
in the CachedRowSet. Line 28 inserts into the column the FIRSTNAME property of the
CachedRowSet’s current row. To display a column header above the column, you define
an f:facet element (line 23) and set its name attribute to "header". Similarly, to display
a column footer, use an f:facet with its name attribute set to "footer". The header is for-
matted with the CSS style specified in the h:dataTable’s headerClass attribute (line 20).
The remaining h:column elements perform similar tasks for the current row’s LASTNAME,
STREET, CITY, STATE and ZIP properties.

27.2.4 addentry.xhtml Facelets Page
When the user clicks Add Entry in the index.xhtml page, addentry.xhtml (Fig. 27.8) is
displayed. Each h:inputText in this page has its required attribute set to "true" and in-
cludes a maxlength attribute that restricts the user’s input to the maximum length of the
corresponding database field. When the user clicks Save (lines 48–49), the input element’s
values are validated and (if successful) assigned to the properties of the addressBean man-
aged object. In addition, the button specifies as its action the EL expression

which invokes the addressBean object’s save method to store the new address in the data-
base. When you call a method with the action attribute, if the method returns a value (in

#{addressBean.save}

27.2 Accessing Databases in Web Apps 955

this case, it returns the string "index"), that value is used to request the corresponding
page from the app. If the method does not return a value, the current page is re-requested.

1 <?xml version='1.0' encoding='UTF-8' ?>

2
3 <!-- addentry.html -->
4 <!-- Form for adding an entry to an address book -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html">
9 <h:head>

10 <title>Address Book: Add Entry</title>
11 <h:outputStylesheet name="style.css" library="css"/>
12 </h:head>

13 <h:body>

14 <h1>Address Book: Add Entry</h1>
15 <h:form>

16 <h:panelGrid columns="3">
17 <h:outputText value="First name:"/>

18 <h:inputText id="firstNameInputText" required="true"
19 requiredMessage="Please enter first name"

20 value="#{addressBean.firstName}" maxlength="30"/>
21 <h:message for="firstNameInputText" styleClass="error"/>
22 <h:outputText value="Last name:"/>

23 <h:inputText id="lastNameInputText" required="true"
24 requiredMessage="Please enter last name"

25 value="#{addressBean.lastName}" maxlength="30"/>
26 <h:message for="lastNameInputText" styleClass="error"/>
27 <h:outputText value="Street:"/>
28 <h:inputText id="streetInputText" required="true"
29 requiredMessage="Please enter the street address"

30 value="#{addressBean.street}" maxlength="150"/>
31 <h:message for="streetInputText" styleClass="error"/>
32 <h:outputText value="City:"/>
33 <h:inputText id="cityInputText" required="true"
34 requiredMessage="Please enter the city"

35 value="#{addressBean.city}" maxlength="30"/>
36 <h:message for="cityInputText" styleClass="error"/>
37 <h:outputText value="State:"/>
38 <h:inputText id="stateInputText" required="true"
39 requiredMessage="Please enter state"

40 value="#{addressBean.state}" maxlength="2"/>
41 <h:message for="stateInputText" styleClass="error"/>
42 <h:outputText value="Zipcode:"/>
43 <h:inputText id="zipcodeInputText" required="true"
44 requiredMessage="Please enter zipcode"

45 value="#{addressBean.zipcode}" maxlength="5"/>
46 <h:message for="zipcodeInputText" styleClass="error"/>
47 </h:panelGrid>

48
49
50 </h:form>

Fig. 27.8 | Form for adding an entry to an address book. (Part 1 of 2.)

<h:commandButton value="Save Address"

action="#{addressBean.save}"/>

956 Chapter 27 JavaServer™ Faces Web Apps: Part 2

27.3 Ajax
The term Ajax—short for Asynchronous JavaScript and XML—was coined by Jesse
James Garrett of Adaptive Path, Inc., in 2005 to describe a range of technologies for de-
veloping highly responsive, dynamic web applications. Ajax applications include Google
Maps, Yahoo’s FlickR and many more. Ajax separates the user interaction portion of an ap-
plication from its server interaction, enabling both to proceed in parallel. This enables Ajax
web-based applications to perform at speeds approaching those of desktop applications,
reducing or even eliminating the performance advantage that desktop applications have
traditionally had over web-based applications. This has huge ramifications for the desktop
applications industry—the applications platform of choice is shifting from the desktop to
the web. Many people believe that the web—especially in the context of abundant open-
source software, inexpensive computers and exploding Internet bandwidth—will create
the next major growth phase for Internet companies.

Ajax makes asynchronous calls to the server to exchange small amounts of data with
each call. Where normally the entire page would be submitted and reloaded with every user
interaction on a web page, Ajax allows only the necessary portions of the page to reload, saving
time and resources.

Ajax applications typically make use of client-side scripting technologies such as
JavaScript to interact with page elements. They use the browser’s XMLHttpRequest object
to perform the asynchronous exchanges with the web server that make Ajax applications
so responsive. This object can be used by most scripting languages to pass XML data from
the client to the server and to process XML data sent from the server back to the client.

Using Ajax technologies in web applications can dramatically improve performance,
but programming Ajax directly is complex and error prone. It requires page designers to
know both scripting and markup languages. As you’ll soon see, JSF 2.0 makes adding Ajax
capabilities to your web apps fairly simple.

Traditional Web Applications
Figure 27.9 presents the typical interactions between the client and the server in a tradi-
tional web application, such as one that uses a user registration form. The user first fills in
the form’s fields, then submits the form (Fig. 27.9, Step 1). The browser generates a request
to the server, which receives the request and processes it (Step 2). The server generates and
sends a response containing the exact page that the browser will render (Step 3), which
causes the browser to load the new page (Step 4) and temporarily makes the browser win-
dow blank. The client waits for the server to respond and reloads the entire page with the
data from the response (Step 4). While such a synchronous request is being processed on
the server, the user cannot interact with the client web page. If the user interacts with and
submits another form, the process begins again (Steps 5–8).

This model was originally designed for a web of hypertext documents—what some
people call the “brochure web.” As the web evolved into a full-scale applications platform,

51 <h:outputLink value="index.xhtml">Return to Addresses</h:outputLink>
52 </h:body>

53 </html>

Fig. 27.8 | Form for adding an entry to an address book. (Part 2 of 2.)

27.3 Ajax 957

the model shown in Fig. 27.9 yielded “choppy” application performance. Every full-page
refresh required users to reestablish their understanding of the full-page contents. Users
began to demand a model that would yield the responsiveness of desktop applications.

Ajax Web Applications
Ajax applications add a layer between the client and the server to manage communication
between the two (Fig. 27.10). When the user interacts with the page, the client creates an

Fig. 27.9 | Classic web application reloading the page for every user interaction.

Fig. 27.10 | Ajax-enabled web application interacting with the server asynchronously.

Se
rv

er
C

lie
nt Form

Form

Page 1

Form

Form

Page 2

Form

Form

Page 3

Request 1

Process
request

Generate
response

Process
request

Generate
response

Page
reloading

Request 2

Page
reloading

Form

Form

Page 2

Form

Form

Page 3

1

2

3

4

5

6

7

8

Se
rv

er
C

lie
nt Form

Form

Page 1

Process
request 1

Generate
response

Process
request 2

Generate
response

Request object

Callback function
Response processing Request object

Callback function
Response processing

Update Update

User interaction initiates
asynchronous request

User interaction initiates
asynchronous request

Partial
page update

Partial
page update

1

2

3

4

5

6

7

8

data data

958 Chapter 27 JavaServer™ Faces Web Apps: Part 2

XMLHttpRequest object to manage a request (Step 1). This object sends the request to the
server (Step 2) and awaits the response. The requests are asynchronous, so the user can con-
tinue interacting with the application on the client side while the server processes the ear-
lier request concurrently. Other user interactions could result in additional requests to the
server (Steps 3 and 4). Once the server responds to the original request (Step 5), the XML-

HttpRequest object that issued the request calls a client-side function to process the data
returned by the server. This function—known as a callback function—uses partial page
updates (Step 6) to display the data in the existing web page without reloading the entire
page. At the same time, the server may be responding to the second request (Step 7) and
the client side may be starting to do another partial page update (Step 8). The callback
function updates only a designated part of the page. Such partial page updates help make
web applications more responsive, making them feel more like desktop applications. The
web application does not load a new page while the user interacts with it.

27.4 Adding Ajax Functionality to the Validation App
The example in this section adds Ajax capabilities to the Validation app that we presented
in Section 26.7. Figure 27.11 shows the sample outputs from the ValidationAjax version
of the app that we’ll build momentarily. Part (a) shows the initial form that’s displayed
when this app first executes. Parts (b) and (c) show validation errors that are displayed
when the user submits an empty form and invalid data, respectively. Part (d) shows the
page after the form is submitted successfully.

As you can see, the app has the same functionality as the version in Section 26.7; how-
ever, you’ll notice a couple of changes in how the app works. First, the URL displayed in
the web browser always reads localhost:8080/ValidationAjax/, whereas the URL in
the Section 26.7 changes after the form is submitted the first time. Also, in the non-Ajax
version of the app, the page refreshes each time you press the Submit button. In the Ajax
version, only the parts of the page that need updating actually change.

Fig. 27.11 | JSP that demonstrates validation of user input. (Part 1 of 2.)

a) Submitting the form before entering any information

27.4 Adding Ajax Functionality to the Validation App 959

Fig. 27.11 | JSP that demonstrates validation of user input. (Part 2 of 2.)

b) Error messages displayed after submitting the empty form

c) Error messages displayed after submitting invalid information

d) Successfully submitted form

960 Chapter 27 JavaServer™ Faces Web Apps: Part 2

index.xhtml

The changes required to add Ajax functionality to this app are minimal. All of the changes
are in the index.xhtml file (Fig. 27.12) and are highlighted. The ValidationBean class is
identical to the version in Section 26.7, so we don’t show it here.

1 <?xml version='1.0' encoding='UTF-8' ?>

2
3 <!-- index.xhtml -->
4 <!-- Validating user input -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>

11 <title>Validating Form Data</title>
12 <h:outputStylesheet name="style.css" library="css"/>
13 </h:head>

14 <h:body>

15 <h:form>

16 <h1>Please fill out the following form:</h1>
17 <p>All fields are required and must contain valid information</p>
18 <h:panelGrid columns="3">
19 <h:outputText value="Name:"/>
20 <h:inputText id="nameInputText" required="true"
21 requiredMessage="Please enter your name"

22 value="#{validationBean.name}"
23 validatorMessage="Name must be fewer than 30 characters">

24 <f:validateLength maximum="30" />

25 </h:inputText>

26
27
28 <h:outputText value="E-mail:"/>
29 <h:inputText id="emailInputText" required="true"
30 requiredMessage="Please enter a valid e-mail address"

31 value="#{validationBean.email}"
32 validatorMessage="Invalid e-mail address format">

33 <f:validateRegex pattern=
34 "\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*" />

35 </h:inputText>

36
37
38 <h:outputText value="Phone:"/>
39 <h:inputText id="phoneInputText" required="true"
40 requiredMessage="Please enter a valid phone number"

41 value="#{validationBean.phone}"
42 validatorMessage="Invalid phone number format">

43 <f:validateRegex pattern=
44 "((\(\d{3}\) ?)|(\d{3}-))?\d{3}-\d{4}" />

45 </h:inputText>

Fig. 27.12 | Ajax enabling the Validation app. (Part 1 of 2.)

<h:message id="nameMessage" for="nameInputText"
styleClass="error"/>

<h:message id="emailMessage" for="emailInputText"
styleClass="error"/>

27.5 Wrap-Up 961

Adding id Attributes to Elements
The Facelets elements that will be submitted as part of an Ajax request and the Facelets
elements that will participate in the partial page updates must have id attributes. The
h:inputText elements in the original Validation example already had id attributes.
These elements will be submitted to the server as part of an Ajax request. We’d like the
h:Message elements that show validation errors and the h:outputText element that dis-
plays the result to be updated with partial page updates. For this reason, we’ve added id

attributes to these elements.

f:ajax Element
The other key change to this page is at lines 49–53 where the h:commandButton now con-
tains an f:ajax element, which intercepts the form submission when the user clicks the
button and makes an Ajax request instead. The f:ajax element’s execute attribute spec-
ifies a space-separated list of element ids—the values of these elements are submitted as
part of the Ajax request. The f:ajax element’s render attribute specifies a space-separated
list of element ids for the elements that should be updated via partial page updates.

27.5 Wrap-Up
In this chapter, we built an AddressBook application that allowed a user to add and view
contacts. You learned how to insert user input into a Java DB database and how to display
the contents of a database on a web page using an h:dataTable JSF element. We also dem-
onstrated how to add Ajax capabilities to JSF web apps by enhancing the Validation app
from Section 26.7. In Chapter 28, you’ll use NetBeans to create web services and consume
them from desktop and web applications.

46
47
48 </h:panelGrid>

49
50
51
52
53
54
55
56 </h:form>

57 </h:body>

58 </html>

Fig. 27.12 | Ajax enabling the Validation app. (Part 2 of 2.)

<h:message id="phoneMessage" for="phoneInputText"
styleClass="error"/>

<h:commandButton value="Submit">
<f:ajax execute="nameInputText emailInputText phoneInputText"

render=
"nameMessage emailMessage phoneMessage resultOutputText"/>

</h:commandButton>

<h:outputText id="resultOutputText" escape="false"
value="#{validationBean.response}"/>

28
Web Services

O b j e c t i v e s
In this chapter you’ll learn:

� What a web service is.

� How to publish and consume web services in NetBeans.

� How XML, JSON, XML-Based Simple Object Access
Protocol (SOAP) and Representational State Transfer
(REST) Architecture enable Java web services.

� How to create client desktop and web applications that
consume web services.

� How to use session tracking in web services to maintain
client state information.

� How to connect to databases from web services.

� How to pass objects of user-defined types to and return
them from a web service.

A client is to me a mere
unit, a factor in a problem.
—Sir Arthur Conan Doyle

They also serve who only
stand and wait.
—John Milton

...if the simplest things of
nature have a message that
you understand, rejoice, for
your soul is alive.
—Eleonora Duse

Protocol is everything.
—Francoise Giuliani

28.1 Introduction 963

28.1 Introduction
This chapter introduces web services, which promote software portability and reusability
in applications that operate over the Internet. A web service is a software component
stored on one computer that can be accessed by an application (or other software compo-
nent) on another computer over a network. Web services communicate using such tech-
nologies as XML, JSON and HTTP. In this chapter, we use two Java APIs that facilitate
web services. The first, JAX-WS, is based on the Simple Object Access Protocol
(SOAP)—an XML-based protocol that allows web services and clients to communicate,
even if the client and the web service are written in different languages. The second, JAX-
RS, uses Representational State Transfer (REST)—a network architecture that uses the
web’s traditional request/response mechanisms such as GET and POST requests. For more
information on SOAP-based and REST-based web services, visit our Web Services Re-
source Centers:

28.1 Introduction
28.2 Web Service Basics
28.3 Simple Object Access Protocol (SOAP)
28.4 Representational State Transfer (REST)
28.5 JavaScript Object Notation (JSON)
28.6 Publishing and Consuming SOAP-

Based Web Services
28.6.1 Creating a Web Application Project and

Adding a Web Service Class in
NetBeans

28.6.2 Defining the WelcomeSOAP Web
Service in NetBeans

28.6.3 Publishing the WelcomeSOAP Web
Service from NetBeans

28.6.4 Testing the WelcomeSOAPWeb Service
with GlassFish Application Server’s
Tester Web Page

28.6.5 Describing a Web Service with the Web
Service Description Language (WSDL)

28.6.6 Creating a Client to Consume the
WelcomeSOAP Web Service

28.6.7 Consuming the WelcomeSOAP Web
Service

28.7 Publishing and Consuming REST-
Based XML Web Services

28.7.1 Creating a REST-Based XML Web
Service

28.7.2 Consuming a REST-Based XML Web
Service

28.8 Publishing and Consuming REST-
Based JSON Web Services

28.8.1 Creating a REST-Based JSON Web
Service

28.8.2 Consuming a REST-Based JSON Web
Service

28.9 Session Tracking in a SOAP Web
Service

28.9.1 Creating a Blackjack Web Service
28.9.2 Consuming the Blackjack Web

Service
28.10 Consuming a Database-Driven SOAP

Web Service
28.10.1 Creating the Reservation Database
28.10.2 Creating a Web Application to Interact

with the Reservation Service
28.11 Equation Generator: Returning User-

Defined Types
28.11.1 Creating the Equation-

GeneratorXML Web Service
28.11.2 Consuming the Equation-

GeneratorXML Web Service
28.11.3 Creating the Equation-

GeneratorJSON Web Service
28.11.4 Consuming the Equation-

GeneratorJSON Web Service
28.12 Wrap-Up

www.deitel.com/WebServices/
www.deitel.com/RESTWebServices/

www.deitel.com/WebServices/
www.deitel.com/RESTWebServices/

964 Chapter 28 Web Services

These Resource Centers include information about designing and implementing web ser-
vices in many languages and about web services offered by companies such as Google, Am-
azon and eBay. You’ll also find many additional tools for publishing and consuming web
services. For more information about REST-based Java web services, check out the Jersey
project:

The XML used in this chapter is created and manipulated for you by the APIs, so you
need not know the details of XML to use it here. To learn more about XML, read the fol-
lowing tutorials:

and visit our XML Resource Center:

Business-to-Business Transactions
Rather than relying on proprietary applications, businesses can conduct transactions via
standardized, widely available web services. This has important implications for business-
to-business (B2B) transactions. Web services are platform and language independent, en-
abling companies to collaborate without worrying about the compatibility of their hard-
ware, software and communications technologies. Companies such as Amazon, Google,
eBay, PayPal and many others are benefiting by making their server-side applications avail-
able to partners via web services.

By purchasing some web services and using other free ones that are relevant to their
businesses, companies can spend less time developing applications and can create new ones
that are more innovative. E-businesses for example, can provide their customers with
enhanced shopping experiences. Consider an online music store. The store’s website links
to information about various CDs, enabling users to purchase them, to learn about the art-
ists, to find more titles by those artists, to find other artists’ music they may enjoy, and
more. The store’s website may also link to the site of a company that sells concert tickets
and provides a web service that displays upcoming concert dates for various artists,
allowing users to buy tickets. By consuming the concert-ticket web service on its site, the
online music store can provide an additional service to its customers, increase its site traffic
and perhaps earn a commission on concert-ticket sales. The company that sells concert
tickets also benefits from the business relationship by selling more tickets and possibly by
receiving revenue from the online music store for the use of the web service.

Any Java programmer with a knowledge of web services can write applications that
“consume” web services. The resulting applications would invoke web services running on
servers that could be thousands of miles away.

NetBeans
NetBeans is one of many tools that enable you to publish and/or consume web services. We
demonstrate how to use NetBeans to implement web services using the JAX-WS and JAX-
RS APIs and how to invoke them from client applications. For each example, we provide
the web service’s code, then present a client application that uses the web service. Our first
examples build simple web services and client applications in NetBeans. Then we demon-

jersey.java.net/

www.deitel.com/articles/xml_tutorials/20060401/XMLBasics/
www.deitel.com/articles/xml_tutorials/20060401/XMLStructuringData/

www.deitel.com/XML/

www.deitel.com/articles/xml_tutorials/20060401/XMLBasics/
www.deitel.com/articles/xml_tutorials/20060401/XMLStructuringData/
www.deitel.com/XML/

28.2 Web Service Basics 965

strate web services that use more sophisticated features, such as manipulating databases
with JDBC and manipulating class objects. For information on downloading and install-
ing the NetBeans and the GlassFish server, see Section 26.1.

28.2 Web Service Basics
The machine on which a web service resides is referred to as a web service host. The client
application sends a request over a network to the web service host, which processes the re-
quest and returns a response over the network to the application. This kind of distributed
computing benefits systems in various ways. For example, an application without direct
access to data on another system might be able to retrieve the data via a web service. Sim-
ilarly, an application lacking the processing power to perform specific computations could
use a web service to take advantage of another system’s superior resources.

In Java, a web service is implemented as a class that resides on a server—it’s not part
of the client application. Making a web service available to receive client requests is known
as publishing a web service; using a web service from a client application is known as con-
suming a web service.

28.3 Simple Object Access Protocol (SOAP)
The Simple Object Access Protocol (SOAP) is a platform-independent protocol that uses
XML to interact with web services, typically over HTTP. You can view the SOAP specifica-
tion at www.w3.org/TR/soap/. Each request and response is packaged in a SOAP message—
XML markup containing the information that a web service requires to process the message.
SOAP messages are written in XML so that they’re computer readable, human readable and
platform independent. Most firewalls—security barriers that restrict communication among
networks—allow HTTP traffic to pass through, so that clients can browse the web by send-
ing requests to and receiving responses from web servers. Thus, SOAP-based services can
send and receive SOAP messages over HTTP connections with few limitations.

SOAP supports an extensive set of types, including the primitive types (e.g., int), as
well as DateTime, XmlNode and others. SOAP can also transmit arrays of these types. When
a program invokes a method of a SOAP web service, the request and all relevant informa-
tion are packaged in a SOAP message enclosed in a SOAP envelope and sent to the server
on which the web service resides. When the web service receives this SOAP message, it
parses the XML representing the message, then processes the message’s contents. The mes-
sage specifies the method that the client wishes to execute and the arguments the client
passed to that method. Next, the web service calls the method with the specified argu-
ments (if any) and sends the response back to the client in another SOAP message. The
client parses the response to retrieve the method’s result. In Section 28.6, you’ll build and
consume a basic SOAP web service.

28.4 Representational State Transfer (REST)
Representational State Transfer (REST) refers to an architectural style for implementing web
services. Such web services are often called RESTful web services. Though REST itself is not
a standard, RESTful web services are implemented using web standards. Each method in a
RESTful web service is identified by a unique URL. Thus, when the server receives a request,

www.w3.org/TR/soap/

966 Chapter 28 Web Services

it immediately knows what operation to perform. Such web services can be used in a pro-
gram or directly from a web browser. The results of a particular operation may be cached
locally by the browser when the service is invoked with a GET request. This can make subse-
quent requests for the same operation faster by loading the result directly from the browser’s
cache. Amazon’s web services (aws.amazon.com) are RESTful, as are many others.

RESTful web services are alternatives to those implemented with SOAP. Unlike
SOAP-based web services, the request and response of REST services are not wrapped in
envelopes. REST is also not limited to returning data in XML format. It can use a variety
of formats, such as XML, JSON, HTML, plain text and media files. In Sections 28.7–
28.8, you’ll build and consume basic RESTful web services.

28.5 JavaScript Object Notation (JSON)
JavaScript Object Notation (JSON) is an alternative to XML for representing data. JSON
is a text-based data-interchange format used to represent objects in JavaScript as collec-
tions of name/value pairs represented as Strings. It’s commonly used in Ajax applications.
JSON is a simple format that makes objects easy to read, create and parse and, because it’s
much less verbose than XML, allows programs to transmit data efficiently across the In-
ternet. Each JSON object is represented as a list of property names and values contained
in curly braces, in the following format:

Arrays are represented in JSON with square brackets in the following format:

Each value in an array can be a string, a number, a JSON object, true, false or null. To
appreciate the simplicity of JSON data, examine this representation of an array of address-
book entries:

Many programming languages now support the JSON data format. An extensive list of
JSON libraries sorted by language can be found at www.json.org.

28.6 Publishing and Consuming SOAP-Based Web
Services
This section presents our first example of publishing (enabling for client access) and con-
suming (using) a web service. We begin with a SOAP-based web service.

28.6.1 Creating a Web Application Project and Adding a Web Service
Class in NetBeans
When you create a web service in NetBeans, you focus on its logic and let the IDE and
server handle its infrastructure. First you create a Web Application project. NetBeans uses
this project type for web services that are invoked by other applications.

{ propertyName1 : value1, propertyName2 : value2 }

[value1, value2, value3]

[{ first: 'Cheryl', last: 'Black' },
{ first: 'James', last: 'Blue' },
{ first: 'Mike', last: 'Brown' },
{ first: 'Meg', last: 'Gold' }]

www.json.org

28.6 Publishing and Consuming SOAP-Based Web Services 967

Creating a Web Application Project in NetBeans
To create a web application, perform the following steps:

1. Select File > New Project… to open the New Project dialog.

2. Select Java Web from the dialog’s Categories list, then select Web Application
from the Projects list. Click Next >.

3. Specify the name of your project (WelcomeSOAP) in the Project Name field and
specify where you’d like to store the project in the Project Location field. You can
click the Browse button to select the location. Click Next >.

4. Select GlassFish Server 3 from the Server drop-down list and Java EE 6 Web from
the Java EE Version drop-down list.

5. Click Finish to create the project.

This creates a web application that will run in a web browser, similar to the projects used
in Chapters 26 and 27.

Adding a Web Service Class to a Web Application Project
Perform the following steps to add a web service class to the project:

1. In the Projects tab in NetBeans, right click the WelcomeSOAP project’s node and
select New > Web Service… to open the New Web Service dialog.

2. Specify WelcomeSOAP in the Web Service Name field.

3. Specify com.deitel.welcomesoap in the Package field.

4. Click Finish to create the web service class.

The IDE generates a sample web service class with the name from Step 2 in the package from
Step 3. You can find this class in your project’s Web Services node. In this class, you’ll define
the methods that your web service makes available to client applications. When you eventu-
ally build your application, the IDE will generate other supporting files for your web service.

28.6.2 Defining the WelcomeSOAP Web Service in NetBeans
Figure 28.1 contains the completed WelcomeSOAPService code (reformatted to match the
coding conventions we use in this book). First we discuss this code, then show how to use
the NetBeans web service design view to add the welcome method to the class.

1 // Fig. 28.1: WelcomeSOAP.java
2 // Web service that returns a welcome message via SOAP.
3 package com.deitel.welcomesoap;
4
5
6
7
8
9

10 public class WelcomeSOAP
11 {

Fig. 28.1 | Web service that returns a welcome message via SOAP. (Part 1 of 2.)

import javax.jws.WebService; // program uses the annotation @WebService
import javax.jws.WebMethod; // program uses the annotation @WebMethod
import javax.jws.WebParam; // program uses the annotation @WebParam

@WebService() // annotates the class as a web service

968 Chapter 28 Web Services

Annotation import Declarations
Lines 5–7 import the annotations used in this example. By default, each new web service
class created with the JAX-WS APIs is a POJO (plain old Java object), so you do not need
to extend a class or implement an interface to create a web service.

@WebService Annotation
Line 9 contains a @WebService annotation (imported at line 5) which indicates that class
WelcomeSOAP implements a web service. The annotation is followed by parentheses that
may contain optional annotation attributes. The optional name attribute specifies the
name of the service endpoint interface class that will be generated for the client. A service
endpoint interface (SEI) class (sometimes called a proxy class) is used to interact with the
web service—a client application consumes the web service by invoking methods on the
service endpoint interface object. The optional serviceName attribute specifies the service
name, which is also the name of the class that the client uses to obtain a service endpoint
interface object. If the serviceName attribute is not specified, the web service’s name is as-
sumed to be the Java class name followed by the word Service. NetBeans places the @Web-
Service annotation at the beginning of each new web service class you create. You can
then add the name and serviceName properties in the parentheses following the annota-
tion.

When you deploy a web application containing a class that uses the @WebService

annotation, the server (GlassFish in our case) recognizes that the class implements a web
service and creates all the server-side artifacts that support the web service—that is, the
framework that allows the web service to wait for client requests and respond to those
requests once it’s deployed on an application server. Some popular open-source applica-
tion servers that support Java web services include GlassFish (glassfish.dev.java.net),
Apache Tomcat (tomcat.apache.org) and JBoss Application Server (www.jboss.com/
products/platforms/application).

WelcomeSOAP Service’s welcome Method
The WelcomeSOAP service has only one method, welcome (lines 13–17), which takes the
user’s name as a String and returns a String containing a welcome message. This method
is tagged with the @WebMethod annotation to indicate that it can be called remotely. Any
methods that are not tagged with @WebMethod are not accessible to clients that consume
the web service. Such methods are typically utility methods within the web service class.
The @WebMethod annotation uses the operationName attribute to specify the method name
that is exposed to the web service’s client. If the operationName is not specified, it’s set to
the actual Java method’s name.

12
13
14
15 {
16 return "Welcome to JAX-WS web services with SOAP, " + name + "!";
17 } // end method welcome
18 } // end class WelcomeSOAP

Fig. 28.1 | Web service that returns a welcome message via SOAP. (Part 2 of 2.)

// WebMethod that returns welcome message
@WebMethod(operationName = "welcome")
public String welcome(@WebParam(name = "name") String name)

www.jboss.com/products/platforms/application
www.jboss.com/products/platforms/application

28.6 Publishing and Consuming SOAP-Based Web Services 969

The name parameter to welcome is annotated with the @WebParam annotation (line 14).
The optional @WebParam attribute name indicates the parameter name that is exposed to the
web service’s clients. If you don’t specify the name, the actual parameter name is used.

Completing the Web Service’s Code
NetBeans provides a web service design view in which you can define the method(s) and
parameter(s) for your web services. To define the WelcomeSOAP class’s welcome method,
perform the following steps:

1. In the project’s Web Services node, double click WelcomeSOAP to open the file
WelcomeSOAPService.java in the code editor.

2. Click the Design button at the top of the code editor to show the web service de-
sign view (Fig. 28.2).

3. Click the Add Operation… button to display the Add Operation… dialog
(Fig. 28.3).

4. Specify the method name welcome in the Name field. The default Return Type
(String) is correct for this example.

5. Add the method’s name parameter by clicking the Add button to the right of the
Parameters tab then entering name in the Name field. The parameter’s default
Type (String) is correct for this example.

Common Programming Error 28.1
Failing to expose a method as a web method by declaring it with the @WebMethod anno-
tation prevents clients of the web service from accessing the method. There’s one excep-
tion—if none of the class’s methods are declared with the @WebMethod annotation, then
all the public methods of the class will be exposed as web methods.

Common Programming Error 28.2
Methods with the @WebMethod annotation cannot be static. An object of the web service
class must exist for a client to access the service’s web methods.

Fig. 28.2 | Web service design view.

970 Chapter 28 Web Services

6. Click OK to create the welcome method. The design view should now appear as
shown in Fig. 28.3.

7. At the top of the design view, click the Source button to display the class’s source
code and add the code line 18 of Fig. 28.1 to the body of method welcome.

28.6.3 Publishing the WelcomeSOAP Web Service from NetBeans
Now that you’ve created the WelcomeSOAP web service class, you’ll use NetBeans to build
and publish (that is, deploy) the web service so that clients can consume its services. Net-
Beans handles all the details of building and deploying a web service for you. This includes

Fig. 28.3 | Adding an operation to a web service.

Fig. 28.4 | Web service design view after new operation is added.

28.6 Publishing and Consuming SOAP-Based Web Services 971

creating the framework required to support the web service. Right click the project name
WelcomeSOAP in the Projects tab and select Deploy to build and deploy the web application
to the GlassFish server.

28.6.4 Testing the WelcomeSOAP Web Service with GlassFish
Application Server’s Tester Web Page
Next, you’ll test the WelcomeSOAP web service. We previously selected the GlassFish appli-
cation server to execute this web application. This server can dynamically create a web page
that allows you to test a web service’s methods from a web browser. To use this capability:

1. Expand the project’s Web Services in the NetBeans Projects tab.

2. Right click the web service class name (WelcomeSOAP) and select Test Web Service.

The GlassFish application server builds the Tester web page and loads it into your web
browser. Figure 28.5 shows the Tester web page for the WelcomeSOAP web service. The
web service’s name is automatically the class name followed by Service.

Once you’ve deployed the web service, you can also type the URL

in your web browser to view the Tester web page. WelcomeSOAPService is the name (spec-
ified in line 11 of Fig. 28.1) that clients use to access the web service.

To test WelcomeSOAP’s welcome web method, type your name in the text field to the
right of the welcome button and click the button to invoke the method. Figure 28.6 shows
the results of invoking WelcomeSOAP’s welcome method with the value Paul.

Application Server Note
You can access the web service only when the application server is running. If NetBeans
launches GlassFish for you, it will automatically shut it down when you close NetBeans. To
keep it up and running, you can launch it independently of NetBeans before you deploy or
run web applications. The GlassFish Quick Start Guide at glassfish.java.net/

downloads/quickstart/index.html shows how to manually start and stop the server.

Fig. 28.5 | Tester web page created by GlassFish for the WelcomeSOAP web service.

http://localhost:8080/WelcomeSOAP/WelcomeSOAPService?Tester

972 Chapter 28 Web Services

Testing the WelcomeSOAP Web Service from Another Computer
If your computer is connected to a network and allows HTTP requests, then you can test
the web service from another computer on the network by typing the following URL
(where host is the hostname or IP address of the computer on which the web service is de-
ployed) into a browser on another computer:

28.6.5 Describing a Web Service with the Web Service Description
Language (WSDL)
To consume a web service, a client must determine its functionality and how to use it. For
this purpose, web services normally contain a service description. This is an XML docu-
ment that conforms to the Web Service Description Language (WSDL)—an XML vo-
cabulary that defines the methods a web service makes available and how clients interact
with them. The WSDL document also specifies lower-level information that clients might
need, such as the required formats for requests and responses.

WSDL documents help applications determine how to interact with the web services
described in the documents. You do not need to understand WSDL to take advantage of
it—the GlassFish application server generates a web service’s WSDL dynamically for you,
and client tools can parse the WSDL to help create the client-side service endpoint inter-
face class that a client uses to access the web service. Since GlassFish (and most other
servers) generate the WSDL dynamically, clients always receive a deployed web service’s
most up-to-date description. To access the WelcomeSOAP web service, the client code will
need the following WSDL URL:

Accessing the WelcomeSOAP Web Service’s WSDL from Another Computer
Eventually, you’ll want clients on other computers to use your web service. Such clients
need the web service’s WSDL, which they would access with the following URL:

Fig. 28.6 | Testing WelcomeSOAP’s welcome method.

http://host:8080/WelcomeSOAP/WelcomeSOAPService?Tester

http://localhost:8080/WelcomeSOAP/WelcomeSOAPService?WSDL

28.6 Publishing and Consuming SOAP-Based Web Services 973

where host is the hostname or IP address of the server that hosts the web service. As we
discussed in Section 28.6.4, this works only if your computer allows HTTP connections
from other computers—as is the case for publicly accessible web and application servers.

28.6.6 Creating a Client to Consume the WelcomeSOAP Web Service
Now you’ll consume the web service from a client application. A web service client can be
any type of application or even another web service. You enable a client application to con-
sume a web service by adding a web service reference to the application.

Service Endpoint Interface (SEI)
An application that consumes a web service consists of an object of a service endpoint in-
terface (SEI) class (sometimes called a proxy class) that’s used to interact with the web ser-
vice and a client application that consumes the web service by invoking methods on the
service endpoint interface object. The client code invokes methods on the service endpoint
interface object, which handles the details of passing method arguments to and receiving
return values from the web service on the client’s behalf. This communication can occur
over a local network, over the Internet or even with a web service on the same computer.
The web service performs the corresponding task and returns the results to the service end-
point interface object, which then returns the results to the client code. Figure 28.7 depicts
the interactions among the client code, the SEI object and the web service. As you’ll soon
see, NetBeans creates these service endpoint interface classes for you.

Requests to and responses from web services created with JAX-WS (one of many dif-
ferent web service frameworks) are typically transmitted via SOAP. Any client capable of
generating and processing SOAP messages can interact with a web service, regardless of the
language in which the web service is written.

We now use NetBeans to create a client Java desktop GUI application. Then you’ll
add a web service reference to the project so the client can access the web service. When
you add the reference, the IDE creates and compiles the client-side artifacts—the frame-
work of Java code that supports the client-side service endpoint interface class. The client
then calls methods on an object of the service endpoint interface class, which uses the rest
of the artifacts to interact with the web service.

Creating a Desktop Application Project in NetBeans
Before performing the steps in this section, ensure that the WelcomeSOAP web service has
been deployed and that the GlassFish application server is running (see Section 28.6.3).
Perform the following steps to create a client Java desktop application in NetBeans:

http://host:8080/WelcomeSOAP/WelcomeSOAPService?WSDL

Fig. 28.7 | Interaction between a web service client and a web service.

ServerClient

Web
serviceInternet

Client
code

SEI
object

974 Chapter 28 Web Services

1. Select File > New Project… to open the New Project dialog.

2. Select Java from the Categories list and Java Application from the Projects list,
then click Next >.

3. Specify the name WelcomeSOAPClient in the Project Name field and uncheck the
Create Main Class checkbox. Later, you’ll add a subclass of JFrame that contains
a main method.

4. Click Finish to create the project.

Step 2: Adding a Web Service Reference to an Application
Next, you’ll add a web service reference to your application so that it can interact with the
WelcomeSOAP web service. To add a web service reference, perform the following steps.

1. Right click the project name (WelcomeSOAPClient) in the NetBeans Projects tab
and select New > Web Service Client… from the pop-up menu to display the New
Web Service Client dialog.

2. In the WSDL URL field, specify the URL http://localhost:8080/WelcomeSOAP/

WelcomeSOAPService?WSDL (Fig. 28.8). This URL tells the IDE where to find the
web service’s WSDL description. [Note: If the GlassFish application server is
located on a different computer, replace localhost with the hostname or IP
address of that computer.] The IDE uses this WSDL description to generate the
client-side artifacts that compose and support the service endpoint interface.

3. For the other options, leave the default settings, then click Finish to create the web
service reference and dismiss the New Web Service Client dialog.

In the NetBeans Projects tab, the WelcomeSOAPClient project now contains a Web
Service References folder with the WelcomeSOAP web service’s service endpoint interface
(Fig. 28.9). The service endpoint interface’s name is listed as WelcomeSOAPService.

Fig. 28.8 | New Web Service Client dialog.

28.6 Publishing and Consuming SOAP-Based Web Services 975

When you specify the web service you want to consume, NetBeans accesses and copies
its WSDL information to a file in your project (named WelcomeSOAPService.wsdl in this
example). You can view this file by double clicking the WelcomeSOAPService node in the
project’s Web Service References folder. If the web service changes, the client-side artifacts
and the client’s copy of the WSDL file can be regenerated by right clicking the Welcome-

SOAPService node shown in Fig. 28.9 and selecting Refresh…. Figure 28.9 also shows the
IDE-generated client-side artifacts, which appear in the Generated Sources (jax-ws) folder.

28.6.7 Consuming the WelcomeSOAP Web Service
For this example, we use a GUI application1 to interact with the WelcomeSOAP web service.
To build the client application’s GUI, add a subclass of JFrame to the project by perform-
ing the following steps:

1. Right click the project name (WelcomeSOAPClient) in the NetBeans Project tab
and select New > JFrame Form… to display the New JFrame Form dialog.

2. Specify WelcomeSOAPClientJFrame in the Class Name field.

3. Specify com.deitel.welcomesoapclient in the Package field.

4. Click Finish to close the New JFrame Form dialog.

Next, use the NetBeans GUI design tools to build the GUI shown in the sample screen
captures at the end of Fig. 28.10. The GUI consists of a Label, a Text Field and a Button.

The application in Fig. 28.10 uses the WelcomeSOAP web service to display a welcome
message to the user. To save space, we do not show the NetBeans autogenerated initCom-

ponents method, which contains the code that creates the GUI components, positions

Fig. 28.9 | NetBeans Project tab after adding a web service reference to the project.

1. We assume you’re already familiar with using the NetBeans GUI designer. If not, see Appendix H.

Generated artifacts

Web service endpoint

976 Chapter 28 Web Services

them and registers their event handlers. To view the complete source code, open the Wel-
comeSOAPClientJFrame.java file in this example’s folder under src\java\com\deitel\
welcomesoapclient. NetBeans places the GUI component instance-variable declarations
at the end of the class (lines 114–116). Java allows instance variables to be declared any-
where in a class’s body as long as they’re placed outside the class’s methods. We continue
to declare our own instance variables at the top of the class.

1 // Fig. 28.10: WelcomeSOAPClientJFrame.java
2 // Client desktop application for the WelcomeSOAP web service.
3 package com.deitel.welcomesoapclient;
4
5
6
7 import javax.swing.JOptionPane;
8
9 public class WelcomeSOAPClientJFrame extends javax.swing.JFrame

10 {
11
12
13
14 // no-argument constructor
15 public WelcomeSOAPClientJFrame()
16 {
17 initComponents();
18
19 try

20 {
21
22
23
24 } // end try
25 catch (Exception exception)
26 {
27 exception.printStackTrace();
28 System.exit(1);
29 } // end catch
30 } // end WelcomeSOAPClientJFrame constructor
31
32
33
34
35
36
37 // call the web service with the supplied name and display the message
38 private void submitJButtonActionPerformed(
39 java.awt.event.ActionEvent evt)
40 {
41 String name = nameJTextField.getText(); // get name from JTextField
42
43
44

Fig. 28.10 | Client desktop application for the WelcomeSOAP web service. (Part 1 of 2.)

import com.deitel.welcomesoap.WelcomeSOAP;
import com.deitel.welcomesoap.WelcomeSOAPService;

// references the service endpoint interface object (i.e., the proxy)
private WelcomeSOAP welcomeSOAPProxy;

// create the objects for accessing the WelcomeSOAP web service
WelcomeSOAPService service = new WelcomeSOAPService();
welcomeSOAPProxy = service.getWelcomeSOAPPort();

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open WelcomeSOAPClientJFrame.java in this
// example's folder to view the complete generated code.

// retrieve the welcome string from the web service
String message = welcomeSOAPProxy.welcome(name);

28.6 Publishing and Consuming SOAP-Based Web Services 977

Lines 5–6 import the classes WelcomeSOAP and WelcomeSOAPService that enable the
client application to interact with the web service. Notice that we do not have import dec-
larations for most of the GUI components used in this example. When you create a GUI
in NetBeans, it uses fully qualified class names (such as javax.swing.JFrame in line 9), so
import declarations are unnecessary.

Line 12 declares a variable of type WelcomeSOAP that will refer to the service endpoint
interface object. Line 22 in the constructor creates an object of type WelcomeSOAPService.
Line 23 uses this object’s getWelcomeSOAPPort method to obtain the WelcomeSOAP service
endpoint interface object that the application uses to invoke the web service’s methods.

The event handler for the Submit button (lines 88–97) first retrieves the name the user
entered from nameJTextField. It then calls the welcome method on the service endpoint
interface object (line 94) to retrieve the welcome message from the web service. This object
communicates with the web service on the client’s behalf. Once the message has been
retrieved, lines 95–96 display it in a message box by calling JOptionPane’s showMessage-
Dialog method.

45 JOptionPane.showMessageDialog(this, message,
46 "Welcome", JOptionPane.INFORMATION_MESSAGE);
47 } // end method submitJButtonActionPerformed
48
49 // main method begins execution
50 public static void main(String args[])
51 {
52 java.awt.EventQueue.invokeLater(
53 new Runnable()
54 {
55 public void run()
56 {
57 new WelcomeSOAPClientJFrame().setVisible(true);
58 } // end method run
59 } // end anonymous inner class
60); // end call to java.awt.EventQueue.invokeLater
61 } // end main
62
63 // Variables declaration - do not modify
64 private javax.swing.JLabel nameJLabel;
65 private javax.swing.JTextField nameJTextField;
66 private javax.swing.JButton submitJButton;
67 // End of variables declaration
68 } // end class WelcomeSOAPClientJFrame

Fig. 28.10 | Client desktop application for the WelcomeSOAP web service. (Part 2 of 2.)

978 Chapter 28 Web Services

28.7 Publishing and Consuming REST-Based XML Web
Services
The previous section used a service endpoint interface (proxy) object to pass data to and
from a Java web service using the SOAP protocol. Now, we access a Java web service using
the REST architecture. We recreate the WelcomeSOAP example to return data in plain XML
format. You can create a Web Application project as you did in Section 28.6 to begin.
Name the project WelcomeRESTXML.

28.7.1 Creating a REST-Based XML Web Service
NetBeans provides various templates for creating RESTful web services, including ones
that can interact with databases on the client’s behalf. In this chapter, we focus on simple
RESTful web services. To create a RESTful web service:

1. Right-click the WelcomeRESTXML node in the Projects tab, and select New >
Other… to display the New File dialog.

2. Select Web Services under Categories, then select RESTful Web Services from Pat-
terns and click Next >.

3. Under Select Pattern, ensure Simple Root Resource is selected, and click Next >.

4. Set the Resource Package to com.deitel.welcomerestxml, the Path to welcome

and the Class Name to WelcomeRESTXMLResource. Leave the MIME Type and Rep-
resentation Class set to application/xml and java.lang.String, respectively.
The correct configuration is shown in Fig. 28.11.

5. Click Finish to create the web service.

Fig. 28.11 | Creating the WelcomeRESTXML RESTful web service.

28.7 Publishing and Consuming REST-Based XML Web Services 979

NetBeans generates the class and sets up the proper annotations. The class is placed
in the project’s RESTful Web Services folder. The code for the completed service is shown
in Fig. 28.12. You’ll notice that the completed code does not include some of the code
generated by NetBeans. We removed the pieces that were unnecessary for this simple web
service. The autogenerated putXml method is not necessary, because this example does not
modify state on the server. The UriInfo instance variable is not needed, because we do not
use HTTP query parameters. We also removed the autogenerated constructor, because we
have no code to place in it.

Lines 6–9 contain the imports for the JAX-RS annotations that help define the
RESTful web service. The @Path annotation on the WelcomeRESTXMLResource class (line
12) indicates the URI for accessing the web service. This URI is appended to the web
application project’s URL to invoke the service. Methods of the class can also use the
@Path annotation (line 17). Parts of the path specified in curly braces indicate parame-
ters—they’re placeholders for values that are passed to the web service as part of the path.
The base path for the service is the project’s resources directory. For example, to get a
welcome message for someone named John, the complete URL is

Arguments in a URL can be used as arguments to a web service method. To do so, you
bind the parameters specified in the @Path specification to parameters of the web service

1 // Fig. 28.12: WelcomeRESTXMLResource.java
2 // REST web service that returns a welcome message as XML.
3 package com.deitel.welcomerestxml;
4
5 import java.io.StringWriter;
6
7
8
9

10
11
12
13 public class WelcomeRESTXMLResource
14 {
15 // retrieve welcome message
16
17
18
19
20 {
21 String message = "Welcome to JAX-RS web services with REST and " +
22 "XML, " + name + "!"; // our welcome message
23 StringWriter writer = new StringWriter();
24
25 return writer.toString(); // return XML as String
26 } // end method getXml
27 } // end class WelcomeRESTXMLResource

Fig. 28.12 | REST web service that returns a welcome message as XML.

http://localhost:8080/WelcomeRESTXML/resources/welcome/John

import javax.ws.rs.GET; // annotation to indicate method uses HTTP GET
import javax.ws.rs.Path; // annotation to specify path of resource
import javax.ws.rs.PathParam; // annotation to get parameters from URI
import javax.ws.rs.Produces; // annotation to specify type of data
import javax.xml.bind.JAXB; // utility class for common JAXB operations

@Path("welcome") // URI used to access the resource

@GET // handles HTTP GET requests
@Path("{name}") // URI component containing parameter
@Produces("application/xml") // response formatted as XML
public String getXml(@PathParam("name") String name)

JAXB.marshal(message, writer); // marshal String as XML

980 Chapter 28 Web Services

method with the @PathParam annotation, as shown in line 19. When the request is re-
ceived, the server passes the argument(s) in the URL to the appropriate parameter(s) in the
web service method.

The @GET annotation denotes that this method is accessed via an HTTP GET request.
The putXml method the IDE created for us had an @PUT annotation, which indicates that
the method is accessed using the HTTP PUT method. Similar annotations exist for HTTP
POST, DELETE and HEAD requests.

The @Produces annotation denotes the content type returned to the client. It’s pos-
sible to have multiple methods with the same HTTP method and path but different @Pro-
duces annotations, and JAX-RS will call the method matching the content type requested
by the client. Standard Java method overloading rules apply, so such methods must have
different names. The @Consumes annotation for the autogenerated putXml method (which
we deleted) restricts the content type that the web service will accept from a PUT operation.

Line 10 imports the JAXB class from package javax.xml.bind. JAXB (Java Architec-
ture for XML Binding) is a set of classes for converting POJOs to and from XML. There
are many related classes in the same package that implement the serializations we perform,
but the JAXB class contains easy-to-use wrappers for common operations. After creating
the welcome message (lines 21–22), we create a StringWriter (line 23) to which JAXB
will output the XML. Line 24 calls the JAXB class’s static method marshal to convert the
String containing our message to XML format. Line 25 calls StringWriter’s toString
method to retrieve the XML text to return to the client.

Testing RESTful Web Services
Section 28.6.4 demonstrated testing a SOAP service using GlassFish’s Tester page. Glass-
Fish does not provide a testing facility for RESTful services, but NetBeans automatically
generates a test page that can be accessed by right clicking the WelcomeRESTXML node in
the Projects tab and selecting Test RESTful Web Services. This will compile and deploy the
web service, if you have not yet done so, then open the test page. Your browser will prob-
ably require you to acknowledge a potential security issue before allowing the test page to
perform its tasks. The test page is loaded from your computer’s local file system, not the
GlassFish server. Browsers consider the local file system and GlassFish as two different
servers, even though they’re both on the local computer. For security reasons, browsers do
not allow so-called cross-site scripting in which a web page tries to interact with a server
other than the one that served the page.

On the test page (Fig. 28.13), expand the welcome element in the left column and
select {name}. The form on the right side of the page allows you to choose the MIME type
of the data (application/xml by default) and lets you enter the name parameter’s value.
Click the Test button to invoke the web service and display the returned XML.

The test page shows several tabs containing the results and various other information.
The Raw View tab shows the actual XML response. The Headers tab shows the HTTP

Error-Prevention Tip 28.1
At the time of this writing, the test page did not work in Google’s Chrome web browser.
If this is your default web browser, copy the test page’s URL from Chrome’s address field
and paste it into another web browser’s address field. Fig. 28.13 shows the test page in
Mozilla Firefox.

28.7 Publishing and Consuming REST-Based XML Web Services 981

headers returned by the server. The Http Monitor tab shows a log of the HTTP transactions
that took place to complete the request and response. The Sub-Resource tab shows the
actual URL that was used to invoke the web service

You can enter this URL in any browser on your computer to invoke the web service with
the value Paul.

The test page provides its functionality by reading a WADL file from the server—you
can see the URL of the WADL file in the upper-left corner of the test page. WADL (Web
Application Description Language) has similar design goals to WSDL, but describes
RESTful services instead of SOAP services.

28.7.2 Consuming a REST-Based XML Web Service
As we did with SOAP, we create a Java application that retrieves the welcome message
from the web service and displays it to the user. First, create a Java application with the
name WelcomeRESTXMLClient. RESTful web services do not require web service references,
so you can begin building the GUI immediately by creating a JFrame form called
WelcomeRESTXMLClientJFrame and placing it in the com.deitel.welcomerestxmlclient
package. The GUI is identical to the one in Fig. 28.10, including the names of the GUI
elements. To create the GUI quickly, you can simply copy and paste the GUI from the
Design view of the WelcomeSOAPClientJFrame class and paste it into the Design view of
the WelcomeRESTXMLClientJFrame class. Figure 28.14 contains the completed code.

Fig. 28.13 | Test page for the WelcomeRESTXML web service.

http://localhost:8080/WelcomeRESTXML/resources/welcome/Paul

982 Chapter 28 Web Services

1 // Fig. 28.14: WelcomeRESTXMLClientJFrame.java
2 // Client that consumes the WelcomeRESTXML service.
3 package com.deitel.welcomerestxmlclient;
4
5 import javax.swing.JOptionPane;
6
7
8 public class WelcomeRESTXMLClientJFrame extends javax.swing.JFrame
9 {

10 // no-argument constructor
11 public WelcomeRESTXMLClientJFrame()
12 {
13 initComponents();
14 } // end constructor
15
16
17
18
19
20
21 // call the web service with the supplied name and display the message
22 private void submitJButtonActionPerformed(
23 java.awt.event.ActionEvent evt)
24 {
25 String name = nameJTextField.getText(); // get name from JTextField
26
27 // the URL for the REST service
28 String url =
29 "http://localhost:8080/WelcomeRESTXML/resources/welcome/" + name;
30
31
32
33
34 // display the message to the user
35 JOptionPane.showMessageDialog(this, message,
36 "Welcome", JOptionPane.INFORMATION_MESSAGE);
37 } // end method submitJButtonActionPerformed
38
39 // main method begins execution
40 public static void main(String args[])
41 {
42 java.awt.EventQueue.invokeLater(
43 new Runnable()
44 {
45 public void run()
46 {
47 new WelcomeRESTXMLClientJFrame().setVisible(true);
48 } // end method run
49 } // end anonymous inner class
50); // end call to java.awt.EventQueue.invokeLater
51 } // end main
52

Fig. 28.14 | Client that consumes the WelcomeRESTXML service. (Part 1 of 2.)

import javax.xml.bind.JAXB; // utility class for common JAXB operations

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open WelcomeRESTXMLClientJFrame.java in this
// example's folder to view the complete generated code.

// read from URL and convert from XML to Java String
String message = JAXB.unmarshal(url, String.class);

28.8 Publishing and Consuming REST-Based JSON Web Services 983

You can access a RESTful web service with classes from Java API. As in the RESTful
XML web service, we use the JAXB library. The JAXB class (imported on line 6) has a
static unmarshal method that takes as arguments a file name or URL as a String, and a
Class<T> object indicating the Java class to which the XML will be converted (line 82).
In this example, the XML contains a String object, so we use the Java compiler shortcut
String.class to create the Class<String> object we need as the second argument. The
String returned from the call to the unmarshal method is then displayed to the user via
JOptionPane’s showMessageDialog method (lines 85–86), as it was with the SOAP ser-
vice. The URL used in this example to extract data from the web service matches the URL
used by the test page.

28.8 Publishing and Consuming REST-Based JSON Web
Services
While XML was designed primarily as a document interchange format, JSON is designed
as a data exchange format. Data structures in most programming languages do not map
directly to XML constructs—for example, the distinction between elements and attributes
is not present in programming-language data structures. JSON is a subset of the JavaScript
programming language, and its components—objects, arrays, strings, numbers—can be
easily mapped to constructs in Java and other programming languages.

The standard Java libraries do not currently provide capabilities for working with
JSON, but there are many open-source JSON libraries for Java and other languages; you
can find a list of them at json.org. We chose the Gson library from code.google.com/

p/google-gson/, which provides a simple way to convert POJOs to and from JSON.

28.8.1 Creating a REST-Based JSON Web Service
To begin, create a WelcomeRESTJSON web application, then create the web service by
following the steps in Section 28.7.1. In Step 4, change the Resource Package to
com.deitel.welcomerestjson, the Class Name to WelcomeRESTJSONResource and the
MIME Type to application/json. Additionally, you must download the Gson library’s
JAR file, then add it to the project as a library. To do so, right click your project’s Libraries

53 // Variables declaration - do not modify
54 private javax.swing.JLabel nameJLabel;
55 private javax.swing.JTextField nameJTextField;
56 private javax.swing.JButton submitJButton;
57 // End of variables declaration
58 } // end class WelcomeRESTXMLClientJFrame

Fig. 28.14 | Client that consumes the WelcomeRESTXML service. (Part 2 of 2.)

984 Chapter 28 Web Services

folder, select Add JAR/Folder… locate the downloaded Gson JAR file and click Open. The
complete code for the service is shown in Fig. 28.15.

All the annotations and the basic structure of the WelcomeRESTJSONResource class are
the same as REST XML example. The argument to the @Produces attribute (line 17) is

1 // Fig. 28.15: WelcomeRESTJSONResource.java
2 // REST web service that returns a welcome message as JSON.
3 package com.deitel.welcomerestjson;
4
5
6
7
8
9

10
11
12 public class WelcomeRESTJSONResource
13 {
14 // retrieve welcome message
15
16
17
18
19 {
20 // add welcome message to field of TextMessage object
21 TextMessage message = new TextMessage(); // create wrapper object
22 message.setMessage(String.format("%s, %s!",
23 "Welcome to JAX-RS web services with REST and JSON", name));
24
25
26 } // end method getJson
27 } // end class WelcomeRESTJSONResource
28
29 // private class that contains the message we wish to send
30 class TextMessage
31 {
32 private String message; // message we're sending
33
34 // returns the message
35 public String getMessage()
36 {
37 return message;
38 } // end method getMessage
39
40 // sets the message
41 public void setMessage(String value)
42 {
43 message = value;
44 } // end method setMessage
45 } // end class TextMessage

Fig. 28.15 | REST web service that returns a welcome message as JSON.

import com.google.gson.Gson; // converts POJO to JSON and back again
import javax.ws.rs.GET; // annotation to indicate method uses HTTP GET
import javax.ws.rs.Path; // annotation to specify path of resource
import javax.ws.rs.PathParam; // annotation to get parameters from URI
import javax.ws.rs.Produces; // annotation to specify type of data

@Path("welcome") // path used to access the resource

@GET // handles HTTP GET requests
@Path("{name}") // takes name as a path parameter
@Produces("application/json") // response formatted as JSON
public String getJson(@PathParam("name") String name)

return new Gson().toJson(message); // return JSON-wrapped message

28.8 Publishing and Consuming REST-Based JSON Web Services 985

"application/json". The TextMessage class (lines 30–45) addresses a difference between
JSON and XML. JSON does not permit strings or numbers to stand on their own—they
must be encapsulated in a composite data type. So, we created class TextMessage to encap-
sulate the String representing the message.

When a client invokes this web service, line 21 creates the TextMessage object, then
lines 22–23 set its contained message. Next, line 25 creates a Gson object (from package
com.google.gson.Gson) and calls its toJson method to convert the TextMessage into its
JSON String representation. We return this String, which is then sent back to the client
in the web service’s response. There are multiple overloads of the toJson method, such as
one that sends its output to a Writer instead of returning a String.

RESTful services returning JSON can be tested in the same way as those returning
XML. Follow the procedure outlined in Section 28.7.1, but be sure to change the MIME
type to application/json in the test web page; otherwise, the web service will return an
error stating that it cannot produce the desired response.

28.8.2 Consuming a REST-Based JSON Web Service
We now create a Java application that retrieves the welcome message from the web service
and displays it to the user. First, create a Java application with the name WelcomeREST-

JSONClient. Then, create a JFrame form called WelcomeRESTXMLClientJFrame and place
it in the com.deitel.welcomerestjsonclient package. The GUI is identical to the one
in Fig. 28.10. To create the GUI quickly, copy it from the Design view of the Welcome-

SOAPClientJFrame class and paste it into the Design view of the WelcomeRESTJSONClient-
JFrame class. Figure 28.16 contains the completed code.

1 // Fig. 28.16: WelcomeRESTJSONClientJFrame.java
2 // Client that consumes the WelcomeRESTJSON service.
3 package com.deitel.welcomerestjsonclient;
4
5
6 import java.io.InputStreamReader;
7 import java.net.URL;
8 import javax.swing.JOptionPane;
9

10 public class WelcomeRESTJSONClientJFrame extends javax.swing.JFrame
11 {
12 // no-argument constructor
13 public WelcomeRESTJSONClientJFrame()
14 {
15 initComponents();
16 } // end constructor
17
18
19
20
21
22

Fig. 28.16 | Client that consumes the WelcomeRESTJSON service. (Part 1 of 3.)

import com.google.gson.Gson; // converts POJO to JSON and back again

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open WelcomeRESTJSONClientJFrame.java in this
// example's folder to view the complete generated code.

986 Chapter 28 Web Services

23 // call the web service with the supplied name and display the message
24 private void submitJButtonActionPerformed(
25 java.awt.event.ActionEvent evt)
26 {
27 String name = nameJTextField.getText(); // get name from JTextField
28
29 // retrieve the welcome string from the web service
30 try

31 {
32 // the URL of the web service
33 String url = "http://localhost:8080/WelcomeRESTJSON/" +
34 "resources/welcome/" + name;
35
36
37
38
39
40
41
42
43
44 // display message to the user
45 JOptionPane.showMessageDialog(this, message.getMessage(),
46 "Welcome", JOptionPane.INFORMATION_MESSAGE);
47 } // end try
48 catch (Exception exception)
49 {
50 exception.printStackTrace(); // show exception details
51 } // end catch
52 } // end method submitJButtonActionPerformed
53
54 // main method begin execution
55 public static void main(String args[])
56 {
57 java.awt.EventQueue.invokeLater(
58 new Runnable()
59 {
60 public void run()
61 {
62 new WelcomeRESTJSONClientJFrame().setVisible(true);
63 } // end method run
64 } // end anonymous inner class
65); // end call to java.awt.EventQueue.invokeLater
66 } // end main
67
68 // Variables declaration - do not modify
69 private javax.swing.JLabel nameJLabel;
70 private javax.swing.JTextField nameJTextField;
71 private javax.swing.JButton submitJButton;
72 // End of variables declaration
73 } // end class WelcomeRESTJSONClientJFrame
74

Fig. 28.16 | Client that consumes the WelcomeRESTJSON service. (Part 2 of 3.)

// open URL, using a Reader to convert bytes to chars
InputStreamReader reader =

new InputStreamReader(new URL(url).openStream());

// parse the JSON back into a TextMessage
TextMessage message =

new Gson().fromJson(reader, TextMessage.class);

28.9 Session Tracking in a SOAP Web Service 987

Lines 83–84 create the URL String that is used to invoke the web service. Lines 87–
88 create a URL object using this String, then call the URL’s openStream method to invoke
the web service and obtain an InputStream from which the client can read the response.
The InputStream is wrapped in an InputStreamReader so it can be passed as the first
argument to the Gson class’s fromJson method. This method is overloaded. The version
we use takes as arguments a Reader from which to read a JSON String and a Class<T>

object indicating the Java class to which the JSON String will be converted (line 92). In
this example, the JSON String contains a TextMessage object, so we use the Java com-
piler shortcut TextMessage.class to create the Class<TextMessage> object we need as
the second argument. Lines 95–96 display the message in the TextMessage object.

The TextMessage classes in the web service and client are unrelated. Technically, the
client can be written in any programming language, so the manner in which a response is
processed can vary greatly. Since our client is written in Java, we duplicated the TextMes-
sage class in the client so we could easily convert the JSON object back to Java.

28.9 Session Tracking in a SOAP Web Service
Section 26.8 described the advantages of using session tracking to maintain client-state in-
formation so you can personalize the users’ browsing experiences. Now we’ll incorporate
session tracking into a web service. Suppose a client application needs to call several meth-
ods from the same web service, possibly several times each. In such a case, it can be bene-
ficial for the web service to maintain state information for the client, thus eliminating the
need for client information to be passed between the client and the web service multiple
times. For example, a web service that provides local restaurant reviews could store the cli-
ent user’s street address during the initial request, then use it to return personalized, local-
ized results in subsequent requests. Storing session information also enables a web service
to distinguish between clients.

75 // private class that contains the message we are receiving
76 class TextMessage
77 {
78 private String message; // message we're receiving
79
80 // returns the message
81 public String getMessage()
82 {
83 return message;
84 } // end method getMessage
85
86 // sets the message
87 public void setMessage(String value)
88 {
89 message = value;
90 } // end method setMessage
91 } // end class TextMessage

Fig. 28.16 | Client that consumes the WelcomeRESTJSON service. (Part 3 of 3.)

988 Chapter 28 Web Services

28.9.1 Creating a Blackjack Web Service
Our next example is a web service that assists you in developing a blackjack card game.
The Blackjack web service (Fig. 28.17) provides web methods to shuffle a deck of cards,
deal a card from the deck and evaluate a hand of cards. After presenting the web service,
we use it to serve as the dealer for a game of blackjack (Fig. 28.18). The Blackjack web
service uses an HttpSession object to maintain a unique deck of cards for each client ap-
plication. Several clients can use the service at the same time, but web method calls made
by a specific client use only the deck of cards stored in that client’s session. Our example
uses the following blackjack rules:

Two cards each are dealt to the dealer and the player. The player’s cards are dealt face
up. Only the first of the dealer’s cards is dealt face up. Each card has a value. A card
numbered 2 through 10 is worth its face value. Jacks, queens and kings each count as
10. Aces can count as 1 or 11—whichever value is more beneficial to the player (as
we’ll soon see). If the sum of the player’s two initial cards is 21 (i.e., the player was
dealt a card valued at 10 and an ace, which counts as 11 in this situation), the player
has “blackjack” and immediately wins the game—if the dealer does not also have
blackjack (which would result in a “push”—i.e., a tie). Otherwise, the player can
begin taking additional cards one at a time. These cards are dealt face up, and the
player decides when to stop taking cards. If the player “busts” (i.e., the sum of the
player’s cards exceeds 21), the game is over, and the player loses. When the player is sat-
isfied with the current set of cards, the player “stands” (i.e., stops taking cards), and the
dealer’s hidden card is revealed. If the dealer’s total is 16 or less, the dealer must take
another card; otherwise, the dealer must stand. The dealer must continue taking cards
until the sum of the dealer’s cards is greater than or equal to 17. If the dealer exceeds
21, the player wins. Otherwise, the hand with the higher point total wins. If the
dealer and the player have the same point total, the game is a “push,” and no one
wins. The value of an ace for a dealer depends on the dealer’s other card(s) and the
casino’s house rules. A dealer typically must hit for totals of 16 or less and must stand
for totals of 17 or more. However, for a “soft 17”—a hand with a total of 17 with one
ace counted as 11—some casinos require the dealer to hit and some require the dealer
to stand (we require the dealer to stand). Such a hand is known as a “soft 17” because
taking another card cannot bust the hand.

The web service (Fig. 28.17) stores each card as a String consisting of a number, 1–
13, representing the card’s face (ace through king, respectively), followed by a space and a
digit, 0–3, representing the card’s suit (hearts, diamonds, clubs or spades, respectively). For
example, the jack of clubs is represented as "11 2" and the two of hearts as "2 0". To
create and deploy this web service, follow the steps that we presented in Sections 28.6.2–
28.6.3 for the WelcomeSOAP service.

1 // Fig. 28.17: Blackjack.java
2 // Blackjack web service that deals cards and evaluates hands
3 package com.deitel.blackjack;
4
5 import com.sun.xml.ws.developer.servlet.HttpSessionScope;
6 import java.util.ArrayList;
7 import java.util.Random;

Fig. 28.17 | Blackjack web service that deals cards and evaluates hands. (Part 1 of 3.)

28.9 Session Tracking in a SOAP Web Service 989

8 import javax.jws.WebMethod;
9 import javax.jws.WebParam;

10 import javax.jws.WebService;
11
12
13 @WebService()
14 public class Blackjack
15 {
16 private ArrayList< String > deck; // deck of cards for one user session
17 private static final Random randomObject = new Random();
18
19 // deal one card
20 @WebMethod(operationName = "dealCard")
21 public String dealCard()
22 {
23 String card = "";
24 card = deck.get(0); // get top card of deck
25 deck.remove(0); // remove top card of deck
26 return card;
27 } // end WebMethod dealCard
28
29 // shuffle the deck
30 @WebMethod(operationName = "shuffle")
31 public void shuffle()
32 {
33 // create new deck when shuffle is called
34 deck = new ArrayList< String >();
35
36 // populate deck of cards
37 for (int face = 1; face <= 13; face++) // loop through faces
38 for (int suit = 0; suit <= 3; suit++) // loop through suits
39 deck.add(face + " " + suit); // add each card to deck
40
41 String tempCard; // holds card temporarily during swapping
42 int index; // index of randomly selected card
43
44 for (int i = 0; i < deck.size() ; i++) // shuffle
45 {
46 index = randomObject.nextInt(deck.size() - 1);
47
48 // swap card at position i with randomly selected card
49 tempCard = deck.get(i);
50 deck.set(i, deck.get(index));
51 deck.set(index, tempCard);
52 } // end for
53 } // end WebMethod shuffle
54
55 // determine a hand's value
56 @WebMethod(operationName = "getHandValue")
57 public int getHandValue(@WebParam(name = "hand") String hand)
58 {
59 // split hand into cards
60 String[] cards = hand.split("\t");

Fig. 28.17 | Blackjack web service that deals cards and evaluates hands. (Part 2 of 3.)

@HttpSessionScope // enable web service to maintain session state

990 Chapter 28 Web Services

Session Tracking in Web Services: @HttpSessionScope Annotation
In JAX-WS 2.2, it’s easy to enable session tracking in a web service. You simply precede
your web service class with the @HttpSessionScope annotation. This annotation is located
in package com.sun.xml.ws.developer.servlet. To use this package you must add the
JAX-WS 2.2 library to your project. To do so, right click the Libraries node in your Black-
jack web application project and select Add Library…. Then, in the dialog that appears,
locate and select JAX-WS 2.2, then click Add Library. Once a web service is annotated with
@HttpSessionScope, the server automatically maintains a separate instance of the class for
each client session. Thus, the deck instance variable (line 16) will be maintained separately
for each client.

61 int total = 0; // total value of cards in hand
62 int face; // face of current card
63 int aceCount = 0; // number of aces in hand
64
65 for (int i = 0; i < cards.length; i++)
66 {
67 // parse string and get first int in String
68 face = Integer.parseInt(
69 cards[i].substring(0, cards[i].indexOf(" ")));
70
71 switch (face)
72 {
73 case 1: // if ace, increment aceCount
74 ++aceCount;
75 break;
76 case 11: // jack
77 case 12: // queen
78 case 13: // king
79 total += 10;
80 break;
81 default: // otherwise, add face
82 total += face;
83 break;
84 } // end switch
85 } // end for
86
87 // calculate optimal use of aces
88 if (aceCount > 0)
89 {
90 // if possible, count one ace as 11
91 if (total + 11 + aceCount - 1 <= 21)
92 total += 11 + aceCount - 1;
93 else // otherwise, count all aces as 1
94 total += aceCount;
95 } // end if
96
97 return total;
98 } // end WebMethod getHandValue
99 } // end class Blackjack

Fig. 28.17 | Blackjack web service that deals cards and evaluates hands. (Part 3 of 3.)

28.9 Session Tracking in a SOAP Web Service 991

Client Interactions with the Blackjack Web Service
A client first calls the Blackjack web service’s shuffle web method (lines 30–53) to create
a new deck of cards (line 34), populate it (lines 37–39) and shuffle it (lines 41–52). Lines
37–39 generate Strings in the form "face suit" to represent each possible card in the deck.

Lines 20–27 define the dealCard web method. Method shuffle must be called before
method dealCard is called the first time for a client—otherwise, deck could be null. The
method gets the top card from the deck (line 24), removes it from the deck (line 25) and
returns the card’s value as a String (line 26). Without using session tracking, the deck of
cards would need to be passed back and forth with each method call. Session tracking
makes the dealCard method easy to call (it requires no arguments) and eliminates the
overhead of sending the deck over the network multiple times.

Method getHandValue (lines 56–98) determines the total value of the cards in a hand
by trying to attain the highest score possible without going over 21. Recall that an ace can
be counted as either 1 or 11, and all face cards count as 10. This method does not use the
session object, because the deck of cards is not used in this method.

As you’ll soon see, the client application maintains a hand of cards as a String in
which each card is separated by a tab character. Line 60 splits the hand of cards (repre-
sented by hand) into individual cards by calling String method split and passing to it a
String containing the delimiter characters (in this case, just a tab). Method split uses the
delimiter characters to separate tokens in the String. Lines 65–85 count the value of each
card. Lines 68–69 retrieve the first integer—the face—and use that value in the switch

statement (lines 71–84). If the card is an ace, the method increments variable aceCount.
We discuss how this variable is used shortly. If the card is an 11, 12 or 13 (jack, queen or
king), the method adds 10 to the total value of the hand (line 79). If the card is anything
else, the method increases the total by that value (line 82).

Because an ace can have either of two values, additional logic is required to process
aces. Lines 88–95 process the aces after all the other cards. If a hand contains several aces,
only one ace can be counted as 11. The condition in line 91 determines whether counting
one ace as 11 and the rest as 1 will result in a total that does not exceed 21. If this is pos-
sible, line 92 adjusts the total accordingly. Otherwise, line 94 adjusts the total, counting
each ace as 1.

Method getHandValue maximizes the value of the current cards without exceeding
21. Imagine, for example, that the dealer has a 7 and receives an ace. The new total could
be either 8 or 18. However, getHandValue always maximizes the value of the cards without
going over 21, so the new total is 18.

28.9.2 Consuming the Blackjack Web Service
The blackjack application in Fig. 28.18 keeps track of the player’s and dealer’s cards, and
the web service tracks the cards that have been dealt. The constructor (lines 34–83) sets
up the GUI (line 36), changes the window’s background color (line 40) and creates the
Blackjack web service’s service endpoint interface object (lines 46–47). In the GUI, each
player has 11 JLabels—the maximum number of cards that can be dealt without auto-
matically exceeding 21 (i.e., four aces, four twos and three threes). These JLabels are
placed in an ArrayList of JLabels (lines 59–82), so we can index the ArrayList during
the game to determine the JLabel that will display a particular card image.

992 Chapter 28 Web Services

1 // Fig. 28.18: BlackjackGameJFrame.java
2 // Blackjack game that uses the Blackjack Web Service.
3 package com.deitel.blackjackclient;
4
5
6
7 import java.awt.Color;
8 import java.util.ArrayList;
9 import javax.swing.ImageIcon;

10 import javax.swing.JLabel;
11 import javax.swing.JOptionPane;
12
13
14 public class BlackjackGameJFrame extends javax.swing.JFrame
15 {
16 private String playerCards;
17 private String dealerCards;
18 private ArrayList<JLabel> cardboxes; // list of card image JLabels
19 private int currentPlayerCard; // player's current card number
20 private int currentDealerCard; // blackjackProxy's current card number
21
22
23
24 // enumeration of game states
25 private enum GameStatus
26 {
27 PUSH, // game ends in a tie
28 LOSE, // player loses
29 WIN, // player wins
30 BLACKJACK // player has blackjack
31 } // end enum GameStatus
32
33 // no-argument constructor
34 public BlackjackGameJFrame()
35 {
36 initComponents();
37
38 // due to a bug in NetBeans, we must change the JFrame's background
39 // color here rather than in the designer
40 getContentPane().setBackground(new Color(0, 180, 0));
41
42 // initialize the blackjack proxy
43 try

44 {
45
46
47
48
49
50
51
52 } // end try

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 1 of 10.)

import com.deitel.blackjack.Blackjack;
import com.deitel.blackjack.BlackjackService;

import javax.xml.ws.BindingProvider;

private BlackjackService blackjackService; // used to obtain proxy
private Blackjack blackjackProxy; // used to access the web service

// create the objects for accessing the Blackjack web service
blackjackService = new BlackjackService();
blackjackProxy = blackjackService.getBlackjackPort();

// enable session tracking
((BindingProvider) blackjackProxy).getRequestContext().put(

BindingProvider.SESSION_MAINTAIN_PROPERTY, true);

28.9 Session Tracking in a SOAP Web Service 993

53 catch (Exception e)
54 {
55 e.printStackTrace();
56 } // end catch
57
58 // add JLabels to cardBoxes ArrayList for programmatic manipulation
59 cardboxes = new ArrayList<JLabel>();
60
61 cardboxes.add(dealerCard1JLabel);
62 cardboxes.add(dealerCard2JLabel);
63 cardboxes.add(dealerCard3JLabel);
64 cardboxes.add(dealerCard4JLabel);
65 cardboxes.add(dealerCard5JLabel);
66 cardboxes.add(dealerCard6JLabel);
67 cardboxes.add(dealerCard7JLabel);
68 cardboxes.add(dealerCard8JLabel);
69 cardboxes.add(dealerCard9JLabel);
70 cardboxes.add(dealerCard10JLabel);
71 cardboxes.add(dealerCard11JLabel);
72 cardboxes.add(playerCard1JLabel);
73 cardboxes.add(playerCard2JLabel);
74 cardboxes.add(playerCard3JLabel);
75 cardboxes.add(playerCard4JLabel);
76 cardboxes.add(playerCard5JLabel);
77 cardboxes.add(playerCard6JLabel);
78 cardboxes.add(playerCard7JLabel);
79 cardboxes.add(playerCard8JLabel);
80 cardboxes.add(playerCard9JLabel);
81 cardboxes.add(playerCard10JLabel);
82 cardboxes.add(playerCard11JLabel);
83 } // end constructor
84
85 // play the dealer’s hand
86 private void dealerPlay()
87 {
88 try

89 {
90 // while the value of the dealers's hand is below 17
91 // the dealer must continue to take cards
92 String[] cards = dealerCards.split("\t");
93
94 // display dealer's cards
95 for (int i = 0; i < cards.length; i++)
96 {
97 displayCard(i, cards[i]);
98 }
99
100
101 {
102
103 dealerCards += "\t" + newCard; // deal new card
104 displayCard(currentDealerCard, newCard);

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 2 of 10.)

while (blackjackProxy.getHandValue(dealerCards) < 17)

String newCard = blackjackProxy.dealCard(); // deal new card

994 Chapter 28 Web Services

105 ++currentDealerCard;
106 JOptionPane.showMessageDialog(this, "Dealer takes a card",
107 "Dealer's turn", JOptionPane.PLAIN_MESSAGE);
108 } // end while
109
110
111
112
113 // if dealer busted, player wins
114 if (dealersTotal > 21)
115 {
116 gameOver(GameStatus.WIN);
117 return;
118 } // end if
119
120 // if dealer and player are below 21
121 // higher score wins, equal scores is a push
122 if (dealersTotal > playersTotal)
123 {
124 gameOver(GameStatus.LOSE);
125 }
126 else if (dealersTotal < playersTotal)
127 {
128 gameOver(GameStatus.WIN);
129 }
130 else

131 {
132 gameOver(GameStatus.PUSH);
133 }
134 } // end try
135 catch (Exception e)
136 {
137 e.printStackTrace();
138 } // end catch
139 } // end method dealerPlay
140
141 // displays the card represented by cardValue in specified JLabel
142 private void displayCard(int card, String cardValue)
143 {
144 try

145 {
146 // retrieve correct JLabel from cardBoxes
147 JLabel displayLabel = cardboxes.get(card);
148
149 // if string representing card is empty, display back of card
150 if (cardValue.equals(""))
151 {
152 displayLabel.setIcon(new ImageIcon(getClass().getResource(
153 "/com/deitel/java/blackjackclient/" +
154 "blackjack_images/cardback.png")));
155 return;
156 } // end if

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 3 of 10.)

int dealersTotal = blackjackProxy.getHandValue(dealerCards);
int playersTotal = blackjackProxy.getHandValue(playerCards);

28.9 Session Tracking in a SOAP Web Service 995

157
158 // retrieve the face value of the card
159 String face = cardValue.substring(0, cardValue.indexOf(" "));
160
161 // retrieve the suit of the card
162 String suit =
163 cardValue.substring(cardValue.indexOf(" ") + 1);
164
165 char suitLetter; // suit letter used to form image file
166
167 switch (Integer.parseInt(suit))
168 {
169 case 0: // hearts
170 suitLetter = 'h';
171 break;
172 case 1: // diamonds
173 suitLetter = 'd';
174 break;
175 case 2: // clubs
176 suitLetter = 'c';
177 break;
178 default: // spades
179 suitLetter = 's';
180 break;
181 } // end switch
182
183 // set image for displayLabel
184 displayLabel.setIcon(new ImageIcon(getClass().getResource(
185 "/com/deitel/java/blackjackclient/blackjack_images/" +
186 face + suitLetter + ".png")));
187 } // end try
188 catch (Exception e)
189 {
190 e.printStackTrace();
191 } // end catch
192 } // end method displayCard
193
194 // displays all player cards and shows appropriate message
195 private void gameOver(GameStatus winner)
196 {
197 String[] cards = dealerCards.split("\t");
198
199 // display blackjackProxy's cards
200 for (int i = 0; i < cards.length; i++)
201 {
202 displayCard(i, cards[i]);
203 }
204
205 // display appropriate status image
206 if (winner == GameStatus.WIN)
207 {
208 statusJLabel.setText("You win!");
209 }

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 4 of 10.)

996 Chapter 28 Web Services

210 else if (winner == GameStatus.LOSE)
211 {
212 statusJLabel.setText("You lose.");
213 }
214 else if (winner == GameStatus.PUSH)
215 {
216 statusJLabel.setText("It's a push.");
217 }
218 else // blackjack
219 {
220 statusJLabel.setText("Blackjack!");
221 }
222
223 // display final scores
224
225
226 dealerTotalJLabel.setText("Dealer: " + dealersTotal);
227 playerTotalJLabel.setText("Player: " + playersTotal);
228
229 // reset for new game
230 standJButton.setEnabled(false);
231 hitJButton.setEnabled(false);
232 dealJButton.setEnabled(true);
233 } // end method gameOver
234
235
236
237
238
239
240 // handles dealJButton click
241 private void dealJButtonActionPerformed(
242 java.awt.event.ActionEvent evt)
243 {
244 String card; // stores a card temporarily until it's added to a hand
245
246 // clear card images
247 for (int i = 0; i < cardboxes.size(); i++)
248 {
249 cardboxes.get(i).setIcon(null);
250 }
251
252 statusJLabel.setText("");
253 dealerTotalJLabel.setText("");
254 playerTotalJLabel.setText("");
255
256
257
258
259 // deal two cards to player
260
261 displayCard(11, playerCards); // display first card
262

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 5 of 10.)

int dealersTotal = blackjackProxy.getHandValue(dealerCards);
int playersTotal = blackjackProxy.getHandValue(playerCards);

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open BlackjackGameJFrame.java in this
// example's folder to view the complete generated code

// create a new, shuffled deck on remote machine
blackjackProxy.shuffle();

playerCards = blackjackProxy.dealCard(); // add first card to hand

card = blackjackProxy.dealCard(); // deal second card

28.9 Session Tracking in a SOAP Web Service 997

263 displayCard(12, card); // display second card
264 playerCards += "\t" + card; // add second card to hand
265
266 // deal two cards to blackjackProxy, but only show first
267
268 displayCard(0, dealerCards); // display first card
269
270 displayCard(1, ""); // display back of card
271 dealerCards += "\t" + card; // add second card to hand
272
273 standJButton.setEnabled(true);
274 hitJButton.setEnabled(true);
275 dealJButton.setEnabled(false);
276
277
278
279
280
281 // if hands both equal 21, it is a push
282 if (playersTotal == dealersTotal && playersTotal == 21)
283 {
284 gameOver(GameStatus.PUSH);
285 }
286 else if (dealersTotal == 21) // blackjackProxy has blackjack
287 {
288 gameOver(GameStatus.LOSE);
289 }
290 else if (playersTotal == 21) // blackjack
291 {
292 gameOver(GameStatus.BLACKJACK);
293 }
294
295 // next card for blackjackProxy has index 2
296 currentDealerCard = 2;
297
298 // next card for player has index 13
299 currentPlayerCard = 13;
300 } // end method dealJButtonActionPerformed
301
302 // handles standJButton click
303 private void hitJButtonActionPerformed(
304 java.awt.event.ActionEvent evt)
305 {
306 // get player another card
307
308 playerCards += "\t" + card; // add card to hand
309
310 // update GUI to display new card
311 displayCard(currentPlayerCard, card);
312 ++currentPlayerCard;
313
314
315

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 6 of 10.)

dealerCards = blackjackProxy.dealCard(); // add first card to hand

card = blackjackProxy.dealCard(); // deal second card

// determine the value of the two hands
int dealersTotal = blackjackProxy.getHandValue(dealerCards);
int playersTotal = blackjackProxy.getHandValue(playerCards);

String card = blackjackProxy.dealCard(); // deal new card

// determine new value of player's hand
int total = blackjackProxy.getHandValue(playerCards);

998 Chapter 28 Web Services

316
317 if (total > 21) // player busts
318 {
319 gameOver(GameStatus.LOSE);
320 }
321 else if (total == 21) // player cannot take any more cards
322 {
323 hitJButton.setEnabled(false);
324 dealerPlay();
325 } // end if
326 } // end method hitJButtonActionPerformed
327
328 // handles standJButton click
329 private void standJButtonActionPerformed(
330 java.awt.event.ActionEvent evt)
331 {
332 standJButton.setEnabled(false);
333 hitJButton.setEnabled(false);
334 dealJButton.setEnabled(true);
335 dealerPlay();
336 } // end method standJButtonActionPerformed
337
338 // begins application execution
339 public static void main(String args[])
340 {
341 java.awt.EventQueue.invokeLater(
342 new Runnable()
343 {
344 public void run()
345 {
346 new BlackjackGameJFrame().setVisible(true);
347 }
348 }
349); // end call to java.awt.EventQueue.invokeLater
350 } // end main
351
352 // Variables declaration - do not modify
353 private javax.swing.JButton dealJButton;
354 private javax.swing.JLabel dealerCard10JLabel;
355 private javax.swing.JLabel dealerCard11JLabel;
356 private javax.swing.JLabel dealerCard1JLabel;
357 private javax.swing.JLabel dealerCard2JLabel;
358 private javax.swing.JLabel dealerCard3JLabel;
359 private javax.swing.JLabel dealerCard4JLabel;
360 private javax.swing.JLabel dealerCard5JLabel;
361 private javax.swing.JLabel dealerCard6JLabel;
362 private javax.swing.JLabel dealerCard7JLabel;
363 private javax.swing.JLabel dealerCard8JLabel;
364 private javax.swing.JLabel dealerCard9JLabel;
365 private javax.swing.JLabel dealerJLabel;
366 private javax.swing.JLabel dealerTotalJLabel;
367 private javax.swing.JButton hitJButton;
368 private javax.swing.JLabel playerCard10JLabel;

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 7 of 10.)

28.9 Session Tracking in a SOAP Web Service 999

369 private javax.swing.JLabel playerCard11JLabel;
370 private javax.swing.JLabel playerCard1JLabel;
371 private javax.swing.JLabel playerCard2JLabel;
372 private javax.swing.JLabel playerCard3JLabel;
373 private javax.swing.JLabel playerCard4JLabel;
374 private javax.swing.JLabel playerCard5JLabel;
375 private javax.swing.JLabel playerCard6JLabel;
376 private javax.swing.JLabel playerCard7JLabel;
377 private javax.swing.JLabel playerCard8JLabel;
378 private javax.swing.JLabel playerCard9JLabel;
379 private javax.swing.JLabel playerJLabel;
380 private javax.swing.JLabel playerTotalJLabel;
381 private javax.swing.JButton standJButton;
382 private javax.swing.JLabel statusJLabel;
383 // End of variables declaration
384 } // end class BlackjackGameJFrame

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 8 of 10.)

a) Dealer and player hands after the user clicks the Deal JButton

b) Dealer and player
hands after the user

clicks Stand. In this
case, the result is a push

1000 Chapter 28 Web Services

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 9 of 10.)

c) Dealer and player hands after the user clicks Hit and draws 21. In this case, the player wins

d) Dealer and player hands after the player is dealt blackjack

28.9 Session Tracking in a SOAP Web Service 1001

Configuring the Client for Session Tracking
When interacting with a JAX-WS web service that performs session tracking, the client ap-
plication must indicate whether it wants to allow the web service to maintain session in-
formation. Lines 50–51 in the constructor perform this task. We first cast the service
endpoint interface object to interface type BindingProvider. A BindingProvider enables
the client to manipulate the request information that will be sent to the server. This infor-
mation is stored in an object that implements interface RequestContext. The Binding-

Provider and RequestContext are part of the framework that is created by the IDE when
you add a web service client to the application. Next, we invoke the BindingProvider’s
getRequestContext method to obtain the RequestContext object. Then we call the Re-

questContext’s put method to set the property

to true. This enables the client side of the session-tracking mechanism, so that the web
service knows which client is invoking the service’s web methods.

Method gameOver

Method gameOver (lines 195–233) displays all the dealer’s cards, shows the appropriate
message in statusJLabel and displays the final point totals of both the dealer and the
player. Method gameOver receives as an argument a member of the GameStatus enumer-
ation (defined in lines 25–31). The enumeration represents whether the player tied, lost
or won the game; its four members are PUSH, LOSE, WIN and BLACKJACK.

BindingProvider.SESSION_MAINTAIN_PROPERTY

Fig. 28.18 | Blackjack game that uses the Blackjack web service. (Part 10 of 10.)

e) Dealer and player hands after the dealer is dealt blackjack

1002 Chapter 28 Web Services

Method dealJButtonActionPerformed

When the player clicks the Deal JButton, method dealJButtonActionPerformed (lines
543–602) clears all of the JLabels that display cards or game status information. Next, the
deck is shuffled (line 559), and the player and dealer receive two cards each (lines 562–
573). Lines 580–581 then total each hand. If the player and the dealer both obtain scores
of 21, the program calls method gameOver, passing GameStatus.PUSH (line 586). If only
the dealer has 21, the program passes GameStatus.LOSE to method gameOver (line 590).
If only the player has 21 after the first two cards are dealt, the program passes GameSta-
tus.BLACKJACK to method gameOver (line 594).

Method hitJButtonActionPerformed

If dealJButtonActionPerformed does not call gameOver, the player can take more cards
by clicking the Hit JButton, which calls hitJButtonActionPerformed in lines 605–628.
Each time a player clicks Hit, the program deals the player one more card (line 609) and
displays it in the GUI (line 613). If the player exceeds 21, the game is over and the player
loses (line 621). If the player has exactly 21, the player is not allowed to take any more
cards (line 625), and method dealerPlay is called (line 626).

Method dealerPlay

Method dealerPlay (lines 86–139) displays the dealer’s cards, then deals cards to the
dealer until the dealer’s hand has a value of 17 or more (lines 100–108). If the dealer ex-
ceeds 21, the player wins (line 116); otherwise, the values of the hands are compared, and
gameOver is called with the appropriate argument (lines 122–133).

Method standJButtonActionPerformed

Clicking the Stand JButton indicates that a player does not want to be dealt another card.
Method standJButtonActionPerformed (lines 631–638) disables the Hit and Stand but-
tons, enables the Deal button, then calls method dealerPlay.

Method displayCard

Method displayCard (lines 142–192) updates the GUI to display a newly dealt card. The
method takes as arguments an integer index for the JLabel in the ArrayList that must
have its image set and a String representing the card. An empty String indicates that we
wish to display the card face down. If method displayCard receives a String that’s not
empty, the program extracts the face and suit from the String and uses this information
to display the correct image. The switch statement (lines 167–181) converts the number
representing the suit to an integer and assigns the appropriate character to variable suit-

Letter (h for hearts, d for diamonds, c for clubs and s for spades). The character in suit-

Letter is used to complete the image’s file name (lines 184–186). You must add the folder
blackjack_images to your project so that lines 152–154 and 184–186 can access the images
properly. To do so, copy the folder blackjack_images from this chapter’s examples folder
and paste it into the project’s src\com\deitel\java\blackjackclient folder.

28.10 Consuming a Database-Driven SOAP Web Service
Our prior examples accessed web services from desktop applications created in NetBeans.
However, we can just as easily use them in web applications created with NetBeans. In
fact, because web-based businesses are becoming increasingly popular, it’s common for

28.10 Consuming a Database-Driven SOAP Web Service 1003

web applications to consume web services. In this section, we present an airline reservation
web service that receives information regarding the type of seat a customer wishes to re-
serve and makes a reservation if such a seat is available. Later in the section, we present a
web application that allows a customer to specify a reservation request, then uses the airline
reservation web service to attempt to execute the request.

28.10.1 Creating the Reservation Database
Our web service uses a reservation database containing a single table named Seats to
locate a seat matching a client’s request. Review the steps presented in Section 27.2.1 for
configuring a data source and the addressbook database. Then perform those steps for the
reservation database used in this example. Create a data source named jdbc/reservation.
This chapter’s examples directory contains the Seats.sql SQL script to create the seats

table and populate it with sample data. The sample data is shown in Fig. 28.19.

Creating the Reservation Web Service
You can now create a web service that uses the Reservation database (Fig. 28.20). The
airline reservation web service has a single web method—reserve (lines 23–78)—which
searches the Seats table to locate a seat matching a user’s request. The method takes two
arguments—a String representing the desired seat type (i.e., "Window", "Middle" or
"Aisle") and a String representing the desired class type (i.e., "Economy" or "First"). If
it finds an appropriate seat, method reserve updates the database to make the reservation
and returns true; otherwise, no reservation is made, and the method returns false. The
statements at lines 34–39 and lines 45–48 that query and update the database use objects
of JDBC types ResultSet and PreparedStatement.

number location class taken

1 Aisle Economy 0

2 Aisle Economy 0

3 Aisle First 0

4 Middle Economy 0

5 Middle Economy 0

6 Middle First 0

7 Window Economy 0

8 Window Economy 0

9 Window First 0

10 Window First 0

Fig. 28.19 | Data from the seats table.

Software Engineering Observation 28.1
Using PreparedStatements to create SQL statements is highly recommended to secure
against so-called SQL injection attacks in which executable code is inserted into SQL
code. The site www.owasp.org/index.php/Preventing_SQL_Injection_in_Java

provides a summary of SQL injection attacks and ways to mitigate against them.

www.owasp.org/index.php/Preventing_SQL_Injection_in_Java

1004 Chapter 28 Web Services

1 // Fig. 28.20: Reservation.java
2 // Airline reservation web service.
3 package com.deitel.reservation;
4
5 import java.sql.Connection;
6 import java.sql.PreparedStatement;
7 import java.sql.ResultSet;
8 import java.sql.SQLException;
9 import javax.annotation.Resource;

10 import javax.jws.WebMethod;
11 import javax.jws.WebParam;
12 import javax.jws.WebService;
13 import javax.sql.DataSource;
14
15 @WebService()
16 public class Reservation
17 {
18
19
20
21
22 // a WebMethod that can reserve a seat
23 @WebMethod(operationName = "reserve")
24 public boolean reserve(@WebParam(name = "seatType") String seatType,
25 @WebParam(name = "classType") String classType)
26 {
27 Connection connection = null;
28 PreparedStatement lookupSeat = null;
29 PreparedStatement reserveSeat = null;
30
31 try

32 {
33
34
35
36
37
38
39
40
41
42 // if requested seat is available, reserve it
43 if (resultSet.next())
44 {
45
46
47
48
49
50 return true;
51 } // end if
52

Fig. 28.20 | Airline reservation web service. (Part 1 of 2.)

// allow the server to inject the DataSource
@Resource(name="jdbc/reservation")
DataSource dataSource;

connection = DriverManager.getConnection(
DATABASE_URL, USERNAME, PASSWORD);

lookupSeat = connection.prepareStatement(
"SELECT \"number\" FROM \"seats\" WHERE (\"taken\" = 0) " +
"AND (\"location\" = ?) AND (\"class\" = ?)");

lookupSeat.setString(1, seatType);
lookupSeat.setString(2, classType);
ResultSet resultSet = lookupSeat.executeQuery();

int seat = resultSet.getInt(1);
reserveSeat = connection.prepareStatement(

"UPDATE \"seats\" SET \"taken\"=1 WHERE \"number\"=?");
reserveSeat.setInt(1, seat);
reserveSeat.executeUpdate();

28.10 Consuming a Database-Driven SOAP Web Service 1005

Our database contains four columns—the seat number (i.e., 1–10), the seat type (i.e.,
Window, Middle or Aisle), the class type (i.e., Economy or First) and a column containing
either 1 (true) or 0 (false) to indicate whether the seat is taken. Lines 34–39 retrieve the
seat numbers of any available seats matching the requested seat and class type. This state-
ment fills the resultSet with the results of the query

The parameters type and class in the query are replaced with values of method reserve’s
seatType and classType parameters.

If resultSet is not empty (i.e., at least one seat is available that matches the selected
criteria), the condition in line 42 is true and the web service reserves the first matching
seat number. Recall that ResultSet method next returns true if a nonempty row exists,
and positions the cursor on that row. We obtain the seat number (line 44) by accessing
resultSet’s first column (i.e., resultSet.getInt(1)—the first column in the row). Then
lines 45–48 configure a PreparedStatement and execute the SQL:

53 return false;
54 } // end try
55 catch (SQLException e)
56 {
57 e.printStackTrace();
58 return false;
59 } // end catch
60 catch (Exception e)
61 {
62 e.printStackTrace();
63 return false;
64 } // end catch
65 finally

66 {
67 try

68 {
69 lookupSeat.close();
70 reserveSeat.close();
71 connection.close();
72 } // end try
73 catch (Exception e)
74 {
75 e.printStackTrace();
76 return false;
77 } // end catch
78 } // end finally
79 } // end WebMethod reserve
80 } // end class Reservation

SELECT number
FROM seats
WHERE (taken = 0) AND (type = type) AND (class = class)

UPDATE seats
SET taken = 1

WHERE (number = number)

Fig. 28.20 | Airline reservation web service. (Part 2 of 2.)

1006 Chapter 28 Web Services

which marks the seat as taken in the database. The parameter number is replaced with the
value of seat. Method reserve returns true (line 49) to indicate that the reservation was
successful. If there are no matching seats, or if an exception occurred, method reserve re-
turns false (lines 52, 57, 62 and 75) to indicate that no seats matched the user’s request.

28.10.2 Creating a Web Application to Interact with the Reservation
Service
This section presents a ReservationClient JSF web application that consumes the Res-

ervation web service. The application allows users to select "Aisle", "Middle" or "Win-
dow" seats in "Economy" or "First" class, then submit their requests to the web service. If
the database request is not successful, the application instructs the user to modify the re-
quest and try again. The application presented here was built using the techniques present-
ed in Chapters 26–27. We assume that you’ve already read those chapters and thus know
how to build a Facelets page and a corresponding JavaBean.

index.xhtml

index.xhtml (Fig. 28.21) defines two h:selectOneMenus and an h:commandButton. The
h:selectOneMenu at lines 16–20) displays all the seat types from which users can select.
The one at lines 21–24) provides choices for the class type. The values of these are stored
in the seatType and classType properties of the reservationBean (Fig. 28.22). Users
click the Reserve button (lines 25–26) to submit requests after making selections from the
h:selectOneMenus. Clicking the button calls the reservationBean’s reserveSeat meth-
od. The page displays the result of each attempt to reserve a seat in line 28.

1 <?xml version='1.0' encoding='UTF-8' ?>

2
3 <!-- Fig. 28.21: index.xhtml -->
4 <!-- Facelets page that allows a user to select a seat -->
5 <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

6 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

7 <html xmlns="http://www.w3.org/1999/xhtml"
8 xmlns:h="http://java.sun.com/jsf/html"
9 xmlns:f="http://java.sun.com/jsf/core">

10 <h:head>

11 <title>Airline Reservations</title>
12 </h:head>

13 <h:body>

14 <h:form>

15 <h3>Please select the seat type and class to reserve:</h3>
16 <h:selectOneMenu value="#{reservationBean.seatType}">
17 <f:selectItem itemValue="Aisle" itemLabel="Aisle" />

18 <f:selectItem itemValue="Middle" itemLabel="Middle" />

19 <f:selectItem itemValue="Window" itemLabel="Window" />

20 </h:selectOneMenu>

21 <h:selectOneMenu value="#{reservationBean.classType}">
22 <f:selectItem itemValue="Economy" itemLabel="Economy" />

23 <f:selectItem itemValue="First" itemLabel="First" />

24 </h:selectOneMenu>

Fig. 28.21 | Facelets page that allows a user to select a seat. (Part 1 of 2.)

28.10 Consuming a Database-Driven SOAP Web Service 1007

ReservationBean.java

Class ReservationBean (Fig. 28.22) defines the seatType, classType and result prop-
erties and the reserveSeat method that are used in the index.xhtml page. When the user
clicks the Reserve button in index.xhtml, method reserveSeat (lines 57–74) executes.
Lines 61–62 use the service endpoint interface object (created in lines 22–23) to invoke

25 <h:commandButton value="Reserve"
26 action="#{reservationBean.reserveSeat}"/>
27 </h:form>

28 <h3>#{reservationBean.result}</h3>
29 </h:body>

30 </html>

Fig. 28.21 | Facelets page that allows a user to select a seat. (Part 2 of 2.)

a) Selecting
a seat

b) Seat reserved
successfully

c) Attempting to
reserve another
window seat in
economy when

there are no such
seats available

d) No seats
match the

requested seat
type and class

1008 Chapter 28 Web Services

the web service’s reserve method, passing the selected seat type and class type as argu-
ments. If reserve returns true, line 65 sets result to a message thanking the user for
making a reservation; otherwise, lines 67–68 set result to a message notifying the user
that the requested seat type is not available and instructing the user to try again.

1 // Fig. 28.22: ReservationBean.java
2 // Bean for seat reservation client.
3 package reservationclient;
4
5 import com.deitel.reservation.Reservation;
6 import com.deitel.reservation.ReservationService;
7 import javax.faces.bean.ManagedBean;
8
9 @ManagedBean(name = "reservationBean")

10 public class ReservationBean
11 {
12 // references the service endpoint interface object (i.e., the proxy)
13 private Reservation reservationServiceProxy; // reference to proxy
14 private String seatType; // type of seat to reserve
15 private String classType; // class of seat to reserve
16 private String result; // result of reservation attempt
17
18 // no-argument constructor
19 public ReservationBean()
20 {
21 // get service endpoint interface
22 ReservationService reservationService = new ReservationService();
23 reservationServiceProxy = reservationService.getReservationPort();
24 } // end constructor
25
26 // return classType
27 public String getClassType()
28 {
29 return classType;
30 } // end method getClassType
31
32 // set classType
33 public void setClassType(String classType)
34 {
35 this.classType = classType;
36 } // end method setClassType
37
38 // return seatType
39 public String getSeatType()
40 {
41 return seatType;
42 } // end method getSeatType
43
44 // set seatType
45 public void setSeatType(String seatType)
46 {

Fig. 28.22 | Page bean for seat reservation client. (Part 1 of 2.)

28.11 Equation Generator: Returning User-Defined Types 1009

28.11 Equation Generator: Returning User-Defined
Types
Most of the web services we’ve demonstrated received and returned primitive-type in-
stances. It’s also possible to process instances of class types in a web service. These types
can be passed to or returned from web service methods.

This section presents a RESTful EquationGenerator web service that generates
random arithmetic equations of type Equation. The client is a math-tutoring application
that accepts information about the mathematical question that the user wishes to attempt
(addition, subtraction or multiplication) and the skill level of the user (1 specifies equa-
tions using numbers from 1 through 9, 2 specifies equations involving numbers from 10
through 99, and 3 specifies equations containing numbers from 100 through 999). The
web service then generates an equation consisting of random numbers in the proper range.
The client application receives the Equation and displays the sample question to the user.

Defining Class Equation
We define class Equation in Fig. 28.23. All the programs in this section have a copy of this
class in their corresponding package. Except for the package name, the class is identical in
each project, so we show it only once. Like the TextMessage class used earlier, the server-

47 this.seatType = seatType;
48 } // end method setSeatType
49
50 // return result
51 public String getResult()
52 {
53 return result;
54 } // end method getResult
55
56 // invoke the web service when the user clicks Reserve button
57 public void reserveSeat()
58 {
59 try

60 {
61 boolean reserved = reservationServiceProxy.reserve(
62 getSeatType(), getClassType());
63
64 if (reserved)
65 result = "Your reservation has been made. Thank you!";
66 else

67 result = "This type of seat is not available. " +
68 "Please modify your request and try again.";
69 } // end try
70 catch (Exception e)
71 {
72 e.printStackTrace();
73 } // end catch
74 } // end method reserveSeat
75 } // end class ReservationBean

Fig. 28.22 | Page bean for seat reservation client. (Part 2 of 2.)

1010 Chapter 28 Web Services

side and client-side copies of class Equation are unrelated to each other. The only require-
ment for serialization and deserialization to work with the JAXB and Gson classes is that
class Equation must have the same public properties on both the server and the client.
Such properties can be public instance variables or private instance variables that have cor-
responding set and get methods.

1 // Fig. 28.23: Equation.java
2 // Equation class that contains information about an equation.
3 package com.deitel.equationgeneratorxml;
4
5 public class Equation
6 {
7 private int leftOperand;
8 private int rightOperand;
9 private int result;

10 private String operationType;
11
12 // required no-argument constructor
13 public Equation()
14 {
15 this(0, 0, "add");
16 } // end no-argument constructor
17
18 // constructor that receives the operands and operation type
19 public Equation(int leftValue, int rightValue, String type)
20 {
21 leftOperand = leftValue;
22 rightOperand = rightValue;
23
24 // determine result
25 if (type.equals("add")) // addition
26 {
27 result = leftOperand + rightOperand;
28 operationType = "+";
29 } // end if
30 else if (type.equals("subtract")) // subtraction
31 {
32 result = leftOperand - rightOperand;
33 operationType = "-";
34 } // end if
35 else // multiplication
36 {
37 result = leftOperand * rightOperand;
38 operationType = "*";
39 } // end else
40 } // end three argument constructor
41
42 // gets the leftOperand
43 public int getLeftOperand()
44 {
45 return leftOperand;
46 } // end method getLeftOperand

Fig. 28.23 | Equation class that contains information about an equation. (Part 1 of 3.)

28.11 Equation Generator: Returning User-Defined Types 1011

47
48 // required setter
49 public void setLeftOperand(int value)
50 {
51 leftOperand = value;
52 } // end method setLeftOperand
53
54 // gets the rightOperand
55 public int getRightOperand()
56 {
57 return rightOperand;
58 } // end method getRightOperand
59
60 // required setter
61 public void setRightOperand(int value)
62 {
63 rightOperand = value;
64 } // end method setRightOperand
65
66 // gets the resultValue
67 public int getResult()
68 {
69 return result;
70 } // end method getResult
71
72 // required setter
73 public void setResult(int value)
74 {
75 result = value;
76 } // end method setResult
77
78 // gets the operationType
79 public String getOperationType()
80 {
81 return operationType;
82 } // end method getOperationType
83
84 // required setter
85 public void setOperationType(String value)
86 {
87 operationType = value;
88 } // end method setOperationType
89
90 // returns the left hand side of the equation as a String
91 public String getLeftHandSide()
92 {
93 return leftOperand + " " + operationType + " " + rightOperand;
94 } // end method getLeftHandSide
95
96 // returns the right hand side of the equation as a String
97 public String getRightHandSide()
98 {

Fig. 28.23 | Equation class that contains information about an equation. (Part 2 of 3.)

1012 Chapter 28 Web Services

Lines 19–40 define a constructor that takes two ints representing the left and right
operands, and a String representing the arithmetic operation. The constructor stores this
information, then calculates the result. The parameterless constructor (lines 13–16) calls
the three-argument constructor (lines 19–40) and passes default values.

Class Equation defines get and set methods for instance variables leftOperand (lines
43–52), rightOperand (lines 55–64), result (line 67–76) and operationType (lines 79–
88). It also provides get methods for the left-hand and right-hand sides of the equation and
a toString method that returns the entire equation as a String. An instance variable can
be serialized only if it has both a get and a set method. Because the different sides of the
equation and the result of toString can be generated from the other instance variables,
there’s no need to send them across the wire. The client in this case study does not use the
getRightHandSide method, but we included it in case future clients choose to use it.

28.11.1 Creating the EquationGeneratorXML Web Service
Figure 28.24 presents the EquationGeneratorXML web service’s class for creating random-
ly generated Equations. Method getXml (lines 19–38) takes two parameters—a String

representing the mathematical operation ("add", "subtract" or "multiply") and an int

representing the difficulty level. JAX-RS automatically converts the arguments to the cor-
rect type and will return a “not found” error to the client if the argument cannot be con-
verted from a String to the destination type. Supported types for conversion include
integer types, floating-point types, boolean and the corresponding type-wrapper classes.

99 return "" + result;
100 } // end method getRightHandSide
101
102 // returns a String representation of an Equation
103 public String toString()
104 {
105 return getLeftHandSide() + " = " + getRightHandSide();
106 } // end method toString
107 } // end class Equation

1 // Fig. 28.24: EquationGeneratorXMLResource.java
2 // RESTful equation generator that returns XML.
3 package com.deitel.equationgeneratorxml;
4
5 import java.io.StringWriter;
6 import java.util.Random;
7 import javax.ws.rs.PathParam;
8 import javax.ws.rs.Path;
9 import javax.ws.rs.GET;

10 import javax.ws.rs.Produces;
11 import javax.xml.bind.JAXB; // utility class for common JAXB operations
12

Fig. 28.24 | RESTful equation generator that returns XML. (Part 1 of 2.)

Fig. 28.23 | Equation class that contains information about an equation. (Part 3 of 3.)

28.11 Equation Generator: Returning User-Defined Types 1013

The getXml method first determines the minimum (inclusive) and maximum (exclu-
sive) values for the numbers in the equation it will return (lines 26–27). It then uses a static
member of the Random class (line 16) to generate two random numbers in that range (lines
30–31). Line 34 creates an Equation object, passing these two numbers and the requested
operation to the constructor. The getXml method then uses JAXB to convert the Equation
object to XML (line 36), which is output to the StringWriter created on line 35. Finally,
it retrieves the data that was written to the StringWriter and returns it to the client. [Note:
We’ll reimplement this web service with JSON in Section 28.11.3.]

28.11.2 Consuming the EquationGeneratorXML Web Service
The EquationGeneratorXMLClient application (Fig. 28.25) retrieves an XML-formatted
Equation object from the EquationGeneratorXML web service. The application then dis-
plays the Equation’s left-hand side and waits for user to submit an answer.

13 @Path("equation")
14 public class EquationGeneratorXMLResource
15 {
16 private static Random randomObject = new Random();
17
18 // retrieve an equation formatted as XML
19
20
21
22
23
24 {
25 // compute minimum and maximum values for the numbers
26 int minimum = (int) Math.pow(10, level - 1);
27 int maximum = (int) Math.pow(10, level);
28
29 // create the numbers on the left-hand side of the equation
30 int first = randomObject.nextInt(maximum - minimum) + minimum;
31 int second = randomObject.nextInt(maximum - minimum) + minimum;
32
33 // create Equation object and marshal it into XML
34 Equation equation = new Equation(first, second, operation);
35
36
37
38 } // end method getXml
39 } // end class EquationGeneratorXMLResource

1 // Fig. 28.25: EquationGeneratorXMLClientJFrame.java
2 // Math-tutoring program using REST and XML to generate equations.
3 package com.deitel.equationgeneratorxmlclient;
4
5 import javax.swing.JOptionPane;

Fig. 28.25 | Math-tutoring program using REST and XML to generate equations. (Part 1 of 4.)

Fig. 28.24 | RESTful equation generator that returns XML. (Part 2 of 2.)

@GET
@Path("{operation}/{level}")
@Produces("application/xml")
public String getXml(@PathParam("operation") String operation,

@PathParam("level") int level)

StringWriter writer = new StringWriter(); // XML output here
JAXB.marshal(equation, writer); // write Equation to StringWriter
return writer.toString(); // return XML string

1014 Chapter 28 Web Services

6 import javax.xml.bind.JAXB; // utility class for common JAXB operations
7
8 public class EquationGeneratorXMLClientJFrame extends javax.swing.JFrame
9 {

10 private String operation = "add"; // operation user is tested on
11 private int difficulty = 1; // 1, 2, or 3 digits in each number
12 private int answer; // correct answer to the question
13
14 // no-argument constructor
15 public EquationGeneratorXMLClientJFrame()
16 {
17 initComponents();
18 } // end no-argument constructor
19
20
21
22
23
24
25 // determine if the user answered correctly
26 private void checkAnswerJButtonActionPerformed(
27 java.awt.event.ActionEvent evt)
28 {
29 if (answerJTextField.getText().equals(""))
30 {
31 JOptionPane.showMessageDialog(
32 this, "Please enter your answer.");
33 } // end if
34
35 int userAnswer = Integer.parseInt(answerJTextField.getText());
36
37 if (userAnswer == answer)
38 {
39 equationJLabel.setText(""); // clear label
40 answerJTextField.setText(""); // clear text field
41 checkAnswerJButton.setEnabled(false);
42 JOptionPane.showMessageDialog(this, "Correct! Good Job!",
43 "Correct", JOptionPane.PLAIN_MESSAGE);
44 } // end if
45 else

46 {
47 JOptionPane.showMessageDialog(this, "Incorrect. Try again.",
48 "Incorrect", JOptionPane.PLAIN_MESSAGE);
49 } // end else
50 } // end method checkAnswerJButtonActionPerformed
51
52 // retrieve equation from web service and display left side to user
53 private void generateJButtonActionPerformed(
54 java.awt.event.ActionEvent evt)
55 {
56 try

57 {

Fig. 28.25 | Math-tutoring program using REST and XML to generate equations. (Part 2 of 4.)

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open EquationGeneratorXMLClientJFrame.java in
// this example's folder to view the complete generated code.

28.11 Equation Generator: Returning User-Defined Types 1015

58 String url = String.format("http://localhost:8080/" +
59 "EquationGeneratorXML/resources/equation/%s/%d",
60 operation, difficulty);
61
62 // convert XML back to an Equation object
63
64
65
66
67 checkAnswerJButton.setEnabled(true);
68 } // end try
69 catch (Exception exception)
70 {
71 exception.printStackTrace();
72 } // end catch
73 } // end method generateJButtonActionPerformed
74
75 // obtains the mathematical operation selected by the user
76 private void operationJComboBoxItemStateChanged(
77 java.awt.event.ItemEvent evt)
78 {
79 String item = (String) operationJComboBox.getSelectedItem();
80
81 if (item.equals("Addition"))
82 operation = "add"; // user selected addition
83 else if (item.equals("Subtraction"))
84 operation = "subtract"; // user selected subtraction
85 else

86 operation = "multiply"; // user selected multiplication
87 } // end method operationJComboBoxItemStateChanged
88
89 // obtains the difficulty level selected by the user
90 private void levelJComboBoxItemStateChanged(
91 java.awt.event.ItemEvent evt)
92 {
93 // indices start at 0, so add 1 to get the difficulty level
94 difficulty = levelJComboBox.getSelectedIndex() + 1;
95 } // end method levelJComboBoxItemStateChanged
96
97 // main method begins execution
98 public static void main(String args[])
99 {
100 java.awt.EventQueue.invokeLater(
101 new Runnable()
102 {
103 public void run()
104 {
105 new EquationGeneratorXMLClientJFrame().setVisible(true);
106 } // end method run
107 } // end anonymous inner class
108); // end call to java.awt.EventQueue.invokeLater
109 } // end main
110

Fig. 28.25 | Math-tutoring program using REST and XML to generate equations. (Part 3 of 4.)

Equation equation = JAXB.unmarshal(url, Equation.class);

answer = equation.getResult();
equationJLabel.setText(equation.getLeftHandSide() + " =");

1016 Chapter 28 Web Services

The default setting for the difficulty level is 1, but the user can change this by choosing
a level from the Choose level JComboBox. Changing the selected value invokes the level-

JComboBoxItemStateChanged event handler (lines 208–213), which sets the difficulty

instance variable to the level selected by the user. Although the default setting for the ques-
tion type is Addition, the user also can change this by choosing from the Choose operation
JComboBox. This invokes the operationJComboBoxItemStateChanged event handler in
lines 194–205, which assigns to instance variable operation the String corresponding to
the user’s selection.

The event handler for generateJButton (lines 171–191) constructs the URL to
invoke the web service, then passes this URL to the unmarshal method, along with an
instance of Class<Equation>, so that JAXB can convert the XML into an Equation object
(line 181). Once the XML has been converted back into an Equation, lines 183–184
retrieve the correct answer and display the left-hand side of the equation. The Check
Answer button is then enabled (line 185), and the user must solve the problem and enter
the answer.

When the user enters a value and clicks Check Answer, the checkAnswerJButtonAc-

tionPerformed event handler (lines 144–168) retrieves the user’s answer from the dialog
box (line 153) and compares it to the correct answer that was stored earlier (line 155). If
they match, lines 157–161 reset the GUI elements so the user can generate another equa-
tion and tell the user that the answer was correct. If they do not match, a message box
asking the user to try again is displayed (lines 165–166).

111 // Variables declaration - do not modify
112 private javax.swing.JLabel answerJLabel;
113 private javax.swing.JTextField answerJTextField;
114 private javax.swing.JButton checkAnswerJButton;
115 private javax.swing.JLabel equationJLabel;
116 private javax.swing.JButton generateJButton;
117 private javax.swing.JComboBox levelJComboBox;
118 private javax.swing.JLabel levelJLabel;
119 private javax.swing.JComboBox operationJComboBox;
120 private javax.swing.JLabel operationJLabel;
121 private javax.swing.JLabel questionJLabel;
122 // End of variables declaration
123 } // end class EquationGeneratorXMLClientJFrame

Fig. 28.25 | Math-tutoring program using REST and XML to generate equations. (Part 4 of 4.)

a) Generating a simple equation. b) Sumbitting the answer. c) Dialog indicating correct answer.

28.11 Equation Generator: Returning User-Defined Types 1017

28.11.3 Creating the EquationGeneratorJSON Web Service
As you saw in Section 28.8, RESTful web services can return data formatted as JSON as
well. Figure 28.26 is a reimplementation of the EquationGeneratorXML service that re-
turns an Equation in JSON format.

The logic implemented here is the same as the XML version except for the last line
(line 34), which uses Gson to convert the Equation object into JSON instead of using
JAXB to convert it into XML. The @Produces annotation (line 20) has also changed to
reflect the JSON data format.

28.11.4 Consuming the EquationGeneratorJSON Web Service
The program in Fig. 28.27 consumes the EquationGeneratorJSON service and performs
the same function as EquationGeneratorXMLClient—the only difference is in how the

1 // Fig. 28.26: EquationGeneratorJSONResource.java
2 // RESTful equation generator that returns JSON.
3 package com.deitel.equationgeneratorjson;
4
5 import com.google.gson.Gson; // converts POJO to JSON and back again
6 import java.util.Random;
7 import javax.ws.rs.GET;
8 import javax.ws.rs.Path;
9 import javax.ws.rs.PathParam;

10 import javax.ws.rs.Produces;
11
12 @Path("equation")
13 public class EquationGeneratorJSONResource
14 {
15 static Random randomObject = new Random(); // random number generator
16
17 // retrieve an equation formatted as JSON
18 @GET
19 @Path("{operation}/{level}")
20
21 public String getJson(@PathParam("operation") String operation,
22 @PathParam("level") int level)
23 {
24 // compute minimum and maximum values for the numbers
25 int minimum = (int) Math.pow(10, level - 1);
26 int maximum = (int) Math.pow(10, level);
27
28 // create the numbers on the left-hand side of the equation
29 int first = randomObject.nextInt(maximum - minimum) + minimum;
30 int second = randomObject.nextInt(maximum - minimum) + minimum;
31
32 // create Equation object and return result
33 Equation equation = new Equation(first, second, operation);
34
35 } // end method getJson
36 } // end class EquationGeneratorJSONResource

Fig. 28.26 | RESTful equation generator that returns JSON.

@Produces("application/json")

return new Gson().toJson(equation); // convert to JSON and return

1018 Chapter 28 Web Services

Equation object is retrieved from the web service. Lines 181–183 construct the URL that
is used to invoke the EquationGeneratorJSON service. As in the WelcomeRESTJSONClient
example, we use the URL class and an InputStreamReader to invoke the web service and
read the response (lines 186–187). The retrieved JSON is deserialized using Gson (line
191) and converted back into an Equation object. As before, we use the getResult meth-
od (line 194) of the deserialized object to obtain the answer and the getLeftHandSide

method (line 195) to display the left side of the equation.

1 // Fig. 28.27: EquationGeneratorJSONClientJFrame.java
2 // Math-tutoring program using REST and JSON to generate equations.
3 package com.deitel.equationgeneratorjsonclient;
4
5 import com.google.gson.Gson; // converts POJO to JSON and back again
6 import java.io.InputStreamReader;
7 import java.net.URL;
8 import javax.swing.JOptionPane;
9

10 public class EquationGeneratorJSONClientJFrame extends javax.swing.JFrame
11 {
12 private String operation = "add"; // operation user is tested on
13 private int difficulty = 1; // 1, 2, or 3 digits in each number
14 private int answer; // correct answer to the question
15
16 // no-argument constructor
17 public EquationGeneratorJSONClientJFrame()
18 {
19 initComponents();
20 } // end no-argument constructor
21
22
23
24
25
26
27 // determine if the user answered correctly
28 private void checkAnswerJButtonActionPerformed(
29 java.awt.event.ActionEvent evt)
30 {
31 if (answerJTextField.getText().equals(""))
32 {
33 JOptionPane.showMessageDialog(
34 this, "Please enter your answer.");
35 } // end if
36
37 int userAnswer = Integer.parseInt(answerJTextField.getText());
38
39 if (userAnswer == answer)
40 {
41 equationJLabel.setText(""); // clear label
42 answerJTextField.setText(""); // clear text field
43 checkAnswerJButton.setEnabled(false);

Fig. 28.27 | Math-tutoring program using REST and JSON to generate equations. (Part 1 of 3.)

// The initComponents method is autogenerated by NetBeans and is called
// from the constructor to initialize the GUI. This method is not shown
// here to save space. Open EquationGeneratorJSONClientJFrame.java in
// this example's folder to view the complete generated code.

28.11 Equation Generator: Returning User-Defined Types 1019

44 JOptionPane.showMessageDialog(this, "Correct! Good Job!",
45 "Correct", JOptionPane.PLAIN_MESSAGE);
46 } // end if
47 else

48 {
49 JOptionPane.showMessageDialog(this, "Incorrect. Try again.",
50 "Incorrect", JOptionPane.PLAIN_MESSAGE);
51 } // end else
52 } // end method checkAnswerJButtonActionPerformed
53
54 // retrieve equation from web service and display left side to user
55 private void generateJButtonActionPerformed(
56 java.awt.event.ActionEvent evt)
57 {
58 try

59 {
60 // URL of the EquationGeneratorJSON service, with parameters
61 String url = String.format("http://localhost:8080/" +
62 "EquationGeneratorJSON/resources/equation/%s/%d",
63 operation, difficulty);
64
65 // open URL and create a Reader to read the data
66
67
68
69 // convert the JSON back into an Equation object
70
71
72
73 // update the internal state and GUI to reflect the equation
74 answer = equation.getResult();
75 equationJLabel.setText(equation.getLeftHandSide() + " =");
76 checkAnswerJButton.setEnabled(true);
77 } // end try
78 catch (Exception exception)
79 {
80 exception.printStackTrace();
81 } // end catch
82 } // end method generateJButtonActionPerformed
83
84 // obtains the mathematical operation selected by the user
85 private void operationJComboBoxItemStateChanged(
86 java.awt.event.ItemEvent evt)
87 {
88 String item = (String) operationJComboBox.getSelectedItem();
89
90 if (item.equals("Addition"))
91 operation = "add"; // user selected addition
92 else if (item.equals("Subtraction"))
93 operation = "subtract"; // user selected subtraction
94 else

95 operation = "multiply"; // user selected multiplication
96 } // end method operationJComboBoxItemStateChanged

Fig. 28.27 | Math-tutoring program using REST and JSON to generate equations. (Part 2 of 3.)

InputStreamReader reader =
new InputStreamReader(new URL(url).openStream());

Equation equation =
new Gson().fromJson(reader, Equation.class);

1020 Chapter 28 Web Services

28.12 Wrap-Up
This chapter introduced web services—a set of technologies for building distributed sys-
tems in which system components communicate with one another over networks. In par-
ticular, we presented JAX-WS SOAP-based web services and JAX-RS REST-based web
services. You learned that a web service is a class that allows client software to call the web
service’s methods remotely via common data formats and protocols, such as XML, JSON,
HTTP, SOAP and REST. We also benefits of distributed computing with web services.

We explained how NetBeans and the JAX-WS and JAX-RS APIs facilitate publishing
and consuming web services. You learned how to define web services and methods using
both SOAP protocol and REST architecture, and how to return data in both XML and
JSON formats. You consumed SOAP-based web services using proxy classes to call the
web service’s methods. You also consumed REST-based web services by using class URL to

97
98 // obtains the difficulty level selected by the user
99 private void levelJComboBoxItemStateChanged(
100 java.awt.event.ItemEvent evt)
101 {
102 // indices start at 0, so add 1 to get the difficulty level
103 difficulty = levelJComboBox.getSelectedIndex() + 1;
104 } // end method levelJComboBoxItemStateChanged
105
106 // main method begins execution
107 public static void main(String args[])
108 {
109 java.awt.EventQueue.invokeLater(
110 new Runnable()
111 {
112 public void run()
113 {
114 new EquationGeneratorJSONClientJFrame().setVisible(true);
115 } // end method run
116 } // end anonymous inner class
117); // end call to java.awt.EventQueue.invokeLater
118 } // end main
119
120 // Variables declaration - do not modify
121 private javax.swing.JLabel answerJLabel;
122 private javax.swing.JTextField answerJTextField;
123 private javax.swing.JButton checkAnswerJButton;
124 private javax.swing.JLabel equationJLabel;
125 private javax.swing.JButton generateJButton;
126 private javax.swing.JComboBox levelJComboBox;
127 private javax.swing.JLabel levelJLabel;
128 private javax.swing.JComboBox operationJComboBox;
129 private javax.swing.JLabel operationJLabel;
130 private javax.swing.JLabel questionJLabel;
131 // End of variables declaration
132 } // end class EquationGeneratorJSONClientJFrame

Fig. 28.27 | Math-tutoring program using REST and JSON to generate equations. (Part 3 of 3.)

28.12 Wrap-Up 1021

invoke the services and open InputStreams from which the clients could read the services’
responses. You learned how to define web services and web methods, as well as how to con-
sume them both from Java desktop applications and from web applications. After
explaining the mechanics of web services through our Welcome examples, we demonstrated
more sophisticated web services that use session tracking, database access and user-defined
types. We also explained XML and JSON serialization and showed how to retrieve objects
of user-defined types from web services.

A
Operator Precedence Chart

Operators are shown in decreasing order of precedence from top to bottom (Fig. A.1).

Operator Description Associativity

++
--

unary postfix increment
unary postfix decrement

right to left

++
--
+
-
!
~
(type)

unary prefix increment
unary prefix decrement
unary plus
unary minus
unary logical negation
unary bitwise complement
unary cast

right to left

*
/
%

multiplication
division
remainder

left to right

+
-

addition or string concatenation
subtraction

left to right

<<
>>
>>>

left shift
signed right shift
unsigned right shift

left to right

<
<=
>
>=
instanceof

less than
less than or equal to
greater than
greater than or equal to
type comparison

left to right

Fig. A.1 | Operator precedence chart. (Part 1 of 2.)

1023

==
!=

is equal to
is not equal to

left to right

& bitwise AND
boolean logical AND

left to right

^ bitwise exclusive OR
boolean logical exclusive OR

left to right

| bitwise inclusive OR
boolean logical inclusive OR

left to right

&& conditional AND left to right

|| conditional OR left to right

?: conditional right to left

=
+=
-=
*=
/=
%=
&=
^=
|=
<<=
>>=
>>>=

assignment
addition assignment
subtraction assignment
multiplication assignment
division assignment
remainder assignment
bitwise AND assignment
bitwise exclusive OR assignment
bitwise inclusive OR assignment
bitwise left-shift assignment
bitwise signed-right-shift assignment
bitwise unsigned-right-shift assignment

right to left

Operator Description Associativity

Fig. A.1 | Operator precedence chart. (Part 2 of 2.)

B
ASCII Character Set

The digits at the left of the table are the left digits of the decimal equivalents (0–127) of
the character codes, and the digits at the top of the table are the right digits of the character
codes. For example, the character code for “F” is 70, and the character code for “&” is 38.

Most users of this book are interested in the ASCII character set used to represent
English characters on many computers. The ASCII character set is a subset of the Unicode
character set used by Java to represent characters from most of the world’s languages.

0 1 2 3 4 5 6 7 8 9

0 nul soh stx etx eot enq ack bel bs ht

1 nl vt ff cr so si dle dc1 dc2 dc3

2 dc4 nak syn etb can em sub esc fs gs

3 rs us sp ! " # $ % & ‘

4 () * + , - . / 0 1

5 2 3 4 5 6 7 8 9 : ;

6 < = > ? @ A B C D E

7 F G H I J K L M N O

8 P Q R S T U V W X Y

9 Z [\] ^ _ ’ a b c

10 d e f g h i j k l m

11 n o p q r s t u v w

12 x y z { | } ~ del

Fig. B.1 | ASCII character set.

C
Keywords and Reserved Words

Java also contains the reserved words true and false, which are boolean literals, and
null, which is the literal that represents a reference to nothing. Like keywords, these re-
served words cannot be used as identifiers.

Java Keywords

abstract assert boolean break byte

case catch char class continue

default do double else enum

extends final finally float for

if implements import instanceof int

interface long native new package

private protected public return short

static strictfp super switch synchronized

this throw throws transient try

void volatile while

Keywords that are not currently used

const goto

Fig. C.1 | Java keywords.

D
Primitive Types

For more information on IEEE 754 visit grouper.ieee.org/groups/754/.

Type Size in bits Values Standard

boolean true or false

[Note: A boolean’s representation is specific to the Java Virtual Machine on each platform.]

char 16 '\u0000' to '\uFFFF' (0 to 65535) (ISO Unicode
character set)

byte 8 –128 to +127 (–27 to 27 – 1)

short 16 –32,768 to +32,767 (–215 to 215 – 1)

int 32 –2,147,483,648 to +2,147,483,647 (–231 to 231 – 1)

long 64 –9,223,372,036,854,775,808 to
+9,223,372,036,854,775,807 (–263 to 263 – 1)

float 32 Negative range:
–3.4028234663852886E+38 to
–1.40129846432481707e–45
Positive range:
1.40129846432481707e–45 to
3.4028234663852886E+38

(IEEE 754
floating point)

double 64 Negative range:
–1.7976931348623157E+308 to
–4.94065645841246544e–324
Positive range:
4.94065645841246544e–324 to
1.7976931348623157E+308

(IEEE 754
floating point)

Fig. D.1 | Java primitive types.

E
Using the Java API Documentation

E.1 Introduction
The Java class library contains thousands of predefined classes and interfaces that program-
mers can use to write their own applications. These classes are grouped into packages based
on their functionality. For example, the classes and interfaces used for file processing are
grouped into the java.io package, and the classes and interfaces for networking applica-
tions are grouped into the java.net package. The Java API documentation lists the pub-
lic and protected members of each class and the public members of each interface in
the Java class library. The documentation overviews all the classes and interfaces, summa-
rizes their members (i.e., the fields, constructors and methods of classes, and the fields and
methods of interfaces) and provides detailed descriptions of each member. Most Java pro-
grammers rely on this documentation when writing programs. Normally, programmers
would search the API to find the following:

1. The package that contains a particular class or interface.

2. Relationships between a particular class or interface and other classes and inter-
faces.

3. Class or interface constants—normally declared as public static final fields.

4. Constructors to determine how an object of the class can be initialized.

5. The methods of a class to determine whether they’re static or non-static, the
number and types of the arguments you need to pass, the return types and any
exceptions that might be thrown from the method.

In addition, programmers often rely on the documentation to discover classes and
interfaces that they have not used before. For this reason, we demonstrate the documenta-
tion with classes you know and classes you may not have studied yet. We show how to use
the documentation to locate the information you need to use a class or interface effectively.

1028 Appendix E Using the Java API Documentation

E.2 Navigating the Java API
The Java API documentation can be downloaded to your local hard disk or viewed online.
To download the Java API documentation, go to www.oracle.com/technetwork/java/

javase/downloads/index.html/ scroll down to the Additional Resources section and
click the Download Zip button to the right of Java SE 6 Documentation. You’ll be asked to
accept a license agreement. To do this, click Accept, then click Continue. Click the link to
the ZIP file to begin downloading it. After downloading the file, you can use a program
such as WinZip (www.winzip.com) to extract the files. If you’re using Windows, extract
the contents to your JDK’s installation directory. To view the API documentation on your
local hard disk in Microsoft Windows, open C:\Program Files\Java\YourJDKVer-
sion\docs\api\index.html page in your browser. To view the API documentation online,
go to download.oracle.com/javase/6/docs/api/ (Fig. E.1).

Frames in the API Documentation’s index.html Page
The API documentation is divided into three frames (see Fig. E.1). The upper-left frame
lists all of the Java API’s packages in alphabetical order. The lower-left frame initially lists
the Java API’s classes and interfaces in alphabetical order. Interface names are displayed in
italic. When you click a specific package in the upper-left frame, the lower-left frame lists
the classes and interfaces of the selected package. The right frame initially provides a brief
description of each package of the Java API specification—read this overview to become

Fig. E.1 | Java API overview. (Courtesy of Oracle Corporation)

Upper-left frame
lists all packages
in alphabetical
order

Lower-left frame lists all classes and
interfaces in alphabetical order.
Interfaces are displayed in italics.

Right frame overviews the API specification and contains descriptions
of each package. When you select a particular class or interface in the
lower-left frame, its information will be displayed here.

Tree link displays
the hierarchy of all
packages and
classes

Deprecated link
lists portions of the
API that should no
longer be used

Index link lists
fields, methods,
classes and
interfaces

Help link
describes how
the API is
organized

www.oracle.com/technetwork/java/javase/downloads/index.html/
www.oracle.com/technetwork/java/javase/downloads/index.html/
www.winzip.com

E.2 Navigating the Java API 1029

familiar wth the general capabilities of the Java APIs. If you select a class or interface in the
lower-left frame, the right frame displays information about that class or interface.

Important Links in the index.html Page
At the top of the right frame (Fig. E.1), there are four links—Tree, Deprecated, Index
and Help. The Tree link displays the hierarchy of all packages, classes and interfaces in a
tree structure. The Deprecated link displays interfaces, classes, exceptions, fields, construc-
tors and methods that should no longer be used. The Index link displays classes, interfaces,
fields, constructors and methods in alphabetical order. The Help link describes how the
API documentation is organized. You should probably begin by reading the Help page.

Viewing the Index Page
If you do not know the name of the class you’re looking for, but you do know the name
of a method or field, you can use the documentation’s index to locate the class. The Index
link is located near the upper-right corner of the right frame. The index page (Fig. E.2)
displays fields, constructors, methods, interfaces and classes in alphabetical order. For ex-
ample, if you’re looking for Scanner method hasNextInt, but do not know the class
name, you can click the H link to go to the alphabetical listing of all items in the Java API
that begin with "h". Scroll to method hasNextInt (Fig. E.3). Once there, each method
named hasNextInt is listed with the package name and class to which the method belongs.
From there, you can click the class name to view the class’s complete details, or you can
click the method name to view the method’s details.

Fig. E.2 | Viewing the Index page. (Courtesy of Oracle Corporation.)

Click the Index link to display
the documentation’s index

Classes, interfaces and their members are listed in alphabetical
order. Click a letter to view all fields, constructors, methods,
interfaces and classes that start with that letter.

1030 Appendix E Using the Java API Documentation

Viewing a Specific Package
When you click the package name in the upper-left frame, all classes and interfaces from that
package are displayed in the lower-left frame and are divided into five subsections—Interfac-
es, Classes, Enums, Exceptions and Errors—each listed alphabetically. For example, the con-
tents of package javax.swing are displayed in the lower-left frame (Fig. E.4) when you click
javax.swing in the upper-left frame. You can click the package name in the lower-left frame
to get an overview of the package. If you think that a package contains several classes that
could be useful in your application, the package overview can be especially helpful.

Viewing the Details of a Class
When you click a class name or interface name in the lower-left frame, the right frame dis-
plays the details of that class or interface. First you’ll see the class’s package name followed

Fig. E.3 | Scroll to method hasNextInt. (Courtesy of Oracle Corporation)

Fig. E.4 | Clicking a package name in the upper-left frame to view all classes and interfaces
declared in this package. (Courtesy of Oracle Corporation)

Click the class name to view
the class’s complete details

Click the method name to
view the method’s details

Click a package name in the upper-
left frame to view all classes and
interfaces defined in the package

Contents of package javax.swing
are displayed in the lower-left frame

Click the package name in the lower-
left frame to display a summary of
that package in the right frame

E.2 Navigating the Java API 1031

by a hierarchy that shows the class’s relationship to other classes. You’ll also see a list of the
interfaces implemented by the class and the class’s known subclasses. Figure E.5 shows the
beginning of the documentation page for class JButton from the javax.swing package.
The page first shows the package name in which the class appears. This is followed by the
class hierarchy that leads to class JButton, the interfaces class JButton implements and the
subclasses of class JButton. The bottom of the right frame shows the beginning of class
JButton’s description. When you look at the documentation for an interface, the right
frame does not display a hierarchy for that interface. Instead, the right frame lists the in-
terface’s superinterfaces, known subinterfaces and known implementing classes.

Summary Sections in a Class’s Documentation Page
Other parts of each API page are listed below. Each part is presented only if the class con-
tains or inherits the items specified. Class members shown in the summary sections are
public unless they’re explicitly marked as protected. A class’s private members are not
shown in the documentation, because they cannot be used directly in your programs.

Fig. E.5 | Clicking a class name to view detailed information about the class. (Courtesy of
Oracle Corporation)

JButton class hierarchy

Click the class name to view detailed
information about the class

Detailed information about the class
is displayed in the right frame

Interfaces implemented
by class JButton

JButton subclasses

Description of class
JButton

Click the link to load
the page that contains a
tutorial on how to use
buttons. Many classes
have similar tutorial
links.

1032 Appendix E Using the Java API Documentation

1. The Nested Class Summary section summarizes the class’s public and pro-

tected nested classes—i.e., classes that are defined inside the class. Unless explic-
itly specified, these classes are public and non-static.

2. The Field Summary section summarizes the class’s public and protected fields.
Unless explicitly specified, these fields are public and non-static. Figure E.6
shows the Field Summary section of class Color.

3. The Constructor Summary section summarizes the class’s constructors. Con-
structors are not inherited, so this section appears in the documentation for a class
only if the class declares one or more constructors. Figure E.7 shows the Con-
structor Summary section of class JButton.

Fig. E.6 | Field Summary section of class Color. (Courtesy of Oracle Corporation)

Fig. E.7 | Constructor Summary section of class JButton. (Courtesy of Oracle Corporation)

Field Summary
section of class Color

Click the field name to
go to the Field Detail
section, which provides
additional information
about the field

Click the field type to go
to its page. If the field
has the same type as its
class, clicking it will
return you to the top of
the current page.

Constructor
Summary section

Click the parameter
type to load its page

Click the constructor
name to go to the
Constructor Detail
section, which provides
additional information
about the constructor

E.2 Navigating the Java API 1033

4. The Method Summary section summarizes the class’s public and protected

methods. Unless explicitly specified, these methods are public and non-static.
Figure E.8 shows the Method Summary section of class BufferedInputStream.

The summary sections typically provide only a one-sentence description of a class
member. Additional details are presented in the detail sections discussed next.

Detail Sections in a Class’s Documentation Page
After the summary sections are detail sections that normally provide more discussion of
particular class members. There isn’t a detail section for nested classes. When you click the
link in the Nested Class Summary for a particular nested class, a documentation page de-
scribing that nested class is displayed. The detail sections are described below.

1. The Field Detail section provides the declaration of each field. It also discusses
each field, including the field’s modifiers and meaning. Figure E.9 shows the
Field Detail section of class Color.

Fig. E.8 | Method Summary section of class BufferedInputStream. (Courtesy of Oracle
Corporation)

Fig. E.9 | Field Detail section of class Color. (Courtesy of Oracle Corporation)

Method Summary
section

Click the method
name to go to the
Method Detail
section, which
provides additional
information about
that method

Field Detail section
describes the purpose
of each field

1034 Appendix E Using the Java API Documentation

2. The Constructor Detail section provides the first line of each constructor’s dec-
laration and discusses the constructors. The discussion includes the modifiers of
each constructor, a description of each constructor, each constructor’s parameters
and any exceptions thrown by each constructor. Figure E.10 shows the Construc-
tor Detail section of class JButton.

3. The Method Detail section provides the first line of each method. The discussion
of each method includes its modifiers, a more complete method description, the
method’s parameters, the method’s return type and any exceptions thrown by the
method. Figure E.11 shows class BufferedInputStream’s Method Detail section.

Fig. E.10 | Constructor Detail section of class JButton. (Courtesy of Oracle Corporation)

Fig. E.11 | Method Detail section of class BufferedInputStream. (Courtesy of Oracle
Corporation)

Constructor
Detail section
describes each
constructor

Method read throws IOException. Click IOException to load the IOException class information
page and learn more about the exception type (e.g., why such an exception might be thrown)

Method
Detail
section

Method read overrides
the read method in
FilterInputStream.
Click the name of the
overridden method to
view detailed information
about the superclass’s
version of that method.

E.2 Navigating the Java API 1035

The method details show you other methods that might be of interest (labeled as
See Also). If the method overrides a method of the superclass, the name of the
superclass method and the name of the superclass are provided so you can link to
the method or superclass for more information.

As you look through the documentation, you’ll notice that there are often links to
other fields, methods, nested-classes and top-level classes. These links enable you to jump
from the class you’re looking at to another relevant portion of the documentation.

F
Using the Debugger

O b j e c t i v e s
In this appendix you’ll learn:

� To set breakpoints to debug applications.

� To use the run command to run an application through the
debugger.

� To use the stop command to set a breakpoint.

� To use the cont command to continue execution.

� To use the print command to evaluate expressions.

� To use the set command to change variable values during
program execution.

� To use the step, step up and next commands to control
execution.

� To use the watch command to see how a field is modified
during program execution.

� To use the clear command to list breakpoints or remove a
breakpoint.

And so shall I catch the fly.
—William Shakespeare

We are built to make
mistakes, coded for error.
—Lewis Thomas

What we anticipate seldom
occurs; what we least expect
generally happens.
—Benjamin Disraeli

F.1 Introduction 1037

F.1 Introduction
In Chapter 2, you learned that there are two types of errors—syntax errors and logic er-
rors—and you learned how to eliminate syntax errors from your code. Logic errors do not
prevent the application from compiling successfully, but they do cause an application to
produce erroneous results when it runs. The JDK includes software called a debugger that
allows you to monitor the execution of your applications so you can locate and remove
logic errors. The debugger will be one of your most important application development
tools. Many IDEs provide their own debuggers similar to the one included in the JDK or
provide a graphical user interface to the JDK’s debugger.

This appendix demonstrates key features of the JDK’s debugger using command-line
applications that receive no input from the user. The same debugger features discussed
here can be used to debug applications that take user input, but debugging such applica-
tions requires a slightly more complex setup. To focus on the debugger features, we’ve
opted to demonstrate the debugger with simple command-line applications involving no
user input. For more information on the Java debugger visit download.oracle.com/

javase/6/docs/technotes/tools/windows/jdb.html.

F.2 Breakpoints and the run, stop, cont and print
Commands
We begin our study of the debugger by investigating breakpoints, which are markers that
can be set at any executable line of code. When application execution reaches a breakpoint,
execution pauses, allowing you to examine the values of variables to help determine wheth-
er logic errors exist. For example, you can examine the value of a variable that stores the
result of a calculation to determine whether the calculation was performed correctly. Set-
ting a breakpoint at a line of code that is not executable (such as a comment) causes the
debugger to display an error message.

To illustrate the features of the debugger, we use application AccountTest (Fig. F.1),
which creates and manipulates an object of class Account (Fig. 3.13). Execution of
AccountTest begins in main (lines 7–24). Line 9 creates an Account object with an initial
balance of $50.00. Recall that Account’s constructor accepts one argument, which speci-
fies the Account’s initial balance. Lines 12–13 output the initial account balance using
Account method getBalance. Line 15 declares and initializes a local variable deposit-

Amount. Lines 17–19 then print depositAmount and add it to the Account’s balance using
its credit method. Finally, lines 22–23 display the new balance. [Note: The Appendix F
examples directory contains a copy of Account.java identical to the one in Fig. 3.13.]

F.1 Introduction
F.2 Breakpoints and the run, stop,

cont and print Commands
F.3 The print and set Commands
F.4 Controlling Execution Using the

step, step up and next
Commands

F.5 The watch Command
F.6 The clear Command
F.7 Wrap-Up

1038 Appendix F Using the Debugger

In the following steps, you’ll use breakpoints and various debugger commands to
examine the value of the variable depositAmount declared in AccountTest (Fig. F.1).

1. Opening the Command Prompt window and changing directories. Open the Com-
mand Prompt window by selecting Start > Programs > Accessories > Command
Prompt. Change to the directory containing the Appendix F examples by typing
cd C:\examples\debugger [Note: If your examples are in a different directory,
use that directory here.]

2. Compiling the application for debugging. The Java debugger works only with
.class files that were compiled with the -g compiler option, which generates in-
formation that is used by the debugger to help you debug your applications.
Compile the application with the -g command-line option by typing javac -g

AccountTest.java Account.java. Recall from Chapter 3 that this command
compiles both AccountTest.java and Account.java. The command java -g

*.java compiles all of the working directory’s .java files for debugging.

1 // Fig. F.1: AccountTest.java
2 // Create and manipulate an Account object.
3
4 public class AccountTest
5 {
6 // main method begins execution
7 public static void main(String[] args)
8 {
9 Account account = new Account(50.00); // create Account object

10
11 // display initial balance of Account object
12 System.out.printf("initial account balance: $%.2f\n",
13 account.getBalance());
14
15 double depositAmount = 25.0; // deposit amount
16
17 System.out.printf("\nadding %.2f to account balance\n\n",
18 depositAmount);
19 account.credit(depositAmount); // add to account balance
20
21 // display new balance
22 System.out.printf("new account balance: $%.2f\n",
23 account.getBalance());
24 } // end main
25
26 } // end class AccountTest

initial account balance: $50.00

adding 25.00 to account balance

new account balance: $75.00

Fig. F.1 | AccountTest class creates and manipulates an Account object.

F.2 Breakpoints and the run, stop, cont and print Commands 1039

3. Starting the debugger. In the Command Prompt, type jdb (Fig. F.2). This com-
mand will start the Java debugger and enable you to use its features. [Note: We
modified the colors of our Command Prompt window for readability.]

4. Running an application in the debugger. Run the AccountTest application
through the debugger by typing run AccountTest (Fig. F.3). If you do not set any
breakpoints before running your application in the debugger, the application will
run just as it would using the java command.

5. Restarting the debugger. To make proper use of the debugger, you must set at
least one breakpoint before running the application. Restart the debugger by typ-
ing jdb.

6. Inserting breakpoints in Java. You set a breakpoint at a specific line of code in your
application. The line numbers used in these steps are from the source code in
Fig. F.1. Set a breakpoint at line 12 in the source code by typing stop at

AccountTest:12 (Fig. F.4). The stop command inserts a breakpoint at the line
number specified after the command. You can set as many breakpoints as necessary.
Set another breakpoint at line 19 by typing stop at AccountTest:19 (Fig. F.4).
When the application runs, it suspends execution at any line that contains a break-
point. The application is said to be in break mode when the debugger pauses the
application’s execution. Breakpoints can be set even after the debugging process has
begun. The debugger command stop in, followed by a class name, a period and a
method name (e.g., stop in Account.credit) instructs the debugger to set a
breakpoint at the first executable statement in the specified method. The debugger
pauses execution when program control enters the method.

Fig. F.2 | Starting the Java debugger.

Fig. F.3 | Running the AccountTest application through the debugger.

1040 Appendix F Using the Debugger

7. Running the application and beginning the debugging process. Type run

AccountTest to execute the application and begin the debugging process
(Fig. F.5). The debugger prints text indicating that breakpoints were set at lines
12 and 19. It calls each breakpoint a “deferred breakpoint” because each was set
before the application began running in the debugger. The application pauses
when execution reaches the breakpoint on line 12. At this point, the debugger no-
tifies you that a breakpoint has been reached and it displays the source code at
that line (12). That line of code is the next statement that will execute.

8. Using the cont command to resume execution. Type cont. The cont command
causes the application to continue running until the next breakpoint is reached
(line 19), at which point the debugger notifies you (Fig. F.6). AccountTest’s nor-
mal output appears between messages from the debugger.

Fig. F.4 | Setting breakpoints at lines 12 and 19.

Fig. F.5 | Restarting the AccountTest application.

Fig. F.6 | Execution reaches the second breakpoint.

Next line of code to execute Breakpoint is reached

Another breakpoint is reached

F.3 The print and set Commands 1041

9. Examining a variable’s value. Type print depositAmount to display the current
value stored in the depositAmount variable (Fig. F.7). The print command al-
lows you to peek inside the computer at the value of one of your variables. This
command will help you find and eliminate logic errors in your code. The value
displayed is 25.0—the value assigned to depositAmount in line 15 of Fig. F.1.

10. Continuing application execution. Type cont to continue the application’s exe-
cution. There are no more breakpoints, so the application is no longer in break
mode. The application continues executing and eventually terminates (Fig. F.8).
The debugger will stop when the application ends.

F.3 The print and set Commands
In the preceding section, you learned how to use the debugger’s print command to exam-
ine the value of a variable during program execution. In this section, you’ll learn how to
use the print command to examine the value of more complex expressions. You’ll also
learn the set command, which allows the programmer to assign new values to variables.

For this section, we assume that you’ve followed Step 1 and Step 2 in Section F.2 to
open the Command Prompt window, change to the directory containing the Appendix F
examples (e.g., C:\examples\debugger) and compile the AccountTest application (and
class Account) for debugging.

1. Starting debugging. In the Command Prompt, type jdb to start the Java debugger.

2. Inserting a breakpoint. Set a breakpoint at line 19 in the source code by typing
stop at AccountTest:19.

3. Running the application and reaching a breakpoint. Type run AccountTest to
begin the debugging process (Fig. F.9). This will cause AccountTest’s main to ex-
ecute until the breakpoint at line 19 is reached. This suspends application execu-
tion and switches the application into break mode. At this point, the statements
in lines 9–13 created an Account object and printed the initial balance of the Ac-

Fig. F.7 | Examining the value of variable depositAmount.

Fig. F.8 | Continuing application execution and exiting the debugger.

1042 Appendix F Using the Debugger

count obtained by calling its getBalance method. The statement in line 15
(Fig. F.1) declared and initialized local variable depositAmount to 25.0. The
statement in line 19 is the next statement that will execute.

4. Evaluating arithmetic and boolean expressions. Recall from Section F.2 that once
the application has entered break mode, you can explore the values of the appli-
cation’s variables using the debugger’s print command. You can also use the
print command to evaluate arithmetic and boolean expressions. In the Com-
mand Prompt window, type print depositAmount - 2.0. The print command
returns the value 23.0 (Fig. F.10). However, this command does not actually
change the value of depositAmount. In the Command Prompt window, type
print depositAmount == 23.0. Expressions containing the == symbol are treated
as boolean expressions. The value returned is false (Fig. F.10) because
depositAmount does not currently contain the value 23.0—depositAmount is
still 25.0.

5. Modifying values. The debugger allows you to change the values of variables dur-
ing the application’s execution. This can be valuable for experimenting with dif-
ferent values and for locating logic errors in applications. You can use the
debugger’s set command to change the value of a variable. Type set deposit-

Amount = 75.0. The debugger changes the value of depositAmount and displays
its new value (Fig. F.11).

Fig. F.9 | Application execution suspended when debugger reaches the breakpoint at line 19.

Fig. F.10 | Examining the values of an arithmetic and boolean expression.

F.4 Controlling Execution Using the step, step up and next Commands 1043

6. Viewing the application result. Type cont to continue application execution.
Line 19 of AccountTest (Fig. F.1) executes, passing depositAmount to Account

method credit. Method main then displays the new balance. The result is
$125.00 (Fig. F.12). This shows that the preceding step changed the value of de-
positAmount from its initial value (25.0) to 75.0.

F.4 Controlling Execution Using the step, step up and
next Commands
Sometimes you’ll need to execute an application line by line to find and fix errors. Walking
through a portion of your application this way can help you verify that a method’s code
executes correctly. In this section, you’ll learn how to use the debugger for this task. The
commands you learn in this section allow you to execute a method line by line, execute all
the statements of a method at once or execute only the remaining statements of a method
(if you’ve already executed some statements within the method).

Once again, we assume you’re working in the directory containing the Appendix F
examples and have compiled for debugging with the -g compiler option.

1. Starting the debugger. Start the debugger by typing jdb.

2. Setting a breakpoint. Type stop at AccountTest:19 to set a breakpoint at line 19.

3. Running the application. Run the application by typing run AccountTest. After
the application displays its two output messages, the debugger indicates that the
breakpoint has been reached and displays the code at line 19 (Fig. F.13). The de-
bugger and application then pause and wait for the next command to be entered.

4. Using the step command. The step command executes the next statement in the
application. If the next statement to execute is a method call, control transfers to
the called method. The step command enables you to enter a method and study

Fig. F.11 | Modifying values.

Fig. F.12 | Output displayed after the debugging process.

New account balance based on altered value
of variable depositAmount

1044 Appendix F Using the Debugger

the individual statements of that method. For instance, you can use the print

and set commands to view and modify the variables within the method. You’ll
now use the step command to enter the credit method of class Account

(Fig. 3.13) by typing step (Fig. F.14). The debugger indicates that the step has
been completed and displays the next executable statement—in this case, line 21
of class Account (Fig. 3.13).

5. Using the step up command. After you’ve stepped into the credit method, type
step up. This command executes the remaining statements in the method and
returns control to the place where the method was called. The credit method
contains only one statement to add the method’s parameter amount to instance
variable balance. The step up command executes this statement, then pauses be-
fore line 22 in AccountTest. Thus, the next action to occur will be to print the
new account balance (Fig. F.15). In lengthy methods, you may want to look at a
few key lines of code, then continue debugging the caller’s code. The step up

command is useful for situations in which you do not want to continue stepping
through the entire method line by line.

6. Using the cont command to continue execution. Enter the cont command
(Fig. F.16) to continue execution. The statement at lines 22–23 executes, dis-
playing the new balance, then the application and the debugger terminate.

7. Restarting the debugger. Restart the debugger by typing jdb.

Fig. F.13 | Reaching the breakpoint in the AccountTest application.

Fig. F.14 | Stepping into the credit method.

F.4 Controlling Execution Using the step, step up and next Commands 1045

8. Setting a breakpoint. Breakpoints persist only until the end of the debugging ses-
sion in which they’re set—once the debugger exits, all breakpoints are removed.
(In Section F.6, you’ll learn how to manually clear a breakpoint before the end of
the debugging session.) Thus, the breakpoint set for line 19 in Step 2 no longer
exists upon restarting the debugger in Step 7. To reset the breakpoint at line 19,
once again type stop at AccountTest:19.

9. Running the application. Type run AccountTest to run the application. As in
Step 3, AccountTest runs until the breakpoint at line 19 is reached, then the de-
bugger pauses and waits for the next command (Fig. F.17).

10. Using the next command. Type next. This command behaves like the step com-
mand, except when the next statement to execute contains a method call. In that
case, the called method executes in its entirety and the application advances to the

Fig. F.15 | Stepping out of a method.

Fig. F.16 | Continuing execution of the AccountTest application.

Fig. F.17 | Reaching the breakpoint in the AccountTest application.

1046 Appendix F Using the Debugger

next executable line after the method call (Fig. F.18). Recall from Step 4 that the
step command would enter the called method. In this example, the next com-
mand causes Account method credit to execute, then the debugger pauses at line
22 in AccountTest.

11. Using the exit command. Use the exit command to end the debugging session
(Fig. F.19). This command causes the AccountTest application to immediately
terminate rather than execute the remaining statements in main. When debug-
ging some types of applications (e.g., GUI applications), the application contin-
ues to execute even after the debugging session ends.

F.5 The watch Command
In this section, we present the watch command, which tells the debugger to watch a field.
When that field is about to change, the debugger will notify you. In this section, you’ll
learn how to use the watch command to see how the Account object’s field balance is
modified during the execution of the AccountTest application.

As in the preceding two sections, we assume that you’ve followed Step 1 and Step 2 in
Section F.2 to open the Command Prompt, change to the correct examples directory and
compile classes AccountTest and Account for debugging (i.e., with the -g compiler
option).

1. Starting the debugger. Start the debugger by typing jdb.

2. Watching a class’s field. Set a watch on Account’s balance field by typing watch

Account.balance (Fig. F.20). You can set a watch on any field during execution
of the debugger. Whenever the value in a field is about to change, the debugger
enters break mode and notifies you that the value will change. Watches can be
placed only on fields, not on local variables.

3. Running the application. Run the application with the command run Account-

Test. The debugger will now notify you that field balance’s value will change

Fig. F.18 | Stepping over a method call.

Fig. F.19 | Exiting the debugger.

F.5 The watch Command 1047

(Fig. F.21). When the application begins, an instance of Account is created with
an initial balance of $50.00 and a reference to the Account object is assigned to
the local variable account (line 9, Fig. F.1). Recall from Fig. 3.13 that when the
constructor for this object runs, if parameter initialBalance is greater than 0.0,
instance variable balance is assigned the value of parameter initialBalance.
The debugger notifies you that the value of balance will be set to 50.0.

4. Adding money to the account. Type cont to continue executing the application.
The application executes normally before reaching the code on line 19 of Fig. F.1
that calls Account method credit to raise the Account object’s balance by a
specified amount. The debugger notifies you that instance variable balance will
change (Fig. F.22). Although line 19 of class AccountTest calls method credit,
line 21 in Account’s method credit actually changes the value of balance.

Fig. F.20 | Setting a watch on Account’s balance field.

Fig. F.21 | AccountTest application stops when account is created and its balance field
will be modified.

Fig. F.22 | Changing the value of balance by calling Account method credit.

1048 Appendix F Using the Debugger

5. Continuing execution. Type cont—the application will finish executing because
the application does not attempt any additional changes to balance (Fig. F.23).

6. Restarting the debugger and resetting the watch on the variable. Type jdb to re-
start the debugger. Once again, set a watch on the Account instance variable bal-
ance by typing the watch Account.balance, then type run AccountTest to run
the application (Fig. F.24).

7. Removing the watch on the field. Suppose you want to watch a field for only part
of a program’s execution. You can remove the debugger’s watch on variable bal-
ance by typing unwatch Account.balance (Fig. F.25). Type cont—the applica-
tion will finish executing without reentering break mode.

Fig. F.23 | Continuing execution of AccountTest.

Fig. F.24 | Restarting the debugger and resetting the watch on the variable balance.

Fig. F.25 | Removing the watch on variable balance.

F.6 The clear Command 1049

8. Closing the Command Prompt window. Close the Command Prompt window by
clicking its close button.

F.6 The clear Command
In the preceding section, you learned to use the unwatch command to remove a watch on
a field. The debugger also provides the clear command to remove a breakpoint from an
application. You’ll often need to debug applications containing repetitive actions, such as
a loop. You may want to examine the values of variables during several, but possibly not
all, of the loop’s iterations. If you set a breakpoint in the body of a loop, the debugger will
pause before each execution of the line containing a breakpoint. After determining that
the loop is working properly, you may want to remove the breakpoint and allow the re-
maining iterations to proceed normally. In this section, we use the compound interest ap-
plication in Fig. 5.6 to demonstrate how the debugger behaves when you set a breakpoint
in the body of a for statement and how to remove a breakpoint in the middle of a debug-
ging session.

1. Opening the Command Prompt window, changing directories and compiling the
application for debugging. Open the Command Prompt window, then change to
the directory containing the Appendix F examples. For your convenience, we’ve
provided a copy of the Interest.java file in this directory. Compile the appli-
cation for debugging by typing javac -g Interest.java.

2. Starting the debugger and setting breakpoints. Start the debugger by typing jdb.
Set breakpoints at lines 13 and 22 of class Interest by typing stop at Inter-

est:13, then stop at Interest:22 (Fig. F.26).

3. Running the application. Run the application by typing run Interest. The ap-
plication executes until reaching the breakpoint at line 13 (Fig. F.27).

4. Continuing execution. Type cont to continue—the application executes line 13,
printing the column headings "Year" and "Amount on deposit". Line 13 ap-
pears before the for statement at lines 16–23 in Interest (Fig. 5.6) and thus ex-
ecutes only once. Execution continues past line 13 until the breakpoint at line 22
is reached during the first iteration of the for statement (Fig. F.28).

5. Examining variable values. Type print year to examine the current value of
variable year (i.e., the for’s control variable). Print the value of variable amount

too (Fig. F.29).

Fig. F.26 | Setting breakpoints in the Interest application.

1050 Appendix F Using the Debugger

6. Continuing execution. Type cont to continue execution. Line 22 executes and
prints the current values of year and amount. After the for enters its second itera-
tion, the debugger notifies you that the breakpoint at line 22 has been reached a
second time. The debugger pauses each time a line where a breakpoint has been set
is about to execute—when the breakpoint appears in a loop, the debugger pauses
during each iteration. Print the values of variables year and amount again to see
how the values have changed since the first iteration of the for (Fig. F.30).

7. Removing a breakpoint. You can display a list of all of the breakpoints in the ap-
plication by typing clear (Fig. F.31). Suppose you’re satisfied that the Interest

Fig. F.27 | Reaching the breakpoint at line 13 in the Interest application.

Fig. F.28 | Reaching the breakpoint at line 22 in the Interest application.

Fig. F.29 | Printing year and amount during the first iteration of Interest’s for.

Fig. F.30 | Printing year and amount during the second iteration of Interest’s for.

F.7 Wrap-Up 1051

application’s for statement is working properly, so you want to remove the break-
point at line 22 and allow the remaining iterations of the loop to proceed normal-
ly. You can remove the breakpoint at line 22 by typing clear Interest:22. Now
type clear to list the remaining breakpoints in the application. The debugger
should indicate that only the breakpoint at line 13 remains (Fig. F.31). This
breakpoint has already been reached and thus will no longer affect execution.

8. Continuing execution after removing a breakpoint. Type cont to continue exe-
cution. Recall that execution last paused before the printf statement in line 22.
If the breakpoint at line 22 was removed successfully, continuing the application
will produce the correct output for the current and remaining iterations of the
for statement without the application halting (Fig. F.32).

F.7 Wrap-Up
In this appendix, you learned how to insert and remove breakpoints in the debugger.
Breakpoints allow you to pause application execution so you can examine variable values
with the debugger’s print command. This capability will help you locate and fix logic er-
rors in your applications. You saw how to use the print command to examine the value
of an expression and how to use the set command to change the value of a variable. You
also learned debugger commands (including the step, step up and next commands) that
can be used to determine whether a method is executing correctly. You learned how to use
the watch command to keep track of a field throughout the life of an application. Finally,
you learned how to use the clear command to list all the breakpoints set for an application
or remove individual breakpoints to continue execution without breakpoints.

Fig. F.31 | Removing the breakpoint at line 22.

Fig. F.32 | Application executes without a breakpoint set at line 22.

G
Formatted Output

O b j e c t i v e s
In this appendix you’ll learn:

� To understand input and output streams.

� To use printf formatting.

� To print with field widths and precisions.

� To use formatting flags in the printf format string.

� To print with an argument index.

� To output literals and escape sequences.

� To format output with class Formatter.

All the news that’s fit to
print.
—Adolph S. Ochs

What mad pursuit? What
struggle to escape?
—John Keats

Remove not the landmark
on the boundary of the
fields.
—Amenehope

G.1 Introduction 1053

G.1 Introduction
In this appendix, we discuss the formatting features of method printf and class
Formatter (package java.util). Class Formatter formats and outputs data to a specified
destination, such as a string or a file output stream. Many features of printf were dis-
cussed earlier in the text. This appendix summarizes those features and introduces others,
such as displaying date and time data in various formats, reordering output based on the
index of the argument and displaying numbers and strings with various flags.

G.2 Streams
Input and output are usually performed with streams, which are sequences of bytes. In
input operations, the bytes flow from a device (e.g., a keyboard, a disk drive, a network
connection) to main memory. In output operations, bytes flow from main memory to a
device (e.g., a display screen, a printer, a disk drive, a network connection).

When program execution begins, three streams are created. The standard input
stream typically reads bytes from the keyboard, and the standard output stream typically
outputs characters to a command window. A third stream, the standard error stream
(System.err), typically outputs characters to a command window and is used to output
error messages so they can be viewed immediately. Operating systems typically allow these
streams to be redirected to other devices. Streams are discussed in detail in Chapter 17,
Files, Streams and Object Serialization, and Chapter 24, Networking.

G.3 Formatting Output with printf
Precise output formatting is accomplished with printf. Java borrowed (and enhanced)
this feature from the C programming language. Method printf can perform the following
formatting capabilities, each of which is discussed in this appendix:

1. Rounding floating-point values to an indicated number of decimal places.

2. Aligning a column of numbers with decimal points appearing one above the other.

3. Right justification and left justification of outputs.

4. Inserting literal characters at precise locations in a line of output.

G.1 Introduction
G.2 Streams
G.3 Formatting Output with printf

G.4 Printing Integers
G.5 Printing Floating-Point Numbers
G.6 Printing Strings and Characters
G.7 Printing Dates and Times
G.8 Other Conversion Characters
G.9 Printing with Field Widths and

Precisions

G.10 Using Flags in the printf Format
String

G.11 Printing with Argument Indices
G.12 Printing Literals and Escape

Sequences
G.13 Formatting Output with Class

Formatter

G.14 Wrap-Up

1054 Appendix G Formatted Output

5. Representing floating-point numbers in exponential format.

6. Representing integers in octal and hexadecimal format.

7. Displaying all types of data with fixed-size field widths and precisions.

8. Displaying dates and times in various formats.

Every call to printf supplies as the first argument a format string that describes the
output format. The format string may consist of fixed text and format specifiers. Fixed
text is output by printf just as it would be output by System.out methods print or
println. Each format specifier is a placeholder for a value and specifies the type of data to
output. Format specifiers also may include optional formatting information.

In the simplest form, each format specifier begins with a percent sign (%) and is fol-
lowed by a conversion character that represents the data type of the value to output. For
example, the format specifier %s is a placeholder for a string, and the format specifier %d
is a placeholder for an int value. The optional formatting information, such as an argu-
ment index, flags, field width and precision, is specified between the percent sign and the
conversion character. We demonstrate each of these capabilities.

G.4 Printing Integers
Figure G.1 describes the integer conversion characters. Figure G.2 uses each to print an
integer. In lines 9–10, the plus sign is not displayed by default, but the minus sign is. Later
in this appendix (Fig. G.14) we’ll see how to force plus signs to print.

Conversion character Description

d Display a decimal (base 10) integer.

o Display an octal (base 8) integer.

x or X Display a hexadecimal (base 16) integer. X uses uppercase letters.

Fig. G.1 | Integer conversion characters.

1 // Fig. G.2: IntegerConversionTest.java
2 // Using the integer conversion characters.
3
4 public class IntegerConversionTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf(, 26);
9 System.out.printf(, +26);

10 System.out.printf(, -26);
11 System.out.printf(, 26);
12 System.out.printf(, 26);

Fig. G.2 | Using the integer conversion characters. (Part 1 of 2.)

"%d\n"

"%d\n"

"%d\n"

"%o\n"

"%x\n"

G.5 Printing Floating-Point Numbers 1055

The printf method has the form

where format-string describes the output format, and the optional argument-list contains
the values that correspond to each format specifier in format-string. There can be many for-
mat specifiers in one format string.

Each format string in lines 8–10 specifies that printf should output a decimal integer
(%d) followed by a newline character. At the format specifier’s position, printf substitutes
the value of the first argument after the format string. If the format string contains mul-
tiple format specifiers, at each subsequent format specifier’s position printf substitutes
the value of the next argument in the argument list. The %o format specifier in line 11 out-
puts the integer in octal format. The %x format specifier in line 12 outputs the integer in
hexadecimal format. The %X format specifier in line 13 outputs the integer in hexadecimal
format with capital letters.

G.5 Printing Floating-Point Numbers
Figure G.3 describes the floating-point conversions. The conversion characters e and E

display floating-point values in computerized scientific notation (also called exponential
notation). Exponential notation is the computer equivalent of the scientific notation used
in mathematics. For example, the value 150.4582 is represented in scientific notation in
mathematics as

and is represented in exponential notation as

in Java. This notation indicates that 1.504582 is multiplied by 10 raised to the second
power (e+02). The e stands for “exponent.”

Values printed with the conversion characters e, E and f are output with six digits of
precision to the right of the decimal point by default (e.g., 1.045921)—other precisions
must be specified explicitly. For values printed with the conversion character g, the preci-
sion represents the total number of digits displayed, excluding the exponent. The default
is six digits (e.g., 12345678.9 is displayed as 1.23457e+07). Conversion character f always
prints at least one digit to the left of the decimal point. Conversion characters e and E print

13 System.out.printf(, 26);
14 } // end main
15 } // end class IntegerConversionTest

26
26
-26
32
1a
1A

printf(format-string, argument-list);

1.504582 × 102

1.504582e+02

Fig. G.2 | Using the integer conversion characters. (Part 2 of 2.)

"%X\n"

1056 Appendix G Formatted Output

lowercase e and uppercase E preceding the exponent and always print exactly one digit to
the left of the decimal point. Rounding occurs if the value being formatted has more sig-
nificant digits than the precision.

Conversion character g (or G) prints in either e (E) or f format, depending on the
floating-point value. For example, the values 0.0000875, 87500000.0, 8.75, 87.50 and
875.0 are printed as 8.750000e-05, 8.750000e+07, 8.750000, 87.500000 and 875.000000

with the conversion character g. The value 0.0000875 uses e notation because the magni-
tude is less than 10-3. The value 87500000.0 uses e notation because the magnitude is
greater than 107. Figure G.4 demonstrates the floating-point conversion characters.

Conversion character Description

e or E Display a floating-point value in exponential notation. Conver-
sion character E displays the output in uppercase letters.

f Display a floating-point value in decimal format.

g or G Display a floating-point value in either the floating-point format f
or the exponential format e based on the magnitude of the value.
If the magnitude is less than 10–3, or greater than or equal to 107,
the floating-point value is printed with e (or E). Otherwise, the
value is printed in format f. When conversion character G is used,
the output is displayed in uppercase letters.

a or A Display a floating-point number in hexadecimal format. Conver-
sion character A displays the output in uppercase letters.

Fig. G.3 | Floating-point conversion characters.

1 // Fig. G.4: FloatingNumberTest.java
2 // Using floating-point conversion characters.
3
4 public class FloatingNumberTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf();
9 System.out.printf();

10 System.out.printf();
11 System.out.printf();
12 System.out.printf();
13 System.out.printf();
14 System.out.printf();
15 } // end main
16 } // end class FloatingNumberTest

1.234568e+07
1.234568e+07
-1.234568e+07

Fig. G.4 | Using floating-point conversion characters. (Part 1 of 2.)

"%e\n", 12345678.9

"%e\n", +12345678.9

"%e\n", -12345678.9

"%E\n", 12345678.9

"%f\n", 12345678.9

"%g\n", 12345678.9

"%G\n", 12345678.9

G.6 Printing Strings and Characters 1057

G.6 Printing Strings and Characters
The c and s conversion characters print individual characters and strings, respectively.
Conversion characters c and C require a char argument. Conversion characters s and S

can take a String or any Object as an argument. When conversion characters C and S are
used, the output is displayed in uppercase letters. Figure G.5 displays characters, strings
and objects with conversion characters c and s. Autoboxing occurs at line 9 when an int

constant is assigned to an Integer object. Line 15 outputs an Integer argument with the
conversion character s, which implicitly invokes the toString method to get the integer
value. You can also output an Integer object using the %d format specifier. In this case,
the int value in the Integer object will be unboxed and output.

1.234568E+07
12345678.900000
1.23457e+07
1.23457E+07

Common Programming Error G.1
Using %c to print a String causes an IllegalFormatConversionException—a String

cannot be converted to a character.

1 // Fig. G.5: CharStringConversion.java
2 // Using character and string conversion characters.
3 public class CharStringConversion
4 {
5 public static void main(String[] args)
6 {
7 char character = 'A'; // initialize char
8 String string = "This is also a string"; // String object
9 Integer integer = 1234; // initialize integer (autoboxing)

10
11 System.out.printf();
12 System.out.printf();
13 System.out.printf();
14 System.out.printf();
15 System.out.printf(); // implicit call to toString
16 } // end main
17 } // end class CharStringConversion

A
This is a string
This is also a string
THIS IS ALSO A STRING
1234

Fig. G.5 | Using character and string conversion characters.

Fig. G.4 | Using floating-point conversion characters. (Part 2 of 2.)

"%c\n", character
"%s\n", "This is a string"

"%s\n", string
"%S\n", string
"%s\n", integer

1058 Appendix G Formatted Output

G.7 Printing Dates and Times
The conversion character t (or T) is used to print dates and times in various formats. It’s
always followed by a conversion suffix character that specifies the date and/or time for-
mat. When conversion character T is used, the output is displayed in uppercase letters.
Figure G.6 lists the common conversion suffix characters for formatting date and time
compositions that display both the date and the time. Figure G.7 lists the common con-
version suffix characters for formatting dates. Figure G.8 lists the common conversion suf-
fix characters for formatting times. For the complete list of conversion suffix characters,
visit java.sun.com/javase/6/docs/api/java/util/Formatter.html.

Conversionsuffix
character Description

c Display date and time formatted as
day month date hour:minute:second time-zone year

with three characters for day and month, two digits for date, hour, minute
and second and four digits for year—for example, Wed Mar 03 16:30:25

GMT-05:00 2004. The 24-hour clock is used. GMT-05:00 is the time zone.

F Display date formatted as year-month-date with four digits for the year
and two digits each for the month and date (e.g., 2004-05-04).

D Display date formatted as month/day/year with two digits each for the
month, day and year (e.g., 03/03/04).

r Display time in 12-hour format as hour:minute:second AM|PM with two
digits each for the hour, minute and second (e.g., 04:30:25 PM).

R Display time formatted as hour:minute with two digits each for the hour

and minute (e.g., 16:30). The 24-hour clock is used.

T Display time as hour:minute:second with two digits for the hour, minute
and second (e.g., 16:30:25). The 24-hour clock is used.

Fig. G.6 | Date and time composition conversion suffix characters.

Conversion suffix
character Description

A Display full name of the day of the week (e.g., Wednesday).

a Display the three-character name of the day of the week (e.g., Wed).

B Display full name of the month (e.g., March).

b Display the three-character short name of the month (e.g., Mar).

d Display the day of the month with two digits, padding with leading
zeros as necessary (e.g., 03).

m Display the month with two digits, padding with leading zeros as neces-
sary (e.g., 07).

Fig. G.7 | Date formatting conversion suffix characters. (Part 1 of 2.)

G.7 Printing Dates and Times 1059

Figure G.9 uses the conversion characters t and T with the conversion suffix charac-
ters to display dates and times in various formats. Conversion character t requires the cor-
responding argument to be a date or time of type long, Long, Calendar (package
java.util) or Date (package java.util)—objects of each of these classes can represent
dates and times. Class Calendar is preferred for this purpose because some constructors

e Display the day of month without leading zeros (e.g., 3).

Y Display the year with four digits (e.g., 2004).

y Display the last two digits of the year with leading zeros (e.g., 04).

j Display the day of the year with three digits, padding with leading zeros
as necessary (e.g., 016).

Conversion
suffix character Description

H Display hour in 24-hour clock with a leading zero as necessary (e.g., 16).

I Display hour in 12-hour clock with a leading zero as necessary (e.g., 04).

k Display hour in 24-hour clock without leading zeros (e.g., 16).

l Display hour in 12-hour clock without leading zeros (e.g., 4).

M Display minute with a leading zero as necessary (e.g., 06).

S Display second with a leading zero as necessary (e.g., 05).

Z Display the abbreviation for the time zone (e.g., EST, stands for Eastern
Standard Time, which is 5 hours behind Greenwich Mean Time).

p Display morning or afternoon marker in lowercase (e.g., pm).

P Display morning or afternoon marker in uppercase (e.g., PM).

Fig. G.8 | Time formatting conversion suffix characters.

1 // Fig. G.9: DateTimeTest.java
2 // Formatting dates and times with conversion characters t and T.
3 import java.util.Calendar;
4
5 public class DateTimeTest
6 {
7 public static void main(String[] args)
8 {
9 // get current date and time

10 Calendar dateTime = Calendar.getInstance();

Fig. G.9 | Formatting dates and times with conversion characters t and T. (Part 1 of 2.)

Conversion suffix
character Description

Fig. G.7 | Date formatting conversion suffix characters. (Part 2 of 2.)

1060 Appendix G Formatted Output

and methods in class Date are replaced by those in class Calendar. Line 10 invokes static
method getInstance of Calendar to obtain a calendar with the current date and time.
Lines 13–17, 20–22 and 25–26 use this Calendar object in printf statements as the value
to be formatted with conversion character t. Lines 20–22 and 25–26 use the optional
argument index ("1$") to indicate that all format specifiers in the format string use the
first argument after the format string in the argument list. You’ll learn more about argu-
ment indices in Section G.11. Using the argument index eliminates the need to repeatedly
list the same argument.

G.8 Other Conversion Characters
The remaining conversion characters are b, B, h, H, % and n. These are described in
Fig. G.10. Lines 9–10 of Fig. G.11 use %b to print the value of boolean (or Boolean)
values false and true. Line 11 associates a String to %b, which returns true because it’s
not null. Line 12 associates a null object to %B, which displays FALSE because test is
null. Lines 13–14 use %h to print the string representations of the hash-code values for
strings "hello" and "Hello". These values could be used to store or locate the strings in
a Hashtable or HashMap (both discussed in Chapter 18, Generic Collections). The hash-
code values for these two strings differ, because one string starts with a lowercase letter and

11
12 // printing with conversion characters for date/time compositions
13 System.out.printf();
14 System.out.printf();
15 System.out.printf();
16 System.out.printf();
17 System.out.printf();
18
19 // printing with conversion characters for date
20 System.out.printf();
21 System.out.printf();
22 System.out.printf();
23
24 // printing with conversion characters for time
25 System.out.printf();
26 System.out.printf();
27 } // end main
28 } // end class DateTimeTest

Wed Feb 25 15:00:22 EST 2009
2009-02-25
02/25/09
03:00:22 PM
15:00:22
Wednesday, February 25, 2009
WEDNESDAY, FEBRUARY 25, 2009
Wed, Feb 25, 09
15:00:22
EST 03:00:22 PM

Fig. G.9 | Formatting dates and times with conversion characters t and T. (Part 2 of 2.)

"%tc\n", dateTime
"%tF\n", dateTime
"%tD\n", dateTime
"%tr\n", dateTime
"%tT\n", dateTime

"%1$tA, %1$tB %1$td, %1$tY\n", dateTime
"%1$TA, %1$TB %1$Td, %1$TY\n", dateTime
"%1$ta, %1$tb %1$te, %1$ty\n", dateTime

"%1$tH:%1$tM:%1$tS\n", dateTime
"%1$tZ %1$tI:%1$tM:%1$tS %tP", dateTime

G.8 Other Conversion Characters 1061

the other with an uppercase letter. Line 15 uses %H to print null in uppercase letters. The
last two printf statements (lines 16–17) use %% to print the % character in a string and %n

to print a platform-specific line separator.

Conversion
character Description

b or B Print "true" or "false" for the value of a boolean or Bool-
ean. These conversion characters can also format the value of
any reference. If the reference is non-null, "true" is output;
otherwise, "false". When conversion character B is used, the
output is displayed in uppercase letters.

h or H Print the string representation of an object’s hash-code value
in hexadecimal format. If the corresponding argument is
null, "null" is printed. When conversion character H is used,
the output is displayed in uppercase letters.

% Print the percent character.

n Print the platform-specific line separator (e.g., \r\n on Win-
dows or \n on UNIX/LINUX).

Fig. G.10 | Other conversion characters.

1 // Fig. G.11: OtherConversion.java
2 // Using the b, B, h, H, % and n conversion characters.
3
4 public class OtherConversion
5 {
6 public static void main(String[] args)
7 {
8 Object test = null;
9 System.out.printf(" \n", false);

10 System.out.printf(" \n", true);
11 System.out.printf(" \n", "Test");
12 System.out.printf(" \n", test);
13 System.out.printf("Hashcode of \"hello\" is \n", "hello");
14 System.out.printf("Hashcode of \"Hello\" is \n", "Hello");
15 System.out.printf("Hashcode of null is \n", test);
16 System.out.printf("Printing a in a format string\n");
17 System.out.printf("Printing a new line next line starts here");
18 } // end main
19 } // end class OtherConversion

false
true
true
FALSE
Hashcode of "hello" is 5e918d2

Fig. G.11 | Using the b, B, h, H, % and n conversion characters. (Part 1 of 2.)

%b

%b

%b

%B

%h

%h

%H

%%

%n

1062 Appendix G Formatted Output

G.9 Printing with Field Widths and Precisions
The size of a field in which data is printed is specified by a field width. If the field width
is larger than the data being printed, the data is right justified in that field by default. We
discuss left justification in Section G.10. You insert an integer representing the field width
between the % and the conversion character (e.g., %4d) in the format specifier. Figure G.12
prints two groups of five numbers each, right justifying those numbers that contain fewer
digits than the field width. The field width is increased to print values wider than the
field and that the minus sign for a negative value uses one character position in the field.
Also, if no field width is specified, the data prints in exactly as many positions as it needs.
Field widths can be used with all format specifiers except the line separator (%n).

Hashcode of "Hello" is 42628b2
Hashcode of null is NULL
Printing a % in a format string
Printing a new line
next line starts here

Common Programming Error G.2
Trying to print a literal percent character using % rather than %% in the format string
might cause a difficult-to-detect logic error. When % appears in a format string, it must be
followed by a conversion character in the string. The single percent could accidentally be
followed by a legitimate conversion character, thus causing a logic error.

1 // Fig. G.12: FieldWidthTest.java
2 // Right justifying integers in fields.
3
4 public class FieldWidthTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf();
9 System.out.printf();

10 System.out.printf();
11 System.out.printf();
12 System.out.printf(); // data too large
13
14 System.out.printf();
15 System.out.printf();
16 System.out.printf();
17 System.out.printf(); // data too large
18 System.out.printf(); // data too large
19 } // end main
20 } // end class RightJustifyTest

Fig. G.12 | Right justifying integers in fields. (Part 1 of 2.)

Fig. G.11 | Using the b, B, h, H, % and n conversion characters. (Part 2 of 2.)

"%4d\n", 1

"%4d\n", 12

"%4d\n", 123

"%4d\n", 1234

"%4d\n\n", 12345

"%4d\n", -1

"%4d\n", -12

"%4d\n", -123

"%4d\n", -1234

"%4d\n", -12345

G.9 Printing with Field Widths and Precisions 1063

Method printf also provides the ability to specify the precision with which data is
printed. Precision has different meanings for different types. When used with floating-
point conversion characters e and f, the precision is the number of digits that appear after
the decimal point. When used with conversion characters g, a or A, the precision is the
maximum number of significant digits to be printed. When used with conversion character
s, the precision is the maximum number of characters to be written from the string. To use
precision, place between the percent sign and the conversion specifier a decimal point (.)
followed by an integer representing the precision. Figure G.13 demonstrates the use of pre-
cision in format strings. When a floating-point value is printed with a precision smaller than
the original number of decimal places in the value, the value is rounded. Also, the format
specifier %.3g indicates that the total number of digits used to display the floating-point
value is 3. Because the value has three digits to the left of the decimal point, the value is
rounded to the ones position.

The field width and the precision can be combined by placing the field width, fol-
lowed by a decimal point, followed by a precision between the percent sign and the con-
version character, as in the statement

which displays 123.457 with three digits to the right of the decimal point right justified in
a nine-digit field—this number will be preceded in its field by two blanks.

1
12

123
1234
12345

-1
-12
-123
-1234
-12345

Common Programming Error G.3
Not providing a sufficiently large field width to handle a value to be printed can offset
other data being printed and produce confusing outputs. Know your data!

printf("%9.3f", 123.456789);

1 // Fig. G.13: PrecisionTest.java
2 // Using precision for floating-point numbers and strings.
3 public class PrecisionTest
4 {
5 public static void main(String[] args)
6 {
7 double f = 123.94536;
8 String s = "Happy Birthday";

Fig. G.13 | Using precision for floating-point numbers and strings. (Part 1 of 2.)

Fig. G.12 | Right justifying integers in fields. (Part 2 of 2.)

1064 Appendix G Formatted Output

G.10 Using Flags in the printf Format String
Various flags may be used with method printf to supplement its output formatting ca-
pabilities. Seven flags are available for use in format strings (Fig. G.14).

To use a flag in a format string, place it immediately to the right of the percent sign.
Several flags may be used in the same format specifier. Figure G.15 demonstrates right jus-
tification and left justification of a string, an integer, a character and a floating-point
number. Line 9 serves as a counting mechanism for the screen output.

Figure G.16 prints a positive number and a negative number, each with and without
the + flag. The minus sign is displayed in both cases, the plus sign only when the + flag is
used.

9
10 System.out.printf("Using precision for floating-point numbers\n");
11
12
13 System.out.printf("Using precision for strings\n");
14
15 } // end main
16 } // end class PrecisionTest

Using precision for floating-point numbers
123.945
1.239e+02
124

Using precision for strings
Happy Birth

Flag Description

- (minus sign) Left justify the output within the specified field.

+ (plus sign) Display a plus sign preceding positive values and a minus sign preceding
negative values.

space Print a space before a positive value not printed with the + flag.

Prefix 0 to the output value when used with the octal conversion character
o. Prefix 0x to the output value when used with the hexadecimal conver-
sion character x.

0 (zero) Pad a field with leading zeros.

, (comma) Use the locale-specific thousands separator (i.e., ',' for U.S. locale) to dis-
play decimal and floating-point numbers.

(Enclose negative numbers in parentheses.

Fig. G.14 | Format string flags.

Fig. G.13 | Using precision for floating-point numbers and strings. (Part 2 of 2.)

System.out.printf("\t%.3f\n\t%.3e\n\t%.3g\n\n", f, f, f);

System.out.printf("\t%.11s\n", s);

G.10 Using Flags in the printf Format String 1065

Figure G.17 prefixes a space to the positive number with the space flag. This is useful
for aligning positive and negative numbers with the same number of digits. The value -

547 is not preceded by a space in the output because of its minus sign. Figure G.18 uses
the # flag to prefix 0 to the octal value and 0x to the hexadecimal value.

1 // Fig. G.15: MinusFlagTest.java
2 // Right justifying and left justifying values.
3
4 public class MinusFlagTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.println("Columns:");
9 System.out.println("0123456789012345678901234567890123456789\n");

10 System.out.printf("%10s%10d%10c%10f\n\n", "hello", 7, 'a', 1.23);
11
12
13 } // end main
14 } // end class MinusFlagTest

Columns:
0123456789012345678901234567890123456789

hello 7 a 1.230000

hello 7 a 1.230000

Fig. G.15 | Right justifying and left justifying values.

1 // Fig. G.16: PlusFlagTest.java
2 // Printing numbers with and without the + flag.
3
4 public class PlusFlagTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf("%d\t%d\n", 786, -786);
9 System.out.printf();

10 } // end main
11 } // end class PlusFlagTest

786 -786
+786 -786

Fig. G.16 | Printing numbers with and without the + flag.

1 // Fig. G.17: SpaceFlagTest.java
2 // Printing a space before non-negative values.
3

Fig. G.17 | Printing a space before nonnegative values. (Part 1 of 2.)

System.out.printf(
"%-10s%-10d%-10c%-10f\n", "hello", 7, 'a', 1.23);

"%+d\t%+d\n", 786, -786

1066 Appendix G Formatted Output

Figure G.19 combines the + flag the 0 flag and the space flag to print 452 in a field
of width 9 with a + sign and leading zeros, next prints 452 in a field of width 9 using only
the 0 flag, then prints 452 in a field of width 9 using only the space flag.

4 public class SpaceFlagTest
5 {
6 public static void main(String[] args)
7 {
8
9 } // end main

10 } // end class SpaceFlagTest

547
-547

1 // Fig. G.18: PoundFlagTest.java
2 // Using the # flag with conversion characters o and x.
3
4 public class PoundFlagTest
5 {
6 public static void main(String[] args)
7 {
8 int c = 31; // initialize c
9

10
11
12 } // end main
13 } // end class PoundFlagTest

037
0x1f

Fig. G.18 | Using the # flag with conversion characters o and x.

1 // Fig. G.19: ZeroFlagTest.java
2 // Printing with the 0 (zero) flag fills in leading zeros.
3
4 public class ZeroFlagTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf(, 452);
9 System.out.printf(, 452);

10 System.out.printf(, 452);
11 } // end main
12 } // end class ZeroFlagTest

Fig. G.19 | Printing with the 0 (zero) flag fills in leading zeros. (Part 1 of 2.)

Fig. G.17 | Printing a space before nonnegative values. (Part 2 of 2.)

System.out.printf("% d\n% d\n", 547, -547);

System.out.printf("%#o\n", c);
System.out.printf("%#x\n", c);

"%+09d\n"

"%09d\n"

"% 9d\n"

G.10 Using Flags in the printf Format String 1067

Figure G.20 uses the comma (,) flag to display a decimal and a floating-point number
with the thousands separator. Figure G.21 encloses negative numbers in parentheses using
the (flag. The value 50 is not enclosed in parentheses in the output because it’s a positive
number.

+00000452
000000452

452

1 // Fig. G.20: CommaFlagTest.java
2 // Using the comma (,) flag to display numbers with thousands separator.
3
4 public class CommaFlagTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf();
9 System.out.printf();

10 System.out.printf();
11 } // end main
12 } // end class CommaFlagTest

58,625
58,625.21
12,345,678.90

Fig. G.20 | Using the comma (,) flag to display numbers with the thousands separator.

1 // Fig. G.21: ParenthesesFlagTest.java
2 // Using the (flag to place parentheses around negative numbers.
3
4 public class ParenthesesFlagTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf();
9 System.out.printf();

10 System.out.printf();
11 } // end main
12 } // end class ParenthesesFlagTest

50
(50)
(5.0e+01)

Fig. G.21 | Using the (flag to place parentheses around negative numbers.

Fig. G.19 | Printing with the 0 (zero) flag fills in leading zeros. (Part 2 of 2.)

"%,d\n", 58625

"%,.2f", 58625.21

"%,.2f", 12345678.9

"%(d\n", 50

"%(d\n", -50

"%(.1e\n", -50.0

1068 Appendix G Formatted Output

G.11 Printing with Argument Indices
An argument index is an optional integer followed by a $ sign that indicates the argu-
ment’s position in the argument list. For example, lines 20–22 and 25–26 in Fig. G.9 use
argument index "1$" to indicate that all format specifiers use the first argument in the ar-
gument list. Argument indices enable programmers to reorder the output so that the ar-
guments in the argument list are not necessarily in the order of their corresponding format
specifiers. Argument indices also help avoid duplicating arguments. Figure G.22 prints ar-
guments in the argument list in reverse order using the argument index.

G.12 Printing Literals and Escape Sequences
Most literal characters to be printed in a printf statement can simply be included in the
format string. However, there are several “problem” characters, such as the quotation mark
(") that delimits the format string itself. Various control characters, such as newline and
tab, must be represented by escape sequences. An escape sequence is represented by a back-
slash (\), followed by an escape character. Figure G.23 lists the escape sequences and the
actions they cause.

1 // Fig. G.22: ArgumentIndexTest
2 // Reordering output with argument indices.
3
4 public class ArgumentIndexTest
5 {
6 public static void main(String[] args)
7 {
8 System.out.printf(
9 "Parameter list without reordering: %s %s %s %s\n",

10 "first", "second", "third", "fourth");
11 System.out.printf(
12 ,
13 "first", "second", "third", "fourth");
14 } // end main
15 } // end class ArgumentIndexTest

Parameter list without reordering: first second third fourth
Parameter list after reordering: fourth third second first

Fig. G.22 | Reordering output with argument indices.

Escape sequence Description

\' (single quote) Output the single quote (') character.

\" (double quote) Output the double quote (") character.

\\ (backslash) Output the backslash (\) character.

\b (backspace) Move the cursor back one position on the current line.

Fig. G.23 | Escape sequences. (Part 1 of 2.)

"Parameter list after reordering: %4$s %3$s %2$s %1$s\n"

G.13 Formatting Output with Class Formatter 1069

G.13 Formatting Output with Class Formatter
So far, we’ve discussed displaying formatted output to the standard output stream. What
should we do if we want to send formatted outputs to other output streams or devices, such
as a JTextArea or a file? The solution relies on class Formatter (in package java.util),
which provides the same formatting capabilities as printf. Formatter is a utility class that
enables programmers to output formatted data to a specified destination, such as a file on
disk. By default, a Formatter creates a string in memory. Figure G.24 demonstrates how
to use a Formatter to build a formatted string, which is then displayed in a message dialog.

Line 11 creates a Formatter object using the default constructor, so this object will
build a string in memory. Other constructors are provided to allow you to specify the des-
tination to which the formatted data should be output. For details, see java.sun.com/

javase/6/docs/api/java/util/Formatter.html.

\f (new page or form feed) Move the cursor to the start of the next logical page.

\n (newline) Move the cursor to the beginning of the next line.

\r (carriage return) Move the cursor to the beginning of the current line.

\t (horizontal tab) Move the cursor to the next horizontal tab position.

Common Programming Error G.4
Attempting to print as literal data in a printf statement a double quote or backslash
character without preceding that character with a backslash to form a proper escape se-
quence might result in a syntax error.

1 // Fig. Fig. G.24: FormatterTest.java
2 // Formatting output with class Formatter.
3 import java.util.Formatter;
4 import javax.swing.JOptionPane;
5
6 public class FormatterTest
7 {
8 public static void main(String[] args)
9 {

10 // create Formatter and format output
11 Formatter formatter = new Formatter();
12
13
14 // display output in JOptionPane
15 JOptionPane.showMessageDialog(null,);
16 } // end main
17 } // end class FormatterTest

Fig. G.24 | Formatting output with class Formatter. (Part 1 of 2.)

Escape sequence Description

Fig. G.23 | Escape sequences. (Part 2 of 2.)

formatter.format("%d = %#o = %#X", 10, 10, 10);

formatter.toString()

1070 Appendix G Formatted Output

Line 12 invokes method format to format the output. Like printf, method format

takes a format string and an argument list. The difference is that printf sends the for-
matted output directly to the standard output stream, while format sends the formatted
output to the destination specified by its constructor (a string in memory in this program).
Line 15 invokes the Formatter’s toString method to get the formatted data as a string,
which is then displayed in a message dialog.

Class String also provides a static convenience method named format that enables
you to create a string in memory without the need to first create a Formatter object. Lines
11–12 and line 15 in Fig. G.24 could have been replaced by

G.14 Wrap-Up
This appendix summarized how to display formatted output with various format charac-
ters and flags. We displayed decimal numbers using format characters d, o, x and X; float-
ing-point numbers using format characters e, E, f, g and G; and dates and times in various
format using format characters t and T and their conversion suffix characters. You learned
how to display output with field widths and precisions. We introduced the flags +, -,
space, #, 0, comma and (that are used together with the format characters to produce out-
put. We also demonstrated how to format output with class Formatter.

String s = String.format("%d = %#o = %#x", 10, 10, 10);
JOptionPane.showMessageDialog(null, s);

Fig. G.24 | Formatting output with class Formatter. (Part 2 of 2.)

H
GroupLayout

H.1 Introduction
Java SE 6 introduced a powerful layout manager called GroupLayout, which is the default
layout manager in the NetBeans IDE (www.netbeans.org). In this appendix, we overview
GroupLayout, then demonstrate how to use the NetBeans IDE’s Matisse GUI designer to
create a GUI using GroupLayout to position the components. NetBeans generates the
GroupLayout code for you automatically. Though you can write GroupLayout code by
hand, in most cases you’ll use a GUI design tool like the one provided by NetBeans to take
advantage of GroupLayout’s power. For more details on GroupLayout, see the list of web
resources at the end of this appendix.

H.2 GroupLayout Basics
Chapters 14 and 22 presented several layout managers that provide basic GUI layout ca-
pabilities. We also discussed how to combine layout managers and multiple containers to
create more complex layouts. Most layout managers do not give you precise control over
the positioning of components. In Chapter 22, we discussed the GridBagLayout, which
provides more precise control over the position and size of your GUI components. It al-
lows you to specify the horizontal and vertical position of each component, the number of
rows and columns each component occupies in the grid, and how components grow and
shrink as the size of the container changes. This is all specified at once with a GridBagCon-
straints object. Class GroupLayout is the next step in layout management. GroupLayout
is more flexible, because you can specify the horizontal and vertical layouts of your com-
ponents independently.

Sequential and Parallel Arrangements
Components are arranged either sequentially or in parallel. The three JButtons in Fig. H.1
are arranged with sequential horizontal orientation—they appear left to right in se-
quence. Vertically, the components are arranged in parallel, so, in a sense, they “occupy

www.netbeans.org

1072 Appendix H GroupLayout

the same vertical space.” Components can also be arranged sequentially in the vertical
direction and in parallel in the horizontal direction, as you’ll see in Section H.3. To pre-
vent overlapping components, components with parallel vertical orientation are normally
arranged with sequential horizontal orientation (and vice versa).

Groups and Alignment
To create more complex user interfaces, GroupLayout allows you to create groups that
contain sequential or parallel elements. Within a group you can have GUI components,
other groups and gaps. Placing a group within another group is similar to building a GUI
using nested containers, such as a JPanel that contains other JPanels, which in turn con-
tain GUI components.

When you create a group, you can specify the alignment of the group’s elements.
Class GroupLayout contains four constants for this purpose—LEADING, TRAILING, CENTER
and BASELINE. The constant BASELINE applies only to vertical orientations. In horizontal
orientation, the constants LEADING, TRAILING and CENTER represent left justified, right jus-
tified and centered, respectively. In vertical orientation, LEADING, TRAILING and CENTER

align the components at their tops, bottoms or vertical centers, respectively. Aligning com-
ponents with BASELINE indicates they should be aligned using the baseline of the font for
the components’ text. For more information about font baselines, see Section 15.4.

Spacing
GroupLayout by default uses the recommended GUI design guidelines of the underlying
platform for spacing between components. The addGap method of GroupLayout nested
classes GroupLayout.Group, GroupLayout.SequentialGroup and GroupLayout.Paral-

lelGroup allows you to control the spacing between components.

Sizing Components
By default, GroupLayout uses each component’s getMinimumSize, getMaximumSize and
getPreferredSize methods to help determine the component’s size. You can override the
default settings.

H.3 Building a ColorChooser
We now present a ColorChooser application to demonstrate the GroupLayout layout
manager. The application consists of three JSlider objects, each representing the values
from 0 to 255 for specifying the red, green and blue values of a color. The selected values
for each JSlider will be used to display a filled rectangle of the specified color. We build

Fig. H.1 | JButtons arranged sequentially for their horizontal orientation and in parallel for
their vertical orientation.

Sequential horizontal arrangement—
components appear left-to-right in sequence

Parallel vertical arrangement—components
occupy the same "vertical space"

H.3 Building a ColorChooser 1073

the application using NetBeans. For an more detailed introduction to developing GUI ap-
plications in the NetBeans IDE, see www.netbeans.org/kb/trails/matisse.html.

Creating a New Project
Begin by opening a new NetBeans project. Select File > New Project…. In the New Project
dialog, choose Java from the Categories list and Java Application from the Projects list
then click Next >. Specify ColorChooser as the project name and uncheck the Create Main
Class checkbox. You can also specify the location of your project in the Project Location
field. Click Finish to create the project.

Adding a New Subclass of JFrame to the Project
In the IDE’s Projects tab just below the File menu and toolbar (Fig. H.2), expand the
Source Packages node. Right-click the <default package> node that appears and select
New > JFrame Form. In the New JFrame Form dialog, specify ColorChooser as the class
name and click Finish. This subclass of JFrame will display the application’s GUI compo-
nents. The NetBeans window should now appear similar to Fig. H.3 with the Color-

Chooser class shown in Design view. The Source and Design buttons at the top of the
ColorChooser.java window allow you to switch between editing the source code and de-
signing the GUI.

Design view shows only the ColorChooser’s client area (i.e., the area that will appear
inside the window’s borders). To build a GUI visually, you can drag GUI components
from the Palette window onto the client area. You can configure the properties of each
component by selecting it, then modifying the property values that appear in the Proper-
ties window (Fig. H.3). When you select a component, the Properties window displays

Fig. H.2 | Adding a new JFrame Form to the ColorChooser project.

www.netbeans.org/kb/trails/matisse.html

1074 Appendix H GroupLayout

three buttons—Properties, Bindings, Events, Code (see Fig. H.4)—that enable you to con-
figure various aspects of the component.

Build the GUI
Drag three Sliders (objects of class JSlider) from the Palette onto the JFrame (you may need
to scroll through the Palette). As you drag components near the edges of the client area or
near other components, NetBeans displays guide lines (Fig. H.5) that show you the recom-
mended distances and alignments between the component you’re dragging, the edges of the
client area and other components. As you follow the steps to build the GUI, use the guide

Fig. H.3 | Class ColorChooser shown in the NetBeans Design view.

Fig. H.4 | Properties window with buttons that enable you to configure various aspects of
the component.

Projects tab ColorChooser.java shown in Design view Palette windowClient area

Properties window

H.3 Building a ColorChooser 1075

lines to arrange the components into three rows and three columns as in Fig. H.6. Next, re-
name the JSliders to redJSlider, greenJSlider and blueJSlider. To do so, select the
first JSlider, then click the Code button in the Properties window and change the Variable
Name property to redSlider. Repeat this process to rename the other two JSliders. Then,
click the Properties button in the Properties window, select each JSlider and change its
maximum property to 255 so that it will produce values in the range 0–255, and change its
value property to 0 so the JSlider’s thumb will initially be at the left of the JSlider.

Drag three Labels (objects of class JLabel) from the Palette to the JFrame to label each
JSlider with the color it represents. Name the JLabels redJLabel, greenJLabel and
blueJLabel, respectively. Each JLabel should be placed to the left of the corresponding
JSlider (Fig. H.6). Change each JLabel’s text property either by double clicking the
JLabel and typing the new text, or by selecting the JLabel and changing the text property
in the Properties window.

Add a Text Field (an object of class JTextField) next to each of the JSliders to dis-
play the value of the slider. Name the JTextFields redJTextField, greenJTextField and
blueJTextField, respectively. Change each JTextField’s text property to 0 using the
same techniques as you did for the JLabels. Change each JTextField’s columns property
to 4. To align each Label, Slider and Text Field nicely, you can select them by dragging the
mouse across all three and use the alignment buttons at the top of the Design window.

Next, add a Panel named colorJPanel to the right of this group of components. Use
the guide lines as shown in Fig. H.7 to place the JPanel. Change this JPanel’s background

Fig. H.5 | Positioning the first JTextField.

Fig. H.6 | Layout of the JLabels, JSLiders and JTextFields.

1076 Appendix H GroupLayout

color to black (the initially selected RGB color). Finally, drag the bottom-right border of
the client area toward the top-left of the Design area until you see the snap-to lines that
show the recommended client area dimensions (which are based on the components in the
client area) as shown in Fig. H.8.

Editing the Source Code and Adding Event Handlers
The IDE automatically generated the GUI code, including methods for initializing compo-
nents and aligning them using the GroupLayout layout manager. We must add the desired
functionality to the components’ event handlers. To add an event handler for a component,
right click it and position the mouse over the Events option in the pop-up menu. You can
then select the category of event you wish to handle and the specific event within that cate-
gory. For example, to add the JSlider event handlers for this example, right click each JS-

lider and select Events > Change > stateChanged. When you do this, NetBeans adds a
ChangeListener to the JSlider and switches from Design view to Source view where you
can place code in the event handler. Use the Design button to return to Design view and re-
peat the preceding steps to add the event handlers for the other two JSliders. To complete
the event handlers, first add the method in Fig. H.9 following the class’s constructor. In each
JSlider event handler set the corresponding JTextField to the new value of the JSlider,
then call method changeColor. Figure H.10 shows the completed ColorChooser class as it’s
generated in NetBeans. We did not restyle the code to match our coding conventions that
you’ve seen throughout the book. You can now run the program to see it in action. Drag
each slider and watch the colorJPanel’s background color change.

Method initComponents (lines 39–162) was entirely generated by NetBeans based
on your interactions with the GUI designer. This method contains the code that creates

Fig. H.7 | Positioning the JPanel.

Fig. H.8 | Setting the height of the client area.

H.3 Building a ColorChooser 1077

and formats the GUI. Lines 41–93 construct and initialize the GUI components. Lines
95–161 specify the layout of those components using GroupLayout. Lines 108–136
specify the horizontal group and lines 137–159 specify the vertical group. Notice how
complex the code is. More and more software development is done with tools that generate
complex code like this, saving you the time and effort of doing it yourself.

We manually added the changeColor method in lines 25–30. When the user moves
the thumb on one of the JSliders, the JSlider’s event handler sets the text in its corre-
sponding JTextField to the JSlider’s new value (lines 166, 172 and 178), then calls
method changeColor (lines 167, 173 and 179) to update the colorJPanel’s background
color. Method changeColor gets the current value of each JSlider (lines 28–29) and uses
these values as the arguments to the Color constructor to create a new Color.

1 // changes the colorJPanel's background color based on the current
2 // values of the JSliders
3 public void changeColor()
4 {
5 colorJPanel.setBackground(new java.awt.Color(
6 redJSlider.getValue(), greenJSlider.getValue(),
7 blueJSlider.getValue()));
8 } // end method changeColor

Fig. H.9 | Method that changes the colorJPanel’s background color based on the values of
the three JSliders.

1 /*
2 * To change this template, choose Tools | Templates
3 * and open the template in the editor.
4 */
5
6 /*
7 * ColorChooser.java
8 *
9 * Created on Feb 8, 2011, 9:20:27 AM

10 */
11
12 /**
13 *
14 * @author Paul Deitel
15 */
16 public class ColorChooser extends javax.swing.JFrame {
17
18 /** Creates new form ColorChooser */
19 public ColorChooser() {
20 initComponents();
21 }
22
23 // changes the colorJPanel's background color based on the current
24 // values of the JSliders
25 public void changeColor()
26 {

Fig. H.10 | ColorChooser class that uses GroupLayout for its GUI layout. (Part 1 of 6.)

1078 Appendix H GroupLayout

27 colorJPanel.setBackground(new java.awt.Color(
28 redJSlider.getValue(), greenJSlider.getValue(),
29 blueJSlider.getValue()));
30 } // end method changeColor
31
32 /** This method is called from within the constructor to
33 * initialize the form.
34 * WARNING: Do NOT modify this code. The content of this method is
35 * always regenerated by the Form Editor.
36 */
37 @SuppressWarnings("unchecked")
38 // <editor-fold defaultstate="collapsed" desc="Generated Code">
39 private void initComponents() {
40
41 redJSlider = new javax.swing.JSlider();
42 greenJSlider = new javax.swing.JSlider();
43 blueJSlider = new javax.swing.JSlider();
44 redJLabel = new javax.swing.JLabel();
45 greenJLabel = new javax.swing.JLabel();
46 blueJLabel = new javax.swing.JLabel();
47 redJTextField = new javax.swing.JTextField();
48 greenJTextField = new javax.swing.JTextField();
49 blueJTextField = new javax.swing.JTextField();
50 colorJPanel = new javax.swing.JPanel();
51
52 setDefaultCloseOperation(javax.swing.WindowConstants.EXIT_ON_CLOSE);
53
54 redJSlider.setMaximum(255);
55 redJSlider.setValue(0);
56 redJSlider.addChangeListener(new javax.swing.event.ChangeListener()
{
57 public void stateChanged(javax.swing.event.ChangeEvent evt) {
58 redJSliderStateChanged(evt);
59 }
60 });
61
62 greenJSlider.setMaximum(255);
63 greenJSlider.setValue(0);
64 greenJSlider.addChangeListener(new
javax.swing.event.ChangeListener() {
65 public void stateChanged(javax.swing.event.ChangeEvent evt) {
66 greenJSliderStateChanged(evt);
67 }
68 });
69
70 blueJSlider.setMaximum(255);
71 blueJSlider.setValue(0);
72 blueJSlider.addChangeListener(new javax.swing.event.ChangeListener()
{
73 public void stateChanged(javax.swing.event.ChangeEvent evt) {
74 blueJSliderStateChanged(evt);
75 }
76 });

Fig. H.10 | ColorChooser class that uses GroupLayout for its GUI layout. (Part 2 of 6.)

H.3 Building a ColorChooser 1079

77
78 redJLabel.setText("Red:");
79
80 greenJLabel.setText("Green:");
81
82 blueJLabel.setText("Blue:");
83
84 redJTextField.setColumns(4);
85 redJTextField.setText("0");
86
87 greenJTextField.setColumns(4);
88 greenJTextField.setText("0");
89
90 blueJTextField.setColumns(4);
91 blueJTextField.setText("0");
92
93 colorJPanel.setBackground(new java.awt.Color(0, 0, 0));
94
95 javax.swing.GroupLayout colorJPanelLayout = new

javax.swing.GroupLayout(colorJPanel);
96 colorJPanel.setLayout(colorJPanelLayout);
97 colorJPanelLayout.setHorizontalGroup(
98
colorJPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADIN
G)
99 .addGap(0, 100, Short.MAX_VALUE)
100);
101 colorJPanelLayout.setVerticalGroup(
102
colorJPanelLayout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADIN
G)
103 .addGap(0, 91, Short.MAX_VALUE)
104);
105
106 javax.swing.GroupLayout layout = new

javax.swing.GroupLayout(getContentPane());
107 getContentPane().setLayout(layout);
108 layout.setHorizontalGroup(
109
layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
110 .addGroup(layout.createSequentialGroup()
111
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING
)
112 .addGroup(javax.swing.GroupLayout.Alignment.TRAILING,
layout.createSequentialGroup()
113 .addContainerGap()
114 .addComponent(redJLabel)
115 .addGap(20, 20, 20)
116 .addComponent(redJSlider,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)

Fig. H.10 | ColorChooser class that uses GroupLayout for its GUI layout. (Part 3 of 6.)

1080 Appendix H GroupLayout

117
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)
118 .addComponent(redJTextField,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))
119 .addGroup(layout.createSequentialGroup()
120 .addContainerGap()
121 .addComponent(greenJLabel)
122
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)
123 .addComponent(greenJSlider,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)
124 .addGap(10, 10, 10)
125 .addComponent(greenJTextField,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))
126 .addGroup(layout.createSequentialGroup()
127 .addContainerGap()
128 .addComponent(blueJLabel)
129 .addGap(19, 19, 19)
130 .addComponent(blueJSlider,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)
131
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)
132 .addComponent(blueJTextField,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)))
133
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.RELATED)
134 .addComponent(colorJPanel,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)
135 .addContainerGap(javax.swing.GroupLayout.DEFAULT_SIZE,
Short.MAX_VALUE))
136);
137 layout.setVerticalGroup(
138
layout.createParallelGroup(javax.swing.GroupLayout.Alignment.LEADING)
139 .addGroup(layout.createSequentialGroup()
140 .addContainerGap()
141
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.TRAILIN
G, false)
142 .addComponent(colorJPanel,
javax.swing.GroupLayout.DEFAULT_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
Short.MAX_VALUE)
143 .addGroup(javax.swing.GroupLayout.Alignment.LEADING,
layout.createSequentialGroup()
144
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.CENTER)

Fig. H.10 | ColorChooser class that uses GroupLayout for its GUI layout. (Part 4 of 6.)

H.3 Building a ColorChooser 1081

145 .addComponent(redJSlider,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)
146 .addComponent(redJTextField,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)
147 .addComponent(redJLabel))
148
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)
149
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.CENTER)
150 .addComponent(greenJSlider,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)
151 .addComponent(greenJLabel)
152 .addComponent(greenJTextField,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))
153
.addPreferredGap(javax.swing.LayoutStyle.ComponentPlacement.UNRELATED)
154
.addGroup(layout.createParallelGroup(javax.swing.GroupLayout.Alignment.CENTER)
155 .addComponent(blueJLabel)
156 .addComponent(blueJSlider,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE)
157 .addComponent(blueJTextField,
javax.swing.GroupLayout.PREFERRED_SIZE, javax.swing.GroupLayout.DEFAULT_SIZE,
javax.swing.GroupLayout.PREFERRED_SIZE))))
158 .addContainerGap())
159);
160
161 pack();
162 }// </editor-fold>
163
164 private void redJSliderStateChanged(javax.swing.event.ChangeEvent evt)
165 {
166 redJTextField.setText(String.valueOf(redJSlider.getValue()));
167 changeColor();
168 }
169
170 private void greenJSliderStateChanged(javax.swing.event.ChangeEvent
evt)
171 {
172 greenJTextField.setText(String.valueOf(greenJSlider.getValue())
);
173 changeColor();
174 }
175
176 private void blueJSliderStateChanged(javax.swing.event.ChangeEvent
evt)
177 {
178 blueJTextField.setText(String.valueOf(blueJSlider.getValue()));

Fig. H.10 | ColorChooser class that uses GroupLayout for its GUI layout. (Part 5 of 6.)

1082 Appendix H GroupLayout

H.4 GroupLayout Web Resources
download.oracle.com/javase/6/docs/api/javax/swing/GroupLayout.html

API documentation for class GroupLayout.
wiki.java.net/bin/view/Javadesktop/GroupLayoutExample

Provides an Address Book demo of a GUI built manually with GroupLayout with source code.
www.developer.com/java/ent/article.php/3589961

Tutorial: “Building Java GUIs with Matisse: A Gentle Introduction,” by Dick Wall.

179 changeColor();
180 }
181
182 /**
183 * @param args the command line arguments
184 */
185 public static void main(String args[]) {
186 java.awt.EventQueue.invokeLater(new Runnable() {
187 public void run() {
188 new ColorChooser().setVisible(true);
189 }
190 });
191 }
192
193 // Variables declaration - do not modify
194 private javax.swing.JLabel blueJLabel;
195 private javax.swing.JSlider blueJSlider;
196 private javax.swing.JTextField blueJTextField;
197 private javax.swing.JPanel colorJPanel;
198 private javax.swing.JLabel greenJLabel;
199 private javax.swing.JSlider greenJSlider;
200 private javax.swing.JTextField greenJTextField;
201 private javax.swing.JLabel redJLabel;
202 private javax.swing.JSlider redJSlider;
203 private javax.swing.JTextField redJTextField;
204 // End of variables declaration
205
206 }

Fig. H.10 | ColorChooser class that uses GroupLayout for its GUI layout. (Part 6 of 6.)

www.developer.com/java/ent/article.php/3589961

I
Java Desktop Integration Components

I.1 Introduction
The Java Desktop Integration Components (JDIC) are part of an open-source project
aimed at allowing better integration between Java applications and the platforms on which
they execute. Some JDIC features include:

• interacting with the underlying platform to launch native applications (such as
web browsers and e-mail clients)

• displaying a splash screen when an application begins execution to indicate to the
user that the application is loading

• creating icons in the system tray (also called the taskbar status area or notification
area) to provide access to Java applications running in the background

• registering file-type associations, so that files of specified types will automatically
open in corresponding Java applications

• creating installer packages, and more.

The JDIC homepage (jdic.dev.java.net/) includes an introduction to JDIC, down-
loads, documentation, FAQs, demos, articles, blogs, announcements, incubator projects, a
developer’s page, forums, mailing lists, and more. We discuss several of these features here.

I.2 Splash Screens
Java application users often perceive a performance problem, because nothing appears on
the screen when you first launch an application. One way to show a user that your program
is loading is to display a splash screen—a borderless window that appears temporarily
while an application loads. The command-line option -splash for the java command en-
ables you to specify a PNG, GIF or JPG image that should display when your application
begins loading. To demonstrate this new option, we created a program (Fig. I.1) that
sleeps for 5 seconds (so you can view the splash screen) then displays a message at the com-

1084 Appendix I Java Desktop Integration Components

mand line. The directory for this example includes a PNG format image to use as the
splash screen. To display the splash screen when this application loads, use the command

Once you’ve initiated the splash screen display, you can interact with it programmat-
ically via the SplashScreen class of the java.awt package. You might do this to add some
dynamic content to the splash screen. For more information on working with splash
screens, see the following sites:

java -splash:DeitelBug.png SplashDemo

1 // Fig. I.1: SplashDemo.java
2 // Splash screen demonstration.
3 public class SplashDemo
4 {
5 public static void main(String[] args)
6 {
7 try

8 {
9 Thread.sleep(5000);

10 } // end try
11 catch (InterruptedException e)
12 {
13 e.printStackTrace();
14 } // end catch
15
16 System.out.println(
17 "This was the splash screen demo.");
18 } // end method main
19 } // end class SplashDemo

Fig. I.1 | Spash screen displayed with the -splash option to the java command.

I.3 Desktop Class 1085

I.3 Desktop Class
The Desktop class enables you to specify a file or URI that you’d like to open using the
underlying platform’s appropriate application. For example, if Firefox is your computer’s
default browser, you can use the Desktop class’s browse method to open a website in Fire-
fox. In addition, you can open an e-mail composition window in your system’s default e-
mail client, open a file in its associated application and print a file using the associated ap-
plication’s print command. Figure I.2 demonstrates the first three of these capabilities.

The event handler at lines 86–116 obtains the index number of the task the user
selects in the tasksJComboBox (line 89) and the String that represents the file or URI to
process (line 90). Line 92 uses Desktop static method isDesktopSupported to deter-
mine whether class Desktop’s features are supported on the platform on which this appli-
cation runs. If they are, line 96 uses Desktop static method getDesktop to obtain a
Desktop object. If the user selected the option to open the default browser, line 101 creates
a new URI object using the String input as the site to display in the browser, then passes
the URI object to Desktop method browse which invokes the system’s default browser and
passes the URI to the browser for display. If the user selects the option to open a file in its
associated program, line 104 creates a new File object using the String input as the file
to open, then passes the File object to Desktop method open which passes the file to the
appropriate application to open the file. Finally, if the user selects the option to compose
an e-mail, line 107 creates a new URI object using the String input as the e-mail address
to which the e-mail will be sent, then passes the URI object to Desktop method mail which
invokes the system’s default e-mail client and passes the URI to the e-mail client as the e-
mail recipient. You can learn more about class Desktop at

java.sun.com/developer/technicalArticles/J2SE/Desktop/javase6/
splashscreen/

download.oracle.com/javase/6/docs/api/java/awt/SplashScreen.html

download.oracle.com/javase/6/docs/api/java/awt/Desktop.html

1 // Fig. I.2: DesktopDemo.java
2 // Use Desktop to launch default browser, open a file in its associated
3 // application and an email in the default email client.
4 import java.awt.Desktop;
5 import java.io.File;
6 import java.io.IOException;
7 import java.net.URI;
8
9 public class DesktopDemo extends javax.swing.JFrame

10 {
11 // constructor
12 public DesktopDemo()
13 {
14 initComponents();
15 } // end DesktopDemo constructor

Fig. I.2 | Use Desktop to launch the default browser, open a file in its associated application
and compose an e-mail in the default e-mail client. (Part 1 of 3.)

1086 Appendix I Java Desktop Integration Components

16
17
18
19
20
21 // determine selected task and perform the task
22 private void doTaskJButtonActionPerformed(
23 java.awt.event.ActionEvent evt)
24 {
25 int index = tasksJComboBox.getSelectedIndex();
26 String input = inputJTextField.getText();
27
28 if ()
29 {
30 try

31 {
32
33
34 switch (index)
35 {
36 case 0: // open browser
37
38 break;
39 case 1: // open file
40
41 break;
42 case 2: // open email composition window
43
44 break;
45 } // end switch
46 } // end try
47 catch (Exception e)
48 {
49 e.printStackTrace();
50 } // end catch
51 } // end if
52 } // end method doTaskJButtonActionPerformed
53
54 public static void main(String[] args)
55 {
56 java.awt.EventQueue.invokeLater(
57 new Runnable()
58 {
59 public void run()
60 {
61 new DesktopDemo().setVisible(true);
62 }
63 }
64);
65 } // end method main
66

Fig. I.2 | Use Desktop to launch the default browser, open a file in its associated application
and compose an e-mail in the default e-mail client. (Part 2 of 3.)

// To save space, lines 20-84 of the NetBeans autogenerated GUI code
// are not shown here. The complete code for this example is located in
// the file DesktopDemo.java in this example's directory.

Desktop.isDesktopSupported()

Desktop desktop = Desktop.getDesktop();

desktop.browse(new URI(input));

desktop.open(new File(input));

desktop.mail(new URI(input));

I.4 Tray Icons 1087

I.4 Tray Icons
Tray icons generally appear in your system’s system tray, taskbar status area or notification
area. They typically provide quick access to applications that are executing in the back-
ground on your system. When you position the mouse over one of these icons, a tooltip
appears indicating what application the icon represents. If you click the icon, a popup
menu appears with options for that application.

Classes SystemTray and TrayIcon (both from package java.awt) enable you to create
and manage your own tray icons in a platform independent manner. Class SystemTray

67 // Variables declaration - do not modify
68 private javax.swing.JButton doTaskJButton;
69 private javax.swing.JLabel inputJLabel;
70 private javax.swing.JTextField inputJTextField;
71 private javax.swing.JLabel instructionLabel;
72 private javax.swing.JComboBox tasksJComboBox;
73 // End of variables declaration
74 }

Fig. I.2 | Use Desktop to launch the default browser, open a file in its associated application
and compose an e-mail in the default e-mail client. (Part 3 of 3.)

1088 Appendix I Java Desktop Integration Components

provides access to the underlying platform’s system tray—the class consists of three
methods:

• static method getDefaultSystemTray returns the system tray

• method addTrayIcon adds a new TrayIcon to the system tray

• method removeTrayIcon removes an icon from the system tray

Class TrayIcon consists of several methods allowing users to specify an icon, a tooltip
and a pop-up menu for the icon. In addition, tray icons support ActionListeners,
MouseListeners and MouseMotionListeners. You can learn more about classes System-
Tray and TrayIcon at

download.oracle.com/javase/6/docs/api/java/awt/SystemTray.html
download.oracle.com/javase/6/docs/api/java/awt/TrayIcon.html

J
UML 2: Additional Diagram Types

J.1 Introduction
If you read the optional Software Engineering Case Study in Chapters 12–13, you should
now have a comfortable grasp on the UML diagram types that we use to model our ATM
system. We limit our discussion to a concise, subset of the UML. The UML 2 provides a
total of 13 diagram types. The end of Section 12.2 summarizes the six diagram types that
we use in the case study. This appendix lists and briefly defines the seven remaining dia-
gram types.

J.2 Additional Diagram Types
The following are the seven diagram types that we chose not to use in our Software Engi-
neering Case Study.

• Object diagrams model a “snapshot” of the system by modeling a system’s ob-
jects and their relationships at a specific point in time. Each object represents an
instance of a class from a class diagram, and there may be several objects created
from one class. For our ATM system, an object diagram could show several dis-
tinct Account objects side by side, illustrating that they’re all part of the bank’s
account database.

• Component diagrams model the artifacts and components—resources (which
include source files)—that make up the system.

• Deployment diagrams model the runtime requirements of the system (such as
the computer or computers on which the system will reside), memory require-
ments for the system, or other devices the system requires during execution.

• Package diagrams model the hierarchical structure of packages (which are groups
of classes) in the system at compile-time and the relationships that exist between
the packages.

1090 Appendix J UML 2: Additional Diagram Types

• Composite structure diagrams model the internal structure of a complex object
at runtime. Composite structure diagrams are new in UML 2 and allow system
designers to hierarchically decompose a complex object into smaller parts. Com-
posite structure diagrams are beyond the scope of our case study. Composite
structure diagrams are more appropriate for larger industrial applications, which
exhibit complex groupings of objects at execution time.

• Interaction overview diagrams, which are new in UML 2, provide a summary of
control flow in the system by combining elements of several types of behavioral
diagrams (e.g., activity diagrams, sequence diagrams).

• Timing diagrams, also new in UML 2, model the timing constraints imposed on
stage changes and interactions between objects in a system.

If you’re interested in learning more about these diagrams and advanced UML topics,
please visit our UML Resource Center at www.deitel.com/UML/.

www.deitel.com/UML/

Symbols
^, boolean logical exclusive

OR 107, 110
truth table 110

_ SQL wildcard character
857, 858

, (comma) formatting flag
95

--, predecrement/
postdecrement 82

-, subtraction 34, 35
!, logical NOT 107, 110

truth table 110
!=, not equals 36
? (wildcard type argument)

642
?:, ternary conditional

operator 66
. dot separator 42
‚ flag 1064
(flag 1064
{, left brace 25
}, right brace 25
@HttpSessionScope

annotation 990
@Override annotation 233
@Resource annotation 951
* SQL wildcard character

856
* wildcard in a file name 43
*, multiplication 34, 35
*=, multiplication

assignment operator 82
/ forward slash in end tags

663
/, division 34, 35
/* */ traditional comment

24
/** */ Java

documentation
comment 24

//, end-of-line comment
23

/=, division assignment
operator 82

\, backslash escape
sequence 29

\', single-quote-character
escape sequence 1068

\", double-quote escape
sequence 29, 1068

\\, backslash-character
escape sequence 1068

\b, escape sequence 1068
\f, form-feed escape

sequence 1069
\n, newline escape

sequence 29, 1069
\r, carriage-return escape

sequence 29, 1069
\t, horizontal tab escape

sequence 29, 1069
&, boolean logical AND

107, 109
&&, conditional AND 108,

109
truth table 108

flag 1064, 1065
% conversion character

1060
% SQL wildcard character

857
%, remainder 34, 35
%% format specifier 1062
%=, remainder assignment

operator 82
%A format specifier 1056
%a format specifier 1056
%B format specifier 1060
%b format specifier 111,

1060, 1061
%C format specifier 1057
%c format specifier 1057
%d format specifier 33,

1054, 1055
%E format specifier 1055,

1056
%e format specifier 1055,

1056
%f format specifier 58,

1055, 1056
%G format specifier 1056
%g format specifier 1056
%H format specifier 1060
%h format specifier 1061
%n format specifier 1061
%o format specifier 1054,

1055
%S format specifier 1057

%s format specifier 30,
1054, 1057

%T format specifier 1058
%t format specifier 1058
%X format specifier 1054
%x format specifier 1054
- flag 1064
+ flag 1064
– (minus sign) formatting

flag 94
+, addition 34, 35
++, preincrement/

postincrement 82
+=, addition assignment

operator 81
+=, string concatenation

assignment operator 518
<, less than 36
<=, less than or equal 36
<> diamond notation for

generic type inference
(Java SE 7) 585

<>, angle brackets for XML
elements 663

-=, subtraction assignment
operator 82

== to determine whether
two references refer to
the same object 252

==, is equal to 36
>, greater than 36
>=, greater than or equal to

36
|, boolean logical inclusive

OR 107, 109
||, conditional OR 107,

108
truth table 109

Numerics
0 flag 149
0 format flag 190
0x (hexadecimal prefix)

1065
127.0.0.1 (localhost IP

address) 819, 909

A
abbreviating assignment

expressions 81

abs method of Math 116
absolute method of

ResultSet 878
absolute path 542, 543,

545
absolute value 116
abstract class 256, 260,

261, 262, 280
abstract data type (ADT)

188
abstract implementation

616
abstract keyword 261
abstract method 261, 262,

265, 370, 417, 1025
abstract superclass 260, 370
Abstract Window Toolkit

(AWT) 404
package 124

Abstract Window Toolkit
Event package 124

AbstractButton class
420, 422, 701, 706
addActionListener

method 423
addItemListener

method 425
isSelected method

708
setMnemonic method

706
setRolloverIcon

method 422
setSelected method

707
AbstractCollection

class 616
AbstractList class 616
AbstractMap class 616
AbstractQueue class 616
AbstractSequentialList

class 616
AbstractSet class 616
AbstractTableModel

class 872, 878
fireTableStruc-

tureChanged meth-
od 878

accept method of class
ServerSocket 811,
818

Index

1092 Index

access modifier 41, 48, 360
private 48, 192, 228
protected 192, 228
public 41, 192, 228

access modifier in the UML
- (private) 51
+ (public) 43

access shared data 759
accessibility 405
accessor method 202
Account class (ATM case

study) 326, 329, 332,
334, 335, 342, 349, 350,
351, 353, 354, 355, 381

acquire the lock 745
action 65, 69
action expression in the

UML 63, 339
action key 450
action of an object 339
action state in the UML 63,

339
action state symbol 63
ActionEvent class 414,

415, 419, 466, 679
getActionCommand

method 415, 423
ActionListener interface

414, 419
actionPerformed

method 414, 418,
460, 466

actionPerformedmethod
of interface
ActionListener 414,
418, 460, 466

ACTIVATED constant of
nested class EventType
810

activation in a UML
sequence diagram 353

activity diagram 62, 63, 65,
91
do...while statement

97
for statement 92
if statement 65
if...else statement 65
in the UML 69, 326,

339, 340, 357
sequence statement 63
switch statement 104
while statement 69

activity in the UML 63,
326, 338, 341

actor in use case in the
UML 324

actual type arguments 623
acyclic gradient 497
Ada programming

language 736
adapter class 443

Adapter Classes used to
implement event
handlers 447

add a web service reference
to an application in
NetBeans 974

add an event handler in
Netbeans 1076

add method
ArrayList<T> 185,

806
ButtonGroup 429
JFrame 408
JMenu 706
JMenuBar 707
LinkedList<T> 590
List<T> 585, 587

addActionListener
method
of class AbstractBut-

ton 423
of class JTextField

414
addAll method

Collections 590, 600
List 587

addFirst method of
LinkedList 590

addGap method of class
GroupLayout.Group
1072

addGap method of class
GroupLayout.
ParallelGroup 1072

addGap method of class
GroupLayout.
SequentialGroup
1072

adding a web service
reference to an
application 973

addItemListenermethod
of class
AbstractButton 425

addition 34, 35
addition compound

assignment operator, +=
81

addKeyListener method
of class Component 450

addLast method of
LinkedList 589

addListSelection-
Listener method of
class JList 435

addMouseListener
method of class
Component 442

addMouseMotion-
Listener method of
class Component 442

addPoint method of class
Polygon 492, 494

addSeparator method of
class JMenu 707

addTab method of class
JTabbedPane 721

addTableModelListener
method of TableModel
872

addTrayIcon method of
class SystemTray 1088

addWindowListener
method of class Window
700

advertisement 933
aggregation in the UML

331
Agile Alliance

(www.agilealliance.
org) 18

Agile Manifesto
(www.agilemanifesto
.org) 18

agile software development
xxiii, 18, 18

.aif file extension 685,
688

.aiff file extension 685,
688

Ajax 943
id attributes for ele-

ments 961
Ajax (Asynchronous

JavaScript and XML)
16, 956, 957

Ajax-enabled
web applications xxii

Ajax request 961
Ajax web application 957
algorithm

in Java Collections
Framework 590

aligning components in
GroupLayout 1072

aligning decimal points in
output 1053

alpha software 19
alphabetizing 506
Amazon S3 19
analysis stage of the

software life cycle 324
anchor (a) element 664
anchor field of class

GridBagConstraints
725

AND (in SQL) 863, 864
Android 6

Android Market 6
app 15
Market 6
operating system 2, 6
smartphone 6

Android for Programmers:
An App-Driven Approach
6

angle bracket (<>) for XML
elements 663

angle brackets (< and >)
623

animated shape 652
animating a series of images

675
animation 657, 668, 680
Animator applet 648
annotation

@Override 233
Annotations

@GET 980
@PathParam 980
@Produces 980
@WebMethod 968
@WebParam 969
@WebService 968
Path 979

annotations
@Resource 951

anonymous inner class 414,
432, 448

anti-aliasing 651
Apache Derby xxii
Apache Software

Foundation 5
Apache Tomcat 968
API (application

programming interface)
31, , 115

API documentation
(download.oracle.com
/javase/6/docs/api/)
123

API links
Deprecated 1029
Help 1029
Index 1029
Tree 1029

append method of class
StringBuilder 521

applet 647, 652, 659, 803
draggable 674

applet .class file 655
Applet class

getAppletContext
method 807

getAudioClipmethod
685

getCodeBase method
685

getParametermethod
804

play method 685
showStatus method

682
applet container 647, 656
Applet Package 124

www.agilealliance.org
www.agilealliance.org
www.agilemanifesto.org
www.agilemanifesto.org

Index 1093

applet parameter 803
Applet that draws a string

653
applet XHTML element

655
AppletContext interface

803
showDocumentmethod

803, 807
applet-desc element of a

JNLP document 664
applets directory

JDK sample applets
648

applets in the public
domain 803

appletviewer applet
container 647, 649
Applet menu 650
Quit menu item 650
Reload menu item 650

application 23, 24, 41
command-line argu-

ments 118
application programming

interface (API) 7, 115
application server 908
Application servers

Apache Tomcat 968
GlassFish 968
JBoss Application Serv-

er 968
application-desc

element of a JNLP
document 664
height attribute 664
main-class attribute

664
name attribute 664
width attribute 664

arc 488, 648
arc angle 488
arc width and arc height for

rounded rectangles 487
Arc2D class 469

CHORD constant 498
OPEN constant 498
PIE constant 498

Arc2D.Double class 494
archive files 220
ArcTest applet 648
args parameter 178
argument index 1054,

1060, 1068
argument list 1055
argument promotion 122
argument to a method 25,

44
arithmetic compound

assignment operators 81
arithmetic operators 34
arithmetic overflow 301

ArithmeticException
class 295, 300

array 540, 806
bounds checking 151
ignoring element zero

152
length instance vari-

able 142
pass an array element to

a method 159
pass an array to a meth-

od 159
array-access expression 142
array-creation expression

143
array initializer 145

for multidimensional
array 168

nested 168
array of one-dimensional

arrays 168
ArrayBlockingQueue

class 759, 760, 770, 784
size method 761

arraycopymethod of class
System 181, 182

ArrayIndexOutOfBounds
Exception class 151,
153, 153, 494

ArrayList<T> generic
class 183, 582, 598, 640,
806, 991
add method 185, 806
clear method 183
containsmethod 183,

186
get method 185
indexOf method 183
isEmpty method 203
remove method 184,

185
size method 185
toString method 642
trimToSize method

184
Arrays class 180

asList method 588,
589

binarySearchmethod
180

equals method 180
fill method 180, 794
sort method 180
toString method 536

arrow 63
arrow key 450
arrowhead in a UML

sequence diagram 353
artifact in the UML 1089
ascending order 181

ASC in SQL 859, 860
ascent 482

ASCII (American Standard
Code for Information
Interchange) character
set 105

ASCII character set
Appendix 1024

asList method of Arrays
588, 589

assert statement 315,
1025

assertion 315
AssertionError class 315
Assigning superclass and

subclass references to
superclass and subclass
variables 259

assignment operator, = 33,
38

assignment operators 81
associate

right to left 78
association (in the UML)

329, 330, 331, 362, 363
name 330

associativity of operators
35, 38, 84
left to right 38
right to left 35

asterisk (*) SQL wildcard
character 856

asynchronous call 352
asynchronous event 301
Asynchronous JavaScript

and XML (Ajax) 956
asynchronous request 956
ATM (automated teller

machine) case study
319, 324

ATM class (ATM case study)
329, 330, 334, 336, 338,
342, 349, 350, 351, 352,
353, 361

ATM system 324, 325,
327, 328, 338, 342, 360

ATMCaseStudy class (ATM
case study) 395

atomic operation 750, 905
attribute 360, 362, 363

compartment in a class
diagram 336

declaration in the UML
336, 338

in the UML 4, 43, 329,
333, 334, 336, 338,
341, 368, 369

name in the UML 336
of a class 3
of an object 4
of an XHTML element

655
type in the UML 336

.au file extension 685, 688

audio clip 685, 687, 692
AudioClip interface 685

loop method 685
play method 685
stop method 685

Austrailian Botanical
Gardens
(www.anbg.gov.au/
anbg/index.html) 692

authorISBN table of books
database 852, 853

authors table of books
database 852

auto commit state 905
auto-unboxing 581
autobox an int 626
autoboxing 528, 581, 626
AutoCloseable interface

317, 872
close method 317

autoincremented 852, 862
automated teller machine

(ATM) 319, 324
user interface 320

automatic driver discovery
(JDBC 4) xxii, 869

automatic garbage
collection 304

automatic scrolling 435
automatic updating 661
average 70, 72
.avi file extension 688
await method of interface

Condition 777, 781
awaitTermination

method of interface
ExecutorService 748

AWT (Abstract Window
Toolkit) 404
components 405

AWTEvent class 416

B
B conversion character

1060
b conversion character

1060
B2B (business-to-business)

transactions 964
background color 476, 478
backing array 588
backslash (\) 29, 1068,

1069
BalanceInquiry class

(ATM case study) 329,
331, 334, 335, 336, 339,
342, 350, 351, 352, 353,
361, 365, 366, 367

www.anbg.gov.au/anbg/index.html
www.anbg.gov.au/anbg/index.html

1094 Index

BankDatabase class (ATM
case study) 329, 332,
334, 342, 344, 349, 350,
351, 352, 353, 354, 361,
363

bar chart 148, 149, 648
bar of asterisks 148, 149
BarChart applet 648
base class 225
base of a number 526
BASELINE alignment

constant in
GroupLayout 1072

baseline of the font 480
BasePlusCommissionEmp

loyee class extends
CommissionEmployee
272

BasicStroke class 469,
497, 498
CAP_ROUND constant

499
JOIN_ROUND constant

499
batch file 551
behavior 342

of a class 3
of a system 338, 339,

341, 351
beta software 20
bidirectional iterator 588
bidirectional navigability in

the UML 361
BigDecimal class 56, 96

documentation (down-
load.oracle.com/
javase/6/docs/
api/java/math/
BigDecimal.html)
96

BigInteger class 786
binary file 541
binary operator 110
binary search algorithm

598
binarySearch method

of Arrays 180, 182
of Collections 590,

598, 600
BindException class 818
binding the server to the

port 811, 826
BindingProvider

interface 1001
getRequestContext

method 1001
bitwise operators 107
Blackjack 988
blank line 24
_blank target frame 807
Blink applet 648
block 68, 76, 811, 829

block increment of a
JSlider 696

block until connection
received 818

blocked state 739, 745
BlockingQueue interface

760
put method 760, 761
take method 760, 761

body
of a class declaration 25
of a loop 69
of a method 25
of an if statement 35

body XHTML element
655

Bohm, C. 62
BOLD constant of class Font

480
book-title capitalization

403, 420
books database 852

table relationships 855
Boolean

attribute in the UML
334

class 580
boolean

expression 66, 1042
promotions 123

boolean logical AND, &
107, 109

boolean logical exclusive
OR, ^ 107, 110
truth table 110

boolean logical inclusive
OR, | 109

boolean primitive type 66,
1025, 1026, 1042

border of a JFrame 699
BorderLayout class 441,

452, 454, 457, 466
CENTER constant 441,

457, 460
EAST constant 441, 457
NORTH constant 441,

457
SOUTH constant 441,

457
WEST constant 441, 457

BOTH constant of class
GridBagConstraints
726

bottom tier 913
bounded buffer 770
bounding rectangle 486,

488, 696
bounds checking 151
Box class 466, 722, 723

createGlue method
725

createHorizontal-
Box method 466,
723

createHorizontal-
Glue method 725

createHorizontal-
Strut method 725

createRigidArea
method 725

createVerticalBox
method 724

createVerticalGlue
method 725

createVertical-
Strut method 724

X_AXIS constant 725
Y_AXIS constant 725

boxing conversion 581,
626

BoxLayout class 466, 722
BoxLayout layout manager

722
braces ({ and }) 68, 76, 90,

145
not required 102

braille screen reader 405
break 1025
break mode 1039
break statement 102, 105
breakpoint 1037

inserting 1039, 1041
listing 1050
removing 1051

bricks-and-mortar store
933

brightness 478
Brin, Sergey 15
brittle software 245
browse method of class

Desktop 1085
browsing 803
buffer 572, 753
buffered I/O 572
BufferedImage class 498

createGraphics
method 498

TYPE_INT_RGB con-
stant 498

BufferedInputStream
class 572

BufferedOutputStream
class 572
flush method 572

BufferedReader class 573
BufferedWriter class 573
building-block approach to

creating programs 4
bulk operation 581
business logic 913
business publications 20
business rule 913

business-to-business (B2B)
transactions 964

button 400, 420
button label 420
ButtonGroup class 426,

701, 708
add method 429

byte-based stream 541
Byte class 580
byte keyword 1026
byte primitive type 98,

1025
promotions 123

ByteArrayInputStream
class 573

ByteArrayOutputStream
class 573

bytecode 8, 26
bytecode verifier 9

C
c option of the jar

command 662
cache 912
CachedRowSet interface

885
close method 887

calculations 38, 62
Calendar class 1059

getInstance method
1060

call-by-reference 161
call-by-value 161
call method of interface

Callable 799
Callable interface 799

call method 799
CallableStatement

interface 904
callback function 958
calling method (caller) 41,

49
camera 6
cancel method of class

SwingWorker 799
CANCEL_OPTION constant

of JFileChooser 577
CannotRealizePlayerEx

ception exception 690
canRead method of File

543
canWrite method of File

543
CAP_ROUND constant of

class BasicStroke 499
capacity method

of class StringBuild-
er 518

capacity of a
StringBuilder 517

card games 153

Index 1095

card shuffling
Fisher-Yates 156

Card Shuffling and
Dealing
with Collections

method shuffle
594

CardTest applet 648
carriage return 29
Cascading Style Sheets

(CSS) 908
case keyword 102, 1025
case sensitive 24

Java commands 12
case studies xxii
CashDispenser class

(ATM case study) 329,
330, 331, 334, 335, 342,
354, 379

casino 125, 130
cast

downcast 258
operator 77, 122

catch
a superclass exception

303
an exception 296

catch
block 298, 298, 300,

301, 304, 308, 310
clause 298, 1025
keyword 298

Catch block 153
catch handler

multi-catch 316
catch-or-declare

requirement 302
cd to change directories 26
ceil method of Math 116
cellpadding attribute of

h:dataTable 954
cellspacing attribute of

h:dataTable 954
CENTER constant

BorderLayout 441,
457, 460

FlowLayout 457
GridBagConstraints

726
GroupLayout 1072

center mouse button click
445

centered 454
certificate authority 660
chained exception 311
change directories 26, 648
ChangeEvent class 699
ChangeListener interface

699
stateChangedmethod

699

changing look-and-feel of a
Swing-based GUI 715

char
array 505
keyword 1025, 1026
primitive type 32, 98
promotions 123

character
constant 105
literal 503

character-based stream 541
Character class 503, 524,

580
charValue method

528
digit method 526
forDigit method 526
isDefined method

524
isDigit method 524
isJavaIdentifier-

Part method 525
isJavaIdentifier-

Start method 524
isLetter method 526
isLetterOrDigit

method 526
isLowerCase method

526
isUpperCase method

526
static conversion

methods 527
toLowerCase method

526
toUpperCase method

526
CharArrayReader class

573
CharArrayWriter class

573
charAt method

of class String 505
of class StringBuild-

er 520
CharSequence interface

536
charValuemethod of class

Character 528
checkbox 420, 426
checkbox label 425
checked exception 302
Checking with assert that

a value is within range
315

child window 695, 716,
718, 719

CHORD constant of class
Arc2D 498

circular buffer 771
class 3, 336, 342, 346, 360

class keyword 41

class (cont.)
constructor 42, 53, 362
data hiding 48
declaration 24, 653
declare a method 40
default constructor 53
field 47
file 26
get method 196
instance variable 4, 47,

117
instantiating an object

40
name 24, 218, 362
set method 196

class-average problem 70,
74

class cannot extend a final
class 278

Class class 253, 277, 409,
878
getName method 253,

277
getResource method

409
class diagram

for the ATM system
model 332, 356

in the UML 325, 329,
331, 335, 342, 360,
363, 367, 368, 369

.class file 8, 27
separate one for every

class 194
.class file extension 685
class hierarchy 225, 261
class instance creation

expression 42, 54
class keyword 24, 41,

1025
class library 226, 251
class loader 9, 220, 409
class method 116
class name

fully qualified 47
class variable 117, 210
classwide information 210
ClassCastException

class 628
Classes

AbstractButton 420,
422, 701, 706

AbstractCollection
616

AbstractList 616
AbstractMap 616
AbstractQueue 616
AbstractSequen-

tialList 616
AbstractSet 616
AbstractTableModel

872, 878

Classes (cont.)
ActionEvent 414,

415, 419, 466, 679
Arc2D 469
Arc2D.Double 494
ArithmeticExcep-

tion 295
ArrayBlockingQueue

759, 760, 770, 784
ArrayIndexOutOf-

BoundsException
151, 153

ArrayList<T> 183,
183, 185, 186, 582,
583, 598, 640, 806

Arrays 180
AssertionError 315
AWTEvent 416
BasicStroke 469,

497, 498
BigDecimal 56, 96
BigInteger 786
BindException 818
Boolean 580
BorderLayout 441,

452, 454, 457, 466
Box 466, 722, 723
BoxLayout 466, 722
BufferedImage 498
BufferedInput-

Stream 572
BufferedOutput-

Stream 572
BufferedReader 573
BufferedWriter 573
ButtonGroup 426,

701, 708
Byte 580
ByteArrayInput-

Stream 573
ByteArrayOutput-

Stream 573
Calendar 1059
ChangeEvent 699
Character 503, 521,

524, 580
CharArrayReader 573
CharArrayWriter 573
Class 253, 277, 409,

878
ClassCastException

628
Collections 582, 625
Color 469
Component 405, 438,

471, 472, 673, 680,
700, 731

ComponentAdapter
443

ComponentListener
454

1096 Index

Classes (cont.)
ConcurrentHashMap

784
ConcurrentLinked-

Deque 784
ConcurrentSkip-

ListMap 784
ConcurrentSkip-

ListSet 784
Container 405, 435,

454, 462
ContainerAdapter

443
CopyOnWriteArray-

List 784
CopyOnWriteArray-

Set 784
DatagramPacket 826,

848
DatagramSocket 826
DataInputStream 572
DataOutputStream

572
Date 1059
DelayQueue 784
Desktop 1085
Dimension 680
Double 580, 641
DriverManager 869
Ellipse2D 469
Ellipse2D.Double

494
Ellipse2D.Float 494
EmptyStackExcep-

tion 604
EnumSet 209
Error 301
EventListenerList

418
Exception 301
ExecutionException

788
Executors 741
File 542
FileInputStream 541
FileOutputStream

541
FileReader 541, 573
FileWriter 541
FilterInputStream

571
FilterOutputStream

571
Float 580
FlowLayout 408, 454
FocusAdapter 443
Font 425, 469, 480
FontMetrics 469, 482
Formatter 542, 1053
Frame 699
GeneralPath 469, 499

Classes (cont.)

GradientPaint 469,
497

Graphics 448, 469,
494, 673

Graphics2D 469, 494,
498

GridBagConstraints
725, 731

GridBagLayout 722,
725, 727, 731

GridLayout 454, 460
GroupLayout 454,

1071
GroupLayout.Group

1072
GroupLayout.Paral-

lelGroup 1072
GroupLayout.Se-

quentialGroup
1072

Gson 985
HashMap 608, 804
HashSet 605
Hashtable 608
HyperlinkEvent 808,

810
IllegalMonitorSta-

teException 763,
778

Image 669
ImageIcon 409, 669,

678, 679
IndexOutOfRangeEx-

ception 153
InetAddress 819,

825, 829, 830
InputEvent 438, 445,

450
InputMismatchEx-

ception 295
InputStream 571,

811, 812, 813
InputStreamReader

573
Integer 403, 580, 641
InterruptedExcep-

tion 742
ItemEvent 425, 429
JApplet 653, 700
JAXB 980
JButton 404, 420,

423, 460
JCheckBox 404, 423
JCheckBoxMenuItem

700, 701, 707
JColorChooser 476
JComboBox 404, 429,

726

Classes (cont.)
JComponent 405, 406,

408, 418, 429, 433,
446, 462, 469, 471,
680

JdbcRowSetImpl 887
JDesktopPane 716
JDialog 707
JEditorPane 808
JFileChooser 574
JFrame 699
JInternalFrame 716,

718
JLabel 404, 406
JList 404, 433
JMenu 700, 707, 718
JMenuBar 700, 707,

718
JMenuItem 701, 718
JOptionPane 401
JPanel 404, 446, 447,

454, 462, 675, 696
JPasswordField 410,

415
JPopupMenu 708
JProgressBar 795
JRadioButton 423,

426, 429
JRadioButtonMenu-

Item 700, 701, 708
JScrollPane 435,

437, 466, 467
JSlider 695, 696,

699, 1072
JTabbedPane 720, 725
JTable 872
JTextArea 452, 464,

466, 727, 730
JTextComponent 410,

413, 464, 466
JTextField 404, 410,

414, 418, 464
JToggleButton 423
KeyAdapter 443
KeyEvent 419, 450
Line2D 469, 498
Line2D.Double 494
LinearGradient-

Paint 497
LineNumberReader

573
LinkedBlockingD-

eque 784
LinkedBlocking-

Queue 784
LinkedList 582
LinkedTransfer-

Queue 784
ListSelectionEvent

433
ListSelectionModel

435

Classes (cont.)
Long 580
MalformedURLExcep-

tion 807
Manager 688
Matcher 503, 536
Math 116
MouseAdapter 443
MouseEvent 419, 438,

711
MouseMotionAdapter

443, 447
MouseWheelEvent 439
Number 641
Object 209
ObjectInputStream

541, 812, 813, 819
ObjectOutputStream

541
OutputStream 571,

811, 812, 813
OutputStreamWriter

573
Pattern 503, 536
PipedInputStream

571
PipedOutputStream

571
PipedReader 573
PipedWriter 573
Point 448
Polygon 469, 491
PrintStream 571
PrintWriter 573
PriorityBlocking-

Queue 784
PriorityQueue 604
Properties 612
RadialGradient-

Paint 497
Random 124, 125
Reader 573
Rectangle2D 469
Rectangle2D.Double

494
ReentrantLock 777,

779
RoundRectangle2D

469
RoundRectangle2D.D

ouble 494, 498
RowFilter 884
RuntimeException

302
Scanner 32, 45
ServerSocket 811,

818, 840
ServiceManager 672
Short 580
Socket 811, 825, 840,

841
SocketException 826

Index 1097

Classes (cont.)
SplashScreen 1084
SQLException 870
SQLFeatureNotSup-

portedException
877

Stack 602
StackTraceElement

311
String 503
StringBuffer 517
StringBuilder 503,

517
StringIndexOutOf-

BoundsException
513, 520

StringReader 573
StringWriter 573,

980
SwingUtilities 716,

818
SwingWorker 785
SynchronousQueue

784
SystemColor 497
SystemTray 1087
TableModelEvent 884
TableRowSorter 884
TexturePaint 469,

497, 498
Throwable 301, 310
Timer 679, 680
TrayIcon 1088
TreeMap 608
TreeSet 605
Types 871
UIManager 715
UnknownHostExcep-

tion 813
UnsupportedOpera-

tionException
588

URL 685
Vector 582
Window 699
WindowAdapter 443,

884
Writer 573

classified listings 15
ClassName.this 706
CLASSPATH

environment variable
27, 220

classpath 220, 869
-classpath command-

line argument 548
to java 221
to javac 220

clear debugger command
1050

clear method
of ArrayList<T> 183

clear method (cont.)
of List<T> 588
of PriorityQueue 604

clearRectmethod of class
Graphics 485

click a button 410
click a tab 652
click count 443
click the mouse 423, 649
click the scroll arrows 432
client

of a class 342, 351
of an object 51

client code 257
client connection 811
client-server chat 813
client-server relationship

802
client-side artifacts 973
client tier 913
clip art

(www.clipart.com)
692

clock 649
Clock applet 649
clone method of Object

252
clone object 562
cloning objects

deep copy 252
shallow copy 252

close a window 406, 410
close method

of CachedRowSet 887
of Connection 871
of Formatter 552
of interface Connec-

tion 871
of interface ResultSet

871
of interface Statement

871
of JdbcRowSet 887
of ObjectOutput-

Stream 568
of ResultSet 871
of Socket 812
of Statement 871

close method of interface
AutoCloseable 317

closed polygons 491
closePathmethod of class

GeneralPath 501
cloud computing xxiii, 19
code 4
code attribute of <applet>

tag 655
code reuse 225
codebase attribute of the

jnlp element 663
code completion window

(NetBeans) 919

coin tossing 126
collaboration diagram in

the UML 326
collaboration in the UML

348, 349, 350, 352
collection 183, 579
collection hierarchy 581
collection implementation

615
Collection interface 580,

581, 585, 590
contains method 585
iterator method 585

collections
synchronizedcollection

582
unmodifiable collec-

tion 582
Collections class 582,

625
addAll method 590,

600
binarySearchmethod

590, 598, 600
copy method 590, 597
disjointmethod 590,

600
fill method 590, 596
frequency method

590, 600
max method 590, 597
min method 590, 597
reverse method 590,

596
reverseOrdermethod

592
shuffle method 590,

594, 596
sort method 591
wrapper methods 582

collections framework 579
Collections methods

reverse, fill, copy,
max and min 597

collision in a hashtable 609
color 469
color chooser dialog 477
Color class 469

getBlue method 473,
475

getColor method 473
getGreenmethod473,

475
getRed method 473,

475
setColor method 473

Color constant 472, 475
color manipulation 471
color swatches 478
column 167, 851, 852
column number in a result

set 857

columnClasses attribute
of h:dataTable 954

columns attribute of
h:panelGrid 925

columns of a two-
dimensional array 167

com.google.gson.Gson
package 985

com.sun.rowset package
887

combo box 400, 429
comma (,) 93
comma (,) formatting flag

95
comma-separated list 93

of arguments 29, 32
of parameters 119

command-and-control
software system 736

command button 420
command line 25
command-line argument

118, 178
Command Prompt 8, 25
command window 25, 648,

649, 654
comment

end-of-line (single-
line), // 23, 26

Javadoc 24
single line 26

CommissionEmployee
class derived from
Employee 270

commit a transaction 905
commit method of

interface Connection
905

Common Programming
Errors overview xxiv

Commonly used JSF
components 922

communication diagram in
the UML 326, 351, 352

Comparable<T> interface
290, 509, 591, 625
compareTo method

591, 625
Comparator interface 591

compare method 593
Comparator object 591,

597, 606, 608
in sort 591

compare method of
interface Comparator
593

compareTo method
of class String 507,

509
of Comparable 591

compareTo method of
Comparable<T> 625

www.clipart.com

1098 Index

comparing String objects
506

comparison operator 290
compartment in a UML

class diagram 43
compile 26
compile a program 8
compile method of class

Pattern 537
compile-time type safety

579
compiled applet class 655
compiler options

-d 218
compile-time type safety

619
compiling an application

with multiple classes 43
complex curve 499
component 2, 124, 437
Component class 405, 438,

471, 472, 478, 673, 680,
700, 731
addKeyListener

method 450
addMouseListener

method 442
addMouseMotionLis-

tener method 442
getHeight method

673
getMaximumSize

method 1072
getMinimumSize

method 680, 698,
1072

getPreferredSize
method 680, 698,
1072

getWidth method 673
repaint method 448
setBackground meth-

od 478
setBounds method

453
setFont method 425
setLocation method

453, 700
setSize method 453,

700
setVisible method

460, 700
component diagram in the

UML 1089
component in the UML

1089
ComponentAdapter class

443
ComponentListener

interface 443, 454

composite structure
diagram in the UML
1090

composition 203, 225, 227,
330, 331, 356
in the UML 330

compound assignment
operators 81, 84

compound interest 93
computerized scientific

notation 1055
concat method of class

String 514
concatenate strings 212
concatenation 120
concrete class 260
concrete subclass 265
CONCUR_READ_ONLY

constant 877
CONCUR_UPDATABLE

constant 877
concurrency 736
Concurrency API 737
concurrent access to a

Collection by
multiple threads 615

concurrent collections
(Java SE 7) 784

concurrent operations 736
concurrent programming

737
concurrent threads 759
ConcurrentHashMap class

784
ConcurrentLinkedDeque

class 784
ConcurrentSkipListMap

class 784
ConcurrentSkipListSet

class 784
condition 35, 97
Condition interface 777,

779
await method 777,

781
signal method 777
signalAll method

777
condition object 777
conditional AND, && 108,

109
truth table 108

conditional expression 66
conditional operator, ?: 66
conditional OR, || 107,

108
truth table 109

confusing the equality
operator == with the
assignment operator =
38

connect to a database 867

connect to server 811, 813
connected lines 491
connected RowSet 885
connection 802, 813, 825,

826, 840, 841
connection between client

and server terminates
814

connection between Java
program and database
869

Connection interface 869,
871, 876, 905
close method 871
commit method 905
createStatement

method 870, 876
getAutoCommit meth-

od 905
prepareStatement

method 895
rollBack method 905
setAutoCommit meth-

od 905
connection-orientedservice

802
connection-oriented,

streams-based
transmission 825

connection pool 945
connection port 811
connectionless service 802,

826
connectionless

transmission 825
consistent state 196
constant 215

in an interface 290
constant integral expression

98, 105
constant variable 105, 146,

215
must be initialized 146

constructor 42, 53, 362
call another constructor

of the same class us-
ing this 198

multiple parameters 55
no argument 198
overloaded 195
parameter list 54

Constructor Detail section
in API 1034

Constructor Summary
section in API 1032

constructors cannot specify
a return type 55

consume an event 414
consumer 752
consumer electronic device

7
consumer thread 753

consuming a web service
965, 966

cont debugger command
1040

Container class 405, 435,
454, 462
setLayout method

408, 454, 460, 462,
725

validate method 462
container for menus 700
ContainerAdapter class

443
ContainerListener

interface 443
contains method

of Collection 585
contains method of class

ArrayList<T> 183,
186

containsKey method of
Map 611

content pane 435, 708
setBackground meth-

od 435
context-sensitive popup

menu 708
continue statement 105,

106, 1025
continuous beta 20
control statement 62, 64,

65
nesting 64
stacking 64

control variable 87, 88, 89
controller (in MVC

architecture) 922, 922
controller logic 913
controlling expression of a

switch 102
controls 399
conversion characters 1054

% 1061
A 1056
a 1056
B 1060
b 1060, 1061
C 1057
c 1057
d 1054
E 1055, 1056
e 1055, 1056
f 1055, 1056
G 1056
g 1056
H 1060
h 1061
n 1061
o 1054
S 1057
s 1057
T 1058

Index 1099

conversion characters
(cont.)
t 1058
X 1054
x 1054

conversion suffix characters
1058
A 1058
a 1058
B 1058
b 1058
c 1058
D 1058
d 1058
e 1059
F 1058
H 1059
I 1059
j 1059
k 1059
l 1059
M 1059
m 1058
P 1059
p 1059
R 1058
r 1058
S 1059
T 1058
Y 1059
y 1059
Z 1059

convert
an integral value to a

floating-point value
123

between number sys-
tems 526

cookie 934, 935
deletion 935
expiration 935
expiration date 935
header 935

coordinate system 469, 471
coordinates 654
coordinates (0, 0) 469
copy method of

Collections 590, 597
copying objects

deep copy 252
shallow copy 252

CopyOnWriteArrayList
class 784

CopyOnWriteArraySet
class 784

core package 27
Core Tag Library (JSF)

922, 926
cos method of Math 116
cosine 116

counter-controlled
repetition 70, 76, 79, 87,
89

-cp command line
argument
to java 221

Craigslist
(www.craigslist.org)
15, 16

craps (casino game) 125,
130

create a desktop application
in NetBeans 973

create a package 215
create a reusable class 216
create a Socket 813
create a web application in

NetBeans 967
create an object of a class 42
createGlue method of

class Box 725
createGraphics method

of class BufferedImage
498

createHorizontalBox
method of class Box
466, 723

createHorizontalGlue
method of class Box 725

createHorizontalStrut
method of class Box 725

createRealizedPlayer
method of class
Manager 688

createRigidAreamethod
of class Box 725

createStatementmethod
of Connection 870,
876

createVerticalBox
method of class Box 724

createVerticalGlue
method of class Box 725

createVerticalStrut
method of class Box 724

creating a Java DB database
in NetBeans 952

creating and initializing an
array 144

cross-site scripting 980
CSS

height attribute 925
width attribute 925

CSS (Cascading Style
Sheets) 908

CSS rule 932
<Ctrl>-d 101
Ctrl key 435, 453
ctrl key 101
<Ctrl>-z 101
currentThreadmethod of

class Thread 746

cursor 25, 28
curve 499, 649
custom drawing area 447
customized subclass of class

JPanel 447
cyclic gradient 497

D
-d compiler option 218
dangling-else problem 67
dashed lines 494
data hiding 48
data integrity 203
data source name 947
data tier 913
database 850, 855

table 851
database-driven multitier

web address book xxii
database management

system (DBMS) 850
datagram packet 802, 825,

826
datagram socket 802, 826
DatagramPacket class

826, 848
getAddress method

829
getData method 829
getLength method

829
getPort method 829

DatagramSocket class 826
receive method 829
send method 829

DataInput interface 572
DataInputStream class

572
DataOutput interface 572

writeBooleanmethod
572

writeByte method
572

writeBytes method
572

writeChar method
572

writeChars method
572

writeDouble method
572

writeFloat method
572

writeInt method 572
writeLong method

572
writeShort method

572
writeUTF method 572

DataOutputStream class
572

DataSource interface 951
date 124
date and time compositions

1058
Date class 1059
date formatting 1054
DB2 850
dead state 739
deadlock 778, 781
dealing 153
debugger 1037

break mode 1039
breakpoint 1037
clear command 1050
cont command 1040
defined 1037
exit command 1046
-g compiler option

1038
inserting breakpoints

1039
jdb command 1039
logic error 1037
next command 1045
print command1041,

1042
run command 1039,

1041
set command 1041,

1042
step command 1043
step up command

1044
stop command 1039,

1041
suspending program

execution 1041
unwatch command

1046, 1048
watch command 1046

decimal integer 1054
decimal integer formatting

33
decision 35, 64

symbol in the UML 64,
341

declaration
class 24
import 31, 33
method 25

declare a method of a class
40

decrement of a control
variable 87

decrement operator, -- 82
dedicated drawing area 446
deep copy 252
default case in a switch

102, 104, 129
default constructor 53,

201, 232

www.craigslist.org

1100 Index

default exception handler
310

default initial value 50
default keyword 1025
default layout of the

content pane 466
default package 47, 216
default upper bound

(Object) of a type
parameter 631

default value 50, 85
define a custom drawing

area 447
degree 488
Deitel Resource Centers 20
DelayQueue class 784
delegation event model 417
delete method of class

StringBuilder 523
DELETE SQL statement

856, 864
deleteCharAt method of

class StringBuilder
523

delimiter for tokens 529
delimiter string 530
demo directory 651
dependent condition 109
deploy a web app 921
deploying a web service 970
deployment diagram in the

UML 1089
Deposit class (ATM case

study) 329, 331, 334,
342, 350, 351, 358, 361,
365, 366

DepositSlot class (ATM
case study) 329, 330,
331, 334, 342, 351, 362

Deprecated link in API 1029
derived class 225
descending order 181
descending sort (DESC) 859
descent 482
descriptive words and

phrases 334, 335
deserialized object 562
design pattern 18
design patterns xxiii
design process 5, 319, 325,

343, 348
design specification 325
Design view in Netbeans

1073
Desktop class 1085

browse method 1085
getDesktop method

1085
isDesktopSupported

method 1085
mail method 1085
open method 1085

desktop element of a
JNLP document 664

desktop integration 661
destroy method

of JApplet 654, 657
development tool 648
dialog 401
dialog box 401, 706
Dialog font 480
DialogInput font 480
diamond in the UML 63
dice game 130
digit 32, 527, 530
digit method of class

Character 526
digital certificate 660
Dimension class 680
dir command on

Windows 648
direct superclass 225, 226
DIRECTORIES_ONLY

constant of
JFileChooser 577

directory 542, 543
name 542
separator 220
tree 650

disconnected RowSet 885,
952

disjoint method of
Collections 590, 600

disk 11, 540
disk drive 648
disk I/O completion 301
dismiss a dialog 402
dispatch

a thread 739
an event 419

display a line of text 25
display area 655
display monitor 469
display output 38
dispose method of class

Window 699
DISPOSE_ON_CLOSE

constant of interface
WindowConstants 699

distance between values
(random numbers) 129

dithering 649
DitherTest applet 649
divide by zero 11, 295
division 34, 35
division compound

assignment operator, /=
82

DNS (domain name
system) server 909

DNS lookup 909
DO_NOTHING_ON_CLOSE

constant of interface
WindowConstants 699

do...while repetition
statement 64, 96, 97,
1025

document 695, 716
dollar signs ($) 24
domain name system

(DNS) server 909
Dorsey, Jack 17
dot (.) separator 42, 95,

116, 210, 494
dotted line in the UML 63
(double) cast 77
Double class 580, 641

parseDouble method
658

double equals, == 38
double-precision floating-

point number 56
double primitive type 32,

56, 74, 1025, 1026
promotions 123

double quotes, " 25, 29
double-selection statement

64
doubleValue method of

Number 642
downcast 276
downcasting 258
drag the scroll box 432
draggable applet 661, 674
dragging the mouse to

highlight 466
draw arc 648
draw complex curve 649
draw graphics 653
draw lines and points 649
draw method of class

Graphics2D 497
draw rectangle 659
draw shapes 469
draw3DRect method of

class Graphics 485, 488
drawArc method of class

Graphics 488
drawImagemethod of class

Graphics 673
drawing color 473
drawing on the screen 471
drawLine method of class

Graphics 485
drawOval method of class

Graphics 485, 488
drawPolygon method of

class Graphics 491, 493
drawPolyline method of

class Graphics 491, 493
drawRect method of class

Graphics 485, 498
drawRoundRectmethod of

class Graphics 486

drawString method of
class Graphics 475,
654, 659

DrawTest applet 649, 650
driver class 41
DriverManager class 869

getConnection meth-
od 869

drop-down list 404, 429
dummy value 74
duplicate of datagram 826
dynamic binding 275
dynamic content 7
dynamic resizing 141
dynamically resizable array

806

E
EAST constant

of class BorderLayout
441, 457

of class GridBagCon-
straints 726

eBay 18
echo character of class

JPasswordField 411
echoes a packet back to the

client 826
Eclipse

demonstration video
(www.deitel.com/
books/javafp2) 23

Eclipse
(www.eclipse.org) 8

Eclipse Foundation 5
edit a program 8
editor 8
EL expression 920
element (XML) 663
element of chance 125
elided UML diagram 329
eligible for garbage

collection 213
eliminate resource leaks

305
Ellipse2D class 469
Ellipse2D.Double class

494
Ellipse2D.Float class

494
ellipsis (...) in a method

parameter list 177
else keyword 1025
emacs 8
email 811
embedded system 6
Employee abstract

superclass 265
Employee class hierarchy

test program 273

www.deitel.com/books/javafp2
www.deitel.com/books/javafp2
www.eclipse.org

Index 1101

Employee class that
implements Payable
285

empty statement (a
semicolon, ;) 38, 68, 98

empty string 415, 505
empty XML element 664,

925
EmptyStackException

class 604
encapsulation 4
end cap 497
End key 450
“end of data entry” 74
end-of-file (EOF) 813

indicator 101
key combinations 551
marker 540

end-of-line (single-line)
comment, // 23, 26

end-of-stream 813
end tag 663
endsWith method of class

String 510
enhanced for statement

157
ensureCapacity method

of class StringBuilder
518

Enter (or Return) key 418,
650, 651

ENTERED constant of nested
class EventType 810

entity-relationship diagram
854

enum 133
constant 206
constructor 207
declaration 206
EnumSet class 209
keyword 133, 1025
values method 208

enumeration 133
enumeration constant 133
EnumSet class 209

range method 209
environment variable

CLASSPATH 27
PATH 26

EOF (end-of-file) 813
EOFException class 570
equal likelihood 127
equality operator == to

compare String objects
507

equality operators 35
equals method

of class Arrays 180
of class Object 252
of class String 507,

509

equalsIgnoreCase
method of class String
507, 509

erasure 624, 627
e-reader 2
e-reader device 6
Error class 301
escape character 29, 863
escape sequence 29, 32,

546, 1068, 1069
\, backslash 29
\", double-quote 29
\t, horizontal tab 29
newline, \n 29, 32

event 290, 338, 410, 472
event classes 416
event-dispatch thread

(EDT) 471, 785, 818
event driven 410
event-driven process 471
event handler 290, 410
event handling 410, 413,

418
event source 415

event ID 419
event listener 290, 416, 443

adapter class 443
interface 413, 414, 417,

419, 438, 443
event object 416
event registration 414
event source 415, 416
EventListenerList class

418
EventObject class

getSource method
415

EventType nested class
ACTIVATED constant

810
ENTERED constant 810
EXITED constant 810

EventType nested class of
HyperlinkEvent 810

exception 152, 293
handler 152
handling 151
parameter 153

Exception class 301
exception handler 298
Exception Handling

multi-catch 316
exception handling

try-with-resources
statement 316

exception parameter 298
Exceptions 153

IndexOutOfRangeEx-
ception 153

execute 10
execute an applet in a web

browser 652, 656

execute attribute of f
ajax 961

execute method
of JdbcRowSet 887

execute method of the
Executor interface 741,
744

executeQuery method
of PreparedState-

ment 896
of Statement 870

executeUpdatemethod of
interface Prepared-
Statement 896

executing an application 12
execution-time error 11
ExecutionException

class 788
Executor interface 741

execute method 741,
744

Executors class 741
newCachedThread-

Pool method 742
ExecutorService

interface 741, 799
awaitTermination-

method 748
shutdown method 744
submit method 799

exists method of File
543

exit debugger command
1046

exit method of class
System 304, 551

exit point
of a control statement

64
EXITED constant of nested

class EventType 810
exiting a for statement 106
exp method of Math 116
expanded submenu 706
expiration date of a cookie

935
explicit conversion 77
exponential format 1054
exponential method 116
exponential notation 1055
exponentiation operator 95
expression 33
extend a class 225
extends keyword 229,

240, 1025
extensibility 257
eXtensible HyperText

Markup Language
(XHTML) 908, 909,
915

extensible language 42

eXtensible Markup
Language (XML) 663,
972

extension mechanism
extending Java with ad-

ditional class librar-
ies 220

external event 437

F
f option of the jar

command 662
f:ajax element 961
f:execute element

execute attribute 961
f:facet JSF element 954
f:render element

execute attribute 961
f:selectItem element

926
f:validateBean element

926
f:validateDoubleRange

element 926
f:validateLength

element 926
f:validateLongRange

element 926
f:validateRegexelement

926
f:validateRequired

element 926
FaceBook 15
Facebook 5, 17
Facelets (JSF) 915
Facelets Tag Library (JSF)

941
Faces servlet 914
fairness policy of a lock 777
false keyword 35, 66,

1025
fatal error 68
fatal logic error 68
fatal runtime error 11
fault tolerant 33, 293
fault-tolerant program 152
feature-complete 20
field 47

default initial value 50
Field Detail section in API

1033
field of a class 135
Field Summary section in

API 1032
field width 94, 1054, 1062
file 540
File class 542

canRead method 543
canWrite method 543
exists method 543
File methods 543

1102 Index

File class (cont.)
getAbsolutePath

method 543
getName method 543
getParent method

543
getPath method 543
isAbsolute method

543
isDirectory method

543
lastModifiedmethod

543
length method 543
list method 543
toURI method 692
used to obtain file and

directory informa-
tion 543

file extensions
.aif 685, 688
.aiff 685, 688
.au 685, 688
.avi 688
.class 685
.gif 669
.jpeg 669
.jpg 669
.mid 685, 688
.mov 688
.mp3 688
.mpeg 688
.mpg 688
.png 669
.rmi 685, 688
.spl 688
.swf 688
.wav 685

file folder 651
File methods 543
file processing 541
File.pathSeparator 546
FileContents interface

678
getLength method

673
FileInputStream class

541, 562, 565, 569, 571,
614

FileNotFoundException
class 551

FileOpenService
interface 669, 672
openFileDialog

method 672
openMultiFileDia-

log method 678
FileOutputStream class

541, 562, 565, 614
FileReader class 541, 573

FILES_AND_DIRECTORIES
constant of
JFileChooser 577

FILES_ONLY constant of
JFileChooser 577

FileWriter class 541, 573
filing cabinet 651
fill method

of class Arrays 180,
182

of class Collections
590, 596

of class Graphics2D
497, 498, 501

fill method of class
Arrays 794

fill pattern 498
fill texture 498
fill with color 469
fill3DRect method of

class Graphics 485, 488
fillArc method of class

Graphics 488
filled-in shape 498
filled rectangle 473
filled three-dimensional

rectangle 485
fillOval method of class

Graphics 449, 485,
488

fillPolygon method of
class Graphics 491, 494

fillRect method of class
Graphics 473, 485, 498

fillRoundRectmethod of
class Graphics 486

filter a stream 571
FilterInputStream class

571
FilterOutputStream

class 571
final

class 278
classes and methods

278
keyword 105, 117, 146,

215, 278, 752, 1025
local variable 432
method 278
variable 146

final state in the UML 63,
339

final value 88
finalize method 209,

252
finally

block 298, 304, 781
clause 304, 1025
keyword 298

find method of class
Matcher 537

fireTableStructure-
Changed method of
AbstractTableModel
878

firewall 965
first method of

SortedSet 608
Fisher-Yates shuffling

algorithm 156
five-pointed star 499
fixed text 34

in a format string 30,
1054

flag value 74
flags 1054, 1064
flash drive 540
Flickr 15
float

literal suffix F 604
primitive type 32, 56,

1025, 1026
primitive type promo-

tions 123
Float class 580
floating-point constant 93
floating-point conversion

specifiers 1063
floating-point literal 56

double by default 56
floating-point number 56,

73, 74, 76, 604, 658,
1056
division 77
double precision 56
double primitive type

56
float primitive type

56
single precision 56

floor method of Math 117
flow of control 69, 76
flow of control in the

if...else statement 65
FlowLayout class 408,

454, 455
CENTER constant 457
LEFT constant 457
RIGHT constant 457
setAlignmentmethod

457
flush method

of class BufferedOut-
putStream 572

of class Formatter 840
of class ObjectOut-

putStream 819
focus 411
focus for a GUI application

696, 712
FocusAdapter class 443
FocusListener interface

443

font
manipulation 471
name 480
size 480
style 480

Font class 425, 469, 480
BOLD constant 480
getFamily method

479, 482
getName method 479,

480
getSize method 479,

480
getStylemethod 479,

482
isBold method 479,

482
isItalicmethod 479,

482
isPlain method 479,

482
ITALIC constant 480
PLAIN constant 480

font information 469
font manipulation 471
font metrics 482

ascent 484
descent 484
height 484
leading 484

font style 423
FontMetrics class 469,

482
getAscent method

483
getDescent method

483
getFontMetrics

method 482
getHeight method

483
getLeading method

483
footerClass attribute of

h:dataTable 954
for attribute of h:message

931
for repetition statement

64, 89, 91, 92, 93, 95,
1025
activity diagram 92
enhanced 157
example 91
header 89
nested 149

forDigit method of class
Character 526

foreign key 853, 855
fork/join framework 799
form 923
formal type parameter 623

Index 1103

format method
of class Formatter

551, 1070
of class String 190,

1070
format specifiers 30, 1054

%.2f for floating-point
numbers with preci-
sion 78

%% 1061
%B 1060
%b 1060
%b for boolean values

111
%c 1057
%d 33, 1054, 1055
%E 1056
%e 1056
%f 58, 1056
%G 1056
%g 1056
%H 1061
%h 1060
%n 1061
%n (line separator) 552
%o 1055
%S 1057
%s 30, 1054, 1057
%X 1055
%x 1055

format string 30, 1054,
1063

formatted output 1060
, (comma) formatting

flag 95
%f format specifier 58
– (minus sign) format-

ting flag 94
0 flag 149, 190
aligning decimal points

in output 1053
boolean values 111
conversion character

1054
date and time composi-

tions 1058
date and time conver-

sion suffix characters
1058

dates 1054
exponential format

1054
field width 94, 1054
floating-point num-

bers 58
grouping separator 95
inserting literal charac-

ters 1053
integers in hexadecimal

format 1054
integers in octal format

1054

formatted output (cont.)
left justification 1053
left justify 94
precision 58, 1054
right justification 94,

1053
rounding 1053
times 1054

Formatter class 542, 548,
1053, 1069
close method 552
documentation

(java.sun.com/
javase/6/docs/
api/java/util/
Formatter.html)
1058, 1069

flush method 840
format method 551,

1070
toString method

1070
FormatterClosedExcept

ion class 552
formatting

display formatted data
29

Formatting date and time
with conversion
character t 1059

Formatting output with
class Formatter 1069

forward slash character (/)
in end tags 663

Foursquare 15, 18
Fractal applet 649
fragile software 245
frame (in the UML) 354
Frame class 699
free graphics programs

(www.freebyte.com/
graphicprograms) 692

FreeTTS 693
frequency method of

Collections 590, 600
FROM SQL clause 856
fromJson method of class

Gson 987
fully qualified class name

47, 218
function key 450
Future interface 799

get method 799
Future Splash (.spl) files

688

G
-g command line option to

javac 1038
G.I.M.P. 669
game playing 125

gaming console 6
garbage collection 737
garbage collector 209, 301,

304, 685
general class average

problem 73
general path 499
generalities 257
generalization in the UML

365
GeneralPath class 469,

499
closePath method

501
lineTo method 500
moveTo method 500

generic class 183, 619, 628
generic collections xxii
generic interface 625
generic method 619, 622,

628
generics xxii, 580, 619

actual type arguments
623

angle brackets (< and >)
623

default upper bound
(Object) of a type
parameter 631

erasure 624
formal type parameter

623
method 622
parameterized class 629
parameterized type 629
scope of a type parame-

ter 631
type parameter 623
type parameter section

623
type variable 623
upper bound of a type

parameter 626, 627
upper bound of a wild-

card 642
wildcard type argument

(?) 642
wildcard without an

upper bound 644
wildcards 640, 642

gesture 6
get a value 51
@GET annotation 980
GET HTTP request 910
get method

of class ArrayList<T>
185

of interface Future
799

of interface List<T>
585

of interface Map 611

get method 51, 196, 202
get request 912
get started

java.sun.com/
new2java/ 8

getAbsolutePathmethod
of class File 543

getActionCommand
method of class
ActionEvent 415, 423

getAddress method of
class DatagramPacket
829

getAscentmethod of class
FontMetrics 483

getAudioClip method of
class Applet 685

getAutoCommitmethod of
interface Connection
905

getBlue method of class
Color 473, 475

getByNamemethod of class
InetAddress 825

getChars method
of class String 505
of class StringBuild-

er 520
getClass method of class

Object 409
getClass method of

Object 253, 277
getClassName method of

class StackTrace-
Element 311

getClassName method of
class UIManager.
LookAndFeelInfo 715

getClickCountmethod of
class MouseEvent 446

getCodeBase method of
class Applet 685

getColor method of class
Color 473

getColor method of class
Graphics 473

getColumnClass method
of TableModel 872,
878

getColumnClassName
method of
ResultSetMetaData
878

getColumnCount method
of ResultSetMetaData
870, 878

getColumnCount method
of TableModel 872,
878

getColumnNamemethod of
ResultSetMetaData
878

www.freebyte.com/graphicprograms
www.freebyte.com/graphicprograms

1104 Index

getColumnNamemethod of
TableModel 872, 878

getColumnTypemethod of
ResultSetMetaData
871

getConnectionmethod of
DriverManager 869

getContentPane method
of class JFrame 435

getControlPanelCompon
ent method of interface
Player 690

getData method of class
DatagramPacket 829

getDefaultSystemTray
method of class
SystemTray 1088

getDescent method of
class FontMetrics 483

getDesktop method of
class Desktop 1085

getEventType method of
class HyperlinkEvent
810

getFamilymethod of class
Font 479, 482

getFileName method of
class StackTrace-
Element 311

getFont method of class
Graphics 480

getFontMetrics method
of class FontMetrics
482

getFontMetrics method
of class Graphics 483

getGreen method of class
Color 473, 475

getHeightmethod of class
Component 673

getHeightmethod of class
FontMetrics 483

getHostName method of
class InetAddress 819

getIcon method of class
JLabel 409

getIconHeightmethod of
class ImageIcon 673

getIconWidth method of
class ImageIcon 673

getImage method of class
ImageIcon 673

getInetAddress method
of class Socket 818

getInputStream method
of class Socket 812, 813

getInstalledLookAnd-
Feels method of class
UIManager 715

getInstance method of
Calendar 1060

getInt method of
ResultSet 871

getKeyChar method of
class KeyEvent 453

getKeyCode method of
class KeyEvent 452

getKeyModifiersText
method of class
KeyEvent 453

getKeyText method of
class KeyEvent 453

getLeading method of
class FontMetrics 483

getLengthmethod of class
DatagramPacket 829

getLength method of
interface FileContents
673

getLineNumbermethod of
class StackTrace-
Element 311

getLocalHost method of
class InetAddress 825,
830

getMaximumSize method
of class Component 1072

getMessage method of
class Throwable 310

getMethodNamemethod of
class StackTrace-
Element 311

getMinimumSize method
of class Component 680,
698, 1072

getModifiers method of
class InputEvent 453

getName method of class
Class 253, 277

getName method of class
File 543

getName method of class
Font 479, 480

getObject method of
interface ResultSet
871, 878

getOutputStreammethod
of class Socket 812

getParameter method of
class Applet 804

getParentmethod of class
File 543

getPassword method of
class JPasswordField
415

getPath method of class
File 543

getPoint method of class
MouseEvent 448

getPort method of class
DatagramPacket 829

getPreferredSize
method of class
Component 680, 698,
1072

getProperty method of
class Properties 612

getRed method of class
Color 473, 475

getRequestContext
method of interface
BindingProvider
1001

getResource method of
class Class 409

getRow method of
interface ResultSet
878

getRowCount method of
interface TableModel
872, 878

getSelectedFilemethod
of class JFileChooser
577

getSelectedIndex
method of class
JComboBox 432

getSelectedIndex
method of class JList
435

getSelectedTextmethod
of class JText-
Component 466

getSelectedValues
method of class JList
438

getSize method of class
Font 479, 480

getSourcemethod of class
EventObject 415

getStackTracemethod of
class Throwable 310

getStateChange method
of class ItemEvent 433

getStyle method of class
Font 479, 482

getText method of class
JLabel 409

getText method of class
JTextComponent 708

getting started with Java
871

getURL method of class
HyperlinkEvent 810

getValue method of class
JSlider 699

getValueAt method of
interface TableModel
872, 878

getVisualComponent
method of interface
Player 690

getWidth method of class
Component 673

getX method of class
MouseEvent 442

getY method of class
MouseEvent 442

GIF (Graphics Interchange
Format) 409, 669

.gif file extension 669
glass pane 435
GlassFish application server

908, 913, 914, 968
Tester web page 971

Good Programming
Practices overview xxiv

Google 15
Goggles 15
Maps 16
Storage 19

Gosling, James 7
goto elimination 62
goto statement 62
gradient 497
GradientPaint class 469,

497
graph information 149
graphical user interface

(GUI) 124, 290, 399
design tool 453

graphics 446, 648, 649,
651, 668

Graphics class 448, 469,
471, 494, 654, 657, 658,
673
clearRect method

485
draw3DRect method

485, 488
drawArc method 488
drawImage method

673
drawLine method 485
drawOvalmethod 485,

488
drawPolygon method

491, 493
drawPolylinemethod

491, 493
drawRectmethod 485,

498
drawRoundRect meth-

od 486
drawString method

475, 654, 659
fill3DRect method

485, 488
fillArc method 488
fillOvalmethod449,

485, 488
fillPolygon method

491, 494

Index 1105

Graphics class (cont.)
fillRectmethod473,

485, 498
fillRoundRect meth-

od 486
getColor method 473
getFont method 480,

480
getFontMetrics

method 483
setColor method 498
setFont method 480

graphics context 471
graphics demo 652
graphics in a platform-

independent manner
471

Graphics Interchange
Format (GIF) 409, 669

Graphics2D class 469,
494, 498, 501
draw method 497
fillmethod 497, 498,

501
rotate method 501
setPaint method 497
setStroke method

497
translate method

501
GraphicsTest applet 649
GraphLayout applet 649
greedy quantifier 534
grid 460
grid for GridBagLayout

layout manager 725
GridBagConstraints

class 725, 731
anchor field 725
BOTH constant 726
CENTER constant 726
EAST constant 726
gridheight field 727
gridwidth field 727
gridx field 726
gridy field 726
HORIZONTAL constant

726
instance variables 725
NONE constant 726
NORTH constant 726
NORTHEAST constant

726
NORTHWEST constant

726
RELATIVE constant

731
REMAINDER constant

731
SOUTH constant 726
SOUTHEAST constant

726

GridBagConstraints
class (cont.)
SOUTHWEST constant

726
VERTICAL constant

726
weightx field 727
weighty field 727
WEST constant 726

GridBagConstraints
constants RELATIVE and
REMAINDER 731

GridBagLayout class 722,
725, 727, 731
setConstraints

method 731
GridBagLayout layout

manager 727
gridheight field of class

GridBagConstraints
727

GridLayout class 454, 460
GridLayout containing six

buttons 461
gridwidth field of class

GridBagConstraints
727

gridx field of class
GridBagConstraints
726

gridy field of class
GridBagConstraints
726

GROUP BY 856
group method of class

Matcher 538
grouping separator

(formatted output) 95
GroupLayout class 454,

722, 1071
BASELINE alignment

constant 1072
CENTER alignment con-

stant 1072
default layout manager

in Netbeans 1071
groups 1072
LEADING aligning com-

ponents 1072
LEADING alignment

constant 1072
parallel layout of GUI

components 1071
recommended GUI de-

sign guidelines 1072
sequential horizontal

orientation 1071
sequential layout of

GUI components
1071

spacing between com-
ponents 1072

GroupLayout class (cont.)
TRAILING alignment

constant 1072
GroupLayout.Group class

1072
addGap method 1072

GroupLayout.Parallel-
Group class 1072
addGap method 1072

GroupLayout.Sequen-
tialGroup class 1072
addGap method 1072

Groupon 15, 17
groups in GroupLayout

1072
Gson class 985

code.google.com/p/
google-gson/ 983

fromJson method 987
toJson method 985

guard condition in the
UML 65, 341

guarding code with a lock
745

GUI (Graphical User
Interface) 290
component 399, 648
design tool 453

guide lines (Netbeans)
1074, 1075

guillemets (« and ») in the
UML 55

H
H conversion character

1060
h conversion character

1060
h:body JSF element 916
h:column JSF element 954
h:commandButtonelement

922, 926
h:dataTable element

cellpadding attribute
954

cellspacing attribute
954

columnClasses attri-
bute 954

footerClass attribute
954

headerClass attribute
954

rowClasses attribute
954

styleClass attribute
954

value attribute 953
var attribute 954

h:dataTable JSF element
944, 952

h:form element 922, 923
h:graphicImage element

922, 925
h:head JSF element 916
h:inputText element 922,

925, 931
h:message element 931
h:outputLink element

922, 926, 939, 940
h:outputStyleSheet

element 931
h:outputText element

931
h:panelGrid element 922,

924
h:selectItem element

922
h:selectOneMenuelement

922, 926
h:selectOneRadio

element 922, 926, 939
handle an exception 296
handshake point 811, 825
hardcopy printer 11
has-a relationship 203,

225, 331
hash bucket 609
hash table 605, 609
hashCode method of

Object 253
hashing 608
HashMap class 608, 804

keySet method 611
HashSet class 605
Hashtable class 608, 609
hash-table collisions 609
hasNext method

of class Scanner 101,
551

of interface Iterator
585, 588

hasPrevious method of
ListIterator 588

headerClass attribute of
h:dataTable 954

headSet method of class
TreeSet 607

heavyweight components
405

height 482
height attribute (CSS)

925
height attribute of the

applet-desc element
655, 664

height of a rectangle in
pixels 473

Help link in API 1029
helper method 104
hexadecimal integer 1054
“hidden” fields 135
hide a dialog 402

1106 Index

hide implementation
details 192

HIDE_ON_CLOSE constant
of interface Window-
Constants 699

hollow diamonds
(representing
aggregation) in the
UML 331

Home key 450
HORIZONTAL constant of

class GridBag-
Constraints 726

horizontal coordinate 469
horizontal gap space 460
horizontal glue 725
horizontal JSlider

component 695
horizontal scrollbar policy

467
horizontal tab 29
HORIZONTAL_SCROLLBAR_

ALWAYS constant of class
JScrollPane 467

HORIZONTAL_SCROLLBAR_
AS_NEEDED constant of
class JScrollPane 467

HORIZONTAL_SCROLLBAR_
NEVER constant of class
JScrollPane 467

host 909
host name 825
hostname 909
hot area 682
hot spots in bytecode 10
HourlyEmployee class

derived from Employee
268

HousingMaps.com 16
href attribute of the jnlp

element 663
.htm file name extension

654
HTML (Hypertext

Markup Language) 908
HTML (HyperText

Markup Language)
document 647, 654, 655

html element 915
.html file name extension

654
HTML Tag Library (JSF)

915, 922
HTTP (HyperText

Transfer Protocol) 803,
909, 934
being used with fire-

walls 965
header 911
method 910
request type 911
transaction 910

HTTP status codes
(www.w3.org/
Protocols/rfc2616/
rfc2616-sec10.html)
911

hue 478
Hughes, Chris 17
hyperlink 808, 810
HyperlinkEvent class

808, 810
EventType nested class

810
getEventTypemethod

810
getURL method 810

HyperlinkListener
interface 810
hyperlinkUpdate

method 810
hyperlinkUpdatemethod

of interface
HyperlinkListener
810

HyperText Transfer
Protocol (HTTP) 803,
909, 911, 934

I
I/O performance

enhancement 572
icon 403
Icon interface 409
id attribute of a JSF

element 925
id attributes for elements

in Ajax requests and
responses 961

IDE (integrated
development
environment) 8

identifier 24, 32
identity column 890
IDENTITY keyword (SQL)

890
IDEs

NetBeans 964
IEEE 754

(grouper.ieee.org/
groups/754/) 1026

IEEE 754 floating point
1026

if single-selection
statement 35, 63, 64, 65,
98, 1025
activity diagram 65

if...else double-selection
statement 64, 65, 76, 98
activity diagram 65

ignoring array element zero
152

IllegalArgumentExcept
ion class 190

IllegalMonitorState-
Exception class 763,
778

IllegalStateException
class 556

image 656, 668, 692
Image class 669
image map 668, 682
ImageIcon class 409, 669,

678, 679
getIconHeight meth-

od 673
getIconWidthmethod

673
getImage method 673
paintIcon method

679
ImageObserver interface

673
immutable 505
immutable object 212
immutable String object

505
implement an interface

256, 279, 287
implementation-

dependent code 192
implementation of a

function 265
implementation phase 370
implementation process

343, 360
implements 1025
implements keyword 279,

282
implements multiple

interfaces 439
implicit conversion 77
import declaration 31, 33,

47, 217, 1025
increment 93

a control variable 88
expression 106
of a control variable 87
of a for statement 91
operator, ++ 82

increment and decrement
operators 82

indefinite postponement
740, 781

indefinite repetition 74
indentation 67
independent software

vendor (ISV) 251
index 151
index (subscript) 142
Index link in API 1029
index of a JComboBox 431
index zero 142

indexOf method of class
ArrayList<T> 183

indexOf method of class
String 511

IndexOutOfBounds-
Exception class 597

indirect superclass 225, 226
InetAddress class 819,

825, 829, 830
getByName method

825
getHostName method

819
getLocalHostmethod

825, 830
infinite loop 77, 91, 829,

833
infinite recursion 250
infinity symbol 855
information element of a

JNLP document 664
information hiding 4, 48
information tier 913
inheritance 4, 225, 365,

368, 369, 370
examples 226
extends keyword 229,

240
hierarchy 226, 262
hierarchy for university

CommunityMembers
227

multiple 225
single 225

init method
of JApplet 654, 656,

657, 659
initComponents

autogenerated method
in Netbeans 1076

initial state in the UML 63,
338, 339

initial value of an attribute
336

initial value of control
variable 87

initialization at the
beginning of each
repetition 79

initialize an applet 656
initialize applet’s instance

variables 659
initializer block (static)

937
initializer list 145
initializing two-

dimensional arrays in
declarations 169

initiate an action 701
inlining method calls 200

www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html
www.w3.org/Protocols/rfc2616/rfc2616-sec10.html

Index 1107

inner class 413, 425, 448,
707
anonymous 432
object of 426
relationship between an

inner class and its
top-level class 426

INNER JOIN SQL clause
856, 861

innermost set of brackets
152

input data from the
keyboard 38

input dialog 401
input/output 542
input/output operation 63
input/output package 124
InputEvent class 438,

445, 450
getModifiersmethod

453
isAltDown method

446, 453
isControlDown meth-

od 453
isMetaDown method

446, 453
isShiftDown method

453
InputMismatchExcep-

tion class 295, 298
InputStream class 563,

571, 614, 811, 812, 813
read method 673

InputStreamReader class
573

insert method of class
StringBuilder 523

INSERT SQL statement
856, 862

inserting literal characters
in the output 1053

insertion point 183, 599
instance 3
instance (non-static)

method 211
instance of a class 47
instance variable 4, 47, 47,

56, 117
instanceof operator 276,

1025
instantiating an object of a

class 40
int primitive type 32, 74,

82, 98, 1025, 1026
promotions 123

integer 30
array 145
division 73
quotient 34
value 32

Integer class 180, 403,
580, 641
parseIntmethod 180,

403
integer conversion

characters 1054
integer division 34
integers

suffix L 603
integral expression 105
integrated development

environment (IDE) 8
intelligent consumer

electronic device 7
interaction between a web

service client and a web
service 973

interaction diagram in the
UML 351

interaction overview
diagram in the UML
1090

interactions among objects
348, 352

interest rate 93
interface 256, 280, 288,

870
declaration 279
implementing more

than one at a time
439

tagging interface 563
interface keyword 279,

1025
Interfaces 279

ActionListener 414,
419

AppletContext 803
AudioClip 685
AutoCloseable 317,

872
BlockingQueue 760
CachedRowSet 885
Callable 799
CallableStatement

904
ChangeListener 699
CharSequence 536
Collection 580, 581,

590
Comparable 290, 509,

591, 625
Comparator 591
ComponentListener

443
Condition 777, 779
Connection 869, 871,

876
ContainerListener

443
DataInput 572
DataOutput 572

Interfaces (cont.)
DataSource 951
Executor 741
ExecutorService

741, 799
FileOpenService

669, 672
FocusListener 443
Future 799
HyperlinkListener

810
Icon 409
ImageObserver 673
ItemListener 425,

708
Iterator 582
JdbcRowSet 885
KeyListener 419,

443, 450
LayoutManager 453,

457
LayoutManager2 457
List 580, 588
ListIterator 582
ListSelectionLis-

tener 435, 807
Lock 776
Map 580, 608
MouseInputListener

438, 442
MouseListener 419,

438, 443, 711
MouseMotionListen-

er 419, 438, 443
MouseWheelListener

439
ObjectInput 562
ObjectOutput 562
Player 688
PreparedStatement

904
PropertyChangeLis-

tener 798
Queue 580, 581, 604,

760
RequestContext 1001
ResultSet 870
ResultSetMetaData

870
RowSet 885
Runnable 741, 841,

290
Serializable 290,

563
Set 580, 581, 605
SortedMap 608
SortedSet 606
Statement 871
SwingConstants 409,

699, 290
TableModel 872
WindowConstants 699

Interfaces (cont.)
WindowListener 443,

700, 884
internal frame

closable 718
maximizable 718
minimizable 718
resizable 718

Internet 803
Internet domain name in

reverse order 217
Internet telephony 15
interruptmethod of class

Thread 742
InterruptedException

class 742
intrinsic lock 745
invoke a method 52
invokeLater method of

class SwingUtilities
818

IOException class 568
IP address 829, 909

of the server 825
iPhone 15, 18
is-a relationship 225, 257
isAbsolute method of

File 543
isActionKey method of

class KeyEvent 453
isAltDownmethod of class

InputEvent 446, 453
isBold method of class

Font 479, 482
isCancelled method of

class SwingWorker 794
isControlDownmethod of

class InputEvent 453
isDefinedmethod of class

Character 524
isDesktopSupported

method of class
Desktop 1085

isDigit method of class
Character 524

isDirectory method of
File 543

isEmpty method
ArrayList 203
Map 612
Stack 604

isItalic method of class
Font 479, 482

isJavaIdentifierPart
method of class
Character 525

isJavaIdentifierStart
method of class
Character 524

isLetter method of class
Character 526

1108 Index

isLetterOrDigitmethod
of class Character 526

isLowerCase method of
class Character 526

isMetaDown method of
class InputEvent 446,
453

isPlain method of class
Font 479, 482

isPopupTrigger method
of class MouseEvent
711

isRunningmethod of class
Timer 679

isSelected method
AbstractButton 708
JCheckBox 426

isShiftDown method of
class InputEvent 453

isUpperCase method of
class Character 526

ITALIC constant of class
Font 480

ItemEvent class 425, 429
getStateChange

method 433
itemLabel attribute of

f:selectItem 926
ItemListener interface

425, 708
itemStateChanged

method 425, 426,
708

itemStateChanged
method of interface
ItemListener 425,
426, 708

itemValue attribute of
f:selectItem 926

iteration 72
of a loop 87, 106

iteration (looping)
of a for loop 152

iterative model 323
iterator 579
Iterator interface 582

hasNext method 585
next method 585
remove method 585

iterator method of
Collection 585

J
Jacopini, G. 62
JApplet class 653, 654,

656, 700
destroy method 654
init method 654, 659
paint method 654,

659

JApplet class (cont.)
start method 654,

659
stop method 654

jar command 662
c option 662
f option 662
v option 662

jar element of a JNLP
document 664

JAR file 674, 681
Java 2D API 469, 494, 651,

669
Java 2D shapes 494
Java 2D Shapes package

124
Java 3D API 668, 669, 693
Java Abstract Window

Toolkit (AWT) package
124

Java Abstract Window
Toolkit Event package
124

Java Advanced Imaging
API 669

Java API 115, 289
overview 123

Java API documentation
download 34

Java API Interfaces 289
Java applet 653
Java Applet Package 124
Java Application

Programming Interface
(Java API) 7, 31, 115,
123

Java Architecture for XML
Binding (JAXB) 980

Java archive (JAR) file 661
Java class library 7, 31, 115
java command 9, 12, 23

-splash option 1083
Java compiler 8
Java Concurrency Package

124
Java Database Connectivity

(JDBC) 850
Java DB xxii, 850, 887, 943
Java DB Developer’s Guide

890
Java debugger 1037
Java development

environment 8, 9, 10,
648

Java Development Kit
(JDK) 26

Java EE 6 908
Java EE 6 tutorial 908
java element of a JNLP

document 664
Java-enabled web browser

647

Java Enterprise Edition
(Java EE) 2, 908

.java extension 8

.java file name extension
40

Java fonts
Dialog 480
DialogInput 480
Monospaced 480
SansSerif 480
Serif 480

Java HotSpot compiler 10
Java Image I/O API 669
Java Input/Output Package

124
java interpreter 26
Java Keywords 1025
Java Language Package 124
Java look and feel Graphics

Repository 692
Java look-and-feel

repository
(java.sun.com/
developer/techDocs/
hi/repository) 692

Java Media Framework
(JMF)
API 669, 688
download 688

Java Media Framework
package 124

Java Micro Edition (Java
ME) 2

Java Naming and Directory
Interface (JNDI) 947

Java Network Launch
Protocol (JNLP) 647,
660, 661

Java Networking Package
124

Java Plug-In 647
Java programming

language 6
Java Resource Centers at

www.deitel.com/
ResourceCenters.htm
l 26

Java SE 6
API documentation

(java.sun.com/
javase/6/docs/
api/) 123

package overview
(java.sun.com/
javase/6/docs/
api/overview-
summary.html) 123

Java SE 7 105
Automatically Closing

Connections,
Statements and
ResultSets 872

Java SE 7 (cont.)
ConcurrentLinked-

Deque 784
fork/join framework

799
LinkedTransfer-

Queue 784
multi-catch 316
new concurrent collec-

tions 784
Strings in switch

statements 105
try-with-resources

statement 316
type inference with the

<> notation 585
Java SE Development Kit

(JDK) 7, 24
Java Sound API 669, 693
Java Speech API 669, 693
Java Speech API

(java.sun.com/
products/java-
media/speech) 693

Java Standard Edition (Java
SE) 2
6 2
7 2

Java Swing Event Package
125

Java Swing GUI
Components Package
125

Java Utilities Package 124
Java Virtual Machine

(JVM) 7, 8, 23, 25
Java Web Start 647, 660,

661
automatic updating

661
desktop integration

661
javaws command 664
overview 665

Java website
(java.sun.com) 123

JAVA_HOME environment
variable 888

java.applet package 124
java.awt class 699
java.awt package 124,

404, 471, 472, 491, 494,
653, 669, 680, 711

java.awt.color package
494

java.awt.event package
124, 125, 416, 418, 443,
453

java.awt.font package
494

java.awt.geom package
124, 494

www.deitel.com/ResourceCenters.htm
www.deitel.com/ResourceCenters.htm

Index 1109

java.awt.image package
494

java.awt.image.render
able package 494

java.awt.print package
494

java.beans package 798
java.com 647
java.io package 124, 541
java.lang package 33,

116, 124, 229, 252, 503,
741
imported in every Java

program 33
java.math package 56
java.net package 124,

802
java.sql package 124,

869, 870
java.util package 31,

124, 125, 183, 580, 602,
640, 1059
Calendar class 1059
Date class 1059

java.util.concurrent
package 124, 741, 760,
783, 799

java.util.concurrent.
locks package 776, 777

java.util.prefspackage
612

java.util.regexpackage
503

Java™ Language
Specification
(java.sun.com/docs/
books/jls/) 35

Java2D API 494
Java2D applet 651
Java2D directory 651
JavaBean 916
JavaBean property 916
JavaBeans Specification

916
javac compiler 8, 26
Javadoc comment 24
javadoc utility program

24
JavaScript 908
JavaScript Object Notation

(JSON) 966
JavaServer Faces (JSF) xxii
JavaServer Pages (JSP)

XML declaration 915
xmlns attributes 915

javax.faces.bean
package (JSF) 917

javax.jnlp package 661,
669, 672

javax.media package 124,
688

javax.sql package 951

javax.sql.rowset
package 885

javax.swing package 125,
399, 401, 409, 418, 420,
466, 476, 653, 669, 699,
715, 718

javax.swing.event
package 125, 416, 435,
443, 699

javax.swing.table
package 872, 884

JAXB (Java Architecture
for XML Binding) 980

JAXB class 980
marshal method 980
unmarshal method

983
JAX-RS 963
JAX-WS 963
JAX-WS package 125
JBoss Application Server

(www.jboss.com/
products/platforms/
application) 968

JButton class 404, 420,
423, 460

JCheckBox buttons and
item events 424

JCheckBox class 404, 423
isSelected method

426
JCheckBoxMenuItem class

700, 701, 707
JColorChooser class 476,

478
showDialog method

477
JComboBox class 404, 429,

726
getSelectedIndex

method 432
setMaximumRowCount

method 432
JComboBox that displays a

list of image names 430
JComponent class 405,

406, 408, 418, 429, 433,
446, 462, 469, 471, 680
paintComponent

method 446, 469,
679, 696, 698

repaint method 472
setForeground meth-

od 708
setOpaque method

446, 449
setToolTipText

method 408
jdb command 1039
JDBC

API 850, 867, 904
driver 850, 851

JDBC 4 xxii
JDBC documentation 851
JDBC information

(www.oracle.com/
technetwork/java/
javase/tech/index-
jsp-136101.html) 851

JDBC Package 124
jdbc:mysql://

localhost/books 869
JdbcRowSet interface 885

close method 887
execute method 887
setCommand method

887
setPassword method

887
setUrl method 887
setUsername method

887
JdbcRowSetImpl class 887
JDesktopPane class 716
JDesktopPane

documentation
(download.oracle.co
m/javase/6/docs/
api/javax/swing/
JDesktopPane.html)
719

JDialog class 707
JDIC (Java Desktop

Integration
Components)
addTrayIcon method

of class SystemTray
1088

browsemethod of class
Desktop 1085

Desktop class 1085
getDefaultSystem-

Tray method of
class SystemTray
1088

getDesktopmethod of
class Desktop 1085

isDesktopSupported
method of class
Desktop 1085

mail method of class
Desktop 1085

open method of class
Desktop 1085

removeTrayIcon
method of class
SystemTray 1088

-splash command-
line option to the
java command
1083

splash screen 1083
SplashScreen class

1084

JDIC (cont.)
SystemTray class 1087
Tray icons 1087
TrayIcon class 1088

JDK 7, 26
demo directory 648,

651
JEditorPane class 808

setPage method 810
Jesse James Garrett 956
JFileChooser class 574

CANCEL_OPTION con-
stant 577

FILES_AND_DIRECTOR
IES constant 577

FILES_ONLY constant
577

getSelectedFile
method 577

setFileSelection-
Mode method 577

showOpenDialog
method 577

JFileChooser dialog 574
JFrame class 699

add method 408
EXIT_ON_CLOSE 410
getContentPane

method 435
setDefaultCloseOp-

eration method
410, 699

setJMenuBar method
700, 707

setSize method 410
setVisible method

410
JFrame.EXIT_ON_CLOSE

410
JInternalFrame class

716, 718
documentation 719

JLabel class 404, 406
documentation 406
getIcon method 409
getText method 409
setHorizontalA-

lignment method
409

setHorizontalText-
Position method
409

setIcon method 409
setText method 409
setVerticalAlign-

ment method 409
setVerticalTextPo-

sition method 409
JList class 404, 433

addListSelection-
Listener method
435

www.jboss.com/products/platforms/application
www.jboss.com/products/platforms/application
www.jboss.com/products/platforms/application
www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html
www.oracle.com/technetwork/java/javase/tech/index-jsp-136101.html

1110 Index

JList class (cont.)
getSelectedIndex

method 435
getSelectedValues

method 438
setFixedCellHeight

method 437
setFixedCellWidth

method 437
setListData method

438
setSelectionMode

method 435
setVisibleRowCount

method 435
JMenu class 700, 707, 718

add method 706
addSeparatormethod

707
JMenuBar class 700, 707,

718
add method 707

JMenuItem class 701, 718
JMenus and mnemonics

701
JMF (Java Media

Framework) API 669,
685, 688

JNDI (Java Naming and
Directory Interface) 947

JNLP 672, 674, 681
FileOpenService

669, 672
main-class 662
ServiceManager class

672
JNLP (Java Network

Launch Protocol) 661
JNLP document 662

applet-desc element
664

application-desc el-
ement 664

desktop element 664
documentation 673
information element

664
jar element 664
java element 664
jnlp element 663
offline-allowed ele-

ment 664
resources element

664
shortcut element 664
title element 664
vendor element 664

jnlp element of a JNLP
document 663
codebase attribute

663
href attribute 663

jnlp.jar 673, 681
JOIN_ROUND constant of

class BasicStroke 499
joining database tables 853,

861
Joint Photographic Experts

Group (JPEG) 409, 669
JOptionPane class 401,

402
constants for message

dialogs 404
documentation 403
PLAIN_MESSAGE con-

stant 403
showInputDialog

method 402
showMessageDialog

method 403
JOptionPane constants for

message dialogs
JOptionPane.

ERROR_MESSAGE
404

JOptionPane.INFOR-
MATION_MESSAGE
404

JOptionPane.PLAIN_
MESSAGE 404

JOptionPane.QUES-
TION_MESSAGE 404

JOptionPane.WARN-
ING_MESSAGE 404

JPanel class 404, 446, 447,
454, 462, 675, 696

JPasswordField class
410, 415
getPassword method

415
JPEG (Joint Photographic

Experts Group) 409,
669

.jpeg file extension 669

.jpg file extension 669
JPopupMenu class 708

show method 711
JProgressBar class 795
JRadioButton class 423,

426, 429
JRadioButtonMenuItem

class 700, 701, 708
JScrollPane class 435,

437, 466, 467
HORIZONTAL_SCROLL-

BAR_ALWAYS con-
stant 467

HORIZONTAL_SCROLL-
BAR_AS_NEEDED
constant 467

HORIZONTAL_SCROLL-
BAR_NEVER constant
467

JScrollPane class (cont.)
setHorizontal-

ScrollBarPolicy
method 467

setVerticalScroll-
BarPolicy method
467

VERTICAL_SCROLLBAR
_ALWAYS constant
467

VERTICAL_SCROLLBAR
_AS_NEEDED con-
stant 467

VERTICAL_SCROLLBAR
_NEVER constant
467

JScrollPane scrollbar
policies 466

JSF
application lifecycle

928, 933
Core Tag Library 922,

926
deploy an app 921
f:selectItem ele-

ment 926
f:validateBean ele-

ment 926
f:validateDou-

bleRange element
926

f:validateLength el-
ement 926

f:validateLon-
gRange element 926

f:validateRegex ele-
ment 926

f:validateRequired
element 926

Facelets 915
h:commandButton ele-

ment 922, 926
h:form element 922,

923
h:graphicImage ele-

ment 922, 925
h:inputText element

922, 925, 931
h:message element

931
h:outputLink ele-

ment 922, 926, 939,
940

h:outputStyleSheet
element 931

h:outputText ele-
ment 931

h:panelGrid element
922, 924

h:selectItem ele-
ment 922

JSF (cont.)
h:selectOneMenu ele-

ment 922, 926
h:selectOneRadio el-

ement 922, 926, 939
HTML Tag Library

915, 922
javax.faces.bean

package 917
@ManagedBean annoa-

tion 917, 920
@RequestScoped an-

noation 920
resource library 925
resources folder 925
resources library 925
session expire 935
ui:repeat element

941
JSF Expression Language

916
JSF Facelets Tag Library

941
JSF web-application

framework 913
JSlider class 695, 696,

699, 1072
block increment 696
documentation 699
getValue method 699
major tick marks 695
minor tick marks 695
setInverted method

696
setMajorTickSpac-

ing method 699
setPaintTicks meth-

od 699
snap-to ticks 695
thumb 695
tick marks 695

JSON (JavaScript Object
Notation) 966

JSON (www.json.org)
966

JTabbedPane class 720,
725
addTab method 721
SCROLL_TAB_LAYOUT

constant 725
TOP constant 725

JTable class 872
RowFilter 884
setRowFiltermethod

884
setRowSortermethod

884
sorting and filtering

xxiii
TableRowSorter 884

www.json.org

Index 1111

JTextArea class 452, 464,
466, 727, 730
setLineWrap method

466
JTextComponent class

410, 413, 464, 466
getSelectedText

method 466
getText method 708
setDisabledText-

Color method 452
setEditable method

413
setText method 466

JTextField class 404,
410, 414, 418, 464
addActionListener

method 414
JTextFields and

JPasswordFields 411
JToggleButton class 423
JumpingBox applet 649
just-in-time compilation

10
just-in-time (JIT) compiler

10

K
key constant 453, 453
key event 419, 450
Key event handling 450
key/value pair 609
KeyAdapter class 443
keyboard 30, 399
KeyEvent class 419, 450

getKeyChar method
453

getKeyCode method
452

getKeyModifiers-
Text method 453

getKeyText method
453

isActionKey method
453

KeyListener interface
419, 443, 450
keyPressed method

450, 452
keyReleased method

450
keyTyped method 450

Keypad class (ATM case
study) 326, 329, 330,
331, 342, 349, 350, 351,
353, 362, 365, 396

keyPressed method of
interface KeyListener
450, 452

keyReleased method of
interface KeyListener
450

keySet method
of class HashMap 611
of class Properties

614
keyTyped method of

interface KeyListener
450

keyword 24, 64
Keywords

abstract 261
boolean 66, 1042
break 102
case 102
catch 298
char 32
class 24, 41
continue 105
default 102
do 64, 96
double 32, 56
else 64
enum 133
extends 229, 240
false 66, 1025
final 105, 117, 146,

752
finally 298
float 32, 56
for 64, 89
if 64
implements 279
import 31
instanceof 276
int 32
interface 279
new 32, 42, 143, 144
null 52, 143, 1025
private 48, 192, 202
public 24, 40, 41, 48,

119, 192
reserved but not used

by Java 1025
return 48, 49, 122
static 95, 116
super 228, 250
switch 64
synchronized 745
table of keywords and

reserved words 1025
this 193, 210
throw 307
true 66, 1025
try 298
void 25, 41
while 64, 96

Koenig, Andrew 293

L
label 406
label in a switch 102
labels for tick marks 695
LAMP 19
language package 124
last-in, first-out (LIFO)

order 633
last method of

ResultSet 878
last method of

SortedSet 608
lastIndexOf method of

class String 511
lastModified method of

class File 543
late binding 275
layout manager 408, 441,

453, 462, 1071
BorderLayout 441
FlowLayout 408
GridLayout 460

layoutContainermethod
of interface
LayoutManager 457

LayoutManager interface
453, 457
layoutContainer

method 457
LayoutManager2 interface

457
lazy quantifier 534
leading 482
LEADING alignment

constant in
GroupLayout 1072

left brace, { 25, 32
LEFT constant of class

FlowLayout 457
left justification 1053
left justified 94, 409, 454
left-mouse-button click

445
Left, center and right

mouse-button clicks 443
length field of an array

142
length instance variable of

an array 142
length method of class

String 505
length method of class

StringBuilder 518
length method of File

543
lexicographical comparison

508, 509
library attribute of

h:graphicImage 925
library of resources (JSF)

925

life cycle of a thread 738,
740

lifecycle of a JSF
application 928, 933

lifeline of an object in a
UML sequence diagram
353

LIFO (last-in, first-out)
633

lightweight GUI
component 405, 707

LIGHTWEIGHT_RENDERER
constant of class
Manager 689

LIKE operator (SQL) 857
LIKE SQL clause 858, 860
line 469, 484, 493
line join 497
line wrapping 466
Line2D class 469, 498
Line2D.Double class 494
LinearGradientPaint

class 497
LineNumberReader class

573
lineTo method of class

GeneralPath 500
LinkedBlockingDeque

class 784
LinkedBlockingQueue

class 784
LinkedList class 582, 598

add method 590
addFirst method 590
addLast method 589

LinkedTransferQueue
class 784

Linux 8, 25, 551, 648
Linux operating system 5, 6
list 431
List interface 580, 581,

588, 591, 596
add method 585, 587
addAll method 587
clear method 588
get method 585
listIteratormethod

588
size method 585, 588
subList method 588
toArray method 589

list method of File 543,
545

list method of
Properties 614

listen for events 414
ListIterator interface

582
hasPrevious method

588
previous method 588
set method 588

1112 Index

listIterator method of
interface List 588

ListSelectionEvent
class 433

ListSelectionListener
interface 435, 807
valueChangedmethod

435
ListSelectionModel

class 435
MULTIPLE_INTERVAL_

SELECTION constant
435, 437

SINGLE_INTERVAL_
SELECTION constant
435, 437

SINGLE_SELECTION
constant 435

literals
floating point 56

load another web page into
a browser 682, 684

load factor 609
load method of

Properties 614
loading 9
Loading and displaying an

image in an applet 669
Loading and playing an

AudioClip 685
local variable 47, 71, 135,

195
localhost 909
localhost (127.0.0.1)

address 819
localization 405
location (0, 0) 653
lock an object 766
Lock interface 776

lock method 776, 781
newConditionmethod

777, 779
unlock method 776,

781
lock method of interface

Lock 776, 781
log method of Math 117
logarithm 117
logic error 8, 33, 68, 89,

1037
logical input operations

572
logical negation, or logical

NOT (!) operator truth
table 110

logical operators 107, 110
logical output operations

572
long

literal suffix L 603
Long class 580
long keyword 1025, 1026

long promotions 123
look-and-feel 404, 405,

453, 711
Nimbus 400

Look-and-feel of a Swing-
based GUI 712

look-and-feel of an
application 404

LookAndFeelInfo nested
class of class UIManager
715

lookingAtmethod of class
Matcher 537

lookup method of class
ServiceManager 672

loop 69, 72
body 96
continuation condi-

tion 64
counter 87
infinite 77
statement 64, 68

loop-continuation
condition 87, 88, 89, 91,
96, 97, 106

loop method of interface
AudioClip 685

loopback address 819
looping 72
lowercase letter 24
lowered rectangle 488
ls command on UNIX

648

M
m-by-n array 167
Mac OS X 8, 25, 551
Macintosh 471
Macintosh AIFF file format

685, 688
Macintosh look-and-feel

712
Macromedia Flash movies

(.swf) 688
magnetic tape 540
mail method of class

Desktop 1085
main method 32, 41
main thread 744
main-class attribute of

the applet-desc
element 664

main-class specified in an
JNLP document 662

major tick marks of class
JSlider 695

make your point (game of
craps) 130

making decisions 38
MalformedURLException

class 807

@ManagedBean annoation
(JSF) 917, 920

Manager class 688
createRealized-

Player method 688
LIGHTWEIGHT_REND-

ERER constant 689
setHint method 689

many-to-many relationship
855

many-to-one mapping 608
many-to-one relationship

in the UML 332
Map interface 580, 608

containsKey method
611

get method 611
isEmpty method 612
put method 611
size method 612

mappings of SQL types to
Java types 871

marshal method of class
JAXB 980

mashups 16
Matcher class 503, 536

find method 537
group method 538
lookingAt method

537
matches method 537
replaceAll method

537
replaceFirstmethod

537
matcher method of class

Pattern 537
matches method of class

Matcher 537
matches method of class

Pattern 537
matches method of class

String 530
matching catch block 298
Math class 95, 116

abs method 116
ceil method 116
cos method 116
E constant 117
exp method 116
floor method 117
log method 117
max method 117
min method 117
PI constant 117
pow method 95, 116,

117
random method 125
sqrt method 116, 117,

122
tan method 117

Matisse GUI designer
(Netbeans) 1071

max method of
Collections 590, 597

max method of Math 117
maximize a window 406,

719
maximized internal frame

719
maximum attribute of an h

validateLength valida-
tor 932

maxLength attribute of an
h:inputText element
932

MDI (Multiple Document
Interface) 695, 716

memory buffer 572
memory leak 209, 304
memory-space/execution-

time trade-off 609
memory utilization 609
menu 400, 464, 700, 701
menu bar 400, 700, 707
menu item 701, 706
merge in the UML 341
merge records from tables

860
merge symbol in the UML

69
message 52, 654
message dialog 401, 403

types 403
message in the UML 349,

351, 352, 353
message passing in the

UML 353
Meta key 445, 446
meta XHTML element

916
metadata 870
metal look-and-feel 695,

712
method 3, 25, 360

local variable 47
parameter 44, 46
parameter list 44
return type 49
signature 138
static 95

method call 4, 119
method declaration 119
Method Detail section in

API 1034
method header 41
method overloading 137
method parameter list 177
Method Summary section

in API 1033
methods called

automatically during
applet’s execution 656

Index 1113

methods implicitly final
278

microblogging 15, 17
Microsoft Audio/Video

Interleave (.avi) file
688, 688

Microsoft SQL Server 850
Microsoft Windows 101,

471, 699, 711
Microsoft Windows-style

look-and-feel 712
.mid file extension 685,

688
middle mouse button 446
middle tier 913
MIDI (Musical Instrument

Digital Interface) file
format (.mid or .rmi
extensions) 685, 688

MIME (Multipurpose
Internet Mail
Extensions) 911, 935

min method of
Collections 590, 597

min method of Math 117
minimize a window 406,

700, 719
minimize internal frame

719
minor tick marks of class

JSlider 695
minus sign (–) formatting

flag 94
minus sign (-) indicating

private visibility in the
UML 360

mnemonic 405, 701, 705,
707

mobile application 2
mobile check-in 15
modal dialog 403, 478
modal dialog box 706
model (in MVC

architecture) 922
model of a software system

329, 337, 367
Model-View-Controller

(MVC) 922
modifier key 453
modules in Java 115
MoleculeViewer applet

649
monetary calculations 96
monitor 745
monitor lock 745
Monospaced Java font 480
Moskovitz, Dustin 17
Motif-style (UNIX) look-

and-feel 695, 712
mouse 399, 649
mouse button 649
mouse-button click 445

mouse click 443
mouse event 419, 438, 711

handling 438
mouse wheel 439
MouseAdapter class 443
mouseClicked method of

interface Mouse-
Listener 438, 443

mouseDragged method of
interface MouseMotion-
Listener 439, 447

mouseEntered method of
interface Mouse-
Listener 439

MouseEvent class 419,
438, 711
getClickCount meth-

od 446
getPoint method 448
getX method 442
getY method 442
isAltDown method

446
isMetaDown method

446
isPopupTrigger

method 711
mouseExited method of

interface
MouseListener 439

MouseInputListener
interface 438, 442

MouseListener interface
419, 438, 443, 711
mouseClickedmethod

438, 443
mouseEnteredmethod

439
mouseExited method

439
mousePressedmethod

438, 711
mouseReleased meth-

od 438, 711
MouseMotionAdapter

class 443, 447
MouseMotionListener

interface 419, 438, 443
mouseDraggedmethod

439, 447
mouseMoved method

439, 447
mouseMoved method of

interface MouseMotion-
Listener 439, 447

mousePressed method of
interface Mouse-
Listener 438, 711

mouseReleasedmethod of
interface
MouseListener 438,
711

MouseWheelEvent class
439

MouseWheelListener
interface 439
mouseWheelMoved

method 439
mouseWheelMovedmethod

of interface Mouse-
WheelListener 439

.mov file extension 688
moveTo method of class

GeneralPath 500
Mozilla Foundation 5
.mp3 file extension 688
MP3 player 6
.mpeg file extension 688
MPEG Layer 3 Audio

(.mp3) files 688
MPEG-1 videos 688
MPEG-1 videos (.mpeg,

.mpg) 688
.mpg file extension 688
multi-button mouse 445
multicast 803, 848
multi-catch 316
multidimensional array

167, 168
multimedia 668
multiple class declarations

in one source-code file
194

multiple document
interface (MDI) 695,
716

multiple inheritance 225
multiple-selection list 433,

435
multiple-selection

statement 64
MULTIPLE_INTERVAL_

SELECTION constant of
interface ListSelec-
tionModel 435, 437

multiplication compound
assignment operator, *=
82

multiplication, * 34, 35
multiplicative operators: *,

/ and % 78
multiplicity 329, 330
Multipurpose Internet

Mail Extensions
(MIME) 911, 935

multithreaded user
interfaces xxiii

multithreading 582, 736
multitier application 912
multitouch screen 6
Musical Instrument Digital

Interface (MIDI) file
format (.mid or .rmi
extensions) 685, 688

mutable data 752
mutator method 202
mutual exclusion 744
mutually exclusive options

426
MVC (Model-View-

Controller) 922
MySQL 19, 850, 864, 866

Community Edition
864

Connector/J xxx, 865
mysqld.exe 866

N
n conversion character

1060
%n format specifier (line

separator) 552
n-tier application 912
name attribute of

@WebParam annotation
969

name attribute of
@WebService
annotation 968

name attribute of
h:graphicImage 925

name attribute of the
@ManagedBean
annotation 917

name attribute of the
applet-desc element
664

name collision 218
name conflict 218
name of a param 804
name of an array 142
name of an attribute 915
named constant 146
NASA multimedia

(www.nasa.gov/
multimedia/
highlights/
index.html) 692

NASA multimedia
(www.nasa.gov/
multimedia/
index.html) 692

NASA Multimedia Gallery
692

native keyword 1025
natural comparison

method 591
natural logarithm 117
navigability arrow in the

UML 360
negative arc angles 489
negative degree 488
NervousText applet 649
nested array initializers 168

www.nasa.gov/multimedia/highlights/index.html
www.nasa.gov/multimedia/highlights/index.html
www.nasa.gov/multimedia/highlights/index.html
www.nasa.gov/multimedia/index.html
www.nasa.gov/multimedia/index.html
www.nasa.gov/multimedia/index.html
www.nasa.gov/multimedia/highlights/index.html

1114 Index

nested class 413, 715
relationship between an

inner class and its
top-level class 426

Nested Class Summary
section in API 1032

nested control statements
79, 129
Examination-results

problem 79
nested for statement 149,

169, 170, 171, 174
nested if...else selection

statement 66, 67
nested message in the UML

353
NetBeans 908

add a web service refer-
ence to an applica-
tion 974

code-completion win-
dow 919

creating a Java DB da-
tabase 952

Show Line Numbers
919

Netbeans
demonstration video

(www.deitel.com/
books/javafp2) 23

NetBeans
(www.netbeans.org) 8

NetBeans IDE 908, 964,
1073
add an event handler

1076
create a desktop appli-

cation 973
create a new project

1073
create a web application

967
Design view 1073
GroupLayout 1071
guide lines 1074, 1075
New JFrame Form dia-

log 975
New Web Service Client

dialog 974
New Web Service dialog

967
Palette window 1073,

1074
Properties window

1073
snap-to alignment grid

1076
Web Application project

966

Netbeans IDE 1071, 1073
Design view 1073
initComponents auto-

generated method
1076

Source view 1073
NetBeans Matisse GUI

design tool xxiii
Netbeans Matisse GUI

designer 1071
network message arrival

301
networking package 124
New JFrame Form dialog

975
new keyword 32, 42, 143,

144, 1025
new Scanner(System.in)

expression 32
new state 738
new to Java

(www.oracle.com/
technetwork/topics/
newtojava/overview/
index.html) 8

New Web Service Client
dialog 974

New Web Service dialog
967

newCachedThreadPool
method of class
Executors 742

newCondition method of
interface Lock 777, 779

newline character 28
newline escape sequence,

\n 29, 32, 503
next method

of Iterator 585
of ResultSet 871
of Scanner 45

nextDouble method of
class Scanner 59

nextInt method of class
Random 125, 129

nextLine method of class
Scanner 44

Nimbus look and feel 400,
712
swing.properties

xxxi, 401
Nirvanix 19
no-argument constructor

198, 200
non-static class member

210
NONE constant of class

GridBagConstraints
726

nonfatal logic error 68
nonfatal runtime error 11

NoPlayerException
exception 690

NORTH constant of class
BorderLayout 441,
457

NORTH constant of class
GridBagConstraints
726

NORTHEAST constant of
class GridBag-
Constraints 726

NORTHWEST constant of
class GridBag-
Constraints 726

NoSuchElementExcep-
tion class 551, 556

note in the UML 63
Notepad 8
notify method of class

Object 763
notify method of Object

253
notifyAllmethod of class

Object 763, 766, 767
notifyAll method of

Object 253
noun phrase in require-

ments document 327
null 1025
null keyword 50, 52, 143,

403
null reserved word 85
Number class 641

doubleValue method
642

number systems 526
numeric Classes 580

O
object 2
object (or instance) 4, 351,

654
Object class 209, 225, 229,

570
clone method 252
equals method 252
finalize method 252
getClassmethod 253,

277, 409
hashCode method 253
notify method 253,

763
notifyAll method

253, 763, 766, 767
toStringmethod 232,

253
wait method 253, 763

object diagram in the UML
1089

object of a derived class 258

object of a derived class is
instantiated 250

object-oriented analysis
and design (OOAD) 5

object-oriented design
(OOD) 319, 325, 327,
337, 360

object-oriented language 5
object-oriented

programming (OOP) 2,
5, 225

object serialization 562,
819

ObjectInput interface
562
readObject method

563
ObjectInputStream class

541, 562, 563, 569, 812,
813, 819

ObjectOutput interface
562
writeObject method

562
ObjectOutputStream

class 541, 562, 563, 614
close method 568
flush method 819

octal integer 1054
off-by-one error 89
offer method of

PriorityQueue 604
offline-allowedelement

of a JNLP document
664

ON clause 861
one-to-many relationship

855
one-to-one mapping 608
one-, two- or three-button

mouse 445
one-to-many relationship

in the UML 332
one-to-one relationship in

the UML 332
OOAD (object-oriented

analysis and design) 5
OOD (object-oriented

design) 319, 325, 327,
337

OOP (object-oriented
programming) 5, 225

opaque Swing GUI
components 446

open a file 541
OPEN constant of class

Arc2D 498
Open Handset Alliance 6
open method of class

Desktop 1085
open source 5, 6
open source software xxiii

www.deitel.com/books/javafp2
www.deitel.com/books/javafp2
www.netbeans.org
www.oracle.com/technetwork/topics/newtojava/overview/index.html
www.oracle.com/technetwork/topics/newtojava/overview/index.html
www.oracle.com/technetwork/topics/newtojava/overview/index.html
www.oracle.com/technetwork/topics/newtojava/overview/index.html

Index 1115

openFileDialog method
of interface
FileOpenService 672

openMultiFileDialog
method of interface
FileOpenService 678

openStream method of
class URL 987

operand 77
operating system 6
operation compartment in

a class diagram 342
operation in the UML 43,

329, 342, 346, 362, 363,
368, 369

operation parameter in the
UML 46, 343, 346, 347,
348

operationName attribute
of the @WebMethod
annotation 968

operator 33
operator precedence 34

operator precedence
chart 78

Operator Precedence
Chart Appendix
1022

rules 34
Operators

^, boolean logical ex-
clusive OR 107, 110

--, predecrement/post-
decrement 82

--, prefix decrement/
postfix decrement
82, 83

!, logical NOT 107,
110

?:, ternary conditional
operator 66

*=, multiplication as-
signment operator
82

/=, division assignment
operator 82

&, boolean logical AND
107, 109

&&, conditional AND
108, 109

%=, remainder assign-
ment operator 82

++, prefix increment/
postfix increment
82, 83

++, preincrement/
postincrement 82

+=, addition assign-
ment operator 81

=, assignment 33, 38
-=, subtraction assign-

ment operator 82

Operators (cont.)
|, boolean logical in-

clusive OR 107, 109
||, conditional OR

107, 108
arithmetic 34
boolean logical AND, &

107, 109
boolean logical exclu-

sive OR, ^ 107, 110
boolean logical inclu-

sive OR, | 109
cast 77
compound assignment

81, 84
conditional AND, &&

108, 109
conditional operator,

?: 66
conditional OR, ||

107, 108, 109
decrement operator, --

82, 83
increment and decre-

ment 82
increment, ++ 82
logical operators 107,

110, 111
multiplication, * 34
multiplicative: *, / and

% 78
postfix decrement 82
postfix increment 82
prefix decrement 82
prefix increment 82
remainder, % 34, 35
subtraction, - 35

optical disk 540
optimizing compiler 95
optional package 220
Oracle Corporation 850
order 62
ORDER BY SQL clause 856,

859, 860
ordering of records 856
origin component 711
out-of-bounds array index

301
outer set of brackets 152
output 25
output cursor 25, 28
output parameter for a

CallableStatement
904

OutputStream class 562,
571, 811, 812, 813

OutputStreamWriter
class 573

oval 484, 488, 653
oval bounded by a rectangle

488

oval filled with gradually
changing colors 497

overflow 301
overload a method 137
overloaded constructors

195
overloaded method 619
overloading generic

methods 628
override a superclass

method 228, 232

P
PaaS (Platform as a Service)

19
pack method of class

Window 719
package 31, 115, 123, 215,

1089
package access 221
package-access members of

a class 222
package-access methods

221
package declaration 216
package diagram in the

UML 1089
package directory names

218
package directory structure

216
package keyword 1025
package name 47
package overview 123
Packages

com.google.gson.Gs
on 985

default package 47
java.applet 124
java.awt 124, 404,

472, 494, 653, 669,
680, 699, 711

java.awt.color 494
java.awt.event 124,

125, 416, 418, 443,
453

java.awt.font 494
java.awt.geom 124,

494
java.awt.image 494
java.awt.image.

renderable 494
java.awt.print 494
java.beans 798
java.io 124, 541
java.lang 33, 116,

124, 229, 252, 503,
741

java.math 56
java.net 124, 802

packages (cont.)
java.sql 124, 869,

870
java.util 31, 124,

125, 183, 640
java.util.concur-

rent 124, 741, 760,
783, 799

java.util.concur-
rent.locks 776,
777

java.util.prefs 612
java.util.regex 503
javax.jnlp 661, 669,

672
javax.media 124, 688
javax.sql 951
javax.sql.rowset

885
javax.swing 125,

399, 401, 409, 420,
466, 476, 669, 699,
715, 718

javax.swing.event
125, 416, 418, 435,
443, 699

javax.swing.table
872, 884

packet 802, 826
packet-based

communications 802
Page Down key 450
page layout software 503
Page Up key 450
Page, Larry 15
paint method of JApplet

654, 657, 659
Paint object 497
paintComponent method

of class JComponent
446, 469, 679, 696, 698

paintIconmethod of class
ImageIcon 679

panel 462
parallel layout of GUI

components 1071
parallel operations 736
param element 804
parameter 44, 46
parameter in the UML 46,

343, 346, 347, 348
parameter list 44, 54
parameterized class 629
parameterized type 629
parent directory 543
parent window 403, 695,

716
parent window for a dialog

box 706
parent window specified as

null 706
parentheses 25

1116 Index

parseDouble method of
Double 658

parseInt method of class
Integer 403

parseInt method of
Integer 180

partial page update 958
pass an array element to a

method 159
pass an array to a method

159
pass-by-reference 161
pass-by-value 159, 161
passing options to a

program 179
password 411
@Path annotation 979
PATH environment variable

xxx, xxxi, 26
path information 542
path to a resource 910
@PathParam annotation

980
pathSeparator static

field of File 546
pattern 494
Pattern class 503, 536

compile method 537
matcher method 537
matches method 537

pattern matching 857
Payable interface

declaration 282
Payable interface

hierarchy UML class
diagram 281

Payable interface test
program processing
Invoices and
Employees
polymorphically 288

peek method of class
PriorityQueue 604

peek method of class
Stack 604

percent (%) SQL wildcard
character 857

perform a calculation 38
perform a task 41
perform an action 25
performing operations

concurrently 736
persistent data 540
persistent Hashtable 612
personalization 933
photo sharing 15
PHP 19
physical input operation

572
physical output operation

572

PIE constant of class Arc2D
498

pie-shaped arc 498
pipe 571
PipedInputStream class

571
PipedOutputStream class

571
PipedReader class 573
PipedWriter class 573
pixel (“picture element”)

469
pixel coordinates 653
PLAF (pluggable look-and-

feel) 695
PLAIN constant of class

Font 480, 480
PLAIN_MESSAGE 403
Platform as a Service (PaaS)

19, 19
platform dependency 740
play method of class

Applet 685
play method of interface

AudioClip 685
Player interface 688

getControlPanel-
Component method
690

getVisualComponent
method 690

start method 690
playing an AudioClip 685
playing audio 685
pluggable look-and-feel

(PLAF) 695
pluggable look-and-feel

package 405
plus sign (+) indicating

public visibility in the
UML 360

PNG (Portable Network
Graphics) 409, 669

.png file extension 669
point 480, 649
Point class 448
POJO (Plain Old Java

Object) 916, 968
poll method of

PriorityQueue 604
polygon 491, 493
Polygon class 469, 491

addPointmethod 492,
494

polyline 491
polylines 491
polymorphic processing

of collections 582
polymorphic processing of

related exceptions 303

polymorphically process
Invoices and
Employees 288

polymorphism 105, 253,
255, 365, 366, 376

pool of threads 812
pop method of Stack 604
popup trigger event 708,

711
port 811
port number 811, 813,

825, 826, 830
portability 471
Portability Tips overview

xxiv
portable 9
portable GUI 125
Portable Network Graphics

(PNG) 409, 669
position number 142
positive and negative arc

angles 489
positive degrees 488
POST request 911
postback 933
postcondition 314
postdecrement 83
postfix decrement operator

82
postfix increment operator

82, 91
PostgreSQL 850
postincrement 83, 84
pow method of class Math

95, 116, 117
power (exponent) 117
power of 2 larger than 100

68
prebuilt data structures 579
precedence 34, 38, 84

arithmetic operators 35
chart 35, 78

Precedence Chart
Appendix 1022

precision 1054, 1055
format of a floating-

point number 78
precision of a floating-

point value 56
precision of a formatted

floating-point number
58

precondition 314
predecrement 82
predefined character class

530
predicate 857
predicate method 203
preemptive scheduling 740
Preferences API 612
prefix decrement operator

82

prefix increment operator
82

preincrement 82, 84
Preincrementing and

postincrementing 83
PreparedStatement

interface 889, 890, 892,
895, 904
executeQuerymethod

896
executeUpdate meth-

od 896
setString method

889, 896
prepareStatement

method of interface
Connection 895

presentation logic 913
presentation of a document

915
previous method of

ListIterator 588
primary key 851, 855
primitive type 32, 52, 85,

122
boolean 1042
byte 98
char 32, 98
double 32, 56, 74
float 32, 56
int 32, 33, 74, 82, 98
names are keywords 32
passed by value 161
promotions 123
short 98

principal in an interest
calculation 93

principle of least privilege
214

print debugger command
1041

print method of
System.out 27, 28

print on multiple lines 28
print spooling 753
printArray generic

method 623
printf method of

System.out 29, 1053
println method of

System.out 28
printStackTracemethod

of class Throwable 310
PrintStream class 571,

614
PrintWriter class 552,

573
priority of a thread 740
PriorityBlockingQueue

class 784

Index 1117

PriorityQueue class 604
clear method 604
offer method 604
peek method 604
poll method 604
size method 604

privacy protection 934
private

access modifier48, 192,
228

data 202
field 202
keyword 202, 360,

1025
private static

class member 210
probability 125
producer 752
producer thread 753
producer/consumer

relationship 752, 771
@Produces annotation 980
program in the general 255
program in the specific 255
Projects window 918
promotion 77, 933

of arguments 122
rules 77, 122

promotions for primitive
types 123

Properties class 612
getProperty method

612
keySet method 614
list method 614
load method 614
setProperty method

612
store method 614

property (JSF) 916
property of a JavaBean 916
propertyChange method

of interface Property-
ChangeListener 799

PropertyChangeListener
interface 798
propertyChange

method 799
proprietary class 251
protected access modifier

192, 228, 1025
protocol for

communication (jdbc)
869

proxy class for a web service
968, 973

pseudorandom number
125, 129

public
abstract method 279

public (cont.)
access modifier 40, 41,

48, 119, 192, 228
class 24
final static data 279
interface 188
keyword 24, 48, 360,

362, 363, 1025
member of a subclass

228
method 189, 192
method encapsulated

in an object 192
service 188
static class members

210
static method 210

publishing a web service
965, 966, 970

push method of class
Stack 603

put method
of interface Blocking-

Queue 760, 761
of interface Map 611
of interface Request-

Context 1001

Q
qualified name 861
quantifiers used in regular

expressions 534, 534
quantum 739
query 850, 852
query a database 867
query method 202
query string 912
QUESTION_MESSAGE 403
queue 581, 604
Queue interface 580, 581,

604, 760
queue length 811
queue to the server 818
QuickTime (.mov) files

688

R
RadialGradientPaint

class 497
radians 116
radio button 420, 426
radio button group 426
radix (base) of a number

526
raised rectangle 488
Random class 124, 125

documentation 125
nextInt method 125,

129
setSeed method 130

random method of class
Math 125

random numbers 129
difference between val-

ues 129
element of chance 125
generation 153
processing 124
pseudorandom number

125
scaling 126
scaling factor 126, 129
seed 125
seed value 129
shift a range 126
shifting value 126, 129

range method of class
EnumSet 209

range-view methods 588,
606

Rational Software
Corporation 325

Rational Unified Process™
325

raw type 636
RDBMS (relational

database management
system) 913

read method of class
InputStream 673

read-only file 568
read-only text 406
Reader class 573
reading a file on a web

server 808
readObject method of

ObjectInput 563
readObject method of

ObjectInputStream
570

ready state 739
real number 32, 74
realization in the UML 281
receive a connection 818
receive data from a server

825
receive method of class

DatagramSocket 829
reclaim memory 213
recognizing clients 934
recommended GUI design

guidelines used by
GroupLayout 1072

record 546
rectangle 469, 473, 485,

649, 653
Rectangle2D class 469
Rectangle2D.Double

class 494
redirect a standard stream

541
redirect a stream 541

ReentrantLock class 777,
779

refactoring xxiii, 18
tool 18

refer to an object 52
reference 52
reference type 52, 221
reflection 277
regexFilter method of

class RowFilter 884
regionMatchesmethod of

class String 507
register a port 811
register an

ActionListener 707
registered listener 418
registering the event

handler 413
regular expression 530

^ 531
? 534
. 537
{n,} 534
{n,m} 534
{n} 534
* 533
\D 530
\d 530
\S 530
\s 530
\W 530
\w 530
+ 533
| 534

Regular Expressions
Resource Center 538

reinventing the wheel 4, 31,
180

relational database 850,
851

relational database
management system
(RDBMS) 850, 913

relational database table
851

relational operators 35
relationship between an

inner class and its top-
level class 426

RELATIVE constant of class
GridBagConstraints
731

relative path 542
release a lock 766
release a resource 304, 305
release candidate 20
reload an entire web page

956
Reload from

appletviewer’s Applet
menu 650, 651

reluctant quantifier 534

1118 Index

remainder 34
remainder compound

assignment operator, %=
82

REMAINDER constant of
class
GridBagConstraints
731

remainder operator, % 34,
35

remove duplicate String
605

remove method of class
ArrayList<T> 184,
185

remove method of
interface Iterator 585

removeTableModel-
Listener method of
interface TableModel
872

removeTrayIcon method
of class SystemTray
1088

render attribute of f
ajax 961

rendering XHTML in a
web browser 911

Reordering output with
argument index 1068

repaint method of class
Component 448

repaint method of class
JComponent 472

repainted 657
repetition 64

counter controlled 76,
79

sentinel controlled 73,
74, 76

repetition statement62, 64,
68
do...while 64, 96, 97,

97
for 64, 92
while 64, 68, 69, 72,

76, 87
repetition terminates 69
replaceAll method

of class Matcher 537
of class String 535

replaceFirst method
of class Matcher 537
of class String 535

Representational State
Transfer (REST) 963,
965

representing integers in
hexadecimal format
1054

representing integers in
octal format 1054

request method 911
RequestContext interface

1001
put method 1001

@RequestScoped
annoation (JSF) 920
default 920

required attribute of a JSF
element 931

requirements 5, 323
requirements document

319, 323, 325
requirements gathering

323
reserved word 64, 1025

false 65
null 50, 52, 85
true 65

resizable array 806
implementation of a

List 582
resolution 469
resource leak 209, 304
resource library (JSF) 925
resource-release code 304
resources element of a

JNLP document 664
resources folder of a JSF

app 925
responses to a survey 150,

152
REST (Representational

State Transfer) 963
restart method of class

Timer 679
RESTful web services 965
result 857
result set concurrency 877
result set type 876
ResultSet interface 870,

876, 878
absolute method 878
close method 871
column name 871
column number 871
CONCUR_READ_ONLY

constant 877
CONCUR_UPDATABLE

constant 877
concurrency constant

877
getInt method 871
getObject method

871, 878
getRow method 878
last method 878
next method 871
TYPE_FORWARD_ONLY

constant 876
TYPE_SCROLL_INSENS-

ITIVE constant 876

ResultSet Interface (cont.)
TYPE_SCROLL_SENS-

ITIVE constant 877
ResultSetMetaData

interface 870, 878
getColumnClassName

method 878
getColumnCount

method 870, 878
getColumnName meth-

od 878
getColumnType meth-

od 871
ResultSetTableModel

enables a JTable to
display the contents of a
ResultSet 872

resumption model of
exception handling 299

rethrow an exception 307
Return key 650, 651
return keyword 49, 122,

1025
return message in the UML

353
return type 49

in the UML 343, 348
of a method 41, 49

reusability 629
reusable software

components 2, 123, 226
reuse 3, 31
reverse method of class

StringBuilder 520
reverse method of

Collections 590, 596
reverseOrder method of

Collections 592
RGB value 472, 473, 478
right aligned 454
right brace, } 25, 32, 71, 76
RIGHT constant of class

FlowLayout 457
right justification 1053,

1062
right justify output 94
right justifying integers

1062
rigid area of class Box 725
.rmi file extension 685,

688
robust 33
robust application 293
role in the UML 330
role name in the UML 330
roll back a transaction 905
rollback method of

interface Connection
905

rolling two dice 133
rollover Icon 420
root directory 542

root element (XML) 663
root html element 915
rotate method of class

Graphics2D 501
round a floating-point

number for display
purposes 78

round-robin scheduling
740

rounded rectangle 486, 498
rounded rectangle (for

representing a state in a
UML state diagram)
338

rounding 1053
rounding a number 34, 73,

96, 116
RoundRectangle2D class

469
RoundRectangle2D.

Double class 494, 498
row 851, 855, 856, 857,

858, 862
rowClasses attribute of

h:dataTable 954
RowFilter class 884
rows of a two-dimensional

array 167
rows to be retrieved 856
RowSet interface 885
Rule of Entity Integrity

855
Rule of Referential

Integrity 853
rule of thumb (heuristic)

107
rules of operator

precedence 34
run an applet in a web

browser 656
run debugger command

1039
run method of interface

Runnable 741, 840
Runnable interface 290,

741, 841
run method 741, 840

runnable state 738
running an application 12
running state 739
runtime error 11
runtime logic error 33
RuntimeException class

302

S
SaaS (Software as a Service)

xxiii, 19
Salesforce 15
sandbox security model

660

Index 1119

SansSerif Java font 480
saturation 478
Saverin, Eduardo 17
savings account 93
scalar 159
scaling (random numbers)

126
scaling an image 673
scaling factor (random

numbers) 126, 129
Scanner class 31, 32

hasNext method 101
next method 45
nextDouble method

59
nextLine method 44

scheduling threads 740
scientific notation 1055
scope 90
scope of a declaration 135
scope of a type parameter

631
scope of a variable 90
Screen class (ATM case

study) 329, 330, 342,
349, 350, 351, 353, 355,
362

screen cursor 29
screen-manager program

257
scroll 431, 435
scroll arrow 432
scroll box 432
SCROLL_TAB_LAYOUT

constant of class
JTabbedPane 725

scrollbar 435, 466
of a JComboBox 432

scrollbar policies 466
SDK (Software

Development Kit) 19
search engine 912
Second Life 15
secondary storage devices

540
sector 489
security 9
security certificate 660
SecurityException class

551
seed value (random

numbers) 125, 129
SEI (service endpoint

interface) 968, 973
SELECT SQL keyword 856,

857, 858, 859, 860
selected text in a

JTextArea 466
selecting an item from a

menu 410
selecting data from a table

852

selection 64
selection criteria 857
selection mode 435
selection statement 62, 63

if 63, 64, 65, 98
if...else 64, 65, 65,

76, 98
switch 64, 98, 104

_self target frame 807
Selvadurai, Naveen 18
semicolon (;) 25, 32, 38
send a message to an object 4
send data to a server 825
send message 52
send method of class

DatagramSocket 829
sentence-style

capitalization 402
sentinel-controlled

repetition 74, 76
sentinel value 74, 76
separator character 545
separator line in a menu

706, 707
sequence 64, 582
sequence diagram in the

UML 326, 351
sequence of messages in the

UML 352
sequence structure 62
sequence-structure activity

diagram 63
SequenceInputStream

class 573
sequential-access file 540,

546, 812
sequential execution 62
sequential horizontal

orientation in
GroupLayout 1071

sequential layout of GUI
components 1071

Serializable interface
290, 563

serialized object 562
Serif Java font 480
server 802
server farm 935
server port number 825
server response 912
server-side artifacts 968
server-side form handler 911
server waits for connections

from clients 811
server’s Internet address

813
server-side form handler

911
ServerSocket class 811,

818, 840
accept method 811,

818

service description for a
web service 972

service endpoint interface
(SEI) 968, 973

service of a class 192
ServiceManager class 672

lookup method 672
serviceName attribute of

@WebService
annotation 968

session 934
session expire (JSF) 935
session tracking 934

in web services 987
@SessionScoped

annotation 934, 935,
937

set a value 51
set debugger command

1041
Set interface 580, 581,

605, 606, 608
set method

of interface ListIter-
ator 588

set method 51, 196
set of constants

as an interface 279
SET SQL clause 863
set up event handling 413
setAlignment method of

class FlowLayout 457
setAutoCommitmethod of

interface Connection
905

setBackgroundmethod of
class Component 435,
478

setBoundsmethod of class
Component 453

setCharAtmethod of class
StringBuilder 520

setColor method of class
Graphics 473, 498

setCommand method of
JdbcRowSet interface
887

setConstraints method
of class GridBagLayout
731

setDefaultCloseOperat
ion method of class
JFrame 410, 699

setDisabledTextColor
method of class
JTextComponent 452

setEditable method of
class JTextComponent
413

setErr method of class
System 541

setFileSelectionMode
method of class
JFileChooser 577

setFixedCellHeight
method of class JList
437

setFixedCellWidth
method of class JList
437

setFont method of class
Component 425

setFont method of class
Graphics 480

setForegroundmethod of
class JComponent 708

setHint method of class
Manager 689

setHorizontalAlign-
ment method of class
JLabel 409

setHorizontalScroll-
BarPolicy method of
class JScrollPane 467

setHorizontalText-
Position method of
class JLabel 409

setIcon method of class
JLabel 409

setIn method of class
System 541

setInverted method of
class JSlider 696

setJMenuBar method of
class JFrame 700, 707

setLayoutmethod of class
Container 408, 454,
460, 462, 725

setLineWrap method of
class JTextArea 466

setListData method of
class JList 438

setLocation method of
class Component 453,
700

setLookAndFeel method
of class UIManager 715

setMajorTickSpacing
method of class
JSlider 699

setMaximumRowCount
method of class
JComboBox 432

setMnemonic method of
class AbstractButton
706

setOpaquemethod of class
JComponent 446, 449

setOut method of System
541

setPage method of class
JEditorPane 810

1120 Index

setPaint method of class
Graphics2D 497

setPaintTicksmethod of
class JSlider 699

setPassword method of
JdbcRowSet interface
887

setProperty method of
Properties 612

setRolloverIconmethod
of class
AbstractButton 422

setRowFilter method of
class JTable 884

setRowSorter method of
class JTable 884

setSeed method of class
Random 130

setSelected method of
class AbstractButton
707

setSelectionMode
method of class JList
435

setSize method of class
Component 453, 700

setSize method of class
JFrame 410

setString method of
interface
PreparedStatement
889, 896

setStrokemethod of class
Graphics2D 497

setText method of class
JLabel 409

setText method of class
JTextComponent 466

Setting the PATH
environment variable
xxx, xxxi

setToolTipText method
of class JComponent
408

setUrl method of
JdbcRowSet interface
887

setUsername method of
JdbcRowSet interface
887

setVerticalAlignment
method of class JLabel
409

setVerticalScrollBar-
Policy method of class
JScrollPane 467

setVerticalText-
Position method of
class JLabel 409

setVisible method of
class Component 410,
460, 700

setVisibleRowCount
method of class JList
435

shadow a field 135
shallow copy 252, 253
shape 494
Shape class hierarchy 227
Shape object 497
shapes 649
shared buffer 753
shell 25
shell prompt in UNIX 8
shell script 551
Shift 453
shift (random numbers)

126
shifting value 126
shifting value (random

numbers) 129
short-circuit evaluation

109
Short class 580
short primitive type 98,

1025, 1026
promotions 123

shortcut element of a
JNLP document 664

shortcut key 701
Show Line Numbers 919
show method of class

JPopupMenu 711
showDialog method of

class JColorChooser
477

showDocument method of
interface
AppletContext 803,
807

showInputDialogmethod
of class JOptionPane
402

showMessageDialog
method of class
JOptionPane 403

showOpenDialog method
of class JFileChooser
577

showStatus method of
class Applet 682

shuffle 153
algorithm 594

shuffle method of class
Collections 590, 594,
596

shuffling
Fisher-Yates 156

shutdown method of class
ExecutorService 744

side effect 109
Sieve of Eratosthenes 794

signal method of
interface Condition
777, 781

signal value 74
signalAll method of

interface Condition
777

signature 139
signature of a method 138
simple condition 107
simple name 218
Simple Object Access

Protocol (SOAP) 963,
966

SimpleGraph applet 649
simulate a middle-mouse-

button click on a one- or
two-button mouse 446

simulate a right-mouse-
button click on a one-
button mouse 446

simulation 125
sin method of class Math

117
sine 117
single-entry/single-exit

control statements 64
single inheritance 225
single-line (end-of-line)

comment 26
single-precision floating-

point number 56
single-quote character 503,

858
single-selection list 433
single-selection statement

64, 64
single static import 213
single-type-import

declaration 219
SINGLE_INTERVAL_

SELECTION constant of
interface ListSelec-
tionModel 435, 435,
437

SINGLE_SELECTION
constant of interface
ListSelectionModel
435

single-selection statement
if 64

size method
of class ArrayBlock-

ingQueue 761
of class ArrayList<T>

185
of class Priority-

Queue 604
of interface List 585,

588
of interface Map 612

size of the applet’s display
area 655

Skype 15
sleep interval 739
sleep method of class

Thread 741, 754, 755,
756

sleeping thread 739
small circles in the UML 63
small diamond symbol (for

representing a decision
in a UML activity
diagram) 341

smartphone 2, 6
snap-to ticks for JSlider

695
SOA (services oriented

architecture) xxiii
SOAP (Simple Object

Access Protocol) 963,
965, 966, 973
envelope 965
message 965

social commerce 15, 17
social networking 15
socket 802
socket-based

communication 802
Socket class 811, 825, 840,

841
close method 812
getInetAddress

method 818
getInputStream

method 812, 813
getOutputStream

method 812
SocketException class

826
Software as a Service (SaaS)

19
Software Development Kit

(SDK) 19
software engineering 202
Software Engineering

Observations overview
xxiv

software life cycle 323
software reuse 4, 215, 225,

619
solid circle (for

representing an initial
state in a UML diagram)
in the UML 338, 339

solid circle enclosed in an
open circle (for
representing the end of a
UML activity diagram)
339

solid circle in the UML 63

Index 1121

solid circle surrounded by a
hollow circle in the
UML 63

solid diamonds
(representing
composition) in the
UML 330

sort 181
sort method

of class Arrays 180
of class Collections

591
SortDemo applet 649
sorted order 606, 608
SortedMap interface 608
SortedSet interface 606,

608
first method 608
last method 608

sorting
descending order 591
with a Comparator 592

sorting techniques 649
sound 656, 668
sound card 685
sound engine 685
sounds 692
source code 8, 251
Source view in Netbeans

1073
SourceForge 5
SOUTH constant of class

BorderLayout 441,
457

SOUTH constant of class
GridBagConstraints
726

SOUTHEAST constant of
class GridBag-
Constraints 726

SOUTHWEST constant of
class GridBag-
Constraints 726

space character 24
space flag 1065
spacing between

components in
GroupLayout 1072

speaker 685
special character 32, 503
specialization 225
specialization in the UML

366
specifics 257
.spl file extension 688
-splash command-line

option to the java
command 1083

splash screen 1083
SplashScreen class 1084
split method of class

String 529, 535

SpreadSheet applet 649
SQL 850, 852, 855, 856,

862
DELETE statement 856,

864
FROM clause 856
GROUP BY 856
IDENTITY keyword

890
INNER JOIN clause 856,

861
INSERT statement 856,

862
LIKE clause 858
ON clause 861
ORDER BY clause 856,

859, 860
SELECT query 856,

857, 858, 859, 860
SET clause 863
UPDATE statement 856
VALUES clause 862
WHERE clause 857

.sql 866
SQL (Structured Query

Language) 889
SQL keyword 855
SQL script 866
SQL statement 905
SQLException class 870,

871, 890
SQLFeatureNotSupport-

edException class 877
sqrt method of class Math

116, 117, 122
square brackets, [] 142
square root 117
stack 628
Stack class 604

isEmpty method 604
of package java.util

602
peek method 604
pop method 604
push method 603

Stack generic class 629
Stack< Double > 636
Stack< Integer > 636

Stack generic class
declaration 629

stack trace 295
stack unwinding 308
StackTraceElement class

311
getClassNamemethod

311
getFileName method

311
getLineNumber meth-

od 311
getMethodName meth-

od 311

stale value 749
standard error stream 298,

307, 1053
standard error stream

(System.err) 541, 571
standard input stream

(System.in) 32, 541
standard output stream

307
standard output stream

(System.out) 25, 541,
571

standard reusable
component 226

standard time format 190
start method of class

JApplet 654, 657, 659
start method of class

Timer 679
start method of interface

Player 690
start tag 663
starting angle 488
startsWith method of

class String 510
starvation 740
state 326
state button 423
state dependent 753
state diagram for the ATM

object 338
state diagram in the UML

338
state in the UML 326, 339
state machine diagram in

the UML 326, 338
state of an object 333, 338
stateChanged method of

interface
ChangeListener 699

stateless protocol 934
statement 25, 41
Statement interface 870,

871, 889
close method 871
executeQuerymethod

870
Statements

break 102, 105, 106
continue 105
control statement 62,

64, 65
control-statement nest-

ing 64
control-statement

stacking 64
do...while 64, 96, 97
double selection 64
empty 38, 68
empty statement 68
enhanced for 157

Statements (cont.)
for 64, 89, 91, 92, 93,

95
if 35, 63, 64, 65, 98
if...else 64, 65, 76, 98
looping 64
multiple selection 64
nested 79
nested if...else 66, 67
repetition 62, 64, 68
return 122
selection 62, 63
single selection 64
switch 64, 98, 104
switch multiple-selec-

tion statement 129
try 153
while 64, 68, 69, 72,

76, 87
statements

throw 190
try-with-resources

316
static

class member 210
class variable 211
field (class variable)

210
import 213
import on demand 214
keyword 116, 1025
method 41, 95

static binding 278
static initializer block

937
status bar 653
step debugger command

1043
step up debugger

command 1044
Stone, Isaac “Biz” 17
stop debugger command

1039
stop method

of JApplet 654, 657
stop method of class

Timer 680
stop method of interface

AudioClip 685
store method of

Properties 614
stored procedure 904
stream 307, 1053
stream header 819
stream of bytes 540
stream socket 802, 813,

833
stream-based

communications 802
streams 802
streams-based transmission

825

1122 Index

strictfp keyword 1025
string 25

of characters 25
String class 503

charAt method 505,
520

compareTo method
507, 509

concat method 514
endsWith method 510
equals method 507,

509
equalsIgnoreCase

method 507, 509
format method 190,

1070
getChars method 505
immutable 212
indexOf method 511
lastIndexOf method

511
length method 505
matches method 530
regionMatches meth-

od 507
replaceAll method

535
replaceFirstmethod

535
split method 529,

535
startsWith method

510
substring method

513
toCharArray method

516
toLowerCase 588
toLowerCase method

515
toUpperCase 588
toUpperCase method

515
trim method 516
valueOf method 516

String class searching
methods 511

string concatenation 120,
212

string literal 503
StringBuffer class 517
StringBuilder class 503,

517
append method 521
capacity method 518
charAt method 520
constructors 518
delete method 523
deleteCharAtmethod

523
ensureCapacity

method 518

StringBuilder class (cont.)
getChars method 520
insert method 523
length method 518
reverse method 520
setCharAt method

520
StringIndexOutOf-

BoundsException class
513, 520

StringReader class 573
Strings in switch

statements 105
StringWriter class 573,

980
Stroke object 497, 498
strongly typed languages 85
Stroustrup, Bjarne 293
structure 915
structure of a system 337,

338
structured programming 62
Structured Query

Language (SQL) 850,
852, 855

style attribute of
h:panelGrid 925

styleClass attribute of a
JSF element 931

styleClass attribute of
h:dataTable 954

subclass 225, 365, 366
subdirectory 649
sublist 588
subList method of List

588
submenu 701
submit method of class

ExecutorService 799
subprotocol for

communication 869
subscript (index) 142
substringmethod of class

String 513
subtraction 34

operator, - 35
subtraction compound

assignment operator, -=
82

suffix F for float literals
604

suffix L for long literals 603
sum the elements of an

array 147
summarizing responses to a

survey 150
Sun Audio file format (.au

extension) 685, 688
super keyword 228, 250,

1025
call superclass construc-

tor 242

superclass 225, 365, 366
constructor 232
constructor call syntax

242
default constructor 232
direct 225, 226
indirect 225, 226
method overridden in a

subclass 250
suspend an applet’s

execution 657
sweep 488
sweep counterclockwise

488
.swf file extension 688
Swing Event Package 125
Swing GUI APIs 399
Swing GUI components

399
Swing GUI components

package 125
swing.properties file

xxxi, 401
SwingConstants interface

290, 409, 699
SwingSet3 demo 399
SwingUtilities class

716, 818
invokeLater method

818
updateComponent-

TreeUI method 716
SwingWorker class 785

cancel method 799
doInBackground

method 785, 788
done method 785, 788
execute method 785
get method 785
isCancelled method

794
process method 786,

795
publish method 785,

795
setProgress method

786, 795
switch logic 105
switch multiple-selection

statement 64, 98, 104,
129, 1025
activity diagram with

break statements
104

case label 102
comparing Strings

105
controlling expression

102
default case 102, 104,

129
Sybase 850

synchronization 744, 764
synchronization wrapper

615
synchronize 737
synchronize access to a

collection 582
synchronized

keyword 615, 745,
1025

method 745
statement 745

synchronized collection
582

synchronous call 352
synchronous error 301
synchronous request 956
SynchronousQueue class

784
syntax error 26
system 325
system behavior 325
System class

arraycopy 181, 182
exit method 304, 551
setErr method 541
setIn method 541
setOut 541

system requirements 323
system service 811
system structure 325
System.err (standard

error stream) 298, 541,
571, 1053

System.in (standard input
stream) 541

System.out
print method 27, 28,

28
printf method 29
println method 25,

28
System.out (standard

output stream) 25, 541,
571

SystemColor class 497
SystemTray class 1087

addTrayIcon method
1088

getDefaultSystem-
Tray method 1088

removeTrayIcon
method 1088

T
tab 1068
tab character, \t 29
Tab key 25
tab stops 25, 29
table 167, 851
table element 167
table of values 167

Index 1123

TableModel interface 872
addTableModelLis-

tener 872
getColumnClass

method 872, 878
getColumnCount

method 872, 878
getColumnName meth-

od 872, 878
getRowCount method

872
getValueAt method

872
removeTableModel-

Listener 872
TableModelEvent class

884
TableRowSorter class 884
tablet 2
tablet computer 6
tabular format 145
tag (in an XHTML

document) 654
tag library (JSF) 915
tagging interface 280, 563
tailSet method of class

TreeSet 608
take method of class

BlockingQueue 760,
761

tan method of class Math
117

tangent 117
target frame 807

_blank 807
_self 807
_top 808

TCP (Transmission
Control Protocol) 802

technical publications 20
telephone system 826
temporary 77
Terminal application (Max

OS X) 8
terminal window 25
terminate an application

706
terminate successfully 551
terminated state 739
termination housekeeping

209, 252
termination model of

exception handling 299
ternary operator 66
test a web service 971
testing a web service from

another computer 972
text editor 503
text file 541
text that jumps 649
TexturePaint class 469,

497, 498

The Free Site
(www.thefreesite.co
m) 692

The Java™ Language
Specification
(java.sun.com/docs/
books/jls/) 35

thick lines 494
this

keyword 193, 194, 210,
1025

reference 193
to call another con-

structor of the same
class 198

thread 299, 471, 656
life cycle 738, 740
of execution 736
scheduling 739, 756
state 738
synchronization 615,

744
Thread class

currentThread meth-
od 746

interrupt method
742

sleep method 741
thread confinement 785
thread-life-cycle statechart

diagram 738, 740
thread pool 741
thread priority 740
thread safe 749, 785
thread scheduler 740
thread states

blocked 739, 745
dead 739
new 738
ready 739
runnable 738
running 739
terminated 739
timed waiting 738
waiting 738

three-button mouse 445
three-dimensional shape

649
three-dimensional view

649
three-dimensional

rectangle 485
three-dimensional, high-

resolution, color
graphics 668

throw an exception 152,
153, 294, 298

throw an exception 190,
199

throw keyword 307, 1025
throw point 295
throw statement 307

Throwable class 301, 310
getMessage method

310
getStackTrace meth-

od 310
hierarchy 302
printStackTrace

method 310
throws an exception 189
throws clause 300
throws keyword 1025
thumb of class JSlider

695, 699
thumb position of class

JSlider 699
Tic-Tac-Toe 833
tick marks on a JSlider

695
TicTacToe

applet 649, 650
tier in a multitier

application 912
time formatting 1054
timed waiting state 738
Timer class 679, 680

isRunning method
679

restart method 679
start method 679
stop method 680

timeslice 739
timeslicing 740
timing diagram in the

UML 1090
title bar 400, 406, 699
title bar of a window 403
title bar of internal window

718
title element of a JNLP

document 664
title of a JSF document

916
titles table of books

database 852, 854
toArray method of List

589, 590
toCharArray method of

class String 516
toggle buttons 420
toJson method of class

Gson 985
token of a String 529
tokenization 529
toLowerCase method of

class Character 526
toLowerCase method of

class String 515, 588
tool tips 405, 408, 410
top 604
TOP constant of class

JTabbedPane 725
top-level class 413

_top target frame 808
top tier 913
toString method

of class ArrayList
591, 642

of class Arrays 536
of class Formatter

1070
of class Object 232,

253
toUpperCase method of

class Character 526
toUpperCase method of

class String 515, 588
toURI method of class

File 692
toURL method of class URI

692
track mouse events 439
tracking customers 933
traditional comment 24
traditional web application

956
TRAILING alignment

constant in
GroupLayout 1072

trailing white-space
characters 516

Transaction class (ATM
case study) 365, 366,
367, 368, 370, 396

transaction processing 905
transfer of control 62
transient keyword 565,

1025
transition arrow 65, 69

in the UML 63
transition arrow in the

UML 69
transition between states in

the UML 338, 341
transition in the UML 63
translatemethod of class

Graphics2D 501
transparency of a

JComponent 446
traverse an array 169
Tray icons 1087
TrayIcon class 1088
tree 605, 650
Tree link in API 1029
TreeMap class 608
TreeSet class 605, 606,

608
headSet method 607
tailSet method 608

trigger an event 404
trigonometric cosine 116
trigonometric sine 117
trigonometric tangent 117
trim method of class

String 516

www.thefreesite.com
www.thefreesite.com

1124 Index

trimToSize method of
class ArrayList<T> 184

true 35, 1025
true reserved word 65, 66
truncate 34
truncate fractional part of a

calculation 73
truncated 549
truth table 108
truth tables

for operator ^ 110
for operator ! 110
for operator && 108
for operator || 109

try block 153, 298, 308
terminates 299

try keyword 298, 1025
try statement 153, 300
try-with-resources

statement 316
24-hour clock format 188
Twitter 15, 17

tweet 17
two-dimensional graphics

demo 651
two-dimensional array167,

169
two-dimensional array with

three rows and four
columns 168

two-dimensional graphics
494

two-dimensional shapes
469

type 32
type argument 631
type casting 77
type-import-on-demand

declaration 219
type inference with the <>

notation (Java SE 7) 585
type parameter 623, 629,

636
scope 631
section 623, 629

type variable 623
type-wrapper class 524,

580, 625
implements Compara-

ble 625
TYPE_FORWARD_ONLY

constant 876
TYPE_INT_RGB constant of

class BufferedImage
498

TYPE_SCROLL_INSENS-
ITIVE constant 876

TYPE_SCROLL_SENSITIVE
constant 877

Types class 871
typesetting system 503
typing in a text field 410

U
UDP (User Datagram

Protocol) 802, 826
ui:repeat element 941
UIManager class 715

getInstalledLook-
AndFeels method
715

LookAndFeelInfo
nested class 715

setLookAndFeel
method 715

UIManager.LookAndFeel
Info class
getClassNamemethod

715
UML (Unified Modeling

Language) 5, 319, 325,
329, 336, 337, 365
activity diagram 62, 63,

65, 69, 91, 97
aggregation 331
arrow 63
association 329
class diagram 43
compartment in a class

diagram 43
diagram 325
diamond 64
dotted line 63
elided diagram 329
final state 63
frame 354
guard condition 65
guillemets (« and ») 55
hollow diamond repre-

senting aggregation
331

many-to-one relation-
ship 332

merge symbol 69
multiplicity 329
note 63
one-to-many relation-

ship 332
one-to-one relationship

332
Resource Center

(www.deitel.com/
UML/) 326

role name 330
solid circle 63
solid circle surrounded

by a hollow circle 63
solid diamond repre-

senting composi-
tion 330

Specification 331
UML (www.uml.org) 63

UML Activity Diagram
small diamond symbol

(for representing a
decision) in the
UML 341

solid circle (for repre-
senting an initial
state) in the UML
339

solid circle enclosed in
an open circle (for
representing the end
of an activity) in the
UML 339

UML Class Diagram 329
attribute compartment

336
operation compart-

ment 342
UML Sequence Diagram

activation 353
arrowhead 353
lifeline 353

UML State Diagram
rounded rectangle (for

representing a state)
in the UML 338

solid circle (for repre-
senting an initial
state) in the UML
338

UML Use Case Diagram
actor 324
use case 325

unary operator 78, 110
cast 77

unboxing 629, 634
unboxing conversion 581
uncaught exception 299
unchecked exceptions 302
uncovering a component

472
underlying data structure

604
underscore (_) SQL

wildcard character 857,
858

uneditable JTextArea 464
uneditable text or icons 404
Unicode character set 85,

105, 503, 508, 524,
1026

Unicode value of the
character typed 453

Unified Modeling
Language (UML) 5,
319, 325, 329, 336, 337,
365

Uniform Resource
Identifier (URI) 542,
803

Uniform Resource Locator
(URL) 542, 803, 909

universal-time format 188,
189, 190

UNIX 8, 25, 101, 551, 648
UnknownHostException

class 813
unlock method of

interface Lock 776, 781
unmarshalmethod of class

JAXB 983
unmodifiable collection

582
unmodifiable wrapper 615
unspecified number of

arguments 177
UnsupportedOperation-

Exception class 588
unwatch debugger

command 1048
unwinding the method-call

stack 308
UPDATE SQL statement

856, 863
updateComponentTreeUI

method of class
SwingUtilities 716

upper bound 625
of a wildcard 642

upper bound of a type
parameter 626, 627

upper-left corner (0, 0)
coordinates of an applet
653

upper-left corner of a GUI
component 469

upper-left x-coordinate 473
upper-left y-coordinate 473
uppercase letter 24, 32
URI (Uniform Resource

Identifier) 542, 803
URI class

toURL method 692
URL (Uniform Resource

Locator) 542, 803, 804,
909

URL class 685
openStream method

987
use case diagram in the

UML 324, 325
use case in the UML 324
use case modeling 324
User Datagram Protocol

(UDP) 802, 826
user interface 913
Utilities Package 124
utility method 104

www.deitel.com/UML/
www.deitel.com/UML/
www.uml.org

Index 1125

V
v option of the jar

command 662
va 552
valid identifier 32
validate method of class

Container 462
validation 926
validatorMessage

attribute of a JSF
element 931

Validators (JSF)
f:validateBean 926
f:validateDou-

bleRange 926
f:validateLength

926
f:validateLong-

Range 926
f:validateRegex 926
f:validateRequired

926
validity checking 203
value attribute of

h:dataTable 953
value attribute of

h:inputText 931
value attribute of

h:outputLink 926
value attribute of

ui:repeat 941
value of a param 804
value of an attribute 915
valueChanged method of

interface
ListSelectionListen
er 435

valueOf method of class
String 516

values method of an enum
208

VALUES SQL clause 862
var attribute of

h:dataTable 954
var attribute of ui:repeat

941
variable 30, 32

name 32
reference type 52

variable declaration
statement 32

variable is not modifiable
215

variable-length argument
list 177

variable scope 90
Vector class 186, 582
vendor element of a JNLP

document 664
verb phrase in requirements

document 342

VERTICAL constant of class
GridBagConstraints
726

vertical coordinate 469
vertical gap space 460
vertical scrolling 466
vertical strut 724
VERTICAL_SCROLLBAR_

ALWAYS constant of class
JScrollPane 467

VERTICAL_SCROLLBAR_
AS_NEEDED constant of
class JScrollPane 467

VERTICAL_SCROLLBAR_
NEVER constant of class
JScrollPane 467

vi 8
video 668, 692
video game 126
video sharing 15
View 400
view 588
view (in MVC) 922
view a shape from different

angles 649
virtual directory 910
virtual key code 452
virtual machine (VM) 8
virtual world 15
visibility in the UML 360
visibility marker in the

UML 360
visual feedback 423
void keyword 25, 41, 1025
VoIP (Voice over IP 18
volatile keyword 1025

W
WADL (Web Application

Description Language)
981

wait for a new connection
818

wait method of class
Object 253, 763

waiting line 581, 604
waiting state 738
waiting thread 766
watch debugger command

1046
waterfall model 323
.wav file extension 685
web 803
Web 2.0 15
web app development 908
web application

Ajax 957
traditional 956

Web Application
Description Language
(WADL) 981

web application framework
908

Web Application project
966

web browser 647, 807
execute an applet 652,

656
Web Form 935
web server 811, 909
Web Service Description

Language (WSDL) 972
web service host 965
web service reference 974
web services 16, 963

adding a web service
reference to an ap-
plication 973

client-side artifacts 973
consuming a web ser-

vice 965
deploying a web service

970
@GET annotation 980
GlassFish application

server’s Tester web
page 971

implemented as a class
965

JAX-RS 963
JAX-WS 963
name attribute of @Web-

Service annotation
968

@Path annotation 979
@PathParam annota-

tion 980
POJO (Plain Old Java

Object) 916, 968
processing user-defined

types 1009
@Produces annotation

980
proxy class 968, 973
publishing a web ser-

vice 965, 970
RequestContext in-

terface 1001
REST 963
server-side artifacts 968
serviceName attri-

bute of @WebSer-
vice annotation
968

session tracking 990
SOAP 973
test a web service 971
testing a web service

from another com-
puter 972

web service host 965
web service reference

974

web services (cont.)
@WebMethod annota-

tion 968
@WebParam annotation

969
@WebService annota-

tion 968
@WebMethod annotation

968
operationName attri-

bute 968
@WebParam annotation 969

name attribute 969
@WebService annotation

968
name attribute 968
serviceName attribute

968
weightx field of class

GridBagConstraints
727

weighty field of class
GridBagConstraints
727

WEST constant of class
BorderLayout 441,
457

WEST constant of class
GridBagConstraints
726

WHERE SQL clause 856,
857, 858, 860, 863, 864

while repetition statement
64, 68, 69, 72, 76, 87,
1025
activity diagram in the

UML 69
white space 24, 25
white-space character 516,

529, 530
whole/part relationship

330
widgets 399
width 484
width attribute (CSS) 925
width attribute of the

applet-desc element
664

width of a rectangle in
pixels 473

width of an applet in pixels
655

Wikipedia 15
wildcard 642

in a generic type pa-
rameter 640

type argument 642
upper bound 642

Williams, Evan 17
window 699

1126 Index

Window class 699
addWindowListener

method 700
dispose method 699
pack method 719

window event 700
window event-handling

methods 443
window events 700
window gadgets 399
windowActivatedmethod

of interface
WindowListener 700

WindowAdapter class 443,
884

windowClosed method of
interface
WindowListener 700,
884

windowClosingmethod of
interface
WindowListener 700

WindowConstants
interface 699
DISPOSE_ON_CLOSE

constant 699
DO_NOTHING_ON_

CLOSE constant 699
HIDE_ON_CLOSE con-

stant 699
windowDeactivated

method of interface
WindowListener 700

windowDeiconified
method of interface
WindowListener 700

windowIconifiedmethod
of interface Window-
Listener 700

windowing system 405
WindowListener interface

443, 700, 884
windowActivated

method 700
windowClosedmethod

700, 884
windowClosing meth-

od 700

windowDeactivated
method 700

windowDeiconified
method 700

windowIconified
method 700

windowOpenedmethod
700

windowOpened method of
interface Window-
Listener 700

Windows 8, 101, 551, 648
Windows look-and-feel

695
Windows Performance

Package 688
Windows Wave file format

(.wav extension) 685
WireFrame applet 649
Withdrawal class (ATM

case study) 329, 330,
331, 334, 340, 341, 342,
350, 351, 353, 354, 355,
362, 363, 365, 366, 367,
370

word character 530
word processor 503, 511
workflow 63
workflow of an object in

the UML 339
wrap stream types 812, 813
wrapper methods of the

Collections class 582
wrapper object

(collections) 615
wrapping stream objects

562, 568
wrapping text in a

JTextArea 466
writeable 543
writeBoolean method of

interface DataOutput
572

writeByte method of
interface DataOutput
572

writeBytes method of
interface DataOutput
572

writeChar method of
interface DataOutput
572

writeChars method
of interface DataOut-

put 572
writeDouble method

of interface DataOut-
put 572

writeFloat method
of interface DataOut-

put 572
writeInt method of

interface DataOutput
572

writeLong method of
interface DataOutput
572

writeObject method
of class ObjectOut-

putStream 568
of interface Object-

Output 562
Writer class 573, 573
writeShort method of

interface DataOutput
572

writeUTF method of
interface DataOutput
572

WSDL (Web Service
Description Language)
972

www 18

X
x-coordinate 469, 493, 653
X_AXIS constant of class

Box 725
x-axis 469
XHTML (eXtensible

HyperText Markup
Language) 908, 909, 915
applet element 655
body element 655
document 654
page 909
tag 654

XHTML 1.0
Strict Recommenda-

tion 915
Transitional Recom-

mendation 915
XML (eXtensible Markup

Language) 663, 908,
972
declaration 915
element 663
empty element 925
end tag 663
root element 663
start tag 663
vocabulary 663

XMLHttpRequest object
956

xmlns attributes 915

Y
y-coordinate 469, 493
Y_AXIS constant of class

Box 725
y-axis 469
YouTube 15, 18

Z
0 (zero) flag 1064, 1066
zero-based counting 144
zeroth element 142
Zuckerberg, Mark 17

This page intentionally left blank

InformIT is a brand of Pearson and the online presence
for the world’s leading technology publishers. It’s your source
for reliable and qualified content and knowledge, providing
access to the top brands, authors, and contributors from
the tech community.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

LearnIT at InformIT
Looking for a book, eBook, or training video on a new technology? Seek-
ing timely and relevant information and tutorials? Looking for expert opin-
ions, advice, and tips? InformIT has the solution.

• Learn about new releases and special promotions by
subscribing to a wide variety of newsletters.
Visit informit.com/newsletters.

• Access FREE podcasts from experts at informit.com/podcasts.

• Read the latest author articles and sample chapters at
informit.com/articles.

• Access thousands of books and videos in the Safari Books
Online digital library at safari.informit.com.

• Get tips from expert blogs at informit.com/blogs.

Visit informit.com/learn to discover all the ways you can access the
hottest technology content.

informIT.com THE TRUSTED TECHNOLOGY LEARNING SOURCE

Are You Part of the IT Crowd?
Connect with Pearson authors and editors via RSS feeds, Facebook,

Twitter, YouTube, and more! Visit informit.com/socialconnect.

Try Safari Books Online FREE
Get online access to 5,000+ Books and Videos

Find trusted answers, fast
Only Safari lets you search across thousands of best-selling books from the top
technology publishers, including Addison-Wesley Professional, Cisco Press,
O’Reilly, Prentice Hall, Que, and Sams.

Master the latest tools and techniques
In addition to gaining access to an incredible inventory of technical books,
Safari’s extensive collection of video tutorials lets you learn from the leading
video training experts.

WAIT, THERE’S MORE!

Keep your competitive edge
With Rough Cuts, get access to the developing manuscript and be among the fi rst
to learn the newest technologies.

Stay current with emerging technologies
Short Cuts and Quick Reference Sheets are short, concise, focused content
created to get you up-to-speed quickly on new and cutting-edge technologies.

FREE TRIAL—GET STARTED TODAY!

www.informit.com/safaritrial

www.informit.com/safaritrial

Register the Addison-Wesley, Exam
Cram, Prentice Hall, Que, and
Sams products you own to unlock
great benefi ts.

To begin the registration process,
simply go to informit.com/register
to sign in or create an account.
You will then be prompted to enter
the 10- or 13-digit ISBN that appears
on the back cover of your product.

informIT.com
THE TRUSTED TECHNOLOGY LEARNING SOURCE

Addison-Wesley | Cisco Press | Exam Cram

IBM Press | Que | Prentice Hall | Sams

SAFARI BOOKS ONLINE

About InformIT — THE TRUSTED TECHNOLOGY LEARNING SOURCE

INFORMIT IS HOME TO THE LEADING TECHNOLOGY PUBLISHING IMPRINTS
Addison-Wesley Professional, Cisco Press, Exam Cram, IBM Press, Prentice Hall

Professional, Que, and Sams. Here you will gain access to quality and trusted content and

resources from the authors, creators, innovators, and leaders of technology. Whether you’re

looking for a book on a new technology, a helpful article, timely newsletters, or access to

the Safari Books Online digital library, InformIT has a solution for you.

Registering your products can unlock
the following benefi ts:

• Access to supplemental content,
including bonus chapters,
source code, or project fi les.

• A coupon to be used on your
next purchase.

Registration benefi ts vary by product.
Benefi ts will be listed on your Account
page under Registered Products.

	Contents
	Preface
	Before You Begin
	1 Introduction
	1.1 Introduction
	1.2 Introduction to Object Technology
	1.3 Open Source Software
	1.4 Java and a Typical Java Development Environment
	1.5 Test-Driving a Java Application
	1.6 Web 2.0: Going Social
	1.7 Software Technologies
	1.8 Keeping Up to Date with Information Technologies
	1.9 Wrap-Up

	2 Introduction to Java Applications
	2.1 Introduction
	2.2 Your First Program in Java: Printing a Line of Text
	2.3 Modifying Your First Java Program
	2.4 Displaying Text with printf
	2.5 Another Application: Adding Integers
	2.6 Arithmetic
	2.7 Decision Making: Equality and Relational Operators
	2.8 Wrap-Up

	3 Introduction to Classes, Objects, Methods and Strings
	3.1 Introduction
	3.2 Declaring a Class with a Method and Instantiating an Object of a Class
	3.3 Declaring a Method with a Parameter
	3.4 Instance Variables, set Methods and get Methods
	3.5 Primitive Types vs. Reference Types
	3.6 Initializing Objects with Constructors
	3.7 Floating-Point Numbers and Type double
	3.8 Wrap-Up

	4 Control Statements: Part 1
	4.1 Introduction
	4.2 Control Structures
	4.3 if Single-Selection Statement
	4.4 if…else Double-Selection Statement
	4.5 while Repetition Statement
	4.6 Counter-Controlled Repetition
	4.7 Sentinel-Controlled Repetition
	4.8 Nested Control Statements
	4.9 Compound Assignment Operators
	4.10 Increment and Decrement Operators
	4.11 Primitive Types
	4.12 Wrap-Up

	5 Control Statements: Part 2
	5.1 Introduction
	5.2 Essentials of Counter-Controlled Repetition
	5.3 for Repetition Statement
	5.4 Examples Using the for Statement
	5.5 do…while Repetition Statement
	5.6 switch Multiple-Selection Statement
	5.7 break and continue Statements
	5.8 Logical Operators
	5.9 Wrap-Up

	6 Methods: A Deeper Look
	6.1 Introduction
	6.2 Program Modules in Java
	6.3 static Methods, static Fields and Class Math
	6.4 Declaring Methods with Multiple Parameters
	6.5 Notes on Declaring and Using Methods
	6.6 Argument Promotion and Casting
	6.7 Java API Packages
	6.8 Case Study: Random-Number Generation
	6.8.1 Generalized Scaling and Shifting of Random Numbers
	6.8.2 Random-Number Repeatability for Testing and Debugging

	6.9 Case Study: A Game of Chance; Introducing Enumerations
	6.10 Scope of Declarations
	6.11 Method Overloading
	6.12 Wrap-Up

	7 Arrays and ArrayLists
	7.1 Introduction
	7.2 Arrays
	7.3 Declaring and Creating Arrays
	7.4 Examples Using Arrays
	7.5 Case Study: Card Shuffling and Dealing Simulation
	7.6 Enhanced for Statement
	7.7 Passing Arrays to Methods
	7.8 Case Study: Class GradeBook Using an Array to Store Grades
	7.9 Multidimensional Arrays
	7.10 Case Study: Class GradeBook Using a Two-Dimensional Array
	7.11 Variable-Length Argument Lists
	7.12 Using Command-Line Arguments
	7.13 Class Arrays
	7.14 Introduction to Collections and Class ArrayList
	7.15 Wrap-Up

	8 Classes and Objects: A Deeper Look
	8.1 Introduction
	8.2 Time Class Case Study
	8.3 Controlling Access to Members
	8.4 Referring to the Current Object’s Members with the this Reference
	8.5 Time Class Case Study: Overloaded Constructors
	8.6 Default and No-Argument Constructors
	8.7 Notes on Set and Get Methods
	8.8 Composition
	8.9 Enumerations
	8.10 Garbage Collection and Method finalize
	8.11 static Class Members
	8.12 static Import
	8.13 final Instance Variables
	8.14 Time Class Case Study: Creating Packages
	8.15 Package Access
	8.16 Wrap-Up

	9 Object-Oriented Programming: Inheritance
	9.1 Introduction
	9.2 Superclasses and Subclasses
	9.3 protected Members
	9.4 Relationship between Superclasses and Subclasses
	9.4.1 Creating and Using a CommissionEmployee Class
	9.4.2 Creating and Using a BasePlusCommissionEmployee Class
	9.4.3 Creating a CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy
	9.4.4 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using protected Instance Variables
	9.4.5 CommissionEmployee–BasePlusCommissionEmployee Inheritance Hierarchy Using private Instance Variables

	9.5 Constructors in Subclasses
	9.6 Software Engineering with Inheritance
	9.7 Class Object
	9.8 Wrap-Up

	10 Object-Oriented Programming: Polymorphism
	10.1 Introduction
	10.2 Polymorphism Examples
	10.3 Demonstrating Polymorphic Behavior
	10.4 Abstract Classes and Methods
	10.5 Case Study: Payroll System Using Polymorphism
	10.5.1 Abstract Superclass Employee
	10.5.2 Concrete Subclass SalariedEmployee
	10.5.3 Concrete Subclass HourlyEmployee
	10.5.4 Concrete Subclass CommissionEmployee
	10.5.5 Indirect Concrete Subclass BasePlusCommissionEmployee
	10.5.6 Polymorphic Processing, Operator instanceof and Downcasting
	10.5.7 Summary of the Allowed Assignments Between Superclass and Subclass Variables

	10.6 final Methods and Classes
	10.7 Case Study: Creating and Using Interfaces
	10.7.1 Developing a Payable Hierarchy
	10.7.2 Interface Payable
	10.7.3 Class Invoice
	10.7.4 Modifying Class Employee to Implement Interface Payable
	10.7.5 Modifying Class SalariedEmployee for Use in the Payable Hierarchy
	10.7.6 Using Interface Payable to Process Invoices and Employees Polymorphically
	10.7.7 Common Interfaces of the Java API

	10.8 Wrap-Up

	11 Exception Handling: A Deeper Look
	11.1 Introduction
	11.2 Example: Divide by Zero without Exception Handling
	11.3 Example: Handling ArithmeticExceptions and InputMismatchExceptions
	11.4 When to Use Exception Handling
	11.5 Java Exception Hierarchy
	11.6 finally Block
	11.7 Stack Unwinding and Obtaining Information from an Exception Object
	11.8 Chained Exceptions
	11.9 Declaring New Exception Types
	11.10 Preconditions and Postconditions
	11.11 Assertions
	11.12 (New in Java SE 7) Multi-catch: Handling Multiple Exceptions in One catch
	11.13 (New in Java SE 7) try-with-Resources: Automatic Resource Deallocation
	11.14 Wrap-Up

	12 ATM Case Study, Part 1: Object-Oriented Design with the UML
	12.1 Case Study Introduction
	12.2 Examining the Requirements Document
	12.3 Identifying the Classes in a Requirements Document
	12.4 Identifying Class Attributes
	12.5 Identifying Objects’ States and Activities
	12.6 Identifying Class Operations
	12.7 Indicating Collaboration Among Objects
	12.8 Wrap-Up

	13 ATM Case Study Part 2: Implementing an Object-Oriented Design
	13.1 Introduction
	13.2 Starting to Program the Classes of the ATM System
	13.3 Incorporating Inheritance and Polymorphism into the ATM System
	13.4 ATM Case Study Implementation
	13.4.1 Class ATM
	13.4.2 Class Screen
	13.4.3 Class Keypad
	13.4.4 Class CashDispenser
	13.4.5 Class DepositSlot
	13.4.6 Class Account
	13.4.7 Class BankDatabase
	13.4.8 Class Transaction
	13.4.9 Class BalanceInquiry
	13.4.10 Class Withdrawal
	13.4.11 Class Deposit
	13.4.12 Class ATMCaseStudy

	13.5 Wrap-Up

	14 GUI Components: Part 1
	14.1 Introduction
	14.2 Java’s New Nimbus Look-and-Feel
	14.3 Simple GUI-Based Input/Output with JOptionPane
	14.4 Overview of Swing Components
	14.5 Displaying Text and Images in a Window
	14.6 Text Fields and an Introduction to Event Handling with Nested Classes
	14.7 Common GUI Event Types and Listener Interfaces
	14.8 How Event Handling Works
	14.9 JButton
	14.10 Buttons That Maintain State
	14.10.1 JCheckBox
	14.10.2 JRadioButton

	14.11 JComboBox; Using an Anonymous Inner Class for Event Handling
	14.12 JList
	14.13 Multiple-Selection Lists
	14.14 Mouse Event Handling
	14.15 Adapter Classes
	14.16 JPanel Subclass for Drawing with the Mouse
	14.17 Key Event Handling
	14.18 Introduction to Layout Managers
	14.18.1 FlowLayout
	14.18.2 BorderLayout
	14.18.3 GridLayout

	14.19 Using Panels to Manage More Complex Layouts
	14.20 JTextArea
	14.21 Wrap-Up

	15 Graphics and Java 2D
	15.1 Introduction
	15.2 Graphics Contexts and Graphics Objects
	15.3 Color Control
	15.4 Manipulating Fonts
	15.5 Drawing Lines, Rectangles and Ovals
	15.6 Drawing Arcs
	15.7 Drawing Polygons and Polylines
	15.8 Java 2D API
	15.9 Wrap-Up

	16 Strings, Characters and Regular Expressions
	16.1 Introduction
	16.2 Fundamentals of Characters and Strings
	16.3 Class String
	16.3.1 String Constructors
	16.3.2 String Methods length, charAt and getChars
	16.3.3 Comparing Strings
	16.3.4 Locating Characters and Substrings in Strings
	16.3.5 Extracting Substrings from Strings
	16.3.6 Concatenating Strings
	16.3.7 Miscellaneous String Methods
	16.3.8 String Method valueOf

	16.4 Class StringBuilder
	16.4.1 StringBuilder Constructors
	16.4.2 StringBuilder Methods length, capacity, setLength and ensureCapacity
	16.4.3 StringBuilder Methods charAt, setCharAt, getChars and reverse
	16.4.4 StringBuilder append Methods
	16.4.5 StringBuilder Insertion and Deletion Methods

	16.5 Class Character
	16.6 Tokenizing Strings
	16.7 Regular Expressions, Class Pattern and Class Matcher
	16.8 Wrap-Up

	17 Files, Streams and Object Serialization
	17.1 Introduction
	17.2 Files and Streams
	17.3 Class File
	17.4 Sequential-Access Text Files
	17.4.1 Creating a Sequential-Access Text File
	17.4.2 Reading Data from a Sequential-Access Text File
	17.4.3 Case Study: A Credit-Inquiry Program
	17.4.4 Updating Sequential-Access Files

	17.5 Object Serialization
	17.5.1 Creating a Sequential-Access File Using Object Serialization
	17.5.2 Reading and Deserializing Data from a Sequential-Access File

	17.6 Additional java.io Classes
	17.6.1 Interfaces and Classes for Byte-Based Input and Output
	17.6.2 Interfaces and Classes for Character-Based Input and Output

	17.7 Opening Files with JFileChooser
	17.8 Wrap-Up

	18 Generic Collections
	18.1 Introduction
	18.2 Collections Overview
	18.3 Type-Wrapper Classes for Primitive Types
	18.4 Autoboxing and Auto-Unboxing
	18.5 Interface Collection and Class Collections
	18.6 Lists
	18.6.1 ArrayList and Iterator
	18.6.2 LinkedList

	18.7 Collections Methods
	18.7.1 Method sort
	18.7.2 Method shuffle
	18.7.3 Methods reverse, fill, copy, max and min
	18.7.4 Method binarySearch
	18.7.5 Methods addAll, frequency and disjoint

	18.8 Stack Class of Package java.util
	18.9 Class PriorityQueue and Interface Queue
	18.10 Sets
	18.11 Maps
	18.12 Properties Class
	18.13 Synchronized Collections
	18.14 Unmodifiable Collections
	18.15 Abstract Implementations
	18.16 Wrap-Up

	19 Generic Classes and Methods
	19.1 Introduction
	19.2 Motivation for Generic Methods
	19.3 Generic Methods: Implementation and Compile-Time Translation
	19.4 Additional Compile-Time Translation Issues: Methods That Use a Type Parameter as the Return Type
	19.5 Overloading Generic Methods
	19.6 Generic Classes
	19.7 Raw Types
	19.8 Wildcards in Methods That Accept Type Parameters
	19.9 Generics and Inheritance: Notes
	19.10 Wrap-Up

	20 Applets and Java Web Start
	20.1 Introduction
	20.2 Sample Applets Provided with the JDK
	20.3 Simple Java Applet: Drawing a String
	20.3.1 Executing WelcomeApplet in the appletviewer
	20.3.2 Executing an Applet in a Web Browser

	20.4 Applet Life-Cycle Methods
	20.5 Initialization with Method init
	20.6 Sandbox Security Model
	20.7 Java Web Start and the Java Network Launch Protocol (JNLP)
	20.7.1 Packaging the DrawTest Applet for Use with Java Web Start
	20.7.2 JNLP Document for the DrawTest Applet

	20.8 Wrap-Up

	21 Multimedia: Applets and Applications
	21.1 Introduction
	21.2 Loading, Displaying and Scaling Images
	21.3 Animating a Series of Images
	21.4 Image Maps
	21.5 Loading and Playing Audio Clips
	21.6 Playing Video and Other Media with Java Media Framework
	21.7 Wrap-Up
	21.8 Web Resources

	22 GUI Components: Part 2
	22.1 Introduction
	22.2 JSlider
	22.3 Windows: Additional Notes
	22.4 Using Menus with Frames
	22.5 JPopupMenu
	22.6 Pluggable Look-and-Feel
	22.7 JDesktopPane and JInternalFrame
	22.8 JTabbedPane
	22.9 Layout Managers: BoxLayout and GridBagLayout
	22.10 Wrap-Up

	23 Multithreading
	23.1 Introduction
	23.2 Thread States: Life Cycle of a Thread
	23.3 Creating and Executing Threads with Executor Framework
	23.4 Thread Synchronization
	23.4.1 Unsynchronized Data Sharing
	23.4.2 Synchronized Data Sharing—Making Operations Atomic

	23.5 Producer/Consumer Relationship without Synchronization
	23.6 Producer/Consumer Relationship: ArrayBlockingQueue
	23.7 Producer/Consumer Relationship with Synchronization
	23.8 Producer/Consumer Relationship: Bounded Buffers
	23.9 Producer/Consumer Relationship: The Lock and Condition Interfaces
	23.10 Concurrent Collections Overview
	23.11 Multithreading with GUI
	23.11.1 Performing Computations in a Worker Thread
	23.11.2 Processing Intermediate Results with SwingWorker

	23.12 Interfaces Callable and Future
	23.13 Java SE 7: Fork/Join Framework
	23.14 Wrap-Up

	24 Networking
	24.1 Introduction
	24.2 Manipulating URLs
	24.3 Reading a File on a Web Server
	24.4 Establishing a Simple Server Using Stream Sockets
	24.5 Establishing a Simple Client Using Stream Sockets
	24.6 Client/Server Interaction with Stream Socket Connections
	24.7 Datagrams: Connectionless Client/Server Interaction
	24.8 Client/Server Tic-Tac-Toe Using a Multithreaded Server
	24.9 [Web Bonus] Case Study: DeitelMessenger
	24.10 Wrap-Up

	25 Accessing Databases with JDBC
	25.1 Introduction
	25.2 Relational Databases
	25.3 Relational Database Overview: The books Database
	25.4 SQL
	25.4.1 Basic SELECT Query
	25.4.2 WHERE Clause
	25.4.3 ORDER BY Clause
	25.4.4 Merging Data from Multiple Tables: INNER JOIN
	25.4.5 INSERT Statement
	25.4.6 UPDATE Statement
	25.4.7 DELETE Statement

	25.5 Instructions for Installing MySQL and MySQL Connector/J
	25.6 Instructions for Setting Up a MySQL User Account
	25.7 Creating Database books in MySQL
	25.8 Manipulating Databases with JDBC
	25.8.1 Connecting to and Querying a Database
	25.8.2 Querying the books Database

	25.9 RowSet Interface
	25.10 Java DB/Apache Derby
	25.11 PreparedStatements
	25.12 Stored Procedures
	25.13 Transaction Processing
	25.14 Wrap-Up
	25.15 Web Resources

	26 JavaServer™ FacesWeb Apps: Part 1
	26.1 Introduction
	26.2 HyperText Transfer Protocol (HTTP) Transactions
	26.3 Multitier Application Architecture
	26.4 Your First JSF Web App
	26.4.1 The Default index.xhtml Document: Introducing Facelets
	26.4.2 Examining the WebTimeBean Class
	26.4.3 Building the WebTime JSF Web App in NetBeans

	26.5 Model-View-Controller Architecture of JSF Apps
	26.6 Common JSF Components
	26.7 Validation Using JSF Standard Validators
	26.8 Session Tracking
	26.8.1 Cookies
	26.8.2 Session Tracking with @SessionScoped Beans

	26.9 Wrap-Up

	27 JavaServer™ FacesWeb Apps: Part 2
	27.1 Introduction
	27.2 Accessing Databases in Web Apps
	27.2.1 Setting Up the Database
	27.2.2 @ManagedBean Class AddressBean
	27.2.3 index.xhtml Facelets Page
	27.2.4 addentry.xhtml Facelets Page

	27.3 Ajax
	27.4 Adding Ajax Functionality to the Validation App
	27.5 Wrap-Up

	28 Web Services
	28.1 Introduction
	28.2 Web Service Basics
	28.3 Simple Object Access Protocol (SOAP)
	28.4 Representational State Transfer (REST)
	28.5 JavaScript Object Notation (JSON)
	28.6 Publishing and Consuming SOAP-Based Web Services
	28.6.1 Creating a Web Application Project and Adding a Web Service Class in NetBeans
	28.6.2 Defining the WelcomeSOAP Web Service in NetBeans
	28.6.3 Publishing the WelcomeSOAP Web Service from NetBeans
	28.6.4 Testing the WelcomeSOAP Web Service with GlassFish Application Server’s Tester Web Page
	28.6.5 Describing a Web Service with the Web Service Description Language (WSDL)
	28.6.6 Creating a Client to Consume the WelcomeSOAP Web Service
	28.6.7 Consuming the WelcomeSOAP Web Service

	28.7 Publishing and Consuming REST-Based XML Web Services
	28.7.1 Creating a REST-Based XML Web Service
	28.7.2 Consuming a REST-Based XML Web Service

	28.8 Publishing and Consuming REST-Based JSON Web Services
	28.8.1 Creating a REST-Based JSON Web Service
	28.8.2 Consuming a REST-Based JSON Web Service

	28.9 Session Tracking in a SOAP Web Service
	28.9.1 Creating a Blackjack Web Service
	28.9.2 Consuming the Blackjack Web Service

	28.10 Consuming a Database-Driven SOAP Web Service
	28.10.1 Creating the Reservation Database
	28.10.2 Creating a Web Application to Interact with the Reservation Service

	28.11 Equation Generator: Returning User-Defined Types
	28.11.1 Creating the EquationGeneratorXML Web Service
	28.11.2 Consuming the EquationGeneratorXML Web Service
	28.11.3 Creating the EquationGeneratorJSON Web Service
	28.11.4 Consuming the EquationGeneratorJSON Web Service

	28.12 Wrap-Up

	A: Operator Precedence Chart
	B: ASCII Character Set
	C: Keywords and ReservedWords
	D: Primitive Types
	E: Using the Java API Documentation
	E.1 Introduction
	E.2 Navigating the Java API

	F: Using the Debugger
	F.1 Introduction
	F.2 Breakpoints and the run, stop, cont and print Commands
	F.3 The print and set Commands
	F.4 Controlling Execution Using the step, step up and next Commands
	F.5 The watch Command
	F.6 The clear Command
	F.7 Wrap-Up

	G: Formatted Output
	G.1 Introduction
	G.2 Streams
	G.3 Formatting Output with printf
	G.4 Printing Integers
	G.5 Printing Floating-Point Numbers
	G.6 Printing Strings and Characters
	G.7 Printing Dates and Times
	G.8 Other Conversion Characters
	G.9 Printing with Field Widths and Precisions
	G.10 Using Flags in the printf Format String
	G.11 Printing with Argument Indices
	G.12 Printing Literals and Escape Sequences
	G.13 Formatting Output with Class Formatter
	G.14 Wrap-Up

	H: GroupLayout
	H.1 Introduction
	H.2 GroupLayout Basics
	H.3 Building a ColorChooser
	H.4 GroupLayout Web Resources

	I: Java Desktop Integration Components
	I.1 Introduction
	I.2 Splash Screens
	I.3 Desktop Class
	I.4 Tray Icons

	J: UML 2: Additional Diagram Types
	J.1 Introduction
	J.2 Additional Diagram Types

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X
	Y
	Z

