
http://www.it-ebooks.info/


Oracle Certified Associate, 
Java SE 7 Programmer  
Study Guide

Comprehensive review of Oracle Certified Associate, 
Java SE 7 Programmer Certification objectives

Richard M. Reese

P U B L I S H I N G

professional expert ise dist i l led

   BIRMINGHAM - MUMBAI

http://www.it-ebooks.info/


Oracle Certified Associate, Java SE 7 Programmer 
Study Guide

Copyright © 2012 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval 
system, or transmitted in any form or by any means, without the prior written 
permission of the publisher, except in the case of brief quotations embedded in 
critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy 
of the information presented. However, the information contained in this book is 
sold without warranty, either express or implied. Neither the author, nor Packt 
Publishing, and its dealers and distributors will be held liable for any damages 
caused or alleged to be caused directly or indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the 
companies and products mentioned in this book by the appropriate use of capitals. 
However, Packt Publishing cannot guarantee the accuracy of this information.

First published: August 2012

Production Reference: 1160812

Published by Packt Publishing Ltd. 
Livery Place 
35 Livery Street 
Birmingham B3 2PB, UK.

ISBN 978-1-84968-732-4

www.packtpub.com

Cover Image by Mark Holland (m.j.g.holland@bham.ac.uk)

http://www.it-ebooks.info/


Credits

Author
Richard M. Reese

Reviewers
Edward E. Griebel Jr.

Abraham Tehrani

Acquisition Editor
Dhwani Devater

Lead Technical Editor
Susmita Panda

Technical Editor
Vrinda Amberkar

Project Coordinator
Joel Goveya

Proofreader
Linda Morris

Indexer
Hemangini Bari

Graphics
Manu Joseph

Production Coordinator 
Nilesh R. Mohite

Cover Work
Nilesh R. Mohite

http://www.it-ebooks.info/


About the Author

Richard Reese is an Associate Professor for Computer Science at Tarleton State 
University in Stephenville, Texas. Previously, he has worked in the Aerospace and 
Telephony industries for over 17 years. He earned his Ph.D. in Computer Science 
from Texas A&M University and served 4 years in the Air Force primarily in the field 
of Communication Intelligence.

Outside the classroom, he enjoys tending his vegetable garden, maintaining his 
aquariums and greenhouse, and playing with his dog, Zoey. He also enjoys reading 
a variety of technical and non-technical material.

Richard has written numerous publications and wrote EJB 3.1 Cookbook and the Java 7 
New Features Cookbook for Packt Publishing.

No book can be written without the help of others. To this end I 
am thankful for the support of Karla, my wife, whose patience and 
reviews have made this effort possible. In addition, I would like to 
thank the editorial staff of Packt and the reviewers for their input 
which has resulted in a much better book than it might otherwise 
have been.

http://www.it-ebooks.info/


About the Reviewers

Edward E. Griebel Jr. was first introduced to computers in elementary school 
through LOGO on an Apple ][ and "The Oregon Trail" on a VAX. Pursuing his 
interest in computers, Ed graduated from Bucknell University with a degree in 
Computer Engineering. At his first job he quickly realized he didn't know everything 
that there was to know about Computer Programming. Ed has spent the past 
20 years honing his skills in the securities trading, telecommunications, payroll 
processing, and machine-to-machine communications industries as a Developer, 
Team Lead, Consultant, and Mentor. Currently working on Enterprise Development 
in Java EE, Ed feels that any day spent writing code is a good day.

Away from the keyboard, Ed enjoys road trips with his wife and three children, and 
playing Ultimate Frisbee and Xbox. He also volunteers as his sons' scout leader and 
on committees at his church.

I would like to thank my wife and three children who are by now 
used to letting me sleep late after long nights at the computer.

Abraham Tehrani has over a decade of experience in Software Development as a 
Developer and QA Engineer. He is passionate about quality and technology.

I would like to thank my fiancé for her support and love. I would 
also like to thank my friends and family for supporting me in all of 
my endeavors.

http://www.it-ebooks.info/


www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to 
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub 
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print 
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at 
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up for a 
range of free newsletters and receive exclusive discounts and offers on Packt books and eBooks.

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book 
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
• Fully searchable across every book published by Packt
• Copy and paste, print and bookmark content
• On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access PacktLib 
today and view nine entirely free books. Simply use your login credentials for immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on 
Twitter, or the Packt Enterprise Facebook page.

http://www.it-ebooks.info/


Table of Contents
Preface 1
Chapter 1: Getting Started with Java 7

Understanding Java as a technology 7
Object-oriented software development 8
OOP principles 10
Examining the types of Java applications 12

Exploring the structure of a Java console program 15
A simple Java application 15

Package 17
Import 17
The Customer class 18
Instance variables 18
Methods 18
The CustomerDriver class' main method 19

Exploring the structure of a class 19
Classes, interfaces, and objects 20

Classes and objects 20
Constructors 21
Interfaces 21

Methods 22
Method declaration 22
Method signature 23
The main method 24

Access modifiers 25
Documentation 26

Comments 27
Java naming conventions 28
Using Javadocs 28

Investigating the Java application development process 29
Compiling a Java application 30
SDK file structure 31

http://www.it-ebooks.info/


Table of Contents

[ ii ]

IDE file structure 31
Developing Java applications without an IDE 32
Java environment 33
Annotations 35
Java class libraries 35

Summary 36
Certification objectives covered 37
Test your knowledge 37

Chapter 2: Java Data Types and Their Usage 39
Understanding how Java handles data 40

Java identifiers, objects, and memory 40
Stack and heap 40
Declaring a variable 45
Primitive data types 46
Wrapper classes and autoboxing 48
Initializing identifiers 49
Java constants, literals, and enumerations 51

Literals 51
Constants 56
The final keyword 57
Enumerations 57
Immutable objects 58

Instance versus static data 58
Scope and lifetime 58

Scoping rules 59
Access modifiers 60
Data summary 61

Building expressions using operands and operators 61
Precedence and associativity 62
Casting 63

Working with characters and strings 64
The String, StringBuffer, and StringBuilder classes 64
Unicode characters 65

The Character class 66
The Character class – methods 66

The String class 66
String comparisons 68
Basic string methods 72
String length 73
Number/string conversions 73
Miscellaneous String methods 74

The StringBuffer and StringBuilder classes 74
Summary 75

http://www.it-ebooks.info/


Table of Contents

[ iii ]

Certification objectives covered 76
Test your knowledge 76

Chapter 3: Decision Constructs 79
Flow of control 80

Control statement – an overview 80
Logical expressions 81

Boolean variables 81
The equality operator 82
Relational operators 82
Logical operators 83
Short circuit evaluation 85

Using the && operator 85
Using the || operator 86
Avoiding short circuit evaluation 86

The if statement 87
Nested if statements 90
The else-if variation 91
The if statement – usage issues 92

Misusing the equality operator 92
Using inverse operations 93
Using Boolean variables instead of logical expressions 94
Using true or false in a logical expression 95
The perils of not using the block statement 96
The dangling else problem 97

Conditional operator 99
The switch statement 100

Integer-based switch statements 101
Enumeration-based switch statements 103
String-based switch statements 104

String issues with the switch statement 105
Control structure issues 105

General decision constructs issues 105
Floating point number considerations 106

Special floating point values 107
Comparing floating point numbers 109
Rounding errors 110
The strictfp keyword 111

Comparing objects 111
Three basic coding activities 112
The goto statement 112

Summary 113
Certification objectives covered 114
Test your knowledge 114

http://www.it-ebooks.info/


Table of Contents

[ iv ]

Chapter 4: Using Arrays and Collections 117
Arrays 118

One-dimensional arrays 118
The placement of array brackets 120
Initializing arrays 121

Arrays of objects 123
Multidimensional arrays 124
Array techniques 127

Traversing arrays 127
Comparing arrays 130
Copying arrays 133
Passing arrays 137
Using command-line arguments 139

The Arrays class 140
Key points to remember when using arrays 141

Collections 142
Iterators 142
ArrayList 143

Creating ArrayList 144
Adding elements 144
Retrieving elements 145
Traversing a ArrayList object 146
Sorting a ArrayList object 148
Other ArrayList methods 148

Encapsulating collections 149
Summary 150
Certification objectives covered 151
Test your knowledge 151

Chapter 5: Looping Constructs 153
The for statement 154

The comma operator 156
The for statement and scope 157
The for loop variations 158

The for-each statement 160
Using the for-each statement with a list 162
Implementing the Iterator interface 164
The for-each statement – usage issues 165

Null values 166
Variable number of arguments 167

The while statement 167
The do-while statement 169
The break statement 171
The continue statement 172

http://www.it-ebooks.info/


Table of Contents

[ v ]

Nested loops 172
Using labels 174
Infinite loops 175
Timing is everything 177
Pitfalls 179
Summary 182
Certification objectives covered 182
Test your knowledge 183

Chapter 6: Classes, Constructors, and Methods 185
Classes 186

Object creation 186
Memory management 187
Data encapsulation 188
Referencing instance variables 189
Signature 190

Using the this keyword 190
Passing parameters 193

Variable number of arguments 196
Immutable objects 198

Constructors 199
Default constructors 200
Overloading the constructors 202
Private constructors 204
Constructor issues 205
Java initialization sequence 206

Methods 207
Defining methods 207
Calling methods 208
Overloading methods 209
Accessors/mutators 211

Instance and static class members 212
Summary 215
Certification objectives covered 215
Test your knowledge 216

Chapter 7: Inheritance and Polymorphism 219
Inheritance 220

Implementing a subclass 221
Using the protected keyword 223
Overriding methods 225
The @Override annotation 227

http://www.it-ebooks.info/


Table of Contents

[ vi ]

Using the final keyword with classes 229
Abstract methods and classes 230

Polymorphism 231
Managing classes and objects 234

The super keyword and constructors 235
Calling a base class constructor 235
Accessing an overridden method in the base class 237

Determining the type of an object 240
The Object class 241
Casting objects 242
A review of scope 243

Summary 245
Certification objectives covered 246
Test your knowledge 246

Chapter 8: Handling Exceptions in an Application 249
Exception types 251
Exception handling techniques in Java 252

Stack trace 252
Using Throwable methods 253

The traditional try-catch block 255
Using the try-with-resource block 256
Catch statement 257

Order of the catch blocks 258
Using the | operator in a catch block 260

The finally block 261
Nested try-catch blocks 263
Exception handling guidelines 264

Repeating code that threw an exception 264
Not being specific in which exception you are catching 265
Losing the stack trace 265
Scoping and block lengths 267
Throwing a UnsupportedOperationException object 269
Ignoring exceptions 270
Handle exceptions as late as you can 271
Catching too much in a single block 271
Logging exceptions 272
Do not use exceptions to control normal logic flow 273
Do not try to handle unchecked exceptions 274

Summary 274
Certification objectives covered 275
Test your knowledge 275

http://www.it-ebooks.info/


Table of Contents

[ vii ]

Chapter 9: The Java Application 277
Code organization 277

Packages 278
The directory/file organization of packages 278
The import statement 280

Avoiding the import statement 280
Using the import statement 280
Using the wildcard character 281
Multiple classes with the same name 282
The static import statement 283

Garbage collection 283
Resource bundles and the Locale class 285

Using the Locale class 286
Using resource bundles 287

Using a property resource bundle 287
Using the ListResourceBundle class 290

Using JDBC 292
Connecting to a database 292

Loading a suitable driver 292
Establishing a connection 293

Creating a SQL statement 293
Handling the results 294

Summary 295
Certification objectives covered 295
Test your knowledge 296

Appendix: Test Your Knowledge – Answers 297
Chapter 1: Getting Started with Java 297
Chapter 2: Java Data Types and Their Usage 297
Chapter 3: Decision Constructs 298
Chapter 4: Using Arrays and Collections 299
Chapter 5: Looping Constructs 299
Chapter 6: Classes, Constructors, and Methods 300
Chapter 7: Inheritance and Polymorphism 300
Chapter 8: Handling Exceptions in an Application 301
Chapter 9: The Java Application 301

Index 303

http://www.it-ebooks.info/


http://www.it-ebooks.info/


Preface
You should find this book useful whether you are pursuing Java certification or 
want to round out your knowledge and gain further confidence in using Java. This 
book takes a different approach to prepare you for certification. It is designed to 
provide you with coverage of the topics found in the exam and to provide additional 
insights in to the use of Java and the development of Java applications. By providing 
a broader coverage, it goes beyond the immediate certification focus and provides a 
more comprehensive coverage of the language.

For those pursuing Java certification, the book is organized around the major aspects 
of Java and addresses the certification topics covered by the Java SE 7 Programmer 
I (1Z0-803) exam. Each chapter addresses specific certification topics, though 
some topics are covered in more than one chapter. At the end of each chapter are 
certification questions that will give you an idea of the nature of the questions you 
may encounter on the exam. The intent of the book is not to provide an exhaustive 
set of questions, but rather address those important Java concepts that will prepare 
you to answer certification questions.

For those of you seeking to advance your knowledge of Java, the book provides 
insight into Java that you may not have seen before. In particular, the diagrams will 
hopefully enhance and solidify your understanding of how Java works, especially 
those figures that describe the use of the program stack and heap. Examples are 
provided throughout the book that addresses many of the common pitfalls found in 
developing Java applications.

Regardless of your reasons for reading this book, I hope that you find the book to be 
rewarding and fulfilling.

http://www.it-ebooks.info/


Preface

[ 2 ]

What this book covers
Chapter 1, Getting Started with Java, uses an overview of a simple Java application 
to present the major aspects of Java. The creation of a customer class is illustrated, 
along with the use of getter and setter methods. Also discussed is the development 
process, the types of Java applications supported, the documentation process in Java, 
and the use of annotations which have added much to the expressive power of Java.

Chapter 2, Java Data Types and Their Usage, presents the primitive data types available 
in Java and their corresponding operators. Diagrams are used to explain how the 
program stack and heap relate to each other and how they affect the scope and 
lifetime of a variable. In addition, the use of the String and StringBuilder classes 
is illustrated and the difference between a class and an object is explained.

Chapter 3, Decision Constructs, focuses on the constructs used to make decisions in 
Java including the if and switch statements. As these constructs are dependent on 
logical expression, these types of expressions are covered. The use of the string based 
switch statement available with Java 7 is illustrated. The correct use of decision 
constructs is achieved by understanding and avoiding various pitfalls, such as the 
failure to use block statements and the multitude of problems that can occur when 
using floating point numbers in comparisons.

Chapter 4, Using Arrays and Collections, focuses on the use of arrays, along with 
the Arrays and ArrayList classes. Both single and multidimensional arrays are 
illustrated. The Arrays class is introduced, as it possesses many important methods 
for manipulating arrays such as filling and sorting arrays. The ArrayList class is 
important as it provides a more flexible container than an array for many problems.

Chapter 5, Looping Constructs, demonstrates the concept of iteration in Java, via 
constructs such as the while and for loops. These are covered along with common 
mistakes that can be made when using them. The use of the for-each statement and 
the iterator is presented, along with coverage of the infinite loop and the break and 
continue statements.

Chapter 6, Classes, Constructors, and Methods, deals with the creation and use of objects 
and uses the stack/heap to explain the process. The important Java initialization 
sequence is discussed. Overloading of constructors and methods are detailed, along 
with the concepts of signatures, instance/static class members, and immutable 
objects. Data encapsulation is illustrated throughout the chapter.

http://www.it-ebooks.info/


Preface

[ 3 ]

Chapter 7, Inheritance and Polymorphism, covers the critical topics of inheritance and 
polymorphism, with an enhanced discussion of constructors and methods. The 
use of a signature becomes important again when overriding is used. The power 
of the super keyword is explained in relation to constructors and methods. Scope 
is re-examined and the concepts of final and abstract classes are explored. The ever 
present Object class is also introduced.

Chapter 8, Handling Exceptions in an Application, covers exception handling including 
the use of the new try-with-resource block and the | operator in a catch block. 
Several guidelines and examples dealing with exception handling are provided to 
help the reader avoid common mistakes in their use.

Chapter 9, The Java Application, examines the use of packages in a Java application. 
This includes a discussion on the use of the package and import statements including 
the static import statement. Also discussed is the use of resource bundles to support 
an application that needs to address the international community and how to 
connect and use a database using JDBC.

What you need for this book
To work through the examples in this book you will need access to Java 7 SE.  
This can be downloaded from http://www.oracle.com/technetwork/java/
javase/downloads/index.html. The reader may prefer to use an Integrated 
Development Environment (IDE) that supports Java 7 such as NetBeans, Eclipse, 
or a similar environment.

Who this book is for
This book is for those who are preparing to take the Java SE 7 Programmer I  
(1Z0-803) exam and/or those who wish to broaden their knowledge about Java.

Conventions
In this book, you will find a number of styles of text that distinguish between 
different kinds of information. Here are some examples of these styles, and an 
explanation of their meaning.

Code words in text are shown as follows: "For example, a person object and a 
square object can both have a draw method."

http://www.it-ebooks.info/


Preface

[ 4 ]

A block of code is set as follows:

public class Application {
   public static void main(String[] args) {
      // Body of method
   }
}

Any command-line input or output is written as follows:

set path= C:\Program Files\Java\jdk1.7.0_02\bin;%path%

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about 
this book—what you liked or may have disliked. Reader feedback is important for  
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com, 
and mention the book title via the subject of your message.

If there is a topic that you have expertise in and you are interested in either writing 
or contributing to a book, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to 
help you to get the most from your purchase.

http://www.it-ebooks.info/


Preface

[ 5 ]

Downloading the example code
You can download the example code files for all Packt books you have purchased 
from your account at http://www.PacktPub.com. If you purchased this book 
elsewhere, you can visit http://www.PacktPub.com/support and register to have 
the files e-mailed directly to you.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes 
do happen. If you find a mistake in one of our books—maybe a mistake in the text or 
the code—we would be grateful if you would report this to us. By doing so, you can 
save other readers from frustration and help us improve subsequent versions of this 
book. If you find any errata, please report them by visiting http://www.packtpub.
com/support, selecting your book, clicking on the errata submission form link, and 
entering the details of your errata. Once your errata are verified, your submission 
will be accepted and the errata will be uploaded on our website, or added to any list 
of existing errata, under the Errata section of that title. Any existing errata can be 
viewed by selecting your title from http://www.packtpub.com/support.

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. 
At Packt, we take the protection of our copyright and licenses very seriously. If you 
come across any illegal copies of our works, in any form, on the Internet, please 
provide us with the location address or website name immediately so that we can 
pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected 
pirated material.

We appreciate your help in protecting our authors, and our ability to bring you 
valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with 
any aspect of the book, and we will do our best to address it.

http://www.it-ebooks.info/


http://www.it-ebooks.info/


Getting Started with Java
This chapter familiarizes you with basic elements of Java and how to write a 
simple Java program. A comprehensive understanding of the Java development 
environment is achieved through simple explanations of the application 
development process. A Java console program is provided that serves as a starting 
point and a reference point for this discussion.

In this chapter we will examine:

• What Java is
• The object-oriented development process
• Types of Java applications
• The creation of a simple program
• The definition of classes and interfaces
• Java Application Development
• Java environment
• Java documentation techniques
• The use of annotations in Java
• The core Java packages

Understanding Java as a technology
Sun Microsystems developed the original specifications for the language in the 
mid 1990s. Patrick Naughton, Mike Sheridan, and James Gosling were the original 
inventors of Java and the language was called Oak at the beginning.

http://www.it-ebooks.info/


Getting Started with Java

[ 8 ]

Java is a full-fledged object-oriented programming language. It is platform 
independent and is normally interpreted rather than compiled like C/C++. It 
is syntactically and structurally modeled after C/C++ and performs various 
compile-time and run-time checking operations. Java performs automatic memory 
management that helps to greatly reduce the problem of memory leaks found in 
other languages and libraries that dynamically allocate memory.

Java supports many features that, at its time of conception, were not found directly 
in other languages. These features include threading, networking, security, and 
Graphical User Interface (GUI) development. Other languages could be used to 
support these capabilities, but they were not integrated in the language to the extent 
that it was done with Java.

Java uses an independent bytecode that is architecture neutral. That is, it is designed 
to be machine independent. The byte codes are interpreted and executed by a  
Java Virtual Machine (JVM). All of its primitive data types are fully specified, 
as we will see in Chapter 3, Decision Constructs. The various releases of the Java 
Development Kit (JDK) and other significant moments are depicted in the 
following timeline diagram:

1991

Project

Green

starts

1995

Name

changed

to Java

1997

Java 1.1:

JFC

available

2000

Java 1.3

2004

Java 5.0

2007

Source

code

released

under

GPL

2010

Oracle

acquires

Sun

1992

Oak

1996

Java 1.0

1999

Java 1.2:

J2EE

released

2002

Java 1.4

2006

Java 6.0

2008

JavaFX

1.0

2011

Java 7.0

Object-oriented software development
Let's digress for a moment and consider why we are using Java at all. One of the 
most significant aspects of Java is that it is an object-oriented (OO) language. OO 
technologies are a popular paradigm for developing applications. This approach 
models an application around a series of real world objects, such as an employee or 
a ship. In order to solve a problem, it is useful to think of the real world objects that 
make up the problem domain.

http://www.it-ebooks.info/


Chapter 1

[ 9 ]

The OO approach is based on three distinct activities:

• Object Oriented Analysis (OOA): This is concerned with determining the 
functionality of the system, that is, what should the application do

• Object Oriented Design (OOD): This is concerned with how the architecture 
supports the functionality of the application

• Object Oriented Programming (OOP): This is concerned with the actual 
implementation of the application

The products of the analysis and design steps are often referred to as analysis 
and design artifacts. While there may be several different types produced, the 
one of most interest to the OOP step is called the class diagram. The following 
diagram shows a partial class UML diagram depicting two classes: Customer and 
CustomerDriver. In the A simple Java application section, we will examine the code 
for these classes. The Unified Modeling Language (UML) is a widely used OO 
technique used to design and document an application. A class diagram is one of the 
end products of the technique and is used by programmers to create the application:

Customer

- name
- accountNumber
- locale
- balance

+ Customer
+ getName
+ setName(String)
+ getAccountNumber
+ SetAccountNumber(int)
+ getBalance
+ setBalance(float)
+ toString

CustomerDriver

+ main

Each box represents a class and is divided into three sections:

• The first section at the top of the box is the name of the class
• The second section lists the variables that make up the class
• The last section lists the class methods

http://www.it-ebooks.info/


Getting Started with Java

[ 10 ]

The symbols preceding the variable and method names specify the visibility of these 
class members. The following are the class diagram symbols used:

• -: Private
• +: Public
• #: Protected (used with inheritance)

Normally, a class diagram consists of many classes and is interconnected with 
annotated lines showing the relationship between the classes.

The class diagram is intended to clearly show what objects make up the system and 
how they interact. Once a class diagram is complete it can be implemented using an 
OOP language such as Java.

The object-oriented approach is typically used for medium-scale to 
large-scale projects, where many developers must communicate, 
and work together, to create an application. For smaller projects 
involving only a few programmers, such as the one dealt with in 
most programming classes, the object-oriented approach is not 
normally used.

OOP principles
While there is some disagreement in what actually makes a programming language 
an OOP programming language, there are generally three underlying principles that 
must be supported by an OOP language:

• Data encapsulation
• Inheritance
• Polymorphism

Data encapsulation is concerned with hiding irrelevant information from the users 
of a class and exposing the relevant. The primary purpose of data encapsulation is  
to reduce the level of software development complexity. By hiding the details of 
what is needed to perform an operation, the use of that operation is simpler. How  
to achieve data encapsulation in Java is explained in the Access modifiers section, later 
in this chapter.

http://www.it-ebooks.info/


Chapter 1

[ 11 ]

Data encapsulation is also used to protect the internal state of an object. By hiding 
the variables that represent the state of an object, modifications to the object are 
controlled through the methods. Any changes to the state are verified by the code 
in the methods. Also, by hiding variables, sharing of information between classes is 
eliminated. This reduces the amount of coupling possible in an application.

Inheritance describes the relationship between two classes such that one class re-uses 
the capabilities of another class. This enables the re-use of software resulting in a 
more productive developer. Inheritance is covered in detail in Chapter 7, Inheritance 
and Polymorphism.

The third principle is polymorphism and its primary concern is to make the 
application more maintainable and extendable polymorphism behavior is where the 
behavior of one or identical methods is dependent upon the object it is executing 
against. For example, a person object and a square object can both have a draw 
method. What it draws depends on the object the method is executed against. 
Polymorphism is discussed in Chapter 7, Inheritance and Polymorphism.

These principles are summarized in the following table:

Principle What it is Why we use it How to do it
Data 
encapsulation

Technique that hides 
information from the 
users of that class

To reduce the 
level of software 
development 
complexity

Use access 
modifiers such 
as public, 
private, and 
protected

Inheritance Technique to allow a 
derived or child class 
to use parts of a base or 
parent class

To promote the  
re-use of the software

Use the extends 
keyword

Polymorphism Technique which supports 
different behavior of 
methods that is dependent 
on the object the method 
is executing against

To make an 
application more 
maintainable

Inherent to the 
Java language

The implements keyword is used in support of polymorphic behavior as is 
explained in Chapter 7, Inheritance and Polymorphism.

http://www.it-ebooks.info/


Getting Started with Java

[ 12 ]

Examining the types of Java applications
There are several types of Java applications. These types have allowed Java to 
flourish in a number of different areas and contributed to Java becoming a very 
popular programming language. Java is used to develop the following:

• Console and window applications
• Server-based web applications supported by Servlets, JSPs, JSF, and other 

JEE standards
• Applets that execute within a browser
• Embedded applications
• Componentized building blocks using JavaBeans

While a basic understanding of the types of Java applications is useful in putting Java 
into context, it also helps to be able to recognize the basic code for these applications. 
You may not completely understand all of the ins and outs of these application types, 
but it is useful to see simple code examples.

Reading the code goes a long way towards understanding a language and a specific 
program. Throughout the book we will use numerous examples to illustrate and 
explain various aspects of Java. The basic types of Java applications are shown below 
by presenting short code snippets that are central to that application type.

A simple console application consists of a single class with a main method, as shown 
in the following code snippet:

public class Application {
   public static void main(String[] args) {
      // Body of method
   }
}

We will examine this type of application in more depth.

Applets are normally embedded within an HTML page and offer a means of 
achieving client-side execution of a code. It does not have a main method but uses 
a series of callback methods used by the browser to manage the application. The 
following code provides an idea of the general appearance of an applet:

import java.applet.*;
import java.awt.Graphics;

public class SimpleApplet extends Applet {

   @Override

http://www.it-ebooks.info/


Chapter 1

[ 13 ]

   public void init() {
      // Initialization code
   }

   @Override
   public void paint( Graphics g ) {
      // Display graphics
   }
}

The @Override annotation is used to ensure that the method that follows is actually 
overridden. This is discussed in more detail in the Annotations section of this chapter.

A servlet is a server-side application which renders an HTML page sent to a client. 
A doGet or doPut method responds to client-side request. The out variable in the 
following example represents the HTML page. The println methods are used to 
write the HTML code, as shown in the following code snippet:

class Application extends HttpServlet {
   public void doGet(HttpServletRequest req,
            HttpServletResponse res)
            throws ServletException, IOException {
      res.setContentType("text/html");

      // then get the writer and write the response data
      PrintWriter out = res.getWriter();
      out.println(
         "<HEAD><TITLE> Simple Servlet</TITLE></HEAD><BODY>");
      out.println("<h1> Hello World! </h1>");
      out.println(
         "<P>This is output is from a Simple Servlet.");
      out.println("</BODY>");
      out.close();
   }
}

A JavaServer Page (JSP) is actually a disguised Servlet. It provides a more 
convenient way of developing web pages. The following example uses a JavaBean  
to display "Hello World" on the web page. The JavaBean is detailed in the  
following example:

<html>
<head>
   <title>A Simple JSP Page</title>
</head>
<body>

http://www.it-ebooks.info/


Getting Started with Java

[ 14 ]

Hello World!<br/>
    
<%
   // This is a scriptlet that can contain Java code
%>
<hr>
<jsp:useBean id="namebean" class="packt.NameBean" scope="session" >
<jsp:setProperty name="namebean" property="name" value=" Hello world"" 
/>
</jsp:useBean>
<h1> <jsp:getProperty name="namebean" property="name" /></h1>
</body>
</html>

JavaBeans are building blocks for shared application functionality. They are 
frequently designed to be used in multiple applications and follow a standard 
naming convention. The following is a simple JavaBean designed to hold a name  
(it was used in the previous JSP page):

package packt;
public class NameBean {
  
  private String name= "Default Name"";
  
  public String getName() {
     return this.name;
  }
  public void setName(String name) {
     this.name = name;
  }
}

Enterprise Java Beans (EJB) are components designed to be used in a client/server 
configuration from a web server. This is a fairly specialized topic that is not relevant 
to the associate level of certification.

There are several other types of Java technologies such as JSF and Facelets that are a 
part of JEE. These are improvements over the older Servlet and JSP technologies used 
to develop web pages.

In this book we will only use simple Java console applications. This type of 
application is more than sufficient to explain the essence of Java.

http://www.it-ebooks.info/


Chapter 1

[ 15 ]

Exploring the structure of a Java  
console program
Let's start with a simple Java program and then use it to explore many of the 
basic facets of Java. First, a Java application consists of one or more files located 
somewhere within a filesystem. The name of the files and their locations are both 
important, as we will see shortly.

You can download the example code files for all Packt books you have 
purchased from your account at http://www.PacktPub.com. If you 
purchased this book elsewhere, you can visit http://www.PacktPub.
com/support and register to have the files e-mailed directly to you.

A simple Java application
Our simple program defines a Customer class and then uses it in the 
CustomerDriver class as follows:

package com.company.customer;

import java.math.BigDecimal;
import java.util.Locale;

public class Customer {
  private String name;
  private int accountNumber;
  private Locale locale;
  private BigDecimal balance;
  

  public Customer() {
    this.name = "Default Customer";
    this.accountNumber = 12345;
    this.locale = Locale.ITALY;
    this.balance = new BigDecimal("0");
  }
  

  public String getName() {
    return name;
  }
  public void setName(String name) throws Exception {
    if(name == null) {
         throw new IllegalArgumentException(
            "Names must not be null");
    } else {

http://www.it-ebooks.info/


Getting Started with Java

[ 16 ]

      this.name = name;
    }
  }
  public int getAccountNumber() {
    return accountNumber;
  }

  public void setAccountNumber(int accountNumber) {
    this.accountNumber = accountNumber;
  }
  

  public BigDecimal getBalance() {
    return balance;
  }

  public void setBalance(float balance) {
    this.balance = new BigDecimal(balance);
  }
  

   public String toString() {
      java.text.NumberFormat format =
         java.text.NumberFormat.getCurrencyInstance(locale);
      StringBuilder value = new StringBuilder();
      value.append(String.format("Name: %s%n", this.name));
      value.append(String.format("Account Number: %d%n", 
            this.accountNumber));
      value.append(String.format("Balance: %s%n",
            format.format(this.balance)));
      return value.toString();
    }  
}

package com.company.customer;

public class CustomerDriver {

  public static void main(String[] args) {
      // Define a reference and creates a new Customer object
    Customer customer;      
    customer = new Customer();
    customer.setBalance(12506.45f);
    System.out.println(customer.toString());
  }

http://www.it-ebooks.info/


Chapter 1

[ 17 ]

The details of how to compile and execute this application are provided in the 
Developing Java applications without an IDE section. When this application is executed 
you will get the following output:

Name: Default Customer

Account number: 12345

Balance: € 12.506,45

Understanding the application in detail The following sections detail the significant 
aspects of the example program. These will be elaborated upon later in more detail 
in the chapters that follow. Notice, that there are two classes in this application. The 
CustomerDriver class contains the main method and is executed first. An instance of 
the Customer class is created and used within the main method.

Package
The package statement specifies the class' com.company.customer package. 
Packages provide a means of grouping similar classes, interfaces, enumerations, 
and exceptions together. They are discussed in more depth in the Packages section 
in Chapter 9, The Java Application.

Import
The import statement indicates which packages and classes are used by the class. 
This allows the compiler to determine whether the package's members are used 
correctly. Packages need to be imported for all classes, with the exception of the 
following classes:

• Found in the java.lang package
• Located in the current package (com.company.customer, in this case)
• Explicitly marked such as java.text.NumberFormat as used in the 

Customer class' toString method

The import statement informs the compiler of which packages 
and classes are used by an application and how they can be used.

http://www.it-ebooks.info/


Getting Started with Java

[ 18 ]

The Customer class
The first word of the class definition was the keyword, public, which is a part of 
the support Java provides for object-oriented software development. In this context, 
it specifies that the class is visible outside the package. While not required, it is 
frequently used for most classes and brings us to the second keyword, class, which 
identifies a Java class.

Instance variables
Four private instance variables were declared next. The use of the private keyword 
hides them from users of the class. The Locale class supports applications that can 
work transparently internationally. BigDecimal is the best way of representing 
currency in Java.

Methods
By making these instance variables private, the designer restricts access to the 
variables. They are then only accessible through public methods. The combination 
of private variables and public methods is an example of data encapsulation. If 
the instance variables are made public instead, other users can directly access the 
variables. This would improve the efficiency of the program, but may hinder future 
maintenance efforts. It would be more difficult to change these variables and enforce 
any sort of validation checks on the changes to the variables.

A series of getter and setter methods were present to return and set the values 
associated with the private instance variables. This exposes them in a controlled 
manner. The use of getter and setter methods is a standard approach to achieve 
encapsulation. For example, trying to assign a null value to a name would throw a 
IllegalArmumentException exception. These types of methods are discussed in 
the Method declaration section.

The toString method returns a string representing an instance of a customer. In this 
case the name, account number, and a localized version of the balance is returned. 
The use of the StringBuilder class is discussed in Chapter 2, Java Data Types and 
Their Usage.

Methods are found within classes and classes are found 
within packages.

http://www.it-ebooks.info/


Chapter 1

[ 19 ]

The CustomerDriver class' main method
The CustomerDriver class is referred to as the driver or controller class. Its purpose 
is to have a main method that will create and use other classes.

In a Java application the main method is the first method to be executed. If the 
application consists of multiple classes, normally only one class has a main method. 
A Java application typically needs only one main method.

In the main method, a new customer is created, a balance is set and then the 
customer is displayed. A C++ style comment was added to statements to  
document the declaration and creation of a customer. This was the line beginning 
with the double forward slashes (//). Comments are explained in detail in the 
Comments section.

The first method that executes in a Java console application is 
the main method.

Exploring the structure of a class
Programming can be thought of as code manipulating data. In Java, code is 
organized around the following:

• Packages
• Classes
• Methods

Packages are collections of classes with similar functionality. Classes are composed 
of methods that support the functionality of the class. This organization provides 
structure to applications. Classes will always be in a package and methods will 
always be in a class.

If the package statement is not included in a class definition, 
the class becomes part of a default package which consists 
of all of the classes in the same directory that doesn't have a 
package statement.

http://www.it-ebooks.info/


Getting Started with Java

[ 20 ]

Classes, interfaces, and objects
A class is the fundamental building block of object-oriented programs. It generally 
represents a real-world object. A class definition in Java consists of member variable 
declarations and method declarations. It begins with the class keyword. The 
body of the class is enclosed with brackets and contains all instance variables  
and methods:

  class classname {
    // define class level variables
    // define methods
  }

A pair of open and close curly braces constitutes a block 
statement. This is used in many other parts of Java.

Classes and objects
A class is a pattern or template for creating multiple objects with similar features.  
It defines the variables and methods of the class. It declares the capabilities of the 
class. However, before these capabilities can be used, an object must be created. 
An object is an instantiation of a class. That is, an object is composed of the  
memory allocated for the member variables of the class. Each object has its  
own set of member variables.

The following occurs when a new object is created:

• The new keyword is used to create an instance of a class
• Memory is physically allocated for the new instance of 

the class
• Any static initializers are executed (as detailed in the 

Java initialization sequence section in Chapter 6, Classes, 
Constructors, and Methods)

• A constructor is called to do initialization
• A reference to the object is returned

The state of an object is typically hidden from the users of the object and is reflected 
in the value of its instance variables. The behavior of an object is determined by the 
methods it possesses. This is an example of data encapsulation.

An object is the instantiation of a class. Each instance of a 
class has its own unique set of instance variables.

http://www.it-ebooks.info/


Chapter 1

[ 21 ]

Objects in Java are always allocated on the heap. The heap is an area of memory 
that is used for dynamically allocated memory, such as objects. In Java, objects are 
allocated in a program and then released by the JVM. This release of memory is 
called garbage collection and performed automatically by the JVM. An application 
has little control over this process. The primary benefit of this technique is the 
minimization of memory leaks.

A memory leak occurs when memory is dynamically allocated 
but is never released. This has been a common problem with 
languages such as C and C++, where it is the responsibility of 
the programmer to manage the heap.
A memory leak can still occur in Java if an object is allocated 
but the reference to the object is never released when the object 
is no longer needed.

Constructors
Constructors are used to initialize an object. Whenever an object is created, a 
constructor executes. A default constructor is the one that has no arguments and 
is provided automatically for all classes. This constructor will initialize all instance 
variables to default values.

However, if the developer provides a constructor, the compiler's default constructor 
is no longer added. The developer will need to explicitly add a default constructor. It 
is a good practice to always have a default, no-argument constructor.

Interfaces
An interface is similar to an abstract class. It is declared using the interface 
keyword and consists of only abstract methods and final variables. An abstract class 
normally has one or more abstract methods. An abstract method is the one that does 
not have an implementation. It is intended to support polymorphic behavior, as 
discussed in Chapter 7, Inheritance and Polymorphism. The following code defines an 
interface used to designate a class as capable of being drawn:

  interface Drawable {
    final int unit = 1;
    public void draw();
  }

http://www.it-ebooks.info/


Getting Started with Java

[ 22 ]

Methods
All executable code executes either within an initializer list or a method. Here, we 
will examine the definition and use of methods. The initializer list is discussed in 
Chapter 6, Classes, Constructors, and Methods. Methods will always be contained within 
a class. The visibility of a method is controlled by its access modifiers as detailed 
in the Access modifiers section. Methods may be either static or instance. Here, we 
will consider instance methods. As we will see in Chapter 6, Classes, Constructors, 
and Methods, static methods typically access static variables that are shared between 
objects of a class.

Regardless of the type of method, there is only a single copy of a method. That  
is, while a class may have zero, one, or more methods, each instance of the class  
(an object) uses the same definition of the method.

Method declaration
A typical method consists of:

• An option modifier
• A return type
• The method name
• A parameter list enclosed in parentheses
• An optional throws clause
• A block statement containing the method's statements

The following setName method illustrates these parts of a method:

  public void setName(String name) throws Exception {
    if(name == null) {
      throw new Exception("Names must not be null");
    } else {
      this.name = name;
    }
  }

http://www.it-ebooks.info/


Chapter 1

[ 23 ]

While the else clause in this example is technically not required, it is a good practice 
to always use else clauses as it represents a possible execution sequence. In this 
example, if the if statement's logical expression evaluates to true, then the exception 
will be thrown and the rest of the method is skipped. Exception handling is covered 
in detail in Chapter 8, Handling Exceptions in an Application.

Methods frequently manipulate instance variables to define the new state of  
an object. In a well designed class, the instance variables can typically only 
be changed by the class' methods. They are private to the class. Thus, data 
encapsulation is achieved.

Methods are normally visible and allow the user of the object to manipulate that 
object.  There are two ways to classify methods:

• Getter methods: These methods return the state of an object (also called 
accessor methods)

• Setter methods: These are methods that can change the state of an object 
(also called mutator methods)

In the Customer class, setter and getter methods were provided for all of the instance 
variables, except for the locale variable. We could have easily included a get and set 
method for this variable but did not, to conserve space.

A variable that has a get method but not an otherwise visible 
set method is referred to as a read-only member variable. 
The designer of the class decided to restrict direct access to 
the variable.
A variable that has a set method but not an otherwise visible 
get method is referred to as a write-only member variable. 
While you may encounter such a variable, they are rare.

Method signature
The signature of a method consists of:

• The name of the method
• The number of arguments
• The types of the arguments
• The order of the arguments

http://www.it-ebooks.info/


Getting Started with Java

[ 24 ]

The signature is an important concept to remember and is used in overloading/
overriding methods and constructors as discussed in Chapter 7, Inheritance and 
Polymorphism. A constructor will also have a signature. Notice that the definition 
of a signature does not include the return type.

The main method
The examples used in the book will be console program applications. These 
programs typically read from the keyboard and display the output on the console. 
When a console application is executed by the operating system, the main method is 
executed first. It may then execute other methods.

The main method can be used to pass information from the command line. This 
information is passed to the arguments of the main method. It consists of an array of 
strings representing the program's parameters. We will see this in action in Chapter 4, 
Using Arrays and Collections.

There is only one form of the main method in Java, shown as follows:

    public static void main(String[] args) {
       // Body of method
    }

The following table shows elements of the main method:

Elements Meaning
public The method is visible outside the class.
static The method can be invoked without creating an object of the class type.
void The method does not return anything.
args An array of strings representing the arguments passed.

http://www.it-ebooks.info/


Chapter 1

[ 25 ]

Returning a value from an application
The main method returns void, meaning that it is not possible to return a value back 
to the operating system as part of the normal method invocation sequence. However, 
it is sometimes useful to return a value to indicate whether the program terminated 
successfully or not. This is useful when the program is used in a batch type operation 
where multiple programs are being executed. If one program fails in this execution 
sequence, then the sequence may be altered. Information can be returned from an 
application using the System.exit method. The following use of the methods will 
terminate the application and return a zero to the operating system:

    System.exit(0);

The exit method:

• Forces the termination of all of the application's threads
• Is extreme and should be avoided
• Does not provide an opportunity to gracefully terminate 

the program

Access modifiers
Variables and methods can be declared as one of four types, shown in the 
following table:

Access type Keyword Meaning
Public public Access is provided to users outside the class.
Private private Restricts access to members of the class.
Protected protected Access is provided to classes that inherit the class or 

are members of the same package.
Package scoped none Access is provided to members of the same package.

Most of the time, a member variable is declared as private and a method is declared 
as public. However, the existence of the other access types implies other potential 
ways of controlling the visibility of a member. These usages will be examined in 
Chapter 7, Inheritance and Polymorphism.

http://www.it-ebooks.info/


Getting Started with Java

[ 26 ]

In the Customer class, all of the class variables were declared as private and all of 
the methods were made public. In the CustomerDriver class, we saw the use of the 
setBalance and toString methods:

    customer.setBalance(12506.45f);
    System.out.println(customer.toString());

As these methods were declared as public, they can be used with the Customer 
object. It is not possible to directly access the balance instance variable. The following 
statement attempts this:

    customer.balance = new BigDecimal(12506.45f);

The compiler will issue a compile-time error similar to the following:

balance has private access in com.company.customer.Customer

Access modifiers are used to control the visibility of 
application elements.

Documentation
The documentation of a program is an important part of the software development 
process. It explains the code to other developers and provides reminders to the 
developers of what and why they did what they did.

Documentation is achieved through several techniques. Here, we will address three 
common techniques:

• Comment: This is the documentation embedded in the application
• Naming conventions: Following the standard Java naming conventions 

makes an application more readable
• Javadoc: This is a tool used to generate documentation about an application 

in the form of HTML files

http://www.it-ebooks.info/


Chapter 1

[ 27 ]

Comments
Comments are used to document a program. They are not executable and are 
ignored by a compiler. Good comments can go a long way to make a program more 
readable and maintainable. Comments can be grouped into three types—C style, 
C++ style, and Java style, as summarized in the following table:

Type of Comment Description
Example
C style The C style comment uses a two character sequence at the 

beginning and the end of a comment. This type of comment 
can extend across multiple lines. The beginning character 
sequence is a /* while the ending sequence consists of */.

  /* A multi-line comment
     …
  */

  /* A single line comment */

C++ style The C++ style comment begins with two forward slashes 
and the comment continues until the end of the line. 
Essentially everything from the // to the end of the line is 
treated as a comment.

  // The entire line is a comment
  int total; // Comment used to clarify variable
  area = height*width;  // This computes the area of a rectangle

Java Style The Java style is identical in syntax to the C style comment, 
except that it starts with /** instead of /*. In addition, 
special tags can be added within a Java-style comment for 
documentation purposes. A program called javadoc will 
read in the source file, which uses these types of comments, 
and generate a series of HTML files documenting the 
program. See the Using Javadocs section for more detail.

    /**
     * This method computes the area of a rectangle
     *
     * @param height The height of the rectangle
     * @param width The width of the rectangle
     * @return  The method returns the area of a rectangle
     *
     */
   public int computeArea(int height, int width)  {
      return height * width;
   }

http://www.it-ebooks.info/


Getting Started with Java

[ 28 ]

Java naming conventions
Java uses a series of naming conventions to make the programs more readable. It is 
recommended that you always follow this naming convention. By doing so:

• You make your code more readable
• It supports the use of JavaBeans

More detail on naming conventions can be found at 
http://www.oracle.com/technetwork/java/
codeconvtoc-136057.html.

The Java naming conventions' rules and examples are shown in the following table:

Element Convention Example
Package All letters in lowercase. com.company.customer

Class First letter of each word is capitalized. CustomerDriver

Interface First letter of each word is capitalized. Drawable

Variable First word is not capitalized but the 
subsequent words are capitalized

grandTotal

Method First word is not capitalized but 
subsequent words are capitalized. 
Methods should be verbs.

computePay

Constant Every letter is uppercase. LIMIT

Following the Java naming conventions is important in 
maintaining program readability and to support JavaBeans.

Using Javadocs
The Javadoc tool produces a series of HTML files based on the source code and 
Javadoc tags embedded in the source code. This tool is also distributed with the JDK. 
While the following example is not an attempt to provide a complete treatment of 
Javadocs, it should give you a good idea of what Javadocs can do for you:

public class SuperMath {
   /**
    * Compute PI - Returns a value for PI.
    *    Able to compute pi to an infinite number of decimal 
    *    places in a single machine cycle.
    * @return A double number representing PI

http://www.it-ebooks.info/


Chapter 1

[ 29 ]

   */

   public static double computePI() {
      //
   }
}

The javadoc command, when used with this class, results in the generation of several 
HTML files. A part of the index.html file is shown in the following screenshot:

More information on the use and creation of Javadoc files can 
be found at http://www.oracle.com/technetwork/
java/javase/documentation/index-137868.html.

Investigating the Java application 
development process
Java source code is compiled to intermediate bytecode. The bytecode is then 
interpreted at runtime on any platform that has a Java Virtual Machine (JVM). 
However, this statement is somewhat misleading as Java technology will often 
compile bytecode directly to machine code. There have been numerous Just-In-Time 
compiler improvements that speed up the execution of Java applications that  
often will run nearly as fast as, or sometimes even faster than, natively-compiled C 
or C++ applications.

Java source code is found in files that end with a .java extension. The Java compiler 
will compile the source code to a bytecode representation and store these bytecodes 
in a file with a .class extension.

http://www.it-ebooks.info/


Getting Started with Java

[ 30 ]

There are several Integrated Development Environments (IDE) used to support the 
development of Java applications. A Java application can also be developed from the 
command line using basic tools from the Java Development Kit (JDK).

A production Java application is normally developed on one platform and 
then deployed to another. The target platform needs to have a Java Runtime 
Environment (JRE) installed on it in order for the Java application to execute. There 
are several tools that assist in this deployment process. Typically, a Java application 
is compressed in a Java Archive (JAR) file and then deployed. A JAR file is simply 
a ZIP file with a manifest document embedded within the JAR file. The manifest 
document often details the content and the type of JAR file being created.

Compiling a Java application
The general steps used to develop a Java application include:

• Create the application using an editor
• Compile it using the Java compiler (javac)
• Execute it using the Java interpreter (java)
• Optionally debug the application as required using a Java debugger

This process is summarized in the following diagram:

Editor

Source

Code

Java

Compiler

Byte

Code

Java

Interpreter

Application

Output

Java

Debugger

Java source code files are compiled to bytecode files. These bytecode files have a 
.class extension. When a Java package is distributed, the source code files are not 
normally stored in the same location as the .class files.

http://www.it-ebooks.info/


Chapter 1

[ 31 ]

SDK file structure
The Java Software Development Kit (SDK) can be downloaded and used to create 
and execute many types of Java applications. The Java Enterprise Edition (JEE) is a 
different SDK and is used to develop enterprise applications typified by web-based 
applications. The SDK also known as the Java 2 Enterprise Edition (J2EE) and you 
may see it referenced as J2EE. Here, we will only deal with the Java SDK.

While the actual structure of the SDK distribution will vary by release, the typical 
SDK consists of a series of directories, listed as follows:

• bin: This contains the tools used for developing a Java application including 
the compiler and JVM

• db: This is the Apache Derby relational database
• demo: This contains a series of demonstration applications
• include: This contains header files used to interact with C applications
• jre: This is a JRE used by the JDK
• sample: This contains sample code for various features of Java

The SDK may include the actual source code for the core classes. This is usually 
found in the src.zip file located under the JAVA_HOME root directory.

IDE file structure
Each IDE has a preferred way of organizing the files that make up an application. 
These organization schemes are not always hard and fast but those presented here 
are the common ways of arranging the files.

For example, a simple application in the Eclipse IDE consists of two project files and 
three sub-directories. These files and directories are listed as follows:

• .classpath: This is an XML file containing the classpath-related information
• .project: This is an XML document describing the project
• .settings: This is a directory containing the org.eclipse.jdt.core.prefs 

file which specifies compiler preferences
• bin: This is used to contain the package file structure and the application's 

class files
• src: This is used to contain the package file structure and the application's 

source files

This organization scheme is used by the development tools. The tools often include 
editors, compilers, linkers, debuggers, and others. These languages frequently use a 
Make tool to determine which files need to be compiled or otherwise manipulated.

http://www.it-ebooks.info/


Getting Started with Java

[ 32 ]

Developing Java applications without an IDE
In this section we will demonstrate how to compile and execute a Java application on 
a Windows platform using Java 7. The approach is very similar to that used for other 
operating systems.

Before we can compile and execute the sample program we need to:

• Install the JDK
• Create the appropriate file structure for the application
• Create the files to hold our classes

The latest version of the JDK can be found at http://www.oracle.com/technetwork/
java/javase/downloads/index.html. Download and install the version that meets 
your needs. Note the location of the installation, as we will use this information shortly.

As explained earlier, the Java classes must be located in a specific file structure as 
mirrored in its package name. Create a file structure somewhere in your filesystem 
that has a top-level directory called com under which is a directory called company 
and then under the company directory, a directory called customer.

In the customer directory create two files called Customer.java and 
CustomerDriver.java. Use the corresponding classes as found earlier in the A 
simple Java application section.

The JDK tools are found in the JDK directory. When the JDK is installed, the 
environmental variables are normally set up to allow the successful execution of 
the JDK tools. However, it is necessary to specify the location of these tools. This is 
accomplished using the set command. In the following command, we set the path 
environmental variable to reference C:\Program Files\Java\jdk1.7.0_02\bin 
directory, which was the most recent release at the time this chapter was written:

set path= C:\Program Files\Java\jdk1.7.0_02\bin;%path%

This command prefixes the path to the bin directory in front of any previously 
assigned paths. The path environmental variable is used by the operating system 
to look for the command that is executed at the command prompt. Without this 
information, the operating system is not aware of the location of the JDK commands.

To compile the program using the JDK, navigate to the directory above the com 
directory. As the classes used as part of this application are part of the com.company.
customer package we need to:

• Specify the path in the javac command
• Execute the command from the directory above the com directory

http://www.it-ebooks.info/


Chapter 1

[ 33 ]

As there are two files that make up this application we need to compile both of them. 
This can be done using two separate commands as follows:

javac com.company.customer.Customer.java

javac com.company.customer.CustomerDriver.java

Or, it can be done using a single command and the asterisk wild card character  
as follows:

javac com.company.customer.*.java

The output of the compiler is a bytecode file with the name CustomerDriver.class. 
To execute the program, invoke the Java interpreter with your class file, as shown in 
the following command. The class extension is not included and its inclusion as part 
of the filename will result in an error:

java com.company.customer.CustomerDriver

The output of your program should be as follows:

Name: Default Customer

Account number: 12345

Balance: € 12.506,45

Java environment
The Java environment is the operating system and file structure used to develop 
and execute Java applications. Earlier, we examined the structure of the JDK which 
are part of the Java environment. Associated with this environment are a series 
of environmental variables that are used from time-to-time to facilitate various 
operations. Here, we will examine a few of them in more detail:

• CLASSPATH

• PATH

• JAVA_VERSION

• JAVA_HOME

• OS_NAME

• OS_VERSION

• OS_ARCH

http://www.it-ebooks.info/


Getting Started with Java

[ 34 ]

These variables are summarized in the following table:

Name Purpose Example

CLASSPATH Specifies the root 
directory for classes.

.;C:\Program Files (x86)\Java\
jre7\lib\ext\QTJava.zip

PATH The location of the 
commands.

JAVA_VERSION The version of Java 
to use.

<param name="java_version" 
value="1.5.0_11">

JAVA_HOME The location of the 
Java directory.

C:\Program Files (x86)\Java\jre6\
bin

OS_NAME The name of the 
operating system.

Windows 7

OS_VERSION The version of the 
operating system

6.1

OS_ARCH The operating 
system architecture

AMD64

The CLASSPATH environmental variable is used to identify the root directory of the 
packages. It is set as follows:

  c:>set CLASSPATH=d:\development\increment1;%CLASSPATH%

The CLASSPATH variable only needs to be set for non-standard packages. The Java 
compiler will always implicitly append the system's class directories to CLASSPATH. 
The default CLASSPATH is the current directory and the system's class directories.

There are many other environmental variables associated with an application. The 
following code sequence can be used to display a list of these variables:

    java.util.Properties properties = System.getProperties();
    properties.list(System.out);

A partial display of the output of this code sequence is as follows:

-- listing properties --

java.runtime.name=Java(TM) SE Runtime Environment

sun.boot.library.path=C:\Program Files\Java\jre7\bin

java.vm.version=22.0-b10

java.vm.vendor=Oracle Corporation

java.vendor.url=http://java.oracle.com/

path.separator=;

java.vm.name=Java HotSpot(TM) 64-Bit Server VM

…

http://www.it-ebooks.info/


Chapter 1

[ 35 ]

Annotations
Annotations provide information about a program. This information does not reside 
in the program and does not affect its execution. Annotations are used to support 
tools such as the compiler and during the execution of the program. For example, the 
@Override annotation informs the compiler that a method is overriding a base class 
method. If the method does not actually override the base class method because it is 
misspelled, the compiler will generate an error.

Annotations are applied to elements of the application such as a class, method, or 
field. It begins with the at sign, @, is followed by the name of the annotation, and 
optionally a list of values enclosed in a set of parentheses.

Common compiler annotations are detailed in the following table:

Annotation Usage
@Deprecated Used by the compiler to indicate that the element 

should not be used
@Override The method overrides the base class method
@SuppressWarnings Used to suppress specific compiler warnings

Annotations can be added to an application and used by the third-party tools for 
specific purposes. It is also possible to write your own annotations when needed.

Annotations are useful in conveying information about an 
application to tools and the run-time environment

Java class libraries
Java includes a number of libraries of classes that support the development of 
applications. These include the following, among others:

• java.lang

• java.io

• java.net

• java.util

• java.awt

These libraries are organized in packages. Each package holds a set of classes. The 
structure of a package is reflected in its underlying file system. The CLASSPATH 
environmental variable holds the location of packages.

http://www.it-ebooks.info/


Getting Started with Java

[ 36 ]

There are a core set of packages that are part of the JDK. These packages provide a 
crucial element in the success of Java by providing easy access to a standard set of 
capabilities that were otherwise not readily available with other languages.

The following table shows a list of some of the more commonly used packages:

Package Usage
java.lang This is the collection of the basic language types. It includes the 

root classes, Object and Class, and other items such as threads, 
exceptions, wrapper, and other fundamental classes.

java.io Includes streams and random access files.
java.net Supports sockets, telnet interfaces, and URLs.
java.util Supports container and utility classes such as Dictionary, 

HashTable, and Stack. Encoder and decoder techniques such as 
Date and Time can also be found in this library.

java.awt Contains the Abstract Windowing Toolkit (AWT) that contains 
classes and methods that support a Graphical User Interface (GUI). 
It includes classes for events, colors, fonts, and controls.

Summary
In this chapter we examined the essential aspects of Java and a simple Java console 
application. From a certification standpoint we looked at the structure of a class and 
a Java application that uses the main method.

We also introduced a number of additional topics that will be covered in more detail 
in later chapters. This includes the creation of objects and their manipulation, the use 
of strings and the StringBuilder class, instance and static members of a class, and 
the use of signatures in the overloading and overriding of a method.

With this foundation we are ready to move on to Chapter 2, Java Data Types and Their 
Usage, where we will examine the nature of variables and how they can be used.

http://www.it-ebooks.info/


Chapter 1

[ 37 ]

Certification objectives covered
In this chapter we introduced a number of certification topics that will be discussed 
in more detail in subsequent chapters. Here we covered the following topics in depth:

• Define the structure of a Java class (in the Exploring the structure of a 
class section)

• Create an executable Java application with a main method (in the Exploring 
the structure of a Java console program section)

Test your knowledge
1. What will be printed out if the following code is run with the java 

SomeClass hello world command?
public class SomeClass{
    public static void main(String argv[])
    {
  System.out.println(argv[1]);
    }
}

a. world

b. hello

c. hello world
d. ArrayIndexOutOfBoundsException is thrown

2. Consider the following code sequence:
public class SomeClass{
   public int i;
   public static void main(String argv[]){
      SomeClass sc = new SomeClass();
      // Comment line
   }
}

Which of the following statements will compile without syntax or runtime 
errors if they replace the comment line?

a. sc.i = 5;

b. int j = sc.i;

c. sc.i = 5.0;

d. System.out.println(sc.i);

http://www.it-ebooks.info/


http://www.it-ebooks.info/


Java Data Types and  
Their Usage

In this chapter we will learn more about how Java organizes and manipulates data, 
especially primitive data types and strings. In addition to this, we will explore 
various related concepts such as scoping and the lifetime of a variable. While strings 
are not a primitive data type in Java, they are a critical part of many applications and 
we will examine what Java has to offer.

In this chapter we will focus on:

• The declaration and use of primitive data types
• Using the String and StringBuilder classes
• How the program stack and heap relate to each other
• The differences between a class and an object
• Constants and literals in Java
• The scope and lifetime of a variable
• Operators, operands, and expressions

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 40 ]

Understanding how Java handles data
The core of programming is code that manipulates data. As programmers we are 
interested in the organization of data and code. The organization of data is referred 
to as data structures. These structures can be static or dynamic in nature. For 
example, the ages of a population can be stored in consecutive locations in a data 
structure known as an array. While the array data structure has a fixed size, the 
contents may or may not change. Arrays are discussed in detail in Chapter 4, Using 
Arrays and Collections.

In this section, we will examine several different aspects of variables including:

• How they are declared
• Primitive data types versus objects
• Where they reside in memory
• How they are initialized
• Their scope and lifetime

Java identifiers, objects, and memory
Variables are defined to be of a specific type and are allocated memory. When an 
object is created, instance variables that make up the object are allocated on the heap. 
The static variables of an object are allocated to a special area of memory. When a 
variable is declared as part of a method, the memory for the variable is allocated on 
the program stack.

Stack and heap
A thorough understanding of the stack/heap and other issues is critical for 
understanding how a program works, and in turn how well a developer can use 
a language such as Java to do his job. These concepts provide a framework for 
understanding how an application works and are the basis for the implementation 
of the runtime system used by Java, not to mention almost every other programming 
language in existence.

http://www.it-ebooks.info/


Chapter 2

[ 41 ]

With this said, the concept of a stack and heap is fairly simple. The stack is an area 
where the parameters of a method and its local variables are stored each time a 
method is invoked. The heap is an area of memory where objects are allocated when 
the new keyword is invoked. The parameters and local variables of a method make up 
an activation record, also called a stack frame. Activation records are pushed onto a 
stack when the method is invoked and popped off the stack when the method returns. 
The temporary existence of these variables determines the lifetime of the variables.

Static variables

Heap

Stack

Grows

Grows

The stack grows toward the heap when a method is invoked and shrinks when the 
method returns. The heap does not grow in a predictable order and can become 
fragmented. As they share the same memory space, if the heap and stack collide then 
the program will terminate.

Understanding the concept of stack and heap is  
important because:

• It provides a foundation used to understand how data 
is organized in an application

• It helps explain the concept of the scope and lifetime 
of a variable

• It helps explain how recursion works

We will re-use the program illustrated in Chapter 1, Getting Started with Java, to 
demonstrate the use of stack and heap. The program has been duplicated here for 
your convenience:

package com.company.customer;
import java.math.BigDecimal;
import java.util.Locale;

public class Customer {
  private String name;
  private int accountNumber;

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 42 ]

  private Locale locale;
  private BigDecimal balance;

  public Customer() {
    this.name = "Default Customer";
    this.accountNumber = 12345;
    this.locale = Locale.ITALY;
    this.balance = new BigDecimal("0");
  }
  
  public String getName() {
    return name;
  }
  public void setName(String name) throws Exception {
    if(name == null) {
      throw new Exception("Names must not be null");
    } else {
      this.name = name;
    }
  }

  public int getAccountNumber() {
    return accountNumber;
  }

  public void setAccountNumber(int accountNumber) {
    this.accountNumber = accountNumber;
  }
  
  public BigDecimal getBalance() {
    return balance;
  }

  public void setBalance(float balance) {
    this.balance = new BigDecimal(balance);
  }
  
  public String toString() {
    java.text.NumberFormat format;
    format = java.text.NumberFormat.getCurrencyInstance(locale);
    return format.format(balance);
  }
 }

http://www.it-ebooks.info/


Chapter 2

[ 43 ]

package com.company.customer;
public class CustomerDriver {
  public static void main(String[] args) {
    Customer customer;      // defines a reference to a Customer
    customer = new Customer();  // Creates a new Customer object
    customer.setBalance(12506.45f);
    System.out.println(customer.toString());
  }

When the main method is executed, an activation record is pushed onto the program 
stack. As shown in the following diagram, its activation record consists of only the 
single args parameter and the customer reference variable. When the instance of the 
Customer class is created, an object is created and allocated on the heap. The state of 
the stack and heap reflected in this example occurs after the Customer constructor 
executes. The args reference variable points to an array. Each element of the array 
references a string representing the applications' command line arguments. In the 
example shown in the following diagram, we assume there are two command line 
arguments, Argument 1 and Argument 2:

name

accountNumber

locale

balance

main
args

customer

Default Customer

Locale object

BigDecimal object

“Argument 1”

“Argument 2”

0

12345

When the setBalance method is executed, its activation record is pushed onto 
the program stack as illustrated below. The setBalance method has a single 
parameter, balance, which is assigned to the balance instance variable. But first, 
it is used as an argument to the BigDecimal constructor. The this keyword 
references the current object.

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 44 ]

Heap is the memory that is dynamically allocated for objects. A heap manager 
controls how this memory is organized. When an object is no longer needed, a 
garbage collection routine will execute to free up the memory so it can be re-used. 
Before an object is disposed of, the object's finalize method is executed. However, 
there is no guarantee that the method will execute as the program may terminate 
without the need for the garbage collection routine to run. The original BigDecimal 
object will be eventually destroyed.

name

accountNumber

locale

balance

main
args

customer

Default Customer

Locale object

BigDecimal object

“Argument 1”

“Argument 2”

0

12345

BigDecimal object

12506.45f

balance

this

12506.45f
setBalance

In C++, when an object is about to be destroyed its destructor will be 
executed. The closest thing Java has to this is the finalize method, 
which will execute when the object is processed by the garbage 
collector. However, the garbage collector may not run and, thus, the 
finalize method may never execute. This paradigm shift results 
in an important difference in how we manage resources. The  
try-with-resources block introduced in Chapter 8, Handling 
Exceptions in an Application, offers a technique for dealing with 
this situation.

http://www.it-ebooks.info/


Chapter 2

[ 45 ]

Declaring a variable
A variable is also called an identifier. The term "variable" implies that its value can be 
changed. This is usually the case. However, if the identifier is declared as a constant, 
as discussed in the Constants section, then it is not really a variable. Regardless of 
this, the terms variable and identifier are normally considered to be synonymous.

The declaration of a variable begins with the data type and is followed by the 
variable name and then a semicolon. The data type may be a primitive data type  
or a class. When the data type is a class, the variable is an object reference variable. 
That is, it is a reference to an object.

A reference variable is effectively a disguised C pointer.

Variables can be classified into the following three categories:

• Instance variables
• Static variables
• Local variables

Instance variables are used to reflect the state of the object. Static variables are 
variables that are common to all instances. Local variables are declared within a 
method and are visible only within the block in which they are declared.

Identifiers are case-sensitive and can only be composed of:

• Letters, numbers, the underscore (_) and the dollar sign ($)
• Identifiers may only begin with a letter, the underscore or a dollar sign

Examples of valid variable names include:

• numberWheels

• ownerName

• mileage

• _byline

• numberCylinders

• $newValue

• _engineOn

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 46 ]

By convention, identifiers and methods start with the first word in lower case and 
subsequent words capitalized as discussed in the Java naming conventions section of 
Chapter 1, Getting Started with Java. Examples of conventional declarations include 
the following:

• int numberWheels;

• int numberCylinders;

• float mileage;

• boolean engineOn;

• int $newValue;

• String ownerName;

• String _byline;

In the preceding examples, each variable, except the last two, is declared as a 
primitive data type. The last one is declared as a reference to a String object. The 
reference variable can reference a String object but, in this example, is assigned 
a null value meaning that it is does not currently reference a string. Strings are 
covered in more detail in the The String class section. The following code snippet 
declares three variables of type integer:

int i;
int j;
int k;

It is also possible to declare all three variables on a single line, shown as follows:

int i, j, k;

Primitive data types
There are eight primitive data types defined in Java, as listed in the following table. 
In Java, the size of each of the data types is the same for all machines:

Data type Size in 
bytes

Internal representation Range

boolean -- Not precisely defined true or false
byte 1 8-bit two's complement −128 to +127
char 2 Unicode \u0000 to \uffff
short 2 16-bit two's complement –32768 to 32767
int 4 32-bit two's complement −2,147,483,648 to 2,147,483,647

http://www.it-ebooks.info/


Chapter 2

[ 47 ]

Data type Size in 
bytes

Internal representation Range

long 8 64-bit two's complement -9,223,372,036,854,775,808 to

9,223,372,036,854,775,807

float 4 32-bit IEEE 754  
floating point

3.4e +/- 38 (7 digits)

double 8 64-bit IEEE 754  
floating point

1.7e +/- 308 (15 digits)

The String data type is also a part of Java. While it is not a primitive data type, it is a 
class and is discussed in detail in the The String class section.

Another common data type is currency. There are several ways of representing 
money in Java as detailed in the following table. However, the recommended 
approach is to use the BigDecimal class.

Data type Advantages Disadvantages
Integer Good for simple currency units, such 

as a penny.
It does not use a decimal 
point, such as that used 
in dollars and cents.

Floating point It uses a decimal point. Rounding errors are very 
common.

BigDecimal class • Handles large numbers.
• Uses decimal points.
• Has built-in rounding modes.

More difficult to use.

When using BigDecimal, it is important to note the following:

• Use the constructor with the String argument as it does a better job at 
placing the decimal point

• BigDecimal is immutable
• The ROUND_HALF_EVEN rounding mode introduces the least bias

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 48 ]

The Currency class is used to control the formatting of currency.

Another recommendation regarding currency 
representation is based on the number of digits used.
Number of digits    Recommended data type
Less than 10                 Integer or BigDecimal
Less than 19                 Long or BigDecimal
Greater than 19            BigDecimal

Floating point numbers can be a significant source of problems in most languages. 
Consider the following snippets where we add 0.1 in an attempt to get the value 1.0:

float f = 0.1f;
for(int i = 0; i<9; i++) {
   f += 0.1f;
}
System.out.println(f);

The output is as follows:

1.0000001

It reflects the fact that the decimal value 0.1 cannot be accurately represented 
in base two. This means we must always be vigilant when working with floating 
point numbers.

Wrapper classes and autoboxing
Wrapper classes are used to enclose primitive data type values inside an object. 
Prior to the availability of boxing, there were often situations where it was necessary 
to explicitly use wrapper classes such as the Integer and Float classes. This was 
required to be able to add primitive data types to collections often found in the 
java.util package, including the ArrayList class, because methods of these data 
classes used objects as arguments. Wrapper classes include the following data types:

• Boolean
• Byte
• Character
• Short
• Integer
• Long
• Float
• Double

http://www.it-ebooks.info/


Chapter 2

[ 49 ]

Objects of these wrapper classes are immutable. That is, their values cannot  
be changed.

Autoboxing is the automatic conversion of primitive data types into their 
corresponding wrapper classes. This is performed as needed so as to eliminate the 
need to perform trivial, explicit conversion between primitive data types and their 
corresponding wrapper classes. Unboxing refers to the automatic conversion of a 
wrapper object to its equivalent primitive data type. In effect, primitive data types 
are treated as if they are objects in most situations.

There are a few things to remember when working with primitives and objects. 
First, objects can be null, whereas primitives cannot be assigned a null value. This 
can present problems from time to time. For example, unboxing a null object will 
result in a NullPointerException. Also, be careful when comparing primitives and 
objects when boxing does not occur as illustrated in the following table:

Comparison Two primitives Two objects One of each
a == b Simple comparison Compares 

reference values
Treated as two primitives

a.equals(b) Will not compile Compares for 
equality of 
values

Will not compile if a is a 
primitive, otherwise their 
values are compared

Initializing identifiers
The initialization of Java variables is actually a complex process. Java supports four 
ways of initializing variables:

• Default initial values
• Instance variable initializers
• Instance initializers
• Constructors

In this chapter we will examine the first two approaches. The latter two techniques 
are covered in Chapter 6, Classes, Constructors, and Methods, where the whole 
initialization process is put together.

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 50 ]

When explicit values are not provided, initial default values are used as the object 
is created. In general, when a field of an object is allocated it is initialized to a zero 
value as detailed in the following table:

Data type Default value (for fields)
boolean false

byte 0

char '\u0000'
short 0

int 0

long 0L

float 0.0f

double 0.0d

String (or any object) null

For example, in the following class, name is assigned null and age has a value of 0:

class Person {
  String name;
  int age;
  …
}

The instance variable initializers' operator can be used to explicitly assign a value to 
a variable. Consider the following variation of the Person class:

class Person {
  String name = "John Doe";
  int age = 23;
  …
}

When an object of type Person is created, the name and age fields are assigned the 
values John Doe and 23 respectively.

However, when a local variable is declared, it is not initialized. It is, therefore, 
important to either use the initialization operator when declaring the variable or to 
not use the variable until a value has been assigned to it. Otherwise, a syntax error 
will result.

http://www.it-ebooks.info/


Chapter 2

[ 51 ]

Java constants, literals, and enumerations
Constants and literals are similar in that they cannot be changed. A variable can 
be declared using the final keyword as a primitive data type that cannot change 
and is, thus, referred to as a constant. A literal is a token such as 35 or 'C' which 
represents a value. Obviously, it cannot be modified either. Related to this concept 
are immutable objects—objects which cannot be modified. While the object cannot  
be modified, the reference variable pointing to the object can be changed.

Enumerations are also effectively constant in nature. They are used to provide a 
convenient way of dealing with sets of values as a list. For example, an enumeration 
can be created to represent the suits of a card deck.

Literals
Literal constants are simple numbers, characters, and strings that represent a 
quantity. There are three basic types:

• Numeric
• Character
• Strings

Numeric literals
Numeric constants consist of a series of digits with an optional sign and an 
optional decimal point. Numeric literals that contain a decimal point are by default 
double constants. Numeric constants can also be prefixed with a 0x to indicate the 
number is a hexadecimal number (base 16). Numbers that begin with a 0 are octal 
numbers (base 8). A suffix of f or F can be used to declare a floating point literal as 
of type float.

Numeric literal Base Data type Decimal equivalent
25 10 int 25

-235 10 int -235

073 8 int 59

0x3F 16 int 63

23.5 10 double 23.5

23.5f 10 float 23.5

23.5F 10 float 23.5

35.05E13 10 double 350500000000.00

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 52 ]

Integer literals are common. Normally they are expressed in base 10, but octal and 
hexadecimal literals can be created using the appropriate prefix. Integer literals are  
of type int by default. A literal can be specified as type long by appending an L to 
the end of the literal. The following table illustrates literals and their corresponding 
data types:

Literal Type
45 int

012 An integer expressed as an octal number.
0x2FFC An integer expressed as a hexadecimal number.
10L long

0x10L A long expressed as a hexadecimal number.

Either a lowercase or uppercase L can be used to designate an 
integer as type long. However, it is better to use an uppercase 
L to avoid confusing the letter with the numeric digit "1" 
(one). In the following example, an unwary reader might see 
the literal as one hundred and one versus the integer 10:
         10l versus 10L

Floating point literals are numbers that contain a decimal point or those that are 
written using scientific notation.

Literal Type
3.14 double

10e6 double

0.042F float

Java 7 added the ability to uses underscore characters (_) in numeric literals. This 
enhances the readability of code by adding a visual spacing between significant 
parts of a literal. Underscores can be added almost anywhere with a numeric literal. 
It can be used with floating point numbers and with any integer base (binary, octal, 
hexadecimal, or decimal). In addition, base 2 literal are also supported.

http://www.it-ebooks.info/


Chapter 2

[ 53 ]

The following table illustrates the use of underscores with a variety of numeric literals:

Example Usage
111_22_3333 Social security number
1234_5678_9012_3456 Credit card number
0b0110_00_1 Binary literal representing a byte
3._14_15F PI
0xE_44C5_BC_5 Hexadecimal literal for a 32-bit quantity
0450_123_12 24-bit octal literal

The use of literals in code has no effect on the internal representation of the number 
or how it is displayed. For example, if we use a long literal to represent a social 
security number, the number is stored internally in two's complement notation and 
will be displayed as an integer:

long ssn = 111_22_3333L;
System.out.println(ssn);

The output is as follows:

111223333

If it is necessary to display the number formatted as a social security number, this 
needs to be done in code. The following is one of the approaches to this:

long ssn = 111_22_3333L;
String formattedSsn = Long.toString(ssn);
for (int i = 0; i < formattedSsn.length(); i++) {
    System.out.print(formattedSsn.charAt(i));
    if (i == 2 || i == 4) {
        System.out.print('-');
    }
}
System.out.println();

When executed, we get the following output:

111-22-3333

The use of the underscore is to make the code more readable to the developer but it 
is ignored by the compiler.

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 54 ]

There are a couple of other things to consider when using underscores in literals. 
First, consecutive underscores are treated as one and also ignored by the compiler. 
Also, underscores cannot be placed:

• At the beginning or end of a number
• Adjacent to a decimal point
• Prior to the D, F, or L suffix

The following table illustrates invalid usage of the underscores. These will generate 
the syntax error: illegal underscore:

Example Problem
_123_6776_54321L Cannot begin with an underscore
0b0011_1100_ Cannot end with an underscore
3._14_15F Cannot be adjacent to a decimal point
987_654_321_L Cannot be adjacent to an L suffix

Some applications need to manipulate the bits of a value. The following example 
will perform a bitwise AND operation against a value using a mask. A mask is a 
sequence of bits that are used to isolate part of another value. In this example, value 
represents a bit sequence whose last four bits we wish to isolate. The binary literal 
represents the mask:

value & 0b0000_11111;

The AND operation will return zeroes when ANDed with a mask containing  
zeroes. In the preceding example, the first four bits of result of the expression will  
be zeroes. The last four bits are ANDed with ones which result in the last four bits  
of the result being the same as the last four bits of value. Thus, the last four bits have 
been isolated.

This is illustrated by executing the following code sequence:

byte value = (byte) 0b0111_1010;
byte result = (byte) (value & 0b0000_1111);
System.out.println("result: " +  
   Integer.toBinaryString(result));

When executed we get the following output:

result: 1010

http://www.it-ebooks.info/


Chapter 2

[ 55 ]

The following diagram illustrates this AND operation:

0 1 1 1 1 0 1 0
0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 0

AND Truth Table

AND 0 1

0 0 0

1 0 1

Character literals
Character literals are single characters enclosed in single quotes.

char letter = 'a';
letter = 'F';

However, one or more symbols can be used to represent a character. The backslash 
character is used to "escape" or give special meaning to a letter. For example, '\n' 
represents the carriage return line feed character. These special escape sequences 
represent certain special values. These escape sequences can also be used within a 
string literal. Escape sequence characters are listed in the following table:

Escape Sequence 
Character

Meaning

\a alert (bell)
\b backspace
\f form feed
\n new line
\r carriage return
\t horizontal tab
\v vertical tab
\\ backslash
\? question mark
\' single quote
\" double quote
\ooo octal number
\xhh hexadecimal number

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 56 ]

String literals
String literals are a sequence of characters that are enclosed in a set of double quotes. 
String literals cannot be split across two lines:

String errorMessage = "Error – bad input file name";
String columnHeader = "\tColumn 1\tColumn2\n";

Constants
Constants are identifiers whose values cannot change. They are used in situations 
where, instead of using a literal, a more readable name should be used instead.  
In Java, constants are declared by prefixing the variable declaration with the  
final keyword.

In the following example, three constants are declared—PI, NUMSHIPS, and 
RATEOFRETURN. Each of these is capitalized as per the standard Java naming 
conventions section of Chapter 1, Getting Started with Java, and is given a value. 
These values cannot be changed:

final double PI = 3.14159;
final int NUMSHIPS = 120;
final float RATEOFRETURN = 0.125F;

In the following statement, an attempt is made to change the value of PI:

PI = 3.14;

Depending on the compiler, an error message similar to the following will  
be generated:

cannot assign a value to final variable PI

This means you cannot change the value of the constant variable.

Constants provide other benefits apart from always having the 
same value. A constant number or object can be handled more 
efficiently and optimized. This makes the application that uses 
them more efficient and easier to understand. Instead of using 
3.14159 every place it is needed, we can simply use PI.

http://www.it-ebooks.info/


Chapter 2

[ 57 ]

The final keyword
While the final keyword is used to declare a constant, it has other uses as 
detailed in the following table. We will cover its use with methods and classes  
in later chapters:

Applied to Meaning
Primitive data declaration The value assigned to the variable cannot be changed.
Reference variable You cannot change the variable to reference a different 

variable. However, it may be possible to change the 
object the variable is referencing to.

Method The method cannot be overridden.
Class The class cannot be extended.

Enumerations
Enumerations are actually subclasses of the java.lang.Enum class. In this section, 
we will look at the creation of a simple enumeration. A more complete treatment of 
this topic is found in Chapter 6, Classes, Constructors, and Methods.

The following example declares an enumeration called Directions. This 
enumeration represents the four cardinal points.

public enum Directions {NORTH, SOUTH, EAST, WEST}

We can declare a variable of this type and then assign values to it. The following 
code sequence illustrates this:

Directions direction;
direction = Directions.EAST;
System.out.println(direction);

The output of this sequence is as follows:

EAST

A enum call also can be used as part of a switch statement illustrated as follows:

switch(direction) {
case NORTH:
  System.out.println("Going North");
  break;
case SOUTH:
  System.out.println("Going South");
  break;

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 58 ]

case EAST:
  System.out.println("Going East");
  break;
case WEST:
  System.out.println("Going West");
  break;
}

When executed with the previous code we get the following output:

Going East

Immutable objects
Immutable objects are objects whose fields cannot be modified. There are several 
classes whose objects are immutable in the Java core SDK including the String class. 
Perhaps surprisingly, the final keyword is not used for this purpose. These are 
discussed in more detail in Chapter 6, Classes, Constructors, and Methods.

Instance versus static data
There are two different types of variables (data) within a class: instance and static. 
When an object is instantiated (using the new keyword with a class name), each 
object is composed of the instance variables that make up that class. However, there 
is only one copy of static variables allocated for each class. While each class has its 
own copy of instance variables, all of the classes share a single copy of the static 
variables. These static variables are allocated to a separate area of memory and exist 
for the lifetime of the class.

Consider the addition of a common discount percentage that may be applied 
selectively to some, but not all, customers. Regardless of whether or not it is applied, 
the percentage is always the same. Based on these assumptions, we can add a static 
variable to a class as follows:

private static float discountPercentage;

Static methods and fields are covered in more detail in Chapter 6, Classes, Constructors, 
and Methods.

Scope and lifetime
Scope refers to where in a program a specific variable can be used. In general, a 
variable is visible within the block statement in which it is declared but not outside 
it. A block statement is a sequence of code encapsulated by curly braces.

http://www.it-ebooks.info/


Chapter 2

[ 59 ]

If a variable is in scope, then it is visible to the code and can be accessed. If it is not in 
scope, then the variable cannot be accessed and any attempts to do so will result in a 
compile-time error.

The lifetime of a variable refers to the time period in which it has been allocated 
memory. When a variable is declared as a local variable of a method, the memory 
allocated to the variable is in the activation record. As long as the method has not 
returned, the activation record exists and memory is allocated for the variable. As 
soon as the method returns, the activation record is removed from the stack and the 
variable is no longer in existence and cannot be used.

The lifetime of an object allocated from the heap begins when the memory is 
allocated and ends when the memory is de-allocated. In Java, memory is allocated 
for an object using the new keyword. An object and its memory are marked for 
de-allocation when it is no longer referenced. In reality, it is de-allocated at some 
indeterminate point in the future when a garbage collection routine runs, if at all. 
If an object has no references to it, it can be used or accessed even if the garbage 
collector has not reclaimed it.

Scoping rules
Scoping rules are critical to understanding how block structure languages, such as 
Java, work. These rules explain when a variable can be used and which one of the 
several will be used when a naming conflict occurs.

Scoping rules revolve around the concept of a block. A block is delineated by an 
opening and closing curly brace. These blocks are used to group code together and 
to define the scope of a variable. The following diagram shows the scope of three 
variables, i, j, and k:

private void demo( ) {

int i;
i = 100;

for ( )
a[ ] =
b[ ] =

int j=0; j<100; j++ {
j 0;
j -1;

}

while ( )i>0 {

int tmp;
tmp = i * i;
i i * i + tmp;a[ ] = b[ ]

Scope of j

Scope of tmp

Scope of i

}

}

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 60 ]

Access modifiers
Access modifiers can be used as prefixes when declaring instance and static variables 
and methods. Modifiers are applied in various combinations to provide specific 
behaviors. The modifier order is not always important, but consistent style leads 
to more readable code. All modifiers are optional though there are some default 
modifiers. Access modifiers include:

• public: A public object is visible to all methods inside and outside its 
own class.

• protected: This allows protection between the current class and subclasses. 
A protected object is invisible outside *-the class, fully visible to subclasses.

• private: A private variable cannot be seen by any class other than the one in 
which it is defined (including subclasses).

• package: This visibility is the default protection. Only classes within the 
package have the access (public within the package).

To explain the scope of variables, consider the package/class organization shown in 
the following diagram, where the arrows indicate inheritance:

Package abc Package de

A

B C

D

E

Assume that the A class is defined as follows:

public class A{
   public int  publicInt;
   private int privateInt;
   protected int  protectedInt;
   int defaultInt;  // default (package)
} 

http://www.it-ebooks.info/


Chapter 2

[ 61 ]

All of the variables are of type int. The publicInt variable is a public variable. 
It can be seen by all methods inside and outside of this class. The privateInt 
variable is only visible within this class. The protectedInt variable is visible only 
to those classes within this package. The protectedInt variable is visible to this 
class, its subclasses, and other classes in the same package. It is not visible elsewhere. 
The following table shows the visibility of each of the declaration types to each of  
the classes:

A B C D E
publicInt Visible Visible Visible Visible Visible
privateInt Visible Invisible Invisible Invisible Invisible
protectedInt Visible Visible Visible Invisible Visible
defaultInt Visible Visible Visible Invisible Invisible

Data summary
The following table summarizes the types of variables and their relationship to Java 
compile-time and run-time elements:

Program element Variable type Part of Allocated to
Class Instance Object Heap

Static Class Special region of 
memory

Method Parameter Activation record Activation record 
of the stackLocal

Building expressions using operands 
and operators
An expression consists of operands and operators. Operands are normally variable 
names or literals while operators act on operands. The following are examples  
of expressions:

int numberWheels = 4;
System.out.println("Hello");
numberWheels = numberWheels + 1;

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 62 ]

There are several ways of classifying operators:

• Arithmetic
• Assignment
• Relational
• Logical complement
• Logical
• Conditional
• Bitwise

Expressions can be thought of as the building blocks of a program. They are used to 
express the logic of the program.

Precedence and associativity
Java operators are summarized in the following precedence and associativity table. 
Most of these operators are straightforward: 

Precedence Operator Associativity Operator
1 ++ Right Pre/post increment

-- Right Pre/post decrement
+,- Right Unary plus or minus
~ Right Bitwise complement
! Right Logical complement
(cast) Right Cast

2 *, /, and % Left Multiplication, division,  
and modulus

3 + and - Left Addition and subtraction
+ Left String concatenation

4 << Left Left shift
>> Left Right shift and sign fill
>>> Left Right shift and zero fill

5 <, <=, >, >= Left Logical
Instanceof Left Type comparison

6 == and != Left Equality and inequaltity
7 & Left Bitwise and Boolean AND
8 ^ Left Bitwise and Boolean XOR
9 | Left Bitwise and Boolean OR

http://www.it-ebooks.info/


Chapter 2

[ 63 ]

Precedence Operator Associativity Operator
10 && Left Boolean AND
11 || Left Boolean OR
12 ?: Right Conditional
13 = Right Assignment

+=, -=, *=, /=, and %= Right Compound

While the use of most of these operators is straightforward, more detailed examples 
for their usage are provided in later chapters. However, bear in mind that there are 
no other variations and no other operators available in Java. For example, += is a 
valid operator while =+ is not. However, it can be used with possibly unintended 
consequences. Consider the following:

total = 0;
total += 2;  // Increments total by 2
total =+ 2;  // Valid but simply assigns a 2 to total!

The last statement appears to be using a =+ operator. In reality, it is the assignment 
operator followed by the unary plus operator. A +2 is assigned to total. Remember, 
Java ignores white space except within string literals.

Casting
When one type of data is assigned to a different type of data, it is possible to lose 
information. If the data is being assigned from a more precise data type to a less 
precise data type, it is referred to as narrowing. For example, if the floating point 
number 45.607 is assigned to an integer, the fractional part, .607, is lost.

When making assignments of this type, the cast operator should be used. The cast 
operator is simply the data type that you are casting to, enclosed in parentheses.  
The following shows several explicit casting operations:

int i;
float f = 1.0F;
double d = 2.0;

i = (int) f;  // Cast a float to an int
i = (int) d;  // Cast a double to an int
f = (float) d;  // Cast a double to a float

Without the use of the cast operator in such situations, the compiler will issue 
a warning. The warning is there to suggest that you look more closely at the 
assignments. The loss of precision may or may not be a problem, depending upon 
the use of the data within the application. Without a cast operator, an implicit cast is 
made when the code is executed.

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 64 ]

Working with characters and strings
The primary classes include the String, StringBuffer, StringBuilder, and 
Character classes. There are several other classes and interfaces related to string and 
character manipulation, listed as follows, that you should be aware of. However, not 
all of the following classes will be detailed here.

• Character: This deals with the manipulation of character data
• Charset: This defines a mapping between Unicode characters and a 

sequence of bytes
• CharSequence: In this, an interface is implemented by the String, 

StringBuffer and StringBuilder classes defining common methods
• StringTokenizer: This is used for tokenizing text
• StreamTokenizer: This is used for tokenizing text
• Collator: This is used to support operations on locale specific strings

The String, StringBuffer, and StringBuilder classes
There are several string-related classes available to the Java programmer. In 
this section, we will examine the classes and techniques available in Java for 
manipulating this type of data.

The three primary classes for string manipulation found in the JDK are the String, 
StringBuffer, and StringBuilder. The String class is the most widely used of 
these classes. The StringBuffer and StringBuilder classes were introduced in 
Java 5 to address efficiency issues of the String class. The String class is immutable 
and an application that requires frequent changes to a string will be burdened by 
the overhead of having to create new immutable objects. The StringBuffer and 
StringBuilder classes are mutable objects and can be used more efficiently when 
strings need to be modified frequently. StringBuffer differs from StringBuilder 
in that its methods are synchronized.

In terms of methods supported by the classes, the methods of StringBuffer 
and StringBuilder are identical. They only differ in whether the methods are 
synchronized or not.

Class Mutable Synchronized
String No No
StringBuffer Yes Yes
StringBuilder Yes No

http://www.it-ebooks.info/


Chapter 2

[ 65 ]

A synchronized method is useful when dealing with applications that use multiple 
threads. A thread is a code sequence that executes on its own. It will run at the same 
time as other threads within the same application. Concurrent threads do not pose a 
problem unless they are sharing data. When this happens it is possible for that data 
to become corrupted. The use of synchronized methods addresses this problem and 
prevents the data from being corrupted due to the interaction of the threads.

The use of synchronized methods includes some overhead. Thus, if the string 
is not being shared by multiple threads then the overhead introduced by the 
StringBuffer class is not needed. When synchronization is not needed, in most 
cases the StringBuilder class should be used.

Criteria for using string classes
If the string is not going to change, use the String class:

• As it is immutable it is safe for sharing between  
multiple threads

• The threads will only read them, which is normally a thread 
safe operation.

If the string is going to change and it will be shared between 
threads, then use the StringBuffer class:

• This class is designed for just this situation
• Using this class in this situation will insure that the string is 

updated correctly
• The chief drawback is that the methods may execute slower

If the string is to change but will not be shared between the threads, 
use the StringBuilder class:

• It allows modification of the strings but does not incur the 
overhead of synchronization

• The methods of this class will execute as fast as, or faster, 
than those of the StringBuffer class

Unicode characters
Java uses the Unicode standard to define a character. However, this standard has 
evolved and changed, and Java has accommodated its changes. Originally the Unicode 
standard defined a character as a 2 byte 16-bit value which could be represented using 
printable characters or U+0000 through U+FFFF. Hexadecimal digits can be use to 
encode the Unicode characters whether they were printable or not.

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 66 ]

However, the 2-byte encoding was not sufficient for all languages. So, version 4 
of the Unicode standard introduced new characters above U+FFFF called UTF-16 
(16-bit Unicode Transformation Format). Java, in support of the new standard, 
uses the concept of surrogate pairs—pairs of 16-bit chars. These pairs are used to 
represent values from U+10000 through U+10FFFF. The leading or high value of the 
surrogate pair ranges from U+D800 through U+DBFF. The trailing or low value of the 
pair ranges from U+DC00 through U+DFFF. Characters in this latter range are called 
supplementary characters. These two special ranges are used to map any Unicode 
character into a surrogate pair. As of JDK 5.0, a character is represented using UTF-16.

The Character class
The Character class is a wrapper class for the char primitive data type. This 
data type supports the Unicode standard version 4.0. Characters are defined as  
fixed-width, 16-bit quantities.

The Character class – methods
The Character class possesses a number of methods for dealing with characters. 
Many of the Character methods are overloaded and can take either a char or a 
Unicode code point parameter. A code point is an abstraction used for a character 
and for our purposes is a Unicode character. The following table lists several 
Character methods that you are likely to encounter:

Methods Description
isDigit Returns true if the character is a digit
isLetter Returns true if the character is a letter
isLetterOrDigit Returns true if the character is a letter or a digit
isLowerCase Returns true if the character is a lower case letter
isSpace Returns true if the character is a space
isUpperCase Returns true if the character is an upper case letter
toLowerCase Returns the lower case equivalent of the character
toUpperCase Returns the upper case equivalent of the character

The String class
The String class is a common class used to represent strings in Java. It is immutable 
which makes it thread safe. That is, multiple threads can access the same string  
and not worry about corrupting the string. Being immutable also means that it is  
of a fixed size.

http://www.it-ebooks.info/


Chapter 2

[ 67 ]

One of the reasons the String class was made immutable was for security reasons. 
If a string is used to identify a resource that is protected, once permission has been 
granted for that resource, it may be possible to modify the string and then obtain 
access to another resource for which the user does not have permission. By making it 
immutable, this vulnerability is avoided.

While the String class is immutable, it may still appear to be mutable. Consider the 
following example:

String s = "Constant";
s = s + " and unchangeable";
System.out.println(s);

The output of this sequence is the string "Constant and unchangeable". As s is 
defined as a String type, the object referenced by the s identifier cannot change. 
When the second assignment statement is made, a new object is created that 
combines Constant and and unchangeable together to produce a new string 
Constant and unchangeable. Three String objects are created in the process: 

• Constant

• and unchangeable

• Constant and unchangeable

The identifier, s, now references the new string Constant and unchangeable.

While we have access to these objects, we were not able to change them. We can 
access and read them but we cannot modify them.

We could have used the String class' concat method but this is not 
as straightforward:

s = "Constant";
s = s.concat(" and unchangeable");
System.out.println(s);

The following code illustrates several techniques for creating a String object. The 
first constructor will only produce an empty string. This is not of immediate value 
unless an empty immutable string located on the heap is needed in the application.

String firstString = new String();
String secondString = new String("The second string");
String thirdString = "The third string";

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 68 ]

In addition, there are two constructors that use the StringBuffer and 
StringBuilder classes. New String objects are created from these objects, 
as shown in the following code sequence:

StringBuffer stringBuffer = 
   new StringBuffer("A StringBuffer string");
StringBuilder stringBuilder = 
   new StringBuilder("A StringBuilder string");
String stringBufferBasedString = new String(stringBuffer);
String stringBuilderBasedString = new String(stringBuilder);

Internally, a string of the String class is represented as an 
array of char.

String comparisons
String comparisons are not as straightforward as they might initially appear. If we 
wanted to compare two integers, we might use a statement such as the following:

if (count == max) {
  // Do something
}

However, for the comparisons of two strings, such as s1 and s2, the following will 
often evaluate as false:

String s1 = "street";
String s2;

s2 = new String("street");

if (s1 == s2) {
  // False
}

The problem is that the variables s1 and s2 may be referencing different objects in 
memory. The if statement is comparing string reference variables and not the actual 
strings. As they are referencing different objects, the comparison returns false. It all 
depends on how the compiler and run-time system handles the strings internally.

http://www.it-ebooks.info/


Chapter 2

[ 69 ]

When the new keyword is used, memory is allocated from the heap and assigned to 
the new object. In the case of a string literal however, this memory does not come 
from the heap but instead from a literal pool, or more specifically, the string intern 
pool. In Java, interned strings are placed into the permanent generation area of the 
JVM. This area also stores Java class declarations and class static variables, among 
other things.

String interning stores only one copy of each distinct string. This is to improve 
the execution of certain string methods and reduce the amount of space used to 
represent identical strings. The strings in this area are subject to garbage collection.

For example, if we create two string literals and a String object using the 
new keyword:

String firstLiteral = "Albacore Tuna";
String secondLiteral = "Albacore Tuna";
String firstObject = new String("Albacore Tuna");
  
if(firstLiteral == secondLiteral) {
  System.out.println(
     "firstLiteral and secondLiteral are the same object");
} else {
  System.out.println(
     "firstLiteral and secondLiteral are not the same object");
}
if(firstLiteral == firstObject) {
  System.out.println(
     "firstLiteral and firstObject are the same object");
} else {
  System.out.println(
     "firstLiteral and firstObject are not the same object");
}

The output follows:

firstLiteral and secondLiteral are the same object

firstLiteral and firstObject are not the same object

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 70 ]

The String class' intern method can be used to intern a string. Interning is 
performed automatically for all constant strings. When comparing interned strings, 
the equality operator can be used instead of having to use the equals method. This 
can save time for string intensive applications. It is easy to forget to intern a string, so 
be careful using the equality operator. In addition to this, the intern method can be 
an expensive method to use.

Other objects besides the String type are interned by Java. These 
include wrapper objects and small integer values. Wrapper objects can 
result when a string concatenation operator is used with a primitive 
type. For more details visit http://docs.oracle.com/javase/
specs/jls/se7/jls7.pdf and refer to sections 5.1.7 and 12.5.

To perform String comparisons, there is a number of String methods you can use 
including, but not necessarily limited to, the following:

Method Purpose
equals Compares two strings and returns true if they are equivalent
equalsIgnoreCase Compares two strings while ignoring the case of the letters 

and returns true if they are equivalent
startsWith Returns true if the string starts with the specified 

character sequence
endsWith Returns true if the string ends with the specified 

character sequence
compareTo Returns -1 if the first string precedes the second, 0 if they 

are equal to each other, or 1 if the first string follows the 
second string

Remember that strings start with an index 0.

The following illustrates the use of various string comparisons:

String location = "Iceberg City";
if (location.equals("iceberg city"))
  System.out.println(location + " equals ' city'!");
else
  System.out.println(location + 
    " does not equal 'iceberg city'");

http://www.it-ebooks.info/


Chapter 2

[ 71 ]

if (location.equals("Iceberg City"))
  System.out.println(location + " equals 'Iceberg City'!");
else
  System.out.println(location + 
    " does not equal 'Iceberg City'!");

if (location.endsWith("City"))
  System.out.println(location + " ends with 'City'!");
else
  System.out.println(location + " does not end with 'City'!");

The output is shown as follows:

Iceberg City does not equal 'iceberg city'

Iceberg City equals 'Iceberg City'!

Iceberg City ends with 'City'!

There are several things to consider when using this method. First, uppercase letters 
come before lowercase letters. This is the result of their ordering in Unicode. The 
same ordering applies to ASCII.

A string can have multiple internal representations. Many languages use the accent 
to differentiate or emphasize a character. For example, the French name, Irène, uses 
an accent and can be represented either as I r è n e or as the sequence I r e ` n e. 
The second sequence combines the e and ` to form the character è. If these two 
different internal representations were compared using the equals method, the 
method would return false. In this example, \u0300 combines the grave accent 
with the letter e.

String firstIrene = "Irène";

String secondIrene = "Ire\u0300ne";

if (firstIrene.equals(secondIrene)) {
    System.out.println("The strings are equal.");
} else {
    System.out.println("The strings are not equal.");
}

The output of this code sequence is as follows:

The strings are not equal.

The Collator class can be used to manipulate strings in a locale-specific manner 
removing the problems of different internal string representations.

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 72 ]

Basic string methods
There are several String methods you may encounter. These are illustrated in the 
following table:

Method Purpose
length Returns the length of the string.
charAt Returns the position of a character given an index in the string.
substring This method is overloaded and returns parts of the string.
indexOf Returns the position of the first occurrence of a char or string.
lastIndexOf Returns the position of the last occurrence of a char or string.

The following examples illustrate the use of these methods:

String sample = "catalog";
System.out.println(sample.length());
System.out.println(sample.charAt(0));
System.out.println(sample.charAt(sample.length()-1));
System.out.println(sample.substring(0,3));
System.out.println(sample.substring(4));

When this code is executed, we get the following output:

7

c

g

cat

log

Searching a string for a character or sequence of characters is a common  
requirement of many applications. The indexOf and lastIndex methods 
perform this type of operation:

String location = "Irene";
System.out.println(location.indexOf('I'));
System.out.println(location.lastIndexOf('e'));
System.out.println(location.indexOf('e'));

The results of these statements are as follows:

0

4

2

http://www.it-ebooks.info/


Chapter 2

[ 73 ]

You can think of the position in a string as a position immediately before a character. 
These positions or indexes start at 0, as illustrated in the following diagram:

String length
The calculation of the length of a string can be a bit more complicated than suggested 
by the simple use of the length method. It depends upon what is being counted and 
how the string is represented internally.

Methods that can be used to determine the length of a string include:

• length: The standard method used
• codePointCount: This is used in conjunction with supplementary characters
• The length method of an array of bytes: This is used to determine the actual 

number of bytes used to hold the string

The actual length of the string in bytes can be important when storing a string. The 
amount of space allocated in a table of a database may need to be longer than simply 
the number of characters in the string.

Number/string conversions
The process of converting a number to a string is important. There are two 
approaches we can use. The first approach uses a static method, as shown in the 
following code sequence. The valueOf method will convert a number to a string:

String s1 = String.valueOf(304);
String s2 = String.valueOf(778.204);

The intValue and doubleValue methods take the object returned by the valueOf 
static method and return an integer or double number respectively:

int  num1 = Integer.valueOf("540").intValue();
double  num2 = Double.valueOf("3.0654").doubleValue();

The second approach is to use the parseInt and parseDouble methods of their 
respective wrapper classes. Their use is illustrated as follows:

num1 = Integer.parseInt("540");
num2 = Double.parseDouble("3.0654");

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 74 ]

Miscellaneous String methods
There are several miscellaneous methods that can be useful:

• replace: This replaces a part of a string with another string
• toLowerCase: This converts all characters to lower case in a string
• toUpperCase: This converts all characters to upper case in a string
• trim: This removes leading and trailing blanks

The use of these methods is illustrated below:

String oldString = " The gray fox ";
String newString;

newString = oldString.replace(' ','.');
System.out.println(newString);

newString = oldString.toLowerCase();
System.out.println(newString);

newString = oldString.toUpperCase();
System.out.println(newString);

newString = oldString.trim();
System.out.println("[" + newString +"]" );

The results are shown as follows:

.The.gray.fox.

 the gray fox

 THE GRAY FOX

[The gray fox]

The StringBuffer and StringBuilder classes
The StringBuffer and StringBuilder classes provide an alternative to the 
String class. Unlike the String class, they are mutable. This is sometimes helpful 
in making a program more efficiently. There are several commonly used methods 
that are available to manipulate a StringBuffer or a StringBuilder object. Several 
of these are illustrated in the example that follows. While the examples use the 
StringBuffer class, the StringBuilder method works the same way.

http://www.it-ebooks.info/


Chapter 2

[ 75 ]

It is frequently necessary to append one string to another. This can be accomplished 
using the append method:

StringBuffer buffer = new StringBuffer();
buffer.append("World class");
buffer.append(" buffering mechanism!");

The following illustrates inserting a string into a buffer:

buffer.insert(6,"C");

A more detailed example:

StringBuffer buffer;
buffer = new StringBuffer();
buffer.append("World lass");
buffer.append(" buffering mechanism!");
buffer.insert(6,"C");
System.out.println(buffer.toString());

The result is as follows:

World Class buffering mechanism!

Summary
In this chapter we have examined how Java deals with the data. The use of the stack 
and heap are important programming concepts that go a long way in explaining 
concepts such as the scope and lifetime of a variable. The difference between objects 
and primitive data types was introduced along with the initialization of variables. 
The initialization process will be covered in more detail in Chapter 6, Classes, 
Constructors, and Methods. The operators available in Java were listed along with the 
rules of precedence and associativity. In addition, the manipulation of character and 
string data was presented.

In the next chapter we will explore the decision constructs available in Java and how 
they can be used effectively. This will build upon the data types presented here.

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 76 ]

Certification objectives covered
In this chapter we covered the following:

• Understanding how Java handles data
• Investigating the relationships between identifiers, the Java class,  

and memory
• Defining the scope of the variables
• Initializing identifiers
• Building expressions using operators and operands
• Working with strings
• Understanding the difference between objects and primitive data types

Test your knowledge
1. What will happen when you compile and run the following code?

public class ScopeClass{
   private int i = 35;
   public static void main(String argv[]){
      int i = 45;
      ScopeClass s = new ScopeClass ();
      s.someMethod();
   }
   public static void someMethod(){
      System.out.println(i);
   }
}

a. 35 will be printed out
b. 45 will be printed out
c. A compile time error will be generated
d. An exception will be thrown 

2. Which of the following lines will compile without warning or error?
a. char d="d";

b. float f=3.1415;

c. int i=34;

d. byte b=257;

e. boolean isPresent=true;

http://www.it-ebooks.info/


Chapter 2

[ 77 ]

3. Given the following declaration:
public class SomeClass{
   public int i;
   public static void main(String argv[]){
      SomeClass sc = new SomeClass();
      // Comment line
   }
}

Which of the following statements are correct if they replace the  
comment line?

a. System.out.println(i);

b. System.out.println(sc.i);

c. System.out.println(SomeClass.i);

d. System.out.println((new SomeClass()).i);

4. Given the following declaration:
StringBuilder sb = new StringBuilder;

Which of the following are valid uses of the sb variable?
a. sb.append(34.5);

b. sb.deleteCharAt(34.5);

c. sb.toInteger(3);

d. sb.toString();

5. Which of the following will return the position of the first letter a where the 
string s contains "banana"?

a. lastIndexOf(2,s);

b. s.indexOf('a');

c. s.charAt(2);

d. indexOf(s,'v');

http://www.it-ebooks.info/


Java Data Types and Their Usage

[ 78 ]

6. Given the following code, which expression displays the word "Equal"?
String s1="Java";
String s2="java";
if(expression) {
   System.out.println("Equal");
} else {
   System.out.println("Not equal");
}

a. s1==s2

b. s1.matchCase(s2)

c. s1.equalsIgnoreCase(s2)

d. s1.equals(s2)

http://www.it-ebooks.info/


Decision Constructs
Every application makes some kind of decisions. In Java there are several 
programming constructs that we can use to make these decisions. These include 
logical expressions, the if statement, and the switch statement. The purpose of this 
chapter is to introduce these tools to you and illustrate how they can be used.

We will begin with a discussion of logical expressions as they are central to making 
decisions. Logical expressions are expressions that return a Boolean value.

Next, we will examine how the logical expressions can be used with the if statement 
and the conditional operator. There are numerous variations on how a if statement 
can be structured and we will look at their advantages and disadvantages.

This will be followed up with a discussion of the switch statement. Prior to Java 7, 
switch statements were based on integer or enumeration values. In Java 7, we can 
now use String values. The use of Strings and their potential pitfalls are examined.

The last section addresses general control structure issues along with the impact of 
floating point numbers when making decisions, comparing objects, and a discussion 
of useful ways of organizing code.

In this chapter we will:

• Examine the nature of decision constructs
• Examine the basics of logical expressions
• Learn how to use the if statement and look at its variations
• Understand the conditional operator and when it should be used
• Explore the switch statement and Java 7's use of strings with this statement
• Determine how floating point number comparisons impact control
• Examine the pitfalls associated with comparing objects

http://www.it-ebooks.info/


Decision Constructs

[ 80 ]

Flow of control
In any application, the flow of control within a program is determined by the 
order in which the statements are executed. It is convenient to consider groups of 
statements as blocks whose execution is controlled by decision statements. A block 
can be considered to be an individual statement or several statements contained 
within a block statement. A block statement in Java is a group of statements enclosed 
in open and close curly braces.

Control statement – an overview
Control structures are those parts of the language that determine the order in which 
individual statements are executed. Without control structures, statements are 
executed sequentially, as shown in the following code snippet:

hours ==35;
payRate = 8.55;
pay = hours * payRate;
System.out.println(pay);

To vary the order in which the statements are executed, control statements are used. 
In Java, these statements include:

• The if statement: This statement is frequently used to decide which of two 
branches to take

• Conditional operator: This statement is a simplified and limited form of the 
if statement

• The switch statement: This statement is used to decide which of several 
branches to take

The switch statement uses either an integer, enumeration, or a string value to make 
a decision. To understand the if statement requires an understanding of the logical 
expressions. This is covered in the next section.

http://www.it-ebooks.info/


Chapter 3

[ 81 ]

Logical expressions
As with all expressions, a logical expression consists of operators and operands. In 
Java there are a limited number of logical operators as summarized in the following 
table. It is a subset of the operators listed in Chapter 2, Java Data Types and Their Usage:

Precedence Operator Associativity Meaning
1 …

! Right Logical complement
…

…
5 <, <=, >, and >= Left Logical

instanceof Left Type comparison
6 == and != Left Equality and inequality
…
10 && Left Logical AND
11 || Left Logical OR
12 ?: Right Conditional
…

The operands of a logical expression may be of any data type, but a logical 
expression will always evaluate to a true or a false value.

Do not confuse the bitwise operators, &, ^, and | with the 
corresponding logical operators && and ||. The bitwise 
operators perform similar operations as the logical operators, 
but do it on a bit-by-bit basis.

Boolean variables
The words true and false are keywords in Java. Their names correspond to their 
values and they can be assigned to Boolean variables. A Boolean variable can be 
declared with the boolean keyword followed by the variable name and an optional 
initial value:

boolean isComplete;
boolean isReady = true;  // Initialized to true
boolean errorPresent;

http://www.it-ebooks.info/


Decision Constructs

[ 82 ]

When a logical expression is evaluated, it will return either a true or a false value. 
Examples of logical expressions include the following:

age > 45
age > 45 && departmentNumber == 200
((flowRate > minFlowRate) ||  
    ((flowRate > maxFlowRate) && (valveA == off)))

It is a good practice to give a Boolean variable a name that reflects a state of true 
or false. The isComplete variable implies that an operation has completed. The 
variable, isReady, if set to true suggests that something is ready.

The equality operator
The equality operator consists of two equals signs and when evaluated will return 
either a true or a false value. The assignment operator uses a single equal sign 
and will modify its left operand. To illustrate these operators, consider the following 
example. If a value of a rate variable equals 100, we could assume that an error 
is present. To reflect this error condition we could assign a true value to the 
errorPresent variable. This can be performed using both the assignment and the 
equality operators.

int rate;
rate = 100;
boolean errorPresent = rate==100;
System.out.println(errorPresent);

When the preceding code snippet is executed we get the following output:

true

The logical expression, rate==100, compares the value stored in rate to the integer 
literal 100. If they are equal, which is the case here, the expression returns true. The 
true value is then assigned to errorPresent. If the value stored in rate had not 
been 100, then the expression will return a value of false. We will examine the use 
of the equality operator in more depth in the Comparing floating point numbers and 
Comparing objects sections.

Relational operators
Relational operators are used to determine the relationship, or relative ordering, 
between two operands. These operators frequently use two symbols. For example, 
greater than or equal to is expressed using the >= operator. The ordering of the 
symbols is important. Using => is not legal.

http://www.it-ebooks.info/


Chapter 3

[ 83 ]

The relational operators are listed in the following table:

Operator Meaning Simple example
< Less than age<35

<= Less than or equal age<=35

> Greater than age>35

>= Greater than or equal age>=35

== Equal age==35

If we wish to determine whether an age is greater than 25 and less than 35, we will 
have to use the age variable twice and in combination with the && operator, shown 
as follows:

age > 25 && age < 35

While the following expression may make sense to us, it is illegal in Java.

25 < age < 35

The reason that the variable age must be used twice, as in the preceding example, is 
because the relational operators are binary operators. That is, each binary operator 
acts on two operands. In the preceding expression, we compared 25 to see if it is less 
than age. The operation will return either a true or a false value. Next, the true or 
false result will be compared to 35 which does not make sense and is illegal.

These are the rules of the language. We can't break these rules, therefore it is 
important for us to understand the rules.

Logical operators
When we think about how we make decisions, we often use logical constructs such 
as AND and OR. We may make a decision if two conditions are both true, or we may 
decide to do something if either of the two conditions are true. The AND operator 
implies that both conditions must be true while OR implies that only one of the 
conditions need to be true.

These two operations are the basis for most logical expressions. We will often decide 
to do something if some condition is not true. We may decide not to walk the dog 
if it is raining. The NOT is also an operator used to make decisions. When used, it 
changes a true to a false and a false to a true.

http://www.it-ebooks.info/


Decision Constructs

[ 84 ]

There are three logical operators implementing these logical constructs in Java. They 
are summarized in the following table:

Operator Meaning Simple Example
&& AND age > 35 && height < 67

|| OR age > 35 || height < 67

! NOT !(age > 35)

The AND, OR, and NOT operators are based on the following truth tables:

AND True False OR True False Not
True True False True True True True False
False False False False True False False True

Some decisions can be more complicated and we express these decision evaluations 
using more complex combinations of the operators, &&, ||, or !. We may decide to 
go to the movie if it is not raining and if either we have enough money or a friend is 
going to pay our way.

If (it is not raining) AND

          ( (we have enough money) OR (a friend will pay our way)) THEN 

We will go to the movie

Parentheses can be used to control the order of evaluation of logical operators in 
the same way they control the order of evaluation of arithmetic operators. In the 
following code sequence, the existence of errors is determined by the values stored 
in the rate and period variables. These statements are equivalent, but differ in their 
use of parentheses. The use of the parentheses in the second statement is not strictly 
needed but it does make it clearer:

errorPresent = rate == 100 || period > 50;
errorPresent = (rate == 100) || (period > 50);

In the following statement, a set of parentheses is used to force the || operator to be 
executed before the && operator. As the && operator has higher precedence than the 
|| operator, we need to use parentheses to change the order of evaluation:

errorPresent = ((period>50) || (rate==100)) && (yaw>56);

Parentheses always take precedence over other operators.

http://www.it-ebooks.info/


Chapter 3

[ 85 ]

Short circuit evaluation
Short circuiting is the process of not completely evaluating a logical expression once 
the result becomes obvious. There are two operators in Java that short circuit—the 
logical && and || operators.

Using the && operator
Let's consider the logical && operator first. In the following example, we are trying 
to determine if sum is greater than 1200 and amount is less than 500. For the logical 
expression to return true, both conditions must be met:

if (sum > 1200 && amount <500)...

However, if the first condition is false then there is no reason to evaluate the rest of 
the expression. Regardless of the value of the second condition, the && operator will 
return false. With short circuiting, the second condition is not evaluated, saving some 
processing time especially if the operation is time consuming.

We can verify this behavior by using the following two functions. They both return 
false values and display messages as they execute:

private static boolean evaluateThis() {
    System.out.println("evaluateThis executed");
    return false;
}
private static boolean evaluateThat() {
    System.out.println("evaluateThat executed");
    return false;
}

Next, we use them in an if statement, shown as follows:

if(evaluateThis() && evaluateThat()) {
    System.out.println("The result is true");
} else {
    System.out.println("The result is false");
}

When we execute the preceding code sequence, we get the following output:

evaluateThis executed

The result is false

The evaluateThis method executed and returned false. As it returned false, the 
evaluateThat method was not executed.

http://www.it-ebooks.info/


Decision Constructs

[ 86 ]

Using the || operator
The logical || operator works in a similar fashion. If the first condition evaluates to 
true, there is no reason to evaluate the second condition. This is demonstrated in 
the following code sequence where the evaluateThis method has been modified to 
return true:

private static boolean evaluateThis() {
    System.out.println("evaluateThis executed");
    return true;
}

    ...

if(evaluateThis() || evaluateThat()) {
    System.out.println("The result is true");
} else {
    System.out.println("The result is false");
}

Executing this code sequence results in the following output:

evaluateThis executed

The result is true

Avoiding short circuit evaluation
Normally, short circuiting an expression is an efficient technique. However, if we 
invoked a method as we did in the last example and the program depended on the 
second method executing it can cause unanticipated problems. Suppose we had 
written the evaluateThat method as follows:

private static boolean evaluateThat() {
   System.out.println("evaluateThat executed");
   state = 10;
   return false;
}

When the logical expression is short circuited, the state variable will not be 
changed. If the programmer mistakenly assumed that the evaluateThat method 
would always be executed, then this could result in logic error when the value 
assigned to state is incorrect.

http://www.it-ebooks.info/


Chapter 3

[ 87 ]

The evaluateThat method is said to have a side effect. One can argue whether or 
not it is a good practice to use methods that have side effects. Regardless, you may 
run across code that uses side effects and you need to understand its behavior.

One alternative to avoid the short circuit of logical expressions is to use the bitwise 
AND (&) and OR (|) operators. These bitwise operators perform the && or || 
operations bit-by-bit for each bit of the operand. As the internal representation of 
the keywords, true and false, use a single bit, the result should be the same as 
returned by the corresponding logical operators. The difference is that the short 
circuit operation is not performed.

Using the previous example, if we use the & operator instead of the && operator, as 
shown in the following code snippet:

if (evaluateThis() & evaluateThat()) {
   System.out.println("The result is true");
} else {
   System.out.println("The result is false");
}

We will get the following output, showing that both methods were executed when 
we execute the code:

evaluateThis executed

evaluateThat executed

The result is false

The if statement
The if statement is used to control the flow of execution based on a Boolean 
expression. There are two basic forms that can be used and there are several 
variations. The if statement consists of the if keyword, followed by a logical 
expression enclosed in parentheses and then by a statement. In the following 
diagram a graphical depiction of a simple if statement is presented:

logical expression
True

False
Statement

http://www.it-ebooks.info/


Decision Constructs

[ 88 ]

The following illustrates this form of the if statement where we compare rate to 
100 and if it is equal to 100 we display a message to that effect:

if (rate==100) System.out.println("rate is equal to 100");

However, this is not as readable as the following equivalent example where we spilt 
the if statement across two lines:

if (rate == 100) 
   System.out.println("rate is equal to 100");

As we will see later, it is better to always use a block statement with if statements. 
The following is logically equivalent to the previous if statement but is more 
readable and maintainable:

if (rate == 100) {
    System.out.println("rate is equal to 100");
}

The second form of the if statement uses the else keyword to designate the 
statement to execute, if the logical expression evaluates to false. The following 
diagram graphically illustrates this version of the if statement:

logical expression
True

False

Then clauseElse clause

http://www.it-ebooks.info/


Chapter 3

[ 89 ]

The if statement is illustrated as follows, using the preceding example:

if (rate == 100) {
   System.out.println("rate is equal to 100");
} else {
   System.out.println("rate is not equal to 100");
}

If the expression evaluates to true, the first block is executed and then control passes 
to the end of the if statement. If the expression evaluates to false, the second block 
is executed. In this example, each block consists of a single statement but it doesn't 
have to be this way. Multiple statements can be used within the blocks. The choice of 
the number of statements depends on what we are trying to do.

The simpler form of the if statement eliminates the else clause. Suppose we want 
to display an error message when a certain limit has been exceeded, otherwise do 
nothing. This can be accomplished by not using the else clause, as shown in the 
following code snippet:

if (amount > limit) {
  System.out.println("Your limit has been exceeded");
}

The only time that the message is displayed is when the limit has been exceeded. 
Note the use of the block statement. Even though it includes only a single statement 
it is still a good practice to use it. If we ever decide we need to do something more 
than simply displaying the error message, such as change the limit or reset the 
amount, then we will need a block statement. It is best to be prepared:

Some developers do not like this simpler form and will always use an else clause.

if (amount > limit) {
  System.out.println("Your limit has been exceeded");
} else {
  // Do nothing
}

http://www.it-ebooks.info/


Decision Constructs

[ 90 ]

The Do nothing comment serves to document the else clause. Should we decide to 
actually do something, such as place an order, then this is where we would add the 
code. With the use of the explicit else clause, we at least have to think about what 
could, or should, go there.

You may also encounter the empty statement. This statement consists of a single 
semicolon. When executed, it does nothing. It is commonly used as a place holder 
indicating that nothing is to be done. The previous if statement is modified in the 
following code snippet to use the empty statement:

if (amount > limit) {
   System.out.println("Your limit has been exceeded");
} else {
   ;    // Do nothing
}

This does not add anything to the if statement and it is not a problem to use it here. 
In Chapter 5, Looping Constructs, we will examine how the careless use of an empty 
statement can cause problems.

Nested if statements
Nesting if statements within each other provide another technique for making 
decisions. A if statement is nested if it is enclosed within the then or else clause of 
another if statement. In the following example, a if statement is found within the 
then clause of the first if statement:

if (limitIsNotExceeded) {
   System.out.println("Ready");
   if (variationIsAcceptable) {
      System.out.println(" to go!");
   } else {
      System.out.println(" – Not!");
   }
   // Additional processing
} else {
   System.out.println("Not Ok");
}

There is no limit on where the nested if can be used. It can be in either the then or 
else clauses. In addition, there is no limit as to how deeply they can be nested. We 
can place a if inside of a if inside of a if and so forth.

http://www.it-ebooks.info/


Chapter 3

[ 91 ]

The else-if variation
In some programming languages there is a elseif keyword that provides a way of 
implementing a multiple-select if statement. Graphically, the logic of this statement 
is depicted in the following diagram:

logical expression
True

False

Then clause

Elseif expression

False

Elseif expression

False

Else clause

True
Then clause

True
Then clause

Java does not have the elseif keyword but the same effect can be achieved using 
nested if statements. Let's say we want to compute a shipping cost that is dependent 
on which of four regions of the country we are shipping to—East, North Central, 
South Central or West. We can do this using a series of if statements where each 
one is effectively nested inside of the else clause of the previous if statement. The 
first if statement that evaluates to true will have its body executed and the other if 
statements will be ignored:

if (zone.equals("East")) {
   shippingCost = weight * 0.23f;
} else if (zone.equals("NorthCentral")) {
   shippingCost = weight * 0.35f;
} else if (zone.equals("SouthCentral")) {
   shippingCost = weight * 0.17f;
} else {
   shippingCost = weight * 0.25f;
}

http://www.it-ebooks.info/


Decision Constructs

[ 92 ]

This code sequence is equivalent to the following:

if (zone.equals("East")) {
   shippingCost = weight * 0.23f;
} else 
   if (zone.equals("NorthCentral")) {
      shippingCost = weight * 0.35f;
   } else 
      if (zone.equals("SouthCentral")) {
         shippingCost = weight * 0.17f;
      } else {
         shippingCost = weight * 0.25f;
      }

The second example achieves the same result as the first one but requires more 
indention. In the The switch statement section, we will demonstrate how to achieve 
the same result using a switch statement.

The if statement – usage issues
There are several issues that you should keep in mind when working with if 
statements. In this section we will examine the following issues:

• Misusing the equality operator
• Using Boolean variables instead of logical expressions
• Using true or false in a logical expression
• The perils of not using a block statement
• The dangling else problem

Misusing the equality operator
One nice feature of the Java language is the inability to write code that accidentally 
uses the assignment operator where the equality operator was meant to be. This 
happens frequently in the C programming language where the code compiles cleanly 
but results in logic errors or worse terminates abnormally at run-time.

For example, the following code snippet compares rate to see if it is equal to 100:

if(rate == 100) {
   …
}

http://www.it-ebooks.info/


Chapter 3

[ 93 ]

However, if we had used the assignment operator instead, as shown in the following 
code snippet, we will generate a syntax error:

if(rate = 100) {
   …
}

A syntax error similar to the following will be generated:

incompatible types

  required: boolean

  found:    int

This type of errors is eliminated in Java. The use of the equality operator with 
floating point numbers is covered in the Comparing floating point numbers section.

Note that the error message says it found a int value. This is 
because the assignment operator returned a residual value. 
The assignment operator will modify the operand to its left 
and return the value that it assigned to that operand. This 
value is the residual value. It is left over from the operation.

Understanding the concept of residual value explains the error message. It also 
explains why the following expression works:

i = j = k = 10;

The effect of the expression is to assign 10 to each of the variables. The associativity 
for the assignment is right to left. That is, when there are multiple assignment 
operators in an expression, they are evaluated right to left. The value 10 is assigned 
to k and the assignment operator returned a residual value of 10. The residual value 
is then assigned to j and so forth.

Using inverse operations
When using relational operators, there are frequently more ways than one to write 
the expression. For example, the following code sequence determines whether 
someone is of legal age or not:

final int LEGAL_AGE = 21;
int age = 12;
     
if(age >= LEGAL_AGE) {
   // Process

http://www.it-ebooks.info/


Decision Constructs

[ 94 ]

} else {
   // Do not process
}

However, this code sequence could have also been written as follows:

if(age < LEGAL_AGE) {
   // Do not process
} else {
   // Process
}

Which approach is better? In this example, it could be argued that either approach 
will work. However, it is best to use the form which is most natural to the problem.

Note that the operations displayed in the following table are inverse operations:

Operation Inverse Operation
< >=

> <=

Note the use of the constant, LEGAL_AGE. It is preferable to use an identifier when 
possible for values such as a legal age. If we did not and the value was used in 
multiple places, then changing the value only has to be done in one place. In 
addition, it avoids the mistake of accidentally using the wrong number in one  
of its occurrences. Also, making the number constant eliminates the possibility  
of accidentally modifying a value that should not be modified while the program  
is running.

Using Boolean variables instead of  
logical expressions
As we saw in the Boolean variables section, we can declare a Boolean variable and then 
use it as part of a logical expression. We can use a Boolean variable to hold the result 
of a logical expression, as shown in the following code snippet:

boolean isLegalAge = age >= LEGAL_AGE;

if (isLegalAge) {
   // Process
} else {
   // Do not process
}

http://www.it-ebooks.info/


Chapter 3

[ 95 ]

This can be advantageous for two reasons:

• It allows us to re-use the result later, if we need to
• It makes the code more readable, if we use a meaningful Boolean  

variable name

We can also use the negation operator to change the order of the then and else 
clauses as follows:

if (!isLegalAge) {
   // Do not process
} else {
   // Process
}

This example will frequently be more confusing than the previous one. We could 
make it potentially even more confusing by using a poorly worded Boolean variable 
as follows:

if (!isNotLegalAge) {
   // Process
} else {
   // Do not process
}

While this is readable and valid, a general rule is to avoid double negatives just as 
we try to do in the English language.

Using true or false in a logical expression
The true and false keywords can be used in a logical expression. However, they 
are not necessary, are redundant, and clutter up the code with little value added. 
Note the use of the true keyword in the following logical if statement:

if (isLegalAge == true) {
   // Process
} else {
   // Do not process
}

The explicit use of the sub expression, == true, is not necessary. The same is true 
when using the false keyword. It is clearer and simpler to use the Boolean variable 
by itself as used in the earlier examples.

http://www.it-ebooks.info/


Decision Constructs

[ 96 ]

The perils of not using the block statement
As a block statement is considered to be a statement, this allows multiple statements 
to be included with either part of the if statement, as illustrated in the following 
code snippet:

if (isLegalAge) {
   System.out.println("Of legal age");
   System.out.println("Also of legal age");
} else {
   System.out.println("Not of legal age");
} 

Block statements are not actually required when only one statement is needed for the 
then or else clause, but are encouraged. A similar, but invalid if statement, would 
look like this:

if (isLegalAge) 
   System.out.println("Of legal age");
   System.out.println("Also of legal age");
else {
   System.out.println("Not of legal age");
}

The block statement was used to group the code together. The indention of the 
print statement does not group code. While it may imply that the first two println 
statements are part of the then portion of the if statement, the if statement will, in 
fact, result in a compile time error.

Here, the same code is presented but with different indention. The if statement has 
only a if clause with a single println statement. The second println statement 
follows and would be executed regardless of the value of the logical expression. 
This is followed by the else clause which is all by itself. The compiler treats this as a 
syntax error:

if (isLegalAge) 
   System.out.println("Of legal age");
System.out.println("Also of legal age");
else {
   System.out.println("Not of legal age");
}

http://www.it-ebooks.info/


Chapter 3

[ 97 ]

The generated syntax error will appear as follows:

'else' without 'if'

A general rule of thumb is to always use block statements 
for the then and else parts of a if statement.

A more insidious problem can occur if an extra statement is in the else clause. 
Consider the following example:

if (isLegalAge) 
   System.out.println("Of legal age");
else
   System.out.println("Not of legal age");
   System.out.println("Also not of legal age");

The third println statement is not a part of the else clause. Its indention is 
misleading. The equivalent code using proper indention is as follows:

if (isLegalAge) 
   System.out.println("Of legal age");
else 
   System.out.println("Not of legal age");
System.out.println("Also not of legal age");

It is clear that the third println statement will always be executed. The right way of 
writing this statement is as follows:

if (isLegalAge) {
   System.out.println("Of legal age");
} else {
   System.out.println("Not of legal age");
   System.out.println("Also not of legal age");
}

The dangling else problem
Another problem with not using a block statement is the dangling else problem. 
Consider the following series of tests where we need to make a few decisions:

• If limit is greater than 100 and the stateCode is equal to 45, we need to 
increase limit by 10

• If limit is not greater than 100, we need to decrease limit by 10

http://www.it-ebooks.info/


Decision Constructs

[ 98 ]

This logic is implemented below:

if (limit > 100) 
   if (stateCode == 45) 
      limit = limit+10;
else
   limit = limit-10;

However, this example does not properly implement the decision. There are at 
least two problems with this example. First, the indentation of the else keyword is 
irrelevant to the evaluation of the statements and is misleading. The else keyword 
is always paired with the closest if keyword which is, in this case, the second one. 
The compiler does not care how we indent our code. This means that the code is 
equivalent to the following:

if (limit > 100) 
   if (stateCode == 45) 
      limit = limit+10;
   else
      limit = limit-10;

Here, stateCode is only tested if the limit exceeds 100 and then limit is either 
increased or decreased by 10.

Bear in mind that the compiler ignores whitespaces (blanks, tabs, new line, and so 
on) in any statement. The code sequence could be written without whitespace but 
this makes it harder to read:

if (limit > 100) if (stateCode == 45) limit = limit+10;  
else limit = limit-10;

The second problem in this example is the failure to use block statements. Block 
statements not only provide a way of grouping statements but also provide a way of 
more clearly conveying the logic of an application. The problem can be resolved, as 
shown in the following code:

if (limit > 100) {
   if (stateCode == 45) {
      limit = limit+10;
   }
} else {
   limit = limit-10;
}

This is much clearer and accomplishes what was intended. It makes the  
debugging of the program easier and the code is more readable, which makes  
it more maintainable.

http://www.it-ebooks.info/


Chapter 3

[ 99 ]

Conditional operator
The conditional operator is a condensed, limited form of a if statement. It is 
condensed in that the decision is limited to a single expression. It is limited because 
multiple statements cannot be included in the then or else clauses. It is sometimes 
called the ternary operator due to its three components.

The essential form of the operator is as follows:

LogicalExpression ? ThenExpression : ElseExpression

If the LogicalExpression evaluates to true, then the result of the ThenExpression is 
returned. Otherwise the result of the ElseExpression is returned.

The following simple example tests to see if a number is less than 10. If it is, 1 is 
returned, otherwise 2 is returned. The then and else expressions in the example 
are trivial integer literals.

result = (num < 10) ? 1 : 2;

This is equivalent to the following if statement:

if (num < 10) {
   result = 1;
} else {
   result = 2;
}

Consider the process for calculating overtime. If the employee works 40 hours or less, 
pay is computed as the number of hours worked times his pay rate. If more than 40 
hours are worked, then the employee is paid time and a half for those hours over 40.

float hoursWorked;
float payRate;
float pay;

if (hoursWorked <= 40) {
   pay = hoursWorked * payRate;
} else {
   pay = 40 * payRate + (hoursWorked - 40) * payRate;
}

This operation can be perfomed using a conditional operator, shown as follows:

payRate = (hoursWorked <= 40) ? 
   hoursWorked * payRate : 
   40 * payRate + (hoursWorked - 40) * payRate;

http://www.it-ebooks.info/


Decision Constructs

[ 100 ]

While this solution is more compact, it is not as readable. In addition, the then and 
else clauses need to be an expression that returns some value. While the value does 
not have to be a number, it cannot be multiple statements unless a method is invoked 
containing those statements.

The use of the conditional operator is discouraged, except 
in trivial cases, primarily due to its readability issues. It 
is usually more important to have readable, maintainable 
code than to save a few lines of code.

The switch statement
The purpose of a switch statement is to provide a convenient and simple method 
of making multi-branch selections based upon integer, enumeration, or String 
expression. The switch statement has the following basic form:

switch ( expression ) {
  //case clauses
}

There are usually multiple case clauses within the statement block. The basic form of 
the case clause uses the case keyword followed by a colon, zero or more statements, 
and usually a break statement. The break statement consists of a single keyword, 
break, shown as follows:

case <constant-expression>:
  //statements
break;

There is also an optional default clause that can be used. This will catch any values 
not caught by a case clause. This is demonstrated as follows:

default:
  //statements
break;  // Optional

The basic form of the switch statement is shown as follows:

switch (expression) {
  case value: statements
  case value: statements
  …
  default: statements
}

http://www.it-ebooks.info/


Chapter 3

[ 101 ]

No two cases within a switch statement may have the same value. The break 
keyword is used to effectively end the code sequence and exit the switch statement.

When the expression is evaluated, control is passed to the case expression that 
matches the corresponding constant expression. If no case matches the value of the 
expression, control is passed to the default clause, if present. If the default prefix is 
not present, then none of the statements of switch will be executed.

We will illustrate the use of the switch statement for integer, enumeration, and 
String expressions. The use of strings in switch statements is new to Java 7.

Integer-based switch statements
The if statement can be used for choosing between multiple integer values. 
Consider the following example. A series of if statements could be used to 
calculate shipping cost based on an integer zone value, shown as follows:

private static float computeShippingCost(
         int zone, float weight) {
   float shippingCost;

   if (zone == 5) {
      shippingCost = weight * 0.23f;
   } else if (zone == 6) {
      shippingCost = weight * 0.23f;
   } else if (zone == 15) {
      shippingCost = weight * 0.35f;
   } else if (zone == 18) {
      shippingCost = weight * 0.17f;
   } else {
      shippingCost = weight * 0.25f;
   }

   return shippingCost;
}

A switch statement could be used for the same purpose, shown as follows:

switch (zone) {
   case 5:
      shippingCost = weight * 0.23f;
      break;
   case 6:
      shippingCost = weight * 0.23f;
      break;

http://www.it-ebooks.info/


Decision Constructs

[ 102 ]

   case 15:
      shippingCost = weight * 0.35f;
      break;
   case 18:
      shippingCost = weight * 0.17f;
      break;
   default:
      shippingCost = weight * 0.25f;
}

Don't forget that integer data types include byte, char, 
short, and int. Any of these data types can be used with an 
integer switch statement. The data type long is not allowed.

The order of the case and default prefixes is unimportant. The only restriction is that 
the constant-expressions must all be unique. If the break statement is not the last 
case clause, then it may need a break statement, otherwise control will pass to the 
case clause that follows it:

switch (zone) {
   case 15:
      shippingCost = weight * 0.35f;
      break;
   default:
      shippingCost = weight * 0.25f;
      break; // Only needed if default is not
             // the last case clause
   case 5:
      shippingCost = weight * 0.23f;
      break;
   case 18:
      shippingCost = weight * 0.17f;
      break;
   case 6:
      shippingCost = weight * 0.23f;
      break;
}

For readability purposes a natural order is usually maintained which 
is normally sequential. Using this order makes it easier to find a 
case clause and to make sure that cases are not left out accidentally.

http://www.it-ebooks.info/


Chapter 3

[ 103 ]

The case and default prefixes do not alter the flow of control. Control will flow from 
one case to the next succeeding case unless the break statement is used. As zones 5 
and 6 use the same formula to calculate the shipping cost, we could use back to back 
case statements without the use of the break statement:

switch (zone) {
   case 5:
   case 6:
      shippingCost = weight * 0.23f;
      break;
   case 15:
      shippingCost = weight * 0.35f;
      break;
   case 18:
      shippingCost = weight * 0.17f;
      break;
   default:
      shippingCost = weight * 0.25f;
}

Break statements are needed to insure that only those statements associated with a 
case are executed. Break is not necessarily needed at the end of the default clause as 
control will normally flow out of the switch statement. However, it is often included 
for purposes of completeness, and is necessary if the default clause is not the last 
case in the switch statement.

Enumeration-based switch statements
Enumerations can also be used with a switch statement. This can make it more 
readable and maintainable. The following is duplicated from Chapter 2, Java Data 
Types and Their Usage. The variable direction is used to control the behavior of the 
switch statement, shown as follows:

private static enum Directions {
    NORTH, SOUTH, EAST, WEST
};

Directions direction = Directions.NORTH;

switch (direction) {
    case NORTH:
        System.out.println("Going North");
        break;
    case SOUTH:
        System.out.println("Going South");
        break;
    case EAST:

http://www.it-ebooks.info/


Decision Constructs

[ 104 ]

        System.out.println("Going East");
        break;
    case WEST:
        System.out.println("Going West");
        break;
}

When this is executed we get the following output:

Going North

String-based switch statements
To illustrate the use of a string with a switch statement, we will demonstrate the 
computation of the shipping cost based on a region as used in The else-if variation 
section. That implementation is shown as follows, for your convenience:

if (zone.equals("East")) {
   shippingCost = weight * 0.23f;
} else if (zone.equals("NorthCentral")) {
   shippingCost = weight * 0.35f;
} else if (zone.equals("SouthCentral")) {
   shippingCost = weight * 0.17f;
} else {
   shippingCost = weight * 0.25f;
}

Prior to Java 7, only integer variables could be used with a switch statement. By 
permitting the use of strings, programs can incorporate more readable code.

The following code snippet illustrates how to use a String variable with a case 
statement. The example provides an alternate implementation of the previous  
nested if statement:

switch (zone) {
   case "East":
      shippingCost = weight * 0.23f;
      break;
   case "NorthCentral":
      shippingCost = weight * 0.35f;
      break;
   case "SouthCentral":
      shippingCost = weight * 0.17f;
      break;
   default:
      shippingCost = weight * 0.25f;
}

http://www.it-ebooks.info/


Chapter 3

[ 105 ]

String issues with the switch statement
There are two other issues that should be considered when using strings with a 
switch statement:

• When null values are encountered
• The case-sensitive nature of strings

When a null value has been assigned to a string variable used within a switch 
statement, a java.lang.NullPointerException exception will be thrown. Of 
course, this will happen whenever a method is executed against a reference variable 
that has been assigned a null value. In Java 7, there is additional support for 
handling null values found in the java.util.Objects class.

The second thing to remember about strings and the switch statement is that the 
comparison made within a switch statement is case-sensitive. In the previous 
example, if a string value of east had been used, the East case would not have 
been matched and the default case would have been executed.

Control structure issues
So far, we have identified several types of decision constructs that are available in 
Java. For example, simple decisions are easily handled using a if statement. Either-or 
type of decisions can be addressed using a else if clause or a switch statement.

The proper use of control structures is paramount in developing good code. However, 
there is more to making decisions than simply choosing between different control 
constructs. We also need to test our assumptions and handle unexpected situations.

In this section we will start by addressing a few general issues that you should keep 
in mind when using decision constructs. This will be followed by an examination 
of various floating point issues that can prove troublesome to those unfamiliar 
with floating point number limitations. Next, we will briefly introduce the topic of 
comparing objects and conclude with an overview of three basic coding activities 
that may prove helpful in understanding the nature of programming.

General decision constructs issues
There are several issues that are important in the use of decision constructs:

• The structure of the decision statements
• Testing your assumptions
• Planning for failure

http://www.it-ebooks.info/


Decision Constructs

[ 106 ]

The overall structure of a decision making process can be well structured or it can  
be an ad hoc sequence of statements that are hard to follow. A well organized 
approach to this structure can improve the readability and maintainability of the 
decision process.

A program may be well structured and yet may not work as intended. This is often 
due to invalid assumptions. For example, if the values for an age are assumed to 
be non-negative, then the code that is used may be well formed, and from a logical 
standpoint may be impeccable. However, if the assumption that good values for 
an age are used is wrong, then the results may not be as expected. For example, if 
the age of a person is entered as negative, then the logic may fail. It is important to 
always test your assumptions or at least make sure the underlying data has passed 
some sort of quality control check. Always expect the unexpected. Techniques to 
assist in this process include:

• Always keep a else clause
• Test your assumptions
• Throw exceptions (to be covered in Chapter 8, Handling Exceptions 

in an Application)
• Always use block statements

When all else fails, use debugging techniques.

Floating point number considerations
Floating point numbers are represented internally using the IEEE 754 Floating Point 
Arithmetic standard (http://ieeexplore.ieee.org/xpl/mostRecentIssue.
jsp?punumber=4610933). These operations are normally performed in the software, 
because not all platforms provide hardware support for the standard. Performing 
these operations in the software will be slower than those executed directly in the 
hardware. The advantage of performing these operations in the software is that it 
supports the portability of applications.

Two floating point types are supported, float and double, with their precisions 
shown in the following table. In addition, the Integer and Float classes are 
wrapper classes for these two data types. Wrapper classes are used to encapsulate  
a value, such as an integer or floating point number:

Data type Size (bytes) Precision
float 4 23 binary digits
double 8 52 binary digits

http://www.it-ebooks.info/


Chapter 3

[ 107 ]

Working with floating point numbers can be more complex than working with  
other data types. There are several aspects of floating point numbers that need 
to be considered. These include:

• Special floating point values
• Comparing floating point numbers
• Rounding errors

Special floating point values
There are several special floating point values as summarized in the following table. 
They exist so that when error conditions occur there will be a representation that can 
be used to identify the error.

These values exist so that error conditions such as arithmetic overflow, taking the 
square root of a negative number, and dividing by 0 can yield a result that can 
be represented within the floating point value without throwing an exception or 
otherwise terminating the application:

Value Meaning May be generated by
Not A Number NaN: Represents the result of 

an operation that generated 
an undefined value

Division by zero

Taking the square root of a  
negative number

Negative 
infinity

A very small value A negative number divided by zero

Positive infinity A very large value A positive number divided by zero
Negative zero Negative zero A negative number is very  

close to zero but cannot be 
represented normally

NaN can be represented in code by Float.NaN and Double.NaN, if necessary. 
Performing an arithmetic operation with a NaN value will result in a NaN result. 
Casting a NaN to an integer will return 0 which could result in an application error. 
The use of NaN is illustrated in the following code sequence:

float num1 = 0.0f;

System.out.println(num1 / 0.0f);
System.out.println(Math.sqrt(-4));
System.out.println(Double.NaN + Double.NaN);
System.out.println(Float.NaN + 2);
System.out.println((int) Double.NaN);

http://www.it-ebooks.info/


Decision Constructs

[ 108 ]

When executed we get the following output:

NaN

NaN

NaN

NaN

0

Infinity is represented in Java using either of the following fields. As their names 
imply, we can represent either a negative or a positive infinity. Negative infinity 
implies a very small number and positive infinity represents a very large number:

• Float.NEGATIVE_INFINITY

• Double.NEGATIVE_INFINITY

• Float.POSITIVE_INFINITY

• Double.POSITIVE_INFINITY

In general, arithmetic operations involving infinite values will result in an infinite 
value. Those involving NaN will result in a NaN result. Division by zero will result 
in positive infinity. The following code snippet illustrates some of these operations:

System.out.println(Float.NEGATIVE_INFINITY);
System.out.println(Double.NEGATIVE_INFINITY);
System.out.println(Float.POSITIVE_INFINITY);
System.out.println(Double.POSITIVE_INFINITY);
System.out.println(Float.POSITIVE_INFINITY+2);
System.out.println(1.0 / 0.0);
System.out.println((1.0 / 0.0) - (1.0 / 0.0));
System.out.println(23.0f / 0.0f);
System.out.println((int)(1.0 / 0.0)); 
System.out.println( 
      Float.NEGATIVE_INFINITY == Double.NEGATIVE_INFINITY);

The output of this sequence is as follows:

-Infinity

-Infinity

Infinity

Infinity

Infinity

Infinity

NaN

Infinity

2147483647

True

http://www.it-ebooks.info/


Chapter 3

[ 109 ]

A negative zero can be generated by dividing a negative number by positive infinity 
or a positive number divided by negative infinity, as illustrated in the following code 
snippet. The output of both statements will be a negative zero:

System.out.println(-1.0f / Float.POSITIVE_INFINITY);
System.out.println(1.0f / Float.NEGATIVE_INFINITY);

0 and -0 are distinct values. However, when compared to each other they will be 
determined to be equal to each other:

System.out.println(0 == -0);

This generates the following output:

True

Comparing floating point numbers
Floating point numbers, as represented in a computer, are not actually real numbers. 
That is, there is an infinite number of floating point numbers in the numbering 
system. However, either 32 or 64 bits are used to represent a floating point number. 
This means that only a finite number of floating point numbers can be represented 
exactly. For example, the fraction 1/3 cannot be represented exactly in base 10. If we 
try, we get something like 0.333333. Likewise, there are some floating point numbers 
that cannot be represented exactly in base 2 such as the fraction 1/10.

This implies that comparing floating point numbers can be difficult. Consider the 
following example where we divide two numbers and compare the result to the 
expected quotient of 6:

double num2 = 1.2f;
double num3 = 0.2f;
System.out.println((num2 / num3) == 6);

The result, when executed, gives us an unexpected value, as follows:

false

This is because these numbers are not represented exactly using the type double. 
To get around this problem, we can examine the result of the operation and see how 
much difference there is between what we expect and what we actually get. In the 
following sequence, a difference, epsilon, is defined as the maximum difference that 
is acceptable:

float epsilon = 0.000001f;
if (Math.abs((num2 / num3) - 6) < epsilon) {
   System.out.println("They are effectively equal");

http://www.it-ebooks.info/


Decision Constructs

[ 110 ]

} else {
   System.out.println("They are not equal");
}

When this is executed we get the following output:

They are effectively equal

Also, when comparing Float or Double objects using the compareTo method, 
remember that these objects are ordered as follows from low to high:

• Negative infinity
• Negative numbers
• -0.0
• 0.0
• Positive numbers
• Positive infinity
• NaN

For example, the following code will return -1 indicating that a negative number is 
less than -0.0. The output will be true:

System.out.println((new Float(-2.0)).compareTo(-0.0f));

Rounding errors
It is important in some situations to watch out for rounding errors. Consider the 
following code sequence:

for(int i = 0; i < 10; i++) {
   sum += 0.1f;
}
System.out.println(sum);

When this code is executed, we get the following output:

1.0000001

This is the result of the rounding error whose origins derive from the inaccurate 
representation of the fraction 1/10.

It is not a good idea to use floating point numbers for exact 
values. This is the case for dollars and cents. Instead, use 
BigDecimal as it provides better accuracy and is designed 
to support this type of operation.

http://www.it-ebooks.info/


Chapter 3

[ 111 ]

The strictfp keyword
The strictfp keyword can be applied to a class, an interface, or a method. Prior 
to Java 2, all floating point calculations were performed in compliance with the  
IEEE 754 specifications. After Java 2, intermediate calculations were not restricted 
to the standard and allowed the use of extra bits available on some processors to 
improve precision. This can result in less portable applications due to differences  
in rounding. By using the strictfp keyword, all calculations will strictly abide by 
the IEEE standard.

Comparing objects
When comparing objects we need to consider:

• Comparing object references
• Comparing objects with the equals method

When comparing references, we determine whether two reference variables point to 
the same object or not. If we want to determine whether two reference variables that 
point to two different objects are the same, we use the equals method.

These two comparisons are illustrated in the following figure. The three references 
variables r1, r2, and r3, are used to reference two objects. The variables r1 and r2 
reference Object 1 while r3 references Object 2:

Object 2

Object 1

r1

r2

r3

In this example, the following conditions are true:

• r1 == r2

• r1 != r3

• r2 != r3

• r1.equals(r2)

http://www.it-ebooks.info/


Decision Constructs

[ 112 ]

However, depending on the implementation of the equals method for the objects 
and the objects themselves, Object 1 may or may not be equivalent to Object 2. 
Comparisons of strings are covered in more detail in the String comparisons section 
in Chapter 2, Java Data Types and Their Usage. Overriding the equals method is 
discussed in Chapter 6, Classes, Constructors, and Methods.

Three basic coding activities
When writing code, it can be difficult to determine how to best organize your code. 
To help keep things in perspective, remember these three general coding activities:

• What you want to do
• How to do it
• When to do it

If a requirement of the application is to calculate the pay for an hourly 
employee, then:

• The "what" is to calculate pay
• The "how" determines how to write code to calculate the pay using the hours 

worked and the pay rate
• The "when" involves where to place the code, that is, after the hours worked 

and pay rate have been determined

While this may seem simple enough, many beginning programmers will have 
problems with the "when" of programming. This is especially true for event-driven 
programs typified by today's Graphical User Interface (GUI) based applications.

The goto statement
The goto statement is available in older programming languages and provides a 
powerful yet undisciplined way of transferring control within a program. Its use has 
often resulted in poorly organized programs and is discouraged. In Java, the use of 
the goto keyword is restricted. It simply cannot be used at all. It has been effectively 
banished from Java programming altogether.

http://www.it-ebooks.info/


Chapter 3

[ 113 ]

However, statements with similar functionality to the goto statement still exist in 
many languages. For example, the break statement causes control to immediately be 
transferred to the end of the switch statement, and as we will see later, out of loops. 
Labels can also be used in conjunction with the break statement as we will see in the 
Using labels section in Chapter 5, Looping Constructs. This transfer is immediate and 
unconditional. It is effectively a goto statement. However, the break statement, and 
in similar fashion the return statement and exception handling, are considered to be 
more structured and safer. Control is not transferred to any arbitrary location within 
the program. It is only transferred to a specific location relative to statements at the 
end of the switch statement.

Summary
Decision making is an important aspect of programming. Most programs' utility is 
based on its ability to make certain decisions. The decision making process is based 
on the use of control constructs such as logical expressions, if statements, and 
switch statements.

There are different types of decisions to be made and are supported in Java with 
different control constructs. The primary ones discussed in this chapter included the 
if statement and the switch statement.

Care must be taken with the use of these statements to avoid the pitfalls possible with 
their use. These include misuse of the comparison operator, not using block statements 
as a matter of habit, and avoiding the dangling else problem. We also examined some 
of the issues that can occur when working with floating point numbers.

Decision making in Java can be simple or complex. Simple and complex either-or 
decisions are best handled using the if then else statement. For some of the 
simpler decisions, the simple if statement or conditional statement can be used.

Multiple choice decisions can be facilitated using either the if statement or the 
switch statement, depending on the nature of the decision. More complex decisions 
can be handled by the nesting of if statements and switch statements.

Now that we've learned about decision constructs, we are ready to examine how to 
use arrays and collections, which is the topic of the next chapter.

http://www.it-ebooks.info/


Decision Constructs

[ 114 ]

Certification objectives covered
With regards to certification objectives, we will examine:

• Using operators and decision constructs
• Using Java relational and logical operators
• Using parentheses to override operator precedence
• Creating if and if/else constructs
• Using the switch statement

Test your knowledge
1. What is the result of the following operation?

System.out.println(4 % 3);

a. 0
b. 1
c. 2
d. 3

2. Which of the following expressions will evaluate to 7?
a. 2 + 4 * 3- 7

b. (2 + 4) * (3 - 7)

c. 2 + (4 * 3) - 7

d. ((2 + 4) * 3) - 7)

3. What is the output of the following statement?
System.out.println( 16  >>>  3);

a. 1
b. 2
c. 4
d. 8

http://www.it-ebooks.info/


Chapter 3

[ 115 ]

4. Given the following declarations, which of the following if statements will 
compile without errors?
int i = 3;
int j = 3;
int k = 3;

a. if(i > j) {}

b. if(i > j > k) {}

c. if(i > j && i > k) {}

d. if(i > j && > k) {}

5. What will be printed out when the following code is executed?
switch (5) {
case 0:
   System.out.println("zero");
   break;
case 1:
   System.out.println("one");
default:
   System.out.println("default");
case 2:
   System.out.println("two");
}

a. one
b. default and two
c. one, two, and default
d. Nothing, a compile-time error is generated

http://www.it-ebooks.info/


http://www.it-ebooks.info/


Using Arrays and Collections
This chapter, when boiled down to its essence, is about data structures. Specifically, 
it is about arrays—the java.util.Arrays and java.util.ArrayList classes. An 
array is a region of memory that can be addressed using a single variable name. It 
provides an efficient technique for accessing data in a sequential or random fashion. 
The Arrays class provides support for arrays while the ArrayList class provides 
array-like behavior but is not fixed in size.

We are concerned with how to create and use these data structures. A common 
operation is the traversal of an array or collection. We will see that Java supports 
several approaches permitting us to move through the elements of an array or an 
ArrayList object. Common to both arrays and collections is the ability to use the 
for-each statement. Iterators provide an alternate approach for accessing collections 
such as the ArrayList, and will also be discussed.

We will start by examining arrays in detail. This will include the creation and use of 
single and multidimensional arrays. Common array operations such as copying and 
sorting will be demonstrated.

As arrays are a simple data structure, most languages do not provide much  
support for operations on them. The java.util.Arrays class fills this void and 
supports important operations against arrays. These include copying, filling, and 
sorting the arrays.

The java.util package contains a number of interfaces and classes that can make 
working with collections of data easier. In this chapter we will examine the use of 
iterators and the ArrayList class which are part of this package. Iterators provide 
a technique for traversing over collections which can be very useful. The ArrayList 
class is frequently used instead of arrays when the size of the collection may change. 
It provides a number of valuable methods for the modification of collections.  
We will also examine how to encapsulate a collection, such as the ArrayList, in 
another class.

http://www.it-ebooks.info/


Using Arrays and Collections

[ 118 ]

Arrays
An array allows multiple values to be accessed using a single variable name. Each 
element of an array is of the same type. The element type can be a simple primitive 
data type or a reference to an object.

One-dimensional arrays are allocated to a contiguous region of memory. This means 
that the elements of the array can be accessed efficiently as they are adjacent to each 
other. Arrays use an integer index to access an element in the array. Indexes range 
from 0 to the length of the array minus one. We are able to access the elements of  
an array directly, in any order as needed by the application, without having to visit 
each element.

Though Java supports multidimensional arrays, one-dimensional arrays are most 
commonly used. Arrays can be used for a variety of purposes including:

• A collection of numbers representing ages
• A list of employee names
• A list of prices for an item in a store

The main disadvantage of arrays is that they have a fixed size. This makes it more 
difficult and less efficient to add, remove, or resize any list or collection of data 
represented by an array.

Our discussion will begin with the coverage of one-dimensional and 
multidimensional arrays. This is followed by discussions of common array 
techniques such as traversing an array and copying arrays. In the first two sections, 
we will use simple "for loops" to traverse array elements. Alternative methods are 
covered in the Traversing arrays section.

One-dimensional arrays
A one-dimensional array is intended to represent a simple linear list. The following 
code snippet illustrates the declaration and use of a one-dimensional array. The 
array, ages, is declared in the first statement as an array of the int type. In the 
second statement, memory is allocated for the array using the new operator. In this 
example, the array consists of 5 elements:

int[] ages;
ages = new int[5];

http://www.it-ebooks.info/


Chapter 4

[ 119 ]

The ages array has 5 elements allocated to it. The first index of any array is 0. The 
largest index of an array is its length - 1. Thus, the last index of the array is 4. A 
runtime exception will be generated if an index used is outside the legal range of 
values for an array. The array could have been declared and created using a single 
statement, shown as follows:

int[] ages = new int[5];

As an array name is a reference to an array, it is possible to assign a different array to 
the variable later in the program. We will demonstrate this later in the discussion.

An array is an object that is allocated from an area of memory known as the heap. 
The heap and program stack were introduced in the Stack and heap section in Chapter 
2, Java Data Types and Their Usage. In the following example, the first element of ages 
is assigned the value 35 and then displayed:

ages[0] = 35;
System.out.println(ages[0]);

Arrays possess the length property that returns the number of elements in the 
array. When the next code sequence is executed, it will return 5. Notice that length 
is not a method:

int length = ages.length;
System.out.println(length);

Arrays are represented in Java as objects. In the previous example, ages is an object 
reference variable which references the array that has been allocated to the heap. 
This is illustrated in the following diagram:

ages
main

35
0
0
0
0

http://www.it-ebooks.info/


Using Arrays and Collections

[ 120 ]

In this example, each element of the array was initialized to 0, by default, and then 
the first element was assigned a value of 35.

Any attempt to use an index that is outside the 
bounds of the array will generate a java.lang.
ArrayIndexOutOfBoundsException exception.

The placement of array brackets
There is a second option with regards to the placement of brackets when declaring an 
array. We can also place the brackets after the name of the array, shown as follows:

int ages[];

To the compiler, this is equivalent to the previous declaration. However, the 
placement of brackets with other uses of an array name is restricted. For example, we 
have to place the brackets after the array name when we are declaring or referencing 
elements of the array. If we attempt the following when declaring an array:

ages = new [5]int;

We will get a syntax error as follows:

<identifier> expected

';' expected

Likewise, if we try to use the brackets before the array name when referencing an 
element of the array, such as follows:

[0]ages = 0;

We get the following syntax error message:

illegal start of expression

incompatible types

  required: int[]

  found:    int

It is more common to see brackets used after the data type of the array. For example, 
most IDEs will at some point generate a main method. It frequently appears below 
with the brackets following the data type:

public static void main(String[] args) {
   ...
}

http://www.it-ebooks.info/


Chapter 4

[ 121 ]

Also, consider the declaration:

int[] arr1, arr2;

Both arr1 and arr2 are declared as arrays. This is a simpler way of declaring more 
than one array on a single line. However, it can be argued that the following is a 
better format as it is more explicit:

int arr1[], arr2[];

It can be also argued that declaring more than one variable on a line is a bad form. 
The best way of declaring these two arrays is as follows:

int[] arr1;
int[] arr2;

Initializing arrays
The elements of an array are initialized to default values as shown in the following 
table. This table is duplicated from the Initializing identifiers section of Chapter 2, Java 
Data Types and Their Usage, for your convenience:

Data type Default value (for fields)
boolean false
byte 0
char '\u0000'
short 0
int 0
long 0L
float 0.0f
double 0.0d
String (or any object) null

In the previous example, we assigned a value of 35 to the first element of the array. 
This is a simple, yet tedious way of initializing the array to values other than the 
default value.

An alternate technique is to use a block statement to initialize the array. This is 
illustrated in the following example, where ages is initialized to five different 
values. It is not necessary to specify the array size when using the block statement to 
initialize an array:

int ages[] = {35, 10, 43, -5, 12};

http://www.it-ebooks.info/


Using Arrays and Collections

[ 122 ]

A syntax error will be generated if you try to specify the size of the array, shown  
as follows:

int ages[5] = {35, 10, 43, -5, 12};

The message will appear as follows:

']' expected

';' expected

If we want to display the content of an array, there are several methods available. 
Here, we will use simple indexes and the length property. In the Traversing arrays 
section we will demonstrate other techniques.

The following code sequence shows the difference between using the toString 
method and a for loop to display an array:

int ages[] = {35, 10, 43, -5, 12};
System.out.println(ages.toString());

for(int i = 0; i < ages.length; i++) {
   System.out.println(ages[i]);
}

When executed, we get the following output:

[I@27341e11

35

10

43

-5

12

Notice the use of the toString method does not return the contents of the array. 
Rather, it returns a strange representation of the array. We have no control over  
the string returned by the toString method. However, the for loop gives us what 
we expected.

Remember that arrays in Java always begin with an 
index of 0.

http://www.it-ebooks.info/


Chapter 4

[ 123 ]

Instead of hard coding the size of the array as 5, as we did in an earlier example, 
a better approach is to use a constant. For example, the entire sequence could be 
rewritten as follows:

static final int SIZE = 5;

int ages[] = new int[SIZE];
// initialize ages as needed

for(int i = 0; i < ages.length; i++) {
   System.out.println(ages[i]);
}

Use named constants for array sizes. However, using the 
length attribute once the array is declared is preferred, 
as it is more maintainable should the array size change.

Arrays of objects
It is important to keep a clear distinction between an object reference variable and the 
object itself. An array of objects uses a reference variable, such as the names variable 
declared below, which is a single memory location that contains a reference to an 
array object. Each element of the array is another reference which may reference a 
string. Initially, they are assigned a null value:

public static void main(String args[]) {
   String names[] = new String[5];
   ...
}

The allocation of memory for this example is illustrated in the following diagram. 
However, we did not include the indexes for the array in the diagram. We can 
assume that the top element is at index 0 and the last element is at index 4:

names
main

null
null
null
null
null

http://www.it-ebooks.info/


Using Arrays and Collections

[ 124 ]

When a string is assigned to an element of the array, the array element is modified to 
reference that string as illustrated as follows:

names[2] = "Steve";

The following diagram illustrates the modification of the reference at index 2 so that 
it references the string:

names
main

null
null

null
null

“Steve”

Be careful when using arrays that might contain null values. Consider the following 
code sequence where we display the contents of the names array:

for(int i = 0; i < names.length; i++) {
   System.out.println(names[i]);
}

When executed, we will get the following output:

null

null

Steve

null

null

Multidimensional arrays
Many applications require the use of arrays with two or more dimensions. 
Tabular data with rows and columns or one that uses the x/y coordinate system 
are good candidates for representation using a two-dimensional array. Three or 
more higher dimensions are not as common, but a coordinate system using an x, 
y, and z value would use three dimensions. In this section, we will demonstrate 
multidimensional arrays using integers. However, the techniques are equally 
applicable to arrays of objects.

http://www.it-ebooks.info/


Chapter 4

[ 125 ]

An example of how a two-dimensional array is declared is shown as follows:

static final int ROWS = 2;
static final int COLS = 3;

int grades[][] = new int[ROWS][COLS];

This will create an array with 2 rows and 3 columns depicted logically, as shown in 
the following diagram:

Column Indexes

Row Indexes

0 1 2

0

1

Notice that the indexes start with a zero. We can initialize each element using a series 
of assignment statements as follows:

grades[0][0] = 0;
grades[0][1] = 1;
grades[0][2] = 2;
grades[1][0] = 3;
grades[1][1] = 4;
grades[1][2] = 5;

This is a bit tedious, but it illustrates the placement of numbers into the array, as 
shown in the following diagram:

Column Indexes

Row Indexes

0 1 2

0

1

0 1 2

3 4 5

Nested loops are useful for working with two-dimensional arrays. For example, to 
display the contents of such arrays, we will use a set of nested for loops as follows:

for (int rows = 0; rows < ROWS; rows++) {
   for (int cols = 0; cols < COLS; cols++) {
      System.out.printf("%d  ", grades[rows][cols]);
   }
   System.out.println();
}

http://www.it-ebooks.info/


Using Arrays and Collections

[ 126 ]

When executed, we get the output as follows:

0  1  2  

3  4  5  

Actually, Java does not support two-dimensional arrays in the strictest sense. In 
reality they are arrays of arrays. In languages such as C, two-dimensional arrays are 
stored in row-column order. This means that the two-dimensional array is mapped 
to a one-dimensional space where the first row is stored in the memory, followed by 
the second row and then the third and so forth. This is not applicable to Java.

Instead, what we actually have is a one-dimensional array of references to a series of 
other one-dimensional arrays. For example, we could have created the same grades 
array as:

grades = new int[ROWS][];
grades[0] = new int[COLS];
grades[1] = new int[COLS];

The array is allocated in the memory, as shown in the following diagram:

gradesmain

0
1
2

3
4
5

In a two-dimensional array, the rows do not necessarily have to be the same size. In 
the following code sequence, we create an array with different row lengths. Arrays of 
this type are called ragged arrays.

grades[0] = new int[4];
grades[1] = new int[2];

http://www.it-ebooks.info/


Chapter 4

[ 127 ]

The memory allocation is similar to the previous example, except for the difference 
in array lengths, as shown in the following diagram:

gradesmain

Array techniques
There are numerous techniques for working with arrays. In this section, we will 
examine many of these, including:

• Traversing arrays
• Comparing arrays
• Copying arrays
• Passing an array
• Using command-line arguments

We will demonstrate variations to each technique as appropriate. Passing a variable 
number of arguments to a method is covered in Chapter 6, Classes, Constructors, 
and Methods.

Traversing arrays
Traversing an array is the process of visiting each element of an array. This is 
frequently done starting with the first element and moving element by element until 
the end of the array is reached. However, it is also possible to move backwards or to 
skip elements. Here, we will focus on showing how we can traverse an array from 
beginning to end using two different techniques:

• Using simple for loops
• Using the for-each statement

http://www.it-ebooks.info/


Using Arrays and Collections

[ 128 ]

We will use the ages array, declared as follows, to illustrate how to traverse an array:

static final int SIZE = 5;
int[] ages = new int[SIZE];

In each example, we will use this code to initialize each element of the array to 5.

Using simple loops
Any simple loop can be used to traverse an array. Looping constructs are covered in 
more detail in Chapter 5, Looping Constructs. Here, we will use a for loop and a while 
loop. First, 'let's examine the for loop. In the following sequence, an integer variable 
starts at 0 and advances to the length of the array minus one:

for(int i = 0; i < ages.length; i++) {
      ages[i] = 5;
}

The equivalent while loop follows. Note the i variable is declared outside of 
the loop:

int i = 0;
while(i < ages.length) {
   ages[i++] = 5;
}      

The for loop is generally preferable because we know the length of the array and it is 
simpler for these types of problems. For both examples, we used the length property 
of the array to control the loop. This is preferable to using a constant variable that 
may have been used to declare the array. Consider the following situation where we 
redefine the array:

int[] ages = new int[SIZE];
...
for(int i = 0; i < SIZE; i++) {
   ages[i] = 5;
}

// Array redefined
int[] ages = new int[DIFFERENT_SIZE];
...
for(int i = 0; i < SIZE; i++) {
   ages[i] = 5;
}

http://www.it-ebooks.info/


Chapter 4

[ 129 ]

The second for loop will not execute properly because we forgot to change the SIZE 
constant and may even throw an exception if the array is smaller than SIZE. If we 
had used the length property instead, there would not have been a problem.

Notice, that the for loop, as written, declares the variable i within the for loop. This 
restricts access to the variable to only those statements within the for loop. In the 
while loop example, we declared i outside of the loop making it accessible inside, 
and outside, of the while loop. We could have rewritten the for loop to use an 
external i variable. However, it is considered to be better form to restrict access to a 
variable to only those statements that need access. Thus, if it is only needed inside of 
the loop then the for loop provides a better choice.

Using simple for statements can result in off-by-one errors (starting at 
the wrong beginning or ending index). For example, if the value used 
as the last index is larger than the size of the array minus one, then a 
ArrayIndexOutOfBoundsException exception will be thrown.

Using the for-each statement
The for-each statement provides a more convenient method of traversing an 
array if we do not need explicit access to each element's index value. The for-each 
parentheses' body consists of a data type, a variable name, colon, and then an array 
(or collection). The statement will iterate through the array starting with the first 
element and ending with the last. During each iteration the variable references that 
array element. The following illustrates the use of this statement with the ages array. 
During the first iteration, number references ages[0]. During the second iteration, 
number references ages[1]. This continues for-each element of the array:

for(int number : ages) {
   number = 5;
}

The for-each statement makes it easy to traverse an array. However, if we need to 
use the index of an array element, the statement does not provide access to its value. 
The traditional for loop is needed to access the index.

http://www.it-ebooks.info/


Using Arrays and Collections

[ 130 ]

The following table summarizes the differences between the use of the for loop and 
the for-each loop:

for loop for-each loop
Provides access to the array element

Provides access to the array index

Uses logical expression to control loop

Simplest

Comparing arrays
As an array variable is a reference variable, comparing array reference variables to 
determine equality will not always work. Here, we will examine several techniques 
for comparing arrays including:

• Element-by-element comparison
• Using the equality operator
• Using the equals method
• Using the deepEquals method

We will demonstrate these techniques by comparing two integer arrays.  Consider 
the following example where two arrays, arr1 and arr2, are equivalent after we 
initialize them to contain the same data:

public static void main(String[] args) {
   int arr1[];
   int arr2[];
   arr1 = new int[5];
   arr2 = new int[5];

   for(int i = 0; i < 5; i++) {
      arr1[i] = 0;
      arr2[i] = 0;
    }
  }

http://www.it-ebooks.info/


Chapter 4

[ 131 ]

The following diagram shows how memory is allocated for both arrays:

0
0
0
0
0

0
0
0
0
0

arr1

arr2
main

Element-by-element comparison
This simple approach will compare the corresponding elements of each array to 
determine if the arrays are equal. It starts by assuming they are equal and assigns a 
true value to the areEqual variable. If any comparison is false, then the variable is 
assigned the value of false:

boolean areEqual = true;
for (i = 0; i < 5; i++) {
   if(arr1[i]!= arr2[i]) {
      areEqual = false;
   }
}
System.out.println(areEqual);

When this sequence is executed, it will display true. This is not the best approach. 
Using indexes is an error prone and tedious approach.

Using the equality operator
If we try to compare the two arrays using the equality operator, we find that the 
result of the comparison will be false:

System.out.println(arr1 == arr2);  //Displays false

http://www.it-ebooks.info/


Using Arrays and Collections

[ 132 ]

This is because we are comparing arr1 and arr2 which are array reference variables 
and not the arrays. The variables, arr1 and arr2, reference different objects in 
memory. The contents of these two reference variables are different, therefore,  
when they are compared to each other they are not equal. They don't reference  
the same object.

Using the equals method
We can use the equals method with arrays as we can with other objects. In the 
following example, the output will be false even though they are equivalent. This is 
because the equals method, as applied to arrays, tests for object equivalency and not 
object value equivalency.

System.out.println(arr1.equals(arr2));  // Displays false

Object equivalency refers to the comparison of two object reference variables. If these 
variables reference the same object, they are considered to be equivalent. Object 
value equivalency refers to the condition where two distinct objects are considered to 
be equivalent because their internal values are the same.

Using the deepEquals method
To compare two arrays correctly we need to use the Arrays class' equals or 
deepEquals methods. The equals method performs a comparison using object 
identities. The deepEquals method performs a more in depth examination of the 
elements for value equivalency.

The following statement will display true:

System.out.println(Arrays.equals(arr1,arr2));

The deepEquals method requires an array of objects. The two-dimensional grades 
array, used in the Multidimensional arrays section, satisfies the requirement as it is an 
array of arrays, that is, an array that references other arrays (which are objects).

If we create a second grade array, grades2, and populate it with the same values as 
grades, we can use these methods to test for equality. The creation and initialization 
of the grades2 array follows:

int grades2[][];
grades2 = new int[ROWS][];
grades2[0] = new int[COLS];
grades2[1] = new int[COLS];

grades2[0][0] = 0;
grades2[0][1] = 1;
grades2[0][2] = 2;

http://www.it-ebooks.info/


Chapter 4

[ 133 ]

grades2[1][0] = 3;
grades2[1][1] = 4;
grades2[1][2] = 5;

If we execute the following sequence:

System.out.println(grades == grades2);
System.out.println(grades.equals(grades2));
System.out.println(Arrays.equals(grades, grades2));
System.out.println(Arrays.deepEquals(grades, grades2));

We will get the following output:

false

false

false

true

The first three comparisons returned false because they did not adequately 
compare the two arrays. The fourth technique compared the arrays in depth and 
accurately determined their equivalency.

The following table summarizes these techniques:

Technique Comment
Element-by-element comparison This will compare arrays properly, if 

implemented correctly.
Using the equality operator This only works properly if the two 

reference variables reference the same object.
Using the array's equals method This only works properly if the two 

reference variables reference the same object.
Using the Array's class equals method This will work for one-dimensional arrays.
Using the Array's class deepEquals 
method

This performs a deeper comparison using 
the object's equals method.

Copying arrays
There are times when we need to copy one array to another. In this section, we will 
examine various techniques to achieve this goal. These include:

• Simple element-by-element copy
• Using the System.arraycopy method
• Using the Arrays.copyOf method

http://www.it-ebooks.info/


Using Arrays and Collections

[ 134 ]

• Using the Arrays.copyOfRange method
• Using the clone method

We will demonstrate the techniques using two one-dimensional arrays as 
declared below:

int arr1[] = new int[5];
int arr2[] = new int[5];

We will initialize each element of arr1 to its index with the following code:

for(int i = 0; i < arr1.length; i++) {
   arr1[i] = i;
}

In this section's examples, the content of the destination array follows as a comment.

We will also use the terms, shallow copy and deep copy. Shallow copy refers to 
when only the reference values are copied. After the copy operation, the original 
object has not been duplicated. In a deep copy, the reference to the object is not 
copied. Instead, a new copy of the object is created. We will see how some of the 
techniques illustrated here only perform a shallow copy which may not always  
be desirable.

Simple element-by-element copy
A simple technique is to use a for loop as illustrated below:

for(int i = 0; i < arr1.length; i++) {
   arr2[i] = arr1[i];
}  
// 0, 1, 2, 3, 4

This is a simple approach but you need to be careful to use the correct array indexes. 
This technique becomes more complicated with multidimensional arrays.

Using the System.arraycopy method
The System class' arraycopy method will attempt to copy all, or part, of one array to 
another. The beginning position in each array is specified, along with the number of 
elements to copy.

To copy all of the elements of arr1 to arr2 we can use the following code:

System.arraycopy(arr1, 0, arr2, 0, 5);
// 0, 1, 2, 3, 4

http://www.it-ebooks.info/


Chapter 4

[ 135 ]

The parameters of this method are detailed in the following table:

Parameter Description
1 The source array
2 The starting index in the source array 
3 The destination array
4 The starting index in the destination array 
5 The number of elements to copy

The next sequence copies the first three elements of arr1 to the last three elements 
of arr2:

System.arraycopy(arr1, 0, arr2, 2, 3);
// 0  0  0  1  2

We can also copy part of one array to other positions within the same array. Here we 
copy the first two elements to the last two elements of the arr1 array:

System.arraycopy(arr1, 0, arr1, 3, 2);
// 0  1  2  0  1

There are numerous opportunities for exceptions to occur when using this  
technique. If either array reference is null, a NullPointerException 
exception is thrown. If the array indexes are invalid, then we will get a 
IndexOutOfBoundsException exception.

The arraycopy method will copy the specified elements of the source array to 
the corresponding element of the destination array. There are two possible results 
depending on the data type of the array. They are as follows:

• If the array element type is a primitive data type, then the two arrays are 
effectively identical.

• If the array element type is a reference, then both arrays will be identical 
but they will both reference the same objects.  This is usually not the effect 
anticipated or desired.

In the following code sequence, an attempt is made to create an identical copy of the 
StringBuilder array, arr3:

StringBuilder arr3[] = new StringBuilder[4];
arr3[0] = new StringBuilder("Pine");
arr3[1] = new StringBuilder("Oak");
arr3[2] = new StringBuilder("Maple");
arr3[3] = new StringBuilder("Walnut");

http://www.it-ebooks.info/


Using Arrays and Collections

[ 136 ]

StringBuilder arr4[] = new StringBuilder[4];
System.arraycopy(arr3, 0, arr4, 0, 4);

However, arr4 contains the same object reference variables used by arr3. The 
corresponding element of both arrays reference the same object. The creation of an 
identical array with references to distinct strings is achieved with the following code:

for (int i = 0; i < arr3.length; i++) {
   arr4[i] = new StringBuilder(arr3[i]);
}

We created a new StringBuilder object for-each element of the destination array.  
This approach is necessary if a deep copy is needed.

Using the Arrays.copyOf method
The Arrays class' copyOf method will create a new array based on an existing array. 
The first argument of the method specifies the original array. Its second argument 
specifies how many elements to copy. In the following example, we create a new 
array based on the first three elements of arr1:

arr2 = Arrays.copyOf(arr1, 3);
// 0  1  2

The new array can be larger than the original array as illustrated with the  
following code:

arr2 = Arrays.copyOf(arr1, 10);
// 0  1  2  3  4  0  0  0  0  0

The last five elements of arr2 will be padded with zeros.

If the array is an array of objects, a copy of the original object is assigned to the  
new array.

Using the Arrays.copyOfRange method
The Arrays class' copyOfRange method will create a new array based on a sub-
range of elements in an existing array. The first argument of the method specifies 
the original array. Its second argument specifies the beginning index and the last 
argument specifies the ending index exclusive. In the following example, we create  
a new array based on the last two elements of arr1:

arr2 = Arrays.copyOfRange(arr1, 3, 5);
//  3  4

Notice that the last argument is not a valid index for the arr1 array. This works here 
because the last argument is exclusive. It does not include that element.

http://www.it-ebooks.info/


Chapter 4

[ 137 ]

In fact, if we specify a value such as 8 in the next example, the new array is padded 
with zeros:

arr2 = Arrays.copyOfRange(arr1, 3, 8);
//     3  4  0  0  0

Using the clone method
You can also use the Object class' clone method to create a copy of an array:

arr2 = arr1.clone();

However, this only makes a shallow copy of the original object. With an array of 
primitives such as the above integer array, this is not a problem. With an array of 
references to objects, both arrays will reference the same objects.

The following table summarizes the copying techniques introduced in this section:

Technique Comment
Simple element-by-element copy Tedious but can implement either a 

shallow or deep copy
Using the System.arraycopy method Performs a shallow copy
Using the Arrays.copyOf method Performs a deep copy of the entire array
Using the Arrays.copyOfRange method Performs a deep copy of part of an array
Using the clone method Performs a shallow copy

Passing arrays
The advantage of passing an array to a method is that it allows us to perform the 
same operation against more than one array. To pass an array to a method, we use 
the array name in the method call and declare a reference to the passed array in 
the method. This is illustrated below with a call to the displayArray method. This 
method simply displays the array.

displayArray(arr2);
   ...
private static void displayArray(int arr[]) {
   for(int number : arr) {
      System.out.print(number + "  ");
   }
   System.out.println();
}

http://www.it-ebooks.info/


Using Arrays and Collections

[ 138 ]

Notice that we are "passing a reference" to the arr2 array "by value". That is, if we 
want, we can read and write the elements of the arr2 array in the method. However, 
if we modify the arr parameter, the original arr2 variable is not modified.

Consider the method in the following code that attempts to change what the arr2 
reference variable points to:

System.out.println("Length of arr2: " + arr2.length);
changeArray(arr2);
System.out.println("Length of arr2: " + arr2.length);
...    
private static void changeArray(int arr[]) {
   arr = new int[100];
   System.out.println("Length of arr: " + arr.length);
}

When we execute this code, we get the following output:

Length of arr2: 5

Length of arr: 100

Length of arr2: 5

The value of arr was changed but the value of arr2 was not changed. The following 
diagram should help clarify this behavior:

0
0
0
0
0

0
0
0

0

arr

arr2

changeArray

main

0
0
0
0
0

arr

arr2

changeArray

main

Before allocation of
new array

After allocation of
new array

. . .

http://www.it-ebooks.info/


Chapter 4

[ 139 ]

Using command-line arguments
When a Java application executes, the first method that is executed is the main 
method. This method passes an argument, an array of String objects called args. 
These strings correspond to those provided on the command line.

The length property of a Java array will tell us how many command-line arguments 
were used. The first argument of the array will contain the first command-line 
parameter. The second will contain the second command-line parameter, and  
so forth.

The following CommandLineDemo application illustrates the use of the args array:

public class CommandLineDemo {

   public static void main(String args[]) {
      System.out.println("The command line has " +  
          args.length + " arguments");
      for (int i = 0; i < args.length; i++) {
         System.out.println("\tArgument Number " + i + 
                  ": " + args[i]);
      }
   }
}

Consider that the application is invoked with the following command-line 
arguments:

java CommandLineDemo /D 1024 /f test.dat

The output of the program would appear as follows:

The command line has 4 arguments

        Argument Number 0: /D

        Argument Number 1: 1024

        Argument Number 2: /f

        Argument Number 3: test.dat

http://www.it-ebooks.info/


Using Arrays and Collections

[ 140 ]

The Arrays class
The java.util.Arrays class possesses several methods useful for working with 
arrays. Every method of the class is a static method which means that we do not 
have to create an instance of the Arrays class before we use its methods. The class is 
designed to work with arrays and perform common operations on arrays. The types 
of operations available include:

• Returning a List based on an array
• Performing a binary search
• Making copies of an array
• Determining the equality of two arrays
• Filling arrays
• Sorting arrays

We have seen the use of several of these techniques in earlier sections. Here we will 
demonstrate the use of the asList, fill, toString, and deepToString methods.

Consider the following declarations. We will declare an integer array and then an 
array list. Two strings will be added to the ArrayList object. We will also create an 
array of mixed objects and an array of strings. The ArrayList class is discussed in 
more detail in the ArrayList section:

int arr1[] = new int[5];
ArrayList list = new ArrayList();
list.add("item 1");
list.add("item 2");

Object arr2[] = {"item 3", new Integer(5), list};
String arr3[] = {"Pine", "Oak", "Maple", "Walnut"};

Next, we will fill the integer array with the number 5 using the fill method:

Arrays.fill(arr1,5);

The asList, toString, and deepToString methods are then used against these 
arrays, shown as follows:

System.out.println(Arrays.asList(arr3));
System.out.println(Arrays.toString(arr1));
System.out.println(Arrays.deepToString(arr2));

http://www.it-ebooks.info/


Chapter 4

[ 141 ]

When executed we get the following output:

[Pine, Oak, Maple, Walnut]
 [5, 5, 5, 5, 5]
[item 3, 5, [item 1, item 2]]

The asList method takes its array argument and returns a java.util.List object 
representing the array. If either the array or the list is modified, their corresponding 
elements are modified. This is demonstrated in the following example:

List list2 = Arrays.asList(arr3);
list2.set(0, "Birch");
System.out.println(Arrays.toString(arr3));

The output of this sequence follows:

[Birch, Oak, Maple, Walnut]

The toString method returns a string representation of the array. The 
deepToString method is intended to return a string representation of its array 
argument where the array is more complex. This was reflected in arr2 which 
contains different objects including a list.

Key points to remember when using arrays
When working with arrays remember:

• Array indexes start at 0
• Indexes have to be integers
• An array can hold primitive data types or objects
• Arrays provide constant time random access which is an efficient way of 

accessing data
• Arrays provide good locality of reference 
• Arrays are more difficult to insert or remove elements than other  

data structures
• An index to an invalid element is possible

Locality of reference refers to the idea that if one data item is accessed, it is likely 
that another nearby data item will also be accessed. This results in faster read and 
write operations and is an important concept in virtual operating systems. Accessing 
elements of an array can be faster than accessing elements of a linked list when the 
linked list is spread across the memory.

http://www.it-ebooks.info/


Using Arrays and Collections

[ 142 ]

Be careful when accessing elements of an array. If the array is not properly 
initialized, then the element being indexed may be invalid resulting in a run-time  
or logic error.

Collections
The Collections Framework was introduced in Java 2 as a set of interfaces and classes 
that are superior to many of the interfaces and classes found in the earlier java.util 
package such as Vector, Stack, and HashTable. These interfaces and classes should 
always be used instead of the older ones whenever possible. Many of the Collection 
Framework interfaces and classes are summarized in the following table:

Interface Class
Set HashSet

TreeSet

List ArrayList

LinkedList

Map HashMap

TreeMap

The Collection Framework is covered in more detail at http://java.sun.com/
developer/onlineTraining/collections/Collection.html. Here, we will 
address the ArrayList class as it is a certification topic. It is recommended that the 
ArrayList class be used when a List is needed. As we will see, iterators are used 
with the ArrayList to support traversal of the list. We will start our discussion with 
coverage of this topic.

Iterators
Iterators provide a means of traversing a set of data. It can be used with arrays and 
various classes in the Collection Framework. The Iterator interface supports the 
following methods:

• next: This method returns the next element 
• hasNext: This method returns true if there are additional elements
• remove: This method removes the element from the list

http://www.it-ebooks.info/


Chapter 4

[ 143 ]

The remove method is an optional Iterator method. If an attempt is made to use 
this method and the implementation of the interface does not support this method, 
then an UnsupportedOperationException exception is thrown.

The ListIterator interface, when available, is an alternative to the Iterator 
interface. It uses the same methods and provides additional capabilities including:

• Traversal of the list in either direction
• Modification of its elements
• Access to the element's position

The methods of the ListIterator interface include the following:

• next: This method returns the next element
• previous: This method returns the previous element
• hasNext: This method returns true if there are additional elements that 

follow the current one 
• hasPrevious: This method returns true if there are additional elements that 

precede the current one 
• nextIndex: This method returns the index of the next element to be returned 

by the next method
• previousIndex: This method returns the index of the previous element to be 

returned by the previous method
• add: This method inserts an element into the list (optional)
• remove: This method removes the element from the list (optional)
• set: This method replaces an element in the list (optional)

ArrayList
The ArrayList class has several useful characteristics:

• It is flexible
• Grows as needed
• Possesses many useful methods
• Access is performed in constant time
• Insertion/deletion is performed in linear time
• Can be traversed with indexes, for-each loops, or iterators

http://www.it-ebooks.info/


Using Arrays and Collections

[ 144 ]

ArrayList uses an array internally. When it needs to grow, elements are copied 
from the old array to the new array.

The ArrayList class is not synchronized. When an iterator is obtained for 
a ArrayList object, it is susceptible to possible simultaneous overwrites 
with loss of data if modified in a concurrent fashion. When multiple threads 
access the same object, it is possible that they may all write to the object at the 
same time, that is, concurrently. When this simultaneous overwrite occurs, a 
ConcurrentModificationException exception is thrown.

Creating ArrayList
The ArrayList class possesses the following three constructors:

• A default constructor
• One that accepts a Collection object
• One that accepts an initial capacity

The capacity of a ArrayList object refers to how many elements the list can hold. 
When more elements need to be added and the list is full, the size of the list will be 
automatically increased. The initial capacity of a ArrayList created with its default 
constructor is 10. The following example creates two lists, one with a capacity of 10 
and the second with a capacity of 20:

ArrayList list1 = new ArrayList();
ArrayList list2 = new ArrayList(20);

The ArrayList class supports generics. Here, a list of strings is created:

ArrayList<String> list3 = new ArrayList<String>();

We will use list3 in the examples that follow.

Adding elements
There are several methods available for adding elements to an ArrayList. They can 
be placed into one of the following two categories:

• Appends one or more elements to the end of the list
• Inserts one or more elements at a position within the list

http://www.it-ebooks.info/


Chapter 4

[ 145 ]

The simplest case is illustrated here where a string is added to the end of creatures:

ArrayList<String> creatures = new ArrayList<String>();
creatures.add("Mutant");
creatures.add("Alien");
creatures.add("Zombie");
System.out.println(creatures);

The output of the print statement follows:

[Mutant, Alien, Zombie]

To insert an element at the index after the first element we use an index of 1:

creatures.add(1,"Godzilla");
System.out.println(creatures);

Executing the code will verify the actions, as shown below:

 [Mutant, Godzilla, Alien, Zombie]

The addAll method can also be used with Collections, as illustrated below:

ArrayList<String> cuddles = new ArrayList<String>();
cuddles.add("Tribbles");
cuddles.add("Ewoks");
     
creatures.addAll(2, cuddles);
System.out.println(creatures);

This will result in the cuddles being placed after the second element in the list, as 
shown below: 

[Mutant, Godzilla, Tribbles, Ewoks, Alien, Zombie]

The addAll method can also be used without an index argument. In this case, the 
new elements are added to the end of the list.

Retrieving elements
To retrieve an element at a given position, use the get method. This method takes a 
single integer index value. In the following example, we retrieve the third element of 
the list. Assuming that the creatures list contains [Mutant, Godzilla, Tribbles, 
Ewoks, Alien, Zombie], the following statement will retrieve Tribbles:

String element = creatures.get(2);

http://www.it-ebooks.info/


Using Arrays and Collections

[ 146 ]

The index of an element can be obtained using the indexOf method as illustrated in 
the next code sequence. If the element does not exist, the method will return a -1.

System.out.println(creatures.indexOf("Tribbles"));
System.out.println(creatures.indexOf("King Kong"));

Executing this code will generate the following output:

2

-1

The indexOf method will return the index of the first element found. The 
lastIndexOf method will return the index of the last element found in the list.

The toArray method will return an array of the objects in the list. In this example, 
the creatures list is returned and assigned to the complete array. If the array is not 
large enough, as is the case here, a new array is created and returned.

String[] complete = new String[0];
complete = creatures.toArray(complete);
for(String item : complete) {
   System.out.print(item + " ");
}
System.out.println();

When executed, we get the following output:

Mutant Godzilla Tribbles Ewoks Alien Zombie

There is also a subList method that returns part of the list given the starting and 
ending indexes.

Traversing a ArrayList object
To traverse a ArrayList object we can use one of several approaches:

• A simple for statement
• A for-each statement
• Using Iterator
• Using ListIterator

http://www.it-ebooks.info/


Chapter 4

[ 147 ]

We can use a for loop but it is more prone to error. The following code will display 
the list from the beginning to the end:

for(int i = 0; i < creatures.size(); i++) {
   System.out.print(creatures.get(i) + " ");
}
System.out.println();

Notice the use of the size method, which returns the number of elements in the list.

The for-each statement is the simplest approach, as illustrated in the following  
code snippet:

for(String creature : creatures) {
   System.out.print(creature + " ");
}
System.out.println();

The iterator method returns a Iterator object, as shown below:

Iterator<String> iterator = creatures.iterator();
while(iterator.hasNext()) {
   System.out.print(iterator.next() + " ");
}
System.out.println();

The ListIterator method returns a ListIterator object:

ListIterator<String> listIterator = 
            creatures.listIterator();
while(listIterator.hasNext()) {
   System.out.print(listIterator.next() + " ");
}
System.out.println();

All four of these techniques will produce the same output as follows:

Mutant Godzilla Tribbles Ewoks Alien Zombie

If we add the following code to the end of the previous code sequence, we can 
traverse the list in reverse order, as shown in the following code snippet:

while(listIterator.hasPrevious()) {
   System.out.print(listIterator.previous() + " ");
}
System.out.println();

The output is as follows:

Zombie Alien Ewoks Tribbles Godzilla Mutant

http://www.it-ebooks.info/


Using Arrays and Collections

[ 148 ]

Sorting a ArrayList object
While there are no specific methods in the ArrayList class for sorting, we can use 
the Arrays class' sort method, as illustrated in the following code snippet:

Collections.sort(creatures);
System.out.println(creatures);

The output is as follows:

[Alien, Ewoks, Godzilla, Mutant, Tribbles, Zombie]

An overloaded version of this method takes a Comparator object. This object 
determines how comparisons are made.

Other ArrayList methods
We can modify an element of a list using the set method. This method takes an 
index of the element to replace, and the new value. For example, to replace the first 
element of the creatures list with the string Ghoul we can use the following code:

creatures.set(0,"Ghoul");
System.out.println(creatures);

The replacement is verified by the following output:

[Ghoul, Godzilla, Tribbles, Ewoks, Alien, Zombie]

We can remove all or some of the elements of a list. The clear method will remove 
all elements. The remove method removes a single element and the removeAll 
method removes all values in a given collection from the list. The following code 
sequence illustrates these methods. The cuddles ArrayList was defined in the 
Adding elements section:

System.out.println(creatures);
creatures.remove(0);
System.out.println(creatures);

creatures.remove("Alien");
System.out.println(creatures);

creatures.removeAll(cuddles);
System.out.println(creatures);

creatures.clear();
System.out.println(creatures); 

http://www.it-ebooks.info/


Chapter 4

[ 149 ]

The output of this sequence is as follows:

[Mutant, Godzilla, Tribbles, Ewoks, Alien, Zombie]

[Godzilla, Tribbles, Ewoks, Alien, Zombie]

[Godzilla, Tribbles, Ewoks, Zombie]

[Godzilla, Zombie]

[]

While ArrayList is a powerful class, arrays should still be used if:

• There is a known number of elements
• It has a small fixed upper bound
• Primitive data types are needed for efficiency
• No elements need to be inserted

Encapsulating collections
When using a collection within a class, hide the collection to prevent inadvertent 
modification of the collection. For example, if a class encapsulates an ArrayList of 
Books, then public methods should be provided to permit access to the collection. In 
the following example, a class called Library hides an ArrayList of Book objects:

public class Library {

   private ArrayList<Book> books = new ArrayList<Book>();

   public Book getBook(int index) {
      return books.get(index);
   }

   public void addBook(Book book) {
      books.add(book);
   }

   public List getBooks() {
      return books;
   }
}

http://www.it-ebooks.info/


Using Arrays and Collections

[ 150 ]

This is a good example of data encapsulation. However, be sure to not inadvertently 
expose private data. In the getBook method we returned a reference to the book. 
This reference allows the user to modify the book. If this modification should not 
be allowed, then a copy of the book can be returned instead, as shown below. This 
assumes that the Book class has a constructor that makes a new copy of a book based 
upon the constructor's argument:

public Book getBook (int index) {
   return new Book(books.get(index));
}

The same problem occurs with the getBooks method. It returns a reference to the 
private books reference variable of the Library class. This method can be replaced 
with the following implementation to ensure proper data encapsulation:

public List getBooks() {
   ArrayList list = new ArrayList(books.size());
   for(Book book : books) {
      list.add(new Book(book));
   }
   return list;
}

Summary
In this chapter we examined the creation and use of arrays and instances of the 
ArrayList class. We also detailed the use of the Arrays class in support of various 
array operations.

Arrays contain one or more dimensions and are treated as objects. Care must be 
taken while using arrays to avoid problems accessing their elements. Problems can 
be avoided with a good understanding of how arrays are allocated in memory and  
of how to perform various operations, such as copying and comparing arrays, on 
them. Arrays are useful when we need a list of a fixed size as it allows efficient  
access of its elements.

The Arrays class provides a number of static methods that support arrays. For 
example, we can use the Arrays class to make copies of arrays, sort arrays, and 
fill arrays.

http://www.it-ebooks.info/


Chapter 4

[ 151 ]

The ArrayList class provides an alternate approach for dealing with lists of data. It 
provides numerous methods for manipulating a list and will grow as needed when 
new elements are added to the list. This is one of its primary advantages over arrays. 
As with most data structures, it is important to encapsulate information in a class to 
help reduce the complexity of software development.

Now that we've learned about arrays, we're ready to look more carefully at the 
various looping constructs available in Java. We will examine these constructs in the 
next chapter.

The Collections Framework introduced several new interfaces and classes to replace 
older versions in the java.util package. We examined the ArrayList class and its 
methods used to manipulate its elements. The ArrayList class is more flexible than 
an array and is particularly useful for inserting and removing elements.

Certification objectives covered
In this chapter we covered the following certification objectives:

• Using one-dimensional arrays
• Using multidimensional arrays
• Declaring and using ArrayList

Test your knowledge
1. Which of the following statements will compile without an error?

a. int arr[];

b. int arr[5];

c. int arr[5] = {1,2,3,4,5};

d. int arr[] = {1,2,3,4,5};

2. Which of the following declares an array that supports two rows and a 
variable number of columns?

a. int arr[][] = new int[2][3];

b. int arr[][] = new int[2][];

c. int arr[][] = new int[][];

d. int arr[][] = new int[][3];

http://www.it-ebooks.info/


Using Arrays and Collections

[ 152 ]

3. Given the following code, which of the following statements can be used to 
determine if cat can be found in the list?
ArrayList<String> list = new ArrayList<>();
list.add("dog");
list.add("cat");
list.add("frog");

a. list.contains("cat")

b. list.hasObject("cat")

c. list.indexOf("cat")

d. list.indexOf(1)

http://www.it-ebooks.info/


Looping Constructs
It is often desirable to repeat a sequence of actions again and again. For example, we 
may want to display information about the employees in an organization stored in 
an array. Each element of the array might hold a reference to a Employee object. A 
call to methods of the object would be placed inside a looping construct.

In Java there are four looping constructs available:

• For statement
• For-each statement
• While statement
• Do while statement

In addition, the break and continue statements are used within a loop to control how 
the loop behaves. The break statement is used to prematurely exit or short circuit the 
loop and is discussed in the The break statement section. As we observed in the The 
switch statement section in Chapter 3, Decision Constructs, the break is also used within 
the switch statement. The continue statement is used to bypass statements in a loop 
and continue executing the loop. It is covered in the The continue statement section. 
We will also examine the use of labels in Java, though they should be used sparingly.

The body of the loop is iterated through a specific number of times based on the loop 
structure. Iteration is the term commonly used to describe this execution.

Loops use control information to determine how many times the body of the loop 
will be executed. For most loops there is an initial set of values, a set of operations 
to be performed at the end of the body, and a terminal condition which will stop the 
execution of the loop. Not all loops have all of these parts, as some of these parts are 
either missing or implied. The terminal condition is almost always present as this is 
needed to terminate the iteration of the loop. If the terminal condition is missing, an 
infinite loop is created.

http://www.it-ebooks.info/


Looping Constructs

[ 154 ]

Infinite loops refer to those loops that may never terminate without using a 
statement, such as the break statement. Despite their name, infinite loops do not 
execute indefinitely as they will always terminate at some point. They are useful 
in situations where it is inconvenient or awkward to provide a loop termination 
condition as a part of the basic loop construct.

We will also cover the use of nested loops and various pitfalls associated with loops. 
A section dealing with the development of programming logic is also presented to 
help provide an approach when creating the program logic.

The for statement
The for statement is used when the number of times the loop needs to be executed 
is known. There are two variations of the for loop. The first one is discussed in this 
section and is the traditional form. The for-each statement is the second form and 
was introduced in Java 5. It is discussed in the The for-each statement section.

The for statement consists of the following three parts:

• Initial operation
• Terminal condition
• End loop operation

The general form of the for loop follows:

for (<initial-expression>;<terminal-expression>;<end-loop 
operation>)
  //statements;

The body of a for loop is typically a block statement. The initial operation takes 
place prior to the first iteration of the loop and is executed only once. The end loop 
operations take place at the end of each execution of the loop. The terminal condition 
determines when the loop will terminate and is a logical expression. It is executed at 
the beginning of each repetition of the loop. Thus, the body of the for loop may be 
executed zero times if the first time the terminal condition is evaluated, it evaluates 
to false.

http://www.it-ebooks.info/


Chapter 5

[ 155 ]

A variable is normally used as part of the initial operation, terminal condition, and 
end loop operation. The variable is either declared as part of the loop or is declared 
external to the loop. The following code snippet is an example of declaring a 
variable, i, as part of the loop. An example of using an external variable is covered 
in the The for statement and scope section:

for (int i = 1; i <= 10; i++) {
   System.out.print(i + "  ");
}
System.out.println();

In this example we used a single statement in the body of the loop. The variable 
i was assigned an initial value of 1 and is incremented by 1 each time the loop 
executes. The loop executed 10 times and produced 1 line of output. The statement, 
i++, is a more concise way of saying i = i + 1. The output should be the following:

1  2  3  4  5  6  7  8  9  10  

The following example uses a for statement to compute the square of the integers 
from 1 to 64:

for (int i = 1; i <= 64; i++) {
  System.out.println (i + " squared is = " + i * i);
}

A partial listing of the output follows:

1 squared is = 1

2 squared is = 4

3 squared is = 9

4 squared is = 16

...

The initial value of the loop variable can be any value. In addition, the end loop 
operation can decrement or otherwise modify the variable as needed. In the next 
example, numbers are displayed from 10 to 1:

for (int i = 10; i > 0; i--) {
   System.out.print(i + "  ");
}
System.out.println();

The output of this sequence follows:

10  9  8  7  6  5  4  3  2  1  

http://www.it-ebooks.info/


Looping Constructs

[ 156 ]

A common operation is to compute a cumulative sum, as illustrated with the 
following code sequence. This example is discussed in more detail in the Timing 
is everything section:

int sum = 0;
for(i = 1; i <= 10; i++) {
  sum += i;
}
System.out.println(sum);

The value of sum should be 55.

The comma operator
The comma operator can be used as part of a for statement to add other variables for 
use within the loop and/or to control the loop. It is used to separate the parts of the 
initial-expression and the end-loop operation sections of the for loop. The use of the 
comma operator is shown as follows:

for(int i = 0, j = 10; j > 5; i++, j--) {
   System.out.printf("%3d  %3d%n",i , j);
}

Notice the use of the %n format specifier in the printf statement. This specifies that 
a new line character should be generated. In addition, this new line separator is 
platform-specific making the application more portable.

When executed, this code sequence will produce the following output:

0   10

1    9

2    8

3    7

4    6

Two variables were declared for the loop, i and j. The variable i was initialed to 0 
and j was initialized to 10. At the end of the loop, i was incremented by 1 and j was 
decremented by 1. The loop executed as long as j was greater than 5.

We could have used a more complex terminal condition, such as illustrated in the 
following code snippet:

for(int i = 0, j = 10; j > 5 && i < 3; i++, j--) {
   System.out.printf("%3d  %3d%n",i , j);
}

http://www.it-ebooks.info/


Chapter 5

[ 157 ]

In this example, the loop will terminate after the third iteration resulting in the 
following output:

  0   10
  1    9
  2    8

It is illegal to declare the variables separately, as attempted here:

for(int i = 0, int j = 10; j > 5; i++, j--) {

A syntax error is generated, shown as follows. Only the first part of the message is 
provided as it is lengthy. This also illustrates the cryptic nature of error messages 
generated by Java and most other programming languages:

<identifier> expected

'.class' expected

...

The for statement and scope
The index variable used by a for statement can have different scope depending on 
how it is declared. We can use this to control the execution of the loop and then use 
the variable outside the loop, as needed. The first example of a for loop is repeated as 
follows. In this code sequence the scope of the i variable is restricted to the body of 
the for loop:

for (int i = 1; i <= 10; i++) {
   System.out.println(i);
}
System.out.println();

An alternate approach declares i external to the loop as follows:

int i;
for (i = 1; i <= 10; i++) {
  System.out.print(i + "  ");
}
System.out.println();

http://www.it-ebooks.info/


Looping Constructs

[ 158 ]

These two for loops are equivalent as they both display the numbers 1 to 10 on a 
single line. They differ in the scope of the i variable. In the first example, the scope is 
restricted to the body of the loop. An attempt to use the variable outside of the loop, 
as illustrated in the following code, will result in a syntax error:

for (int i = 1; i <= 10; i++) {
   System.out.println(i);
}
System.out.println(i);

The error message follows:

cannot find symbol

  symbol:   variable i

In the second example, upon termination of the loop the variable will retain its value 
and will be available for subsequent use. The following example illustrates this:

int i;
for (i = 1; i <= 10; i++) {
  System.out.print(i + "  ");
}
System.out.println();
System.out.println(i);

The output of this sequence follows:

1  2  3  4  5  6  7  8  9  10  

11

Scope is discussed in more detail in the Scope and lifetime section in Chapter 2, Java 
Data Types and Their Usage.

The for loop variations
The for loop may have a body consisting of multiple statements. It is important 
to remember that the for loop body consists of a single statement. The following 
illustrates the use of multiple statements in a loop. This loop will read in a sequence 
of numbers and print them out one per line. It will continue until it reads in a 
negative value and then it will exit the loop. The java.util.Scanner class is used to 
read in data from the input source. In this case it uses System.in which specifies the 
keyboard as its input source:

Scanner scanner = new Scanner(System.in);
int number = 0;

for (int i = 0; number >= 0; i++) {

http://www.it-ebooks.info/


Chapter 5

[ 159 ]

   System.out.print("Enter a number: ");
   number = scanner.nextInt();
   System.out.printf("%d%n", number);
}

One possible output of executing this code sequence is as follows:

Enter a number: 3

3

Enter a number: 56

56

Enter a number: -5

-5

The initial operation, terminal condition, or end loop operation are not required.  
For example, the following statements will execute the i++ statement 5 times with 
a value 5 assigned to i upon the exit from the loop:

int i = 0;
for (;i<5;) {
   i++;
}

In the following example, the body of the loop will execute forever creating an 
infinite loop:

int i = 0;
for (;;i++)
   ;

The same is true for the following for loop:

int i = 0;
for(;;) 
   ;

This is called an infinite loop and is covered in more detail in the Infinite loops section.

The for loop is normally used when you know how many 
times the loop will be executed. A controlling integer variable 
is typically used as an index into an array or for computational 
purposes within the body of the loop.

http://www.it-ebooks.info/


Looping Constructs

[ 160 ]

The for-each statement
The for-each statement was introduced with the release of Java 5. It is 
sometimes referred to as the enhanced for loop. Advantages of using the 
for-each statement include:

• It is unnecessary to provide end conditions for the counter variable
• It is simpler and more readable
• The statement provides opportunities for compiler optimization
• The use of generics is simplified

The for-each statement is used in conjunction with collections and arrays. It 
provides an easier way to iterate through each member of an array or class that has 
implemented the java.util.Iterable interface. As the Iterable interface is the 
super interface of the java.util.Collection interface, the for-each statement can 
be used with those classes that implement the Collection interface.

The syntax of this statement is similar to the regular for statement, except for the 
contents of its parentheses. The contents include a data type followed by a variable,  
a colon, and then an array name or collection, illustrated as follows:

for (<dataType variable>:<collection/array>)
   //statements;

Its use with a collection is illustrated in the Using the for-each statement with a list 
section. In the following sequence, an array of integers is declared, initialized, and  
a for-each statement is used to display each element of the array:

int numbers[] = new int[10];

for (int i = 0; i < 10; i++) {
   numbers[i] = i;
}

for (int element : numbers) {
   System.out.print(element + " ");
}    
System.out.println();

The elements of the numbers array were initialized to their index. Notice that a for 
statement was used. This was because we are unable to access an index variable 
directly in a for-each statement easily. The for-each statement in the preceding code 
snippet is read as "for each element in numbers". During each iteration of the loop, 
element corresponds to an element of the array. It starts with the first element and 
ends with the last element. The output of this sequence is as follows:

0 1 2 3 4 5 6 7 8 9

http://www.it-ebooks.info/


Chapter 5

[ 161 ]

There are drawbacks to the use of the for-each statement with an array. It is not 
possible to do the following:

• Modify the current position in an array or list
• Directly iterate over multiple arrays or collections

For example, using the previous example, if we try to modify the element of the 
array containing a 5 with the following code, it will not result in a syntax error.  
But it also will not modify the corresponding array element:

for (int element : numbers) {
   if (element == 5) {
      element = -5;
   }
}

for (int element : numbers) {
   System.out.print(element + " ");
}
System.out.println();

The output of this sequence is as follows:

0 1 2 3 4 5 6 7 8 9

If we want to use one loop to access two different arrays, the for-each loop cannot be 
used. For example, if we want to copy one array to another, we need to use the for 
loop, shown as follows:

int source[] = new int[5];
int destination[] = new int[5];
     
for(int number : source) {
   number = 100;
}
     
for(int i = 0; i < 5; i++) {
   destination[i] = source[i];
}

While we used a for-each to initialize the source array, we can only address a single 
array at a time. Thus, in the second loop we were forced to use the for statement.

http://www.it-ebooks.info/


Looping Constructs

[ 162 ]

Using the for-each statement with a list
We will start by illustrating the use of the for-each statement with the ArrayList. 
The ArrayList class implements the List interface which extends the Collection 
interface. The use and declaration of interfaces is addressed in more detail in 
Chapter 6, Classes, Constructors, and Methods. As the for-each statement can be used 
with classes that implement the Collection interface, we can also use it with the 
ArrayList class. In the next section, we will create our own Iterable class:

ArrayList<String> list = new ArrayList<String>();
     
list.add("Lions and");
list.add("tigers and");
list.add("bears.");
list.add("Oh My!");
     
for(String word : list) {
   System.out.print(word + " ");
}
System.out.println();

The output, as you might predict, is as follows:

Lions and tigers and bears. Oh My!

The use of the for-each in this example is not that much different from its use with an 
array. We simply used the name of the ArrayList instead of an array name.

Using a for-each statement with a list has similar restrictions to those we saw earlier 
with arrays:

• May not be able to remove elements from a list as you traverse it
• Inability to modify the current position in a list
• Not possible to iterate over multiple collections

The remove method can throw a UnsupportedOperationException exception. This 
is possible because the implementation of the Iteratable interface's Iterator may 
not have implemented the remove method. This is elaborated on in the next section.

In the case of the ArrayList, we can remove an element, as demonstrated in the 
following code snippet:

for(String word : list) {
   if(word.equals("bears.")) {
      list.remove(word);
      System.out.println(word + " removed");

http://www.it-ebooks.info/


Chapter 5

[ 163 ]

   }
}
     
for(String word : list) {
   System.out.print(word + " ");
}
System.out.println();

The for-each statement was used to iterate over the list. When the bears. string was 
found, it was removed. The output of the preceding sequence is as follows:

Lions and tigers and bears. Oh My! 

bears. removed

Lions and tigers and Oh My!

We cannot modify the list from within the for-each statement.  For example, the 
following code sequence attempts to modify word and add a string to list.  The 
list will not be affected:

for(String word : list) {
   if(word.equals("bears.")) {
      word = "kitty cats";
      list.add("kitty cats");
   }
}

While the attempt to modify the word variable does not do anything, it does 
not generate an exception. This is not the case with the add method. When 
used within the preceding for-each statement, it will generate a java.util.
ConcurrentModificationException exception.

As with arrays, it is not possible to iterate over more than 
one collection at a time using the for-each statement. 
As the for-each statement supports only one reference 
variable, only one list can be accessed at a time.
If you need to remove an element from a list, use an 
iterator instead of a for-each statement.

http://www.it-ebooks.info/


Looping Constructs

[ 164 ]

Implementing the Iterator interface
As mentioned earlier, any class that implements the Iterable interface can be used 
with the for-each statement. To illustrate this we will create two classes:

• MyIterator: This implements the Iterator interface and supports a 
trivial iteration

• MyIterable: This uses MyIterator to support its use in a for-each statement
First, let's examine the MyIterator class that follows. The class will iterate through 
the numbers 1 to 10. It does this by comparing the value variable against an upper 
bound of 10 and returning either true or false in its hasNext method. The next 
method simply returns and increments the current value. The remove method is 
not supported:

import java.util.Iterator;

public class MyIterator implements Iterator<Integer> {
   private int value;
   private final int size;

   public MyIterator() {
      value = 1;
      size = 10;
   }

   @Override
   public boolean hasNext() {
      return value<=size;
   }

   @Override
   public Integer next() {
      return value++;
   }

   @Override
   public void remove() {
      throw new UnsupportedOperationException(
            "Not supported yet.");
   }
}

http://www.it-ebooks.info/


Chapter 5

[ 165 ]

The MyIterable class implements the Iterable interface. This interface consists of a 
single method, iterator. In this class, it uses an instance of the MyIterator class to 
provide a Iterator object:

import java.util.Iterator;

public class MyIterable implements Iterable<Integer> {
   private MyIterator iterator;

   public MyIterable() {
      iterator = new MyIterator();
   }

   @Override
   public Iterator<Integer> iterator() {
      return iterator;
   }
}

We can test these classes with the following code sequence:

MyIterable iterable = new MyIterable();
     
for(Integer number : iterable) {
   System.out.print(number + " ");
}
System.out.println();

The output will display the numbers from 1 to 10, shown as follows:

1 2 3 4 5 6 7 8 9 10

The use of the Iterator methods for iterating through a 
collection is not always needed. In many situations, the for-each 
statement provides a much more convenient and simple technique.

The for-each statement – usage issues
There are several issues that you should be aware of when working with the 
for-each statement:

• If the array/collection is null, you will get a null pointer exception
• It works well with a method having a variable number of arguments

http://www.it-ebooks.info/


Looping Constructs

[ 166 ]

Null values
If the array/collection is null, you will get a null pointer exception. Consider 
the following example. We create an array of strings but fail to initialize the  
third element:

String names[] = new String[5];
names[0] = "Will Turner";
names[1] = "Captain Jack Sparrow";
names[3] = "Barbossa";
names[4] = "Elizabeth Swann";

We can display the names using a for-each statement as follows:

for(String name : names) {
   System.out.println(name);
}

The output, shown as follows, will display null for the missing entry. This is 
because the println method checks its argument for a null value and when it is, 
it prints null:

Will Turner

Captain Jack Sparrow

null

Barbossa

Elizabeth Swann

However, if we apply the toString method against the name as follows, we will get 
java.lang.NullPointerException on the third element:

for(String name : names) {
   System.out.println(name.toString());
}

This is verified, as shown in the following output:

Will Turner

Captain Jack Sparrow

java.lang.NullPointerException

http://www.it-ebooks.info/


Chapter 5

[ 167 ]

Variable number of arguments
The for-each statement works well in methods using a variable number of 
arguments. A more detailed explanation of methods that use a variable number of 
arguments is found in the Variable number of arguments section in Chapter 6, Classes, 
Constructors, and Methods.

In the following method we pass a variable number of integer arguments. Next, we 
calculate the cumulative sum of these integers and return the sum:

public int total(int ... array) {
   int sum = 0;
   for(int number : array) {
      sum+=number;
   }
   return sum;
}

When this is executed with the following calls, we get 15 and 0 as output:

result = total(1,2,3,4,5);
result = total();

However, we need to be careful not to pass a null value as this will result in java.
lang.NullPointerException, as illustrated in the following code snippet:

result = total(null);

Use the for-each loop whenever possible, instead of the 
for loop.

The while statement
The while statement provides an alternate way of repeatedly executing a block 
of statements. It is frequently used when the number of times the block is to be 
executed is not known. Its general form consists of the while keyword followed by 
a set of parentheses enclosing a logical expression and then a statement. The body of 
the loop will execute as long as the logical expression evaluates to true:

while (<boolean-expression>) <statements>;

http://www.it-ebooks.info/


Looping Constructs

[ 168 ]

A simple example duplicates the first for loop example where we display the 
numbers 1 to 10 on a single line:

int i = 1;
while(i <= 10) {
   System.out.print(i++ + " ");
}
System.out.println();

The output is as follows:

1 2 3 4 5 6 7 8 9 10

The following example is a bit more complicated and computes the factors of the 
number variable:

int number;
int divisor = 1;
Scanner scanner = new Scanner(System.in);
System.out.print("Enter a number: ");
number = scanner.nextInt();
while (number >= divisor) {
   if ((number % divisor) == 0) {
      System.out.printf("%d%n", divisor);
   }
   divisor++;
}

When executed with the input as 6, we get the following output:

Enter a number: 6

1

2

3

6

The following table illustrates the action of the statement's sequence:

Iteration count divisor number Output
1 1 6 1
2 2 6 2
3 3 6 3
4 4 6
5 5 6
6 6 6 6

http://www.it-ebooks.info/


Chapter 5

[ 169 ]

In the following example, the loop will terminate when the user types in a negative 
number. In the process, it calculates the cumulative sum of the numbers entered:

int number;
System.out.print("Enter a number: ");
number = scanner.nextInt();
while (number > 0) {
   sum += number;
   System.out.print("Enter a number: ");
   number = scanner.nextInt();
}
System.out.println("The sum is " + sum);

Notice how this example duplicated the code needed to prompt the user for a 
number. The problem can be handled more elegantly using a do-while statement as 
discussed in the next section. The following output illustrates the execution of this 
code for a series of numbers:

Enter a number: 8

Enter a number: 12

Enter a number: 4

Enter a number: -5

The sum is 24

The while statement is useful for loops where the number of loop iterations required 
is not known. The body of the while loop will execute until the loop expression 
becomes false. It is also useful when the terminal condition is rather complex.

An important characteristic of the while statement is the 
evaluation of the expression at the beginning of the loop. As 
a result, the body of the loop may never be executed if the 
first evaluation of the logical expression evaluates to false.

The do-while statement
The do-while statement is similar to a while loop except that the body of the loop 
always executes at least once. It consists of the do keyword followed by a statement, 
the while keyword, and then a logical expression enclosed in parentheses:

do <statement> while (<boolean-expression>);

http://www.it-ebooks.info/


Looping Constructs

[ 170 ]

Typically, the body of the do-while loop, as represented by the statement, is a block 
statement. The following code snippet illustrates the use of the do statement. It is 
an improvement over the equivalent while loop used in the previous section, as it 
avoids prompting for a number before the loop starts:

int sum = 0;
int number;
Scanner scanner = new Scanner(System.in);
do {
   System.out.print("Enter a number: ");
   number = scanner.nextInt();
   if(number > 0 ) {
     sum += number;
   }
} while (number > 0);
System.out.println("The sum is " + sum);

When executed you should get output similar to the following:

Enter a number: 8

Enter a number: 12

Enter a number: 4

Enter a number: -5

The sum is 24

The do-while statement differs from that of the while statement as 
the evaluation of the expression occurs at the end of the loop. This 
means that this statement will be executed at least once.

This statement is not used as frequently as the for or while statement, but is useful in 
situations where a test at the bottom of a loop is best. The next statement sequence 
will determine the number of digits in an integer number:

int numOfDigits;
System.out.print("Enter a number: ");
Scanner scanner = new Scanner(System.in);
int number = scanner.nextInt();
numOfDigits = 0;
do {
   number /= 10;
   numOfDigits++;
} while (number != 0);
System.out.printf("Number of digits: %d%n", numOfDigits);

http://www.it-ebooks.info/


Chapter 5

[ 171 ]

The output of this sequence follows:

Enter a number: 452

Number of digits: 3

The result for the value 452 is illustrated in the following table:

Iteration count number numOfDigits
0 452 0
1 45 1
2 4 2
3 0 3

The break statement
The effect of the break statement is to terminate the current loop, whether it be a 
while, for, for-each, or do-while statement. It is also used in the switch statement. 
The break statement passes control to the next statement following the loop. The 
break statement consists of the break keyword.

Consider the effect of the following statement sequence which repeatedly prompts 
the user for a command within an infinite loop. The loop will be terminated when 
the user enters the Quit command:

String command;
while (true) {
   System.out.print("Enter a command: ");
   Scanner scanner = new Scanner(System.in);
   command = scanner.next();
   if ("Add".equals(command)) {
      // Process Add command
   } else if ("Subtract".equals(command)) {
      // Process Subtract command
   } else if ("Quit".equals(command)) {
      break;
   } else {
      System.out.println("Invalid Command");
   }
}

Notice how the equals method is used. The equals method is executed against 
the string literal and the command is used as its argument. This approach avoids 
NullPointerException that will result if the command contains a null value. As 
the string literals are never null, this exception will never occur.

http://www.it-ebooks.info/


Looping Constructs

[ 172 ]

The continue statement
The continue statement is used to transfer control from inside a loop to the end of the 
loop but does not exit the loop like the break statement does. The continue statement 
consists of the keyword, continue.

When executed, it forces the evaluation of the loop's logical expression. In the 
following statement sequence:

while (i < j) {
   …
   if (i < 0) {
      continue;
   }
   …
}

if i is less than 0, it will bypass the rest of the body of the loop. If the loop condition 
i<j does not evaluate to false, the next iteration of the loop will be performed.

The continue statement is often used to eliminate a level of nesting which is often 
necessary. The preceding example would appear as follows, if the continue statement 
was not used:

while (i < j) {
   …
   if (i < 0) {
      // Do nothing
   } else {
      …
   }
}

Nested loops
Loops can be nested within each other. Any nested combination of the for, for-each, 
while, or do-while loops is permitted. This is useful for addressing a number of 
problems. The example that follows computes the sum of the elements of a row in a 
two-dimensional array. It starts by initializing each element to the sum of its indexes. 
The array is then displayed. This is followed by nested loops to compute and display 
the sum of the elements for each row:

final int numberOfRows = 2;
final int numberOfColumns = 3;
int matrix[][] = new int[numberOfRows][numberOfColumns];
     

http://www.it-ebooks.info/


Chapter 5

[ 173 ]

for (int i = 0; i < matrix.length; i++) {
   for (int j = 0; j < matrix[i].length; j++) {
      matrix[i][j] = i + j;
   }
}
     
for (int i = 0; i < matrix.length; i++) {
   for(int element : matrix[i]) {
      System.out.print(element + " ");
   }
   System.out.println();
}  
     
for (int i = 0; i < matrix.length; i++) {
   int sum = 0;
   for(int element : matrix[i]) {
      sum += element;
   }
   System.out.println("Sum of row " + i + " is " +sum);
}

Notice the use of the length method used to control the number of times the loops 
are executed. This makes the code more maintainable if the size of the arrays change. 
When executed we get the following output:

0 1 2 

1 2 3 

Sum of row 0 is 3

Sum of row 1 is 6

Notice the use of the for-each statement when the array is displayed and the sum of 
the rows are calculated. This simplifies the calculations.

The break and continue statements can also be used within nested loops. However, 
they will only be used in conjunction with the current loop. That is, a break out of  
an inner loop will only break out of the inner loop and not the outer loop. As we  
will see in the next section, we can break out of the outer loop from an inner loop 
using labels.

In the following modification of the last nested loop sequence, we break out of the 
inner loop when the sum exceeds 2:

for (int i = 0; i < matrix.length; i++) {
   int sum = 0;
   for(int element : matrix[i]) {
      sum += element;

http://www.it-ebooks.info/


Looping Constructs

[ 174 ]

      if(sum > 2) {
         break;
      }
   }
   System.out.println("Sum of row " + i + " is " +sum);
}

The execution of this nested loop will change the sum of the last row as  
shown below:

Sum of row 0 is 3

Sum of row 1 is 3

The break statement took us out of the inner loop but not the outer loop. We can 
break out of the outer loop if there was a corresponding break statement within 
the immediate body of the outer loop. The continue statement behaves in a similar 
fashion in relation to inner and outer loops.

Using labels
Labels are names of locations within a program. They can be used to alter the flow 
of control and should be used sparingly. In the previous example, we were unable to 
break out of the inner most loop using the break statement. However, labels can be 
used to break us out of more than one loop.

In the following example, we place a label in front of the outer loop. In the inner 
loop, we execute the break statement when i is larger than 0 effectively terminating 
the outer loop after the sum has been calculated for the first row. A label consists of a 
name followed by a colon:

outerLoop:
for(int i = 0; i < 2; i++) {
   int sum = 0;
   for(int element : matrix[i]) {
      sum += element;
      if(i > 0) {
         break outerLoop;
      }
   }
   System.out.println("Sum of row " + i + " is " +sum);
}

http://www.it-ebooks.info/


Chapter 5

[ 175 ]

The output of this sequence is as follows:

Sum of row 0 is 3

We can also use the continue statement with labels for a similar effect.

Labels should be avoided as they can result in unreadable and 
hard to maintain code.

Infinite loops
An infinite loop is one that will execute forever unless a statement, such as the break 
statement is used to force its termination. Infinite loops are quite useful to avoid an 
awkward logical condition for a loop.

An infinite while loop should use the true keyword as its logical expression:

while (true) {
   // body
}

A for loop could be as simple as using nulls for each part of the for statement:

for (;;) {
   // body
}

A loop that never terminates would not normally be of value for most programs 
since most programs should eventually terminate. However, most infinite loops are 
designed to terminate using the break statement, shown as follows:

while (true) {
   // first part
   if(someCondition) {
      break;
   }
   // last part
}

http://www.it-ebooks.info/


Looping Constructs

[ 176 ]

This technique is fairly common and is used to simplify the logic of a program. 
Consider the need to read in an age and terminate when the age is negative. It is 
necessary to assign a non-negative value to age to ensure that the loop executes at 
least once:

int age;
age = 1;
Scanner scanner = new Scanner(System.in);
while (age > 0) {
   System.out.print("Enter an age: ");
   age = scanner.nextInt();
   // use the age
}

The other option is to duplicate the user prompt and the statement used to read in 
the age before the loop begins:

System.out.print("Enter an age: ");
age = scanner.nextInt();
while (age > 0) {
   System.out.print("Enter an age: ");
   age = scanner.nextInt();
   // use the age
}

Either an arbitrary value had to be assigned to age before the loop began, or it was 
necessary to duplicate code. Neither approach is satisfactory.

However, the use of an infinite loop results in cleaner code. No arbitrary value needs 
to be assigned and code does not need to be duplicated:

while (true) {
   System.out.print("Enter an age: ");
   age = scanner.nextInt();
   if (age < 0) {
      break;
   }
   // use the age
}

While there are many situations where an infinite loop is desirable, they can also 
occur when the programmer is not careful, resulting in unanticipated results. One 
common way is to build a for loop without a valid termination condition, illustrated 
as follows: 

for(int i = 1; i > 0; i++) {
   // Body
}

http://www.it-ebooks.info/


Chapter 5

[ 177 ]

The loop starts with a value of 1 for i and will increment i by 1 during each iteration 
of the loop. The termination condition suggests that the loop will not terminate as i 
will only get larger and would, thus, always be greater than 0. However, eventually 
the variable will overflow and i will become negative and the loop will terminate. 
How long this might take depends on the execution speed of the machine.

The moral of the story is, "Be careful with loops". Infinite loops can be both a  
useful construct for solving some problems and a problematic construct when  
used unintentionally.

Timing is everything
A common programming need is to perform some sort of summation. We have 
computed the sum of several sequences of numbers in previous examples. While 
the summation process is relatively straightforward, it can be difficult for novice 
programmers. More importantly, we will use it here to provide an insight to the 
programming process.

Programming, by its nature, is an abstract process. The programmer will need to 
look at a static code listing and infer its dynamic execution. This can be difficult for 
many people. One way of assisting the developer in writing code is to consider the 
following three issues:

• What do we want to do?
• How do we want to do it?
• When do we want to do it?

Here, we will ask and apply the answers to these three questions to address the 
summation problem. However, these questions are equally applicable to other 
programming problems.

Let's focus on calculating the average age for a group of students, which will involve 
the summation process. Assume the ages are stored in age array and then initialized 
as shown in the following code snippet:

final int size = 5;
int age[] = new int[size];
int total;
float average;

age[0] = 23;
age[1] = 18;
age[2] = 19;
age[3] = 18;
age[4] = 21;

http://www.it-ebooks.info/


Looping Constructs

[ 178 ]

Then the summation can be calculated as follows:

total = 0;
for (int number : age) {
   total = total + number;
}
average = total / (age.length * 1.0f);

Notice that total is explicitly assigned a zero value. Each iteration of the for loop 
will add the next age to total. At the completion of the loop, total will be divided 
by the length of the array times 1.0f to compute the average. By using the array 
length the code expression does not need to be changed if the array size changes. 
Multiplying by 1.0f is necessary to avoid integer division. The following table 
illustrates the variable's values as the loop executes:

Loop count i total
0 - 0
1 1 23
2 2 41
3 3 60
4 4 78
5 5 99

Let's examine this problem from the standpoint of the three basic questions, 
as follows:

• What do we want to do: We want to calculate the total pay for a department.
• How do we want to do it: This has a multipart answer. We know we need a 

variable to hold the total pay, total, and that it needs to be initialized to 0.
total = 0;

We also understand the basic operation to calculate the cumulative sum is as 
follows:
total = total + number;

The loop needs to use each element of the array so a for-each statement is 
used:
for (int number : age) {
   …
}

http://www.it-ebooks.info/


Chapter 5

[ 179 ]

We have the foundation for a solution to our problem.

• When do we want to do it: The "when" in this situation suggests three 
basic choices:

 ° Before the loop
 ° In the loop
 ° After the loop

The three parts of our solution can be combined in different ways. The basic 
operation needs to be inside the loop because it needs to be performed more  
than once. Executing the basic operation only once will not result in an answer  
we will like.

The variable, total, needs to be initialized with a 0. How is this done? We do this 
by using an assignment statement. When should this be done? Before, in, or after 
the loop? Doing this after the loop would be silly. When the loop completes, total 
should contain the answer, not a zero. If we initialize it to 0 inside of the loop, then 
with each iteration of the loop, total is reset back to 0. That leaves us with placing 
the statement before the loop as the only option that makes sense. The first thing we 
want to do is to assign a 0 to total.

There seems to always be variations to the solutions of most problems. For example, 
we could have used a while loop instead of a for-each loop. The += operator could be 
used to shorten the basic operation. One potential solution that uses these techniques 
introduces an index variable:

int index = 0;
total = 0;

while(index < age.length) {
   total += age[index++];
}
average = total / (age.length * 1.0f);

Clearly, there is not always a best solution to a specific problem. This makes the 
programming process both a creative and potentially fun activity.

Pitfalls
As with most programming constructs, loops have their own set of potential 
pitfalls. In this section we will address areas that can present problems to the  
unwary developer.

http://www.it-ebooks.info/


Looping Constructs

[ 180 ]

One common problem occurs when programmers use a semicolon after every 
statement. For example, the following statement results in an infinite loop because  
of the extra semicolon:

int i = 1;
while(i < 10) ;
  i++;

The semicolon on a line by itself is the empty statement. This statement does nothing. 
However, in this example it constitutes the body of the while loop. The increment 
statement is not part of the while loop. It is the first statement that follows the while 
loop. Indention, while desirable, does not make the statement a part of the loop. Thus, 
i is never incremented and the logical control expression will always return true.

Failure to use a block statement for the body of a loop can be a problem. In the 
following example we attempt to calculate the sum of the product of the numbers 
from 1 to 5. However, this does not work properly because the body of the loop only 
encompasses the calculation of the product. The summation statement, when it is 
indented, is not part of the body of the loop and is only executed once:

int sum = 0;
int product = 0;
for(int i = 1; i <= 5; i++)
   product = i * i;;
   sum += product;

The correct implementation of the loop uses a block statement as shown below:

int sum = 0;
int product = 0;
for(int i = 1; i <= 5; i++) {
   product = i * i;;
   sum += product;
}

It is always a good policy to use a block statement for the 
body of a loop, even if the body consists of a single statement.

In the following sequence the body of the loop consists of multiple statements. 
However, i is never incremented. This will also result in an infinite loop unless 
either limit is changed or a break statement is encountered:

int i = 0;
while(i<limit) {
  // Process i
}

http://www.it-ebooks.info/


Chapter 5

[ 181 ]

Even simple-appearing loops may, in effect, be infinite loops if one is not careful 
with how floating-point arithmetic occurs. In this example, 0.1 is added to x with 
each iteration of the loop. The loop is supposed to stop when x exactly equals 1.1. 
This will never occur because of issues in how floating point numbers are stored for 
certain values:

float x = 0.1f;
while (x != 1.1) {
   System.out.printf("x = %f%n", x);
   x = x + 0.1f;
}

The number 0.1 cannot be stored precisely in base two in the same way that the 
decimal equivalent of the fraction 1/3 cannot be represented exactly (0.333333…). 
The result of adding this number repeatedly to x will result in a number that is not 
quite 1.1. The comparison, x != 1.1, will return true and the loop will never end. 
The output of the printf statement does not show this difference:

…
x = 0.900000
x = 1.000000
x = 1.100000
x = 1.200000
x = 1.300000
…

Be careful when working with operations that will involve auto-boxing. Depending 
on the implementation, it can result in a performance hit if boxing and un-boxing 
occurs frequently.

While not necessarily a pitfall, remember that logical expressions can short circuit. That 
is, the last part of a logical AND or OR operation may not be evaluated depending on 
the value returned from the evaluation of the first part. This is discussed in detail in the 
Short circuit evaluation section in Chapter 3, Decision Constructs.

Remember that arrays, strings, and most collections 
are zero based. Forgetting to start the loop at 0 will 
overlook this first element.
Always use a block statement as the body of a loop.

http://www.it-ebooks.info/


Looping Constructs

[ 182 ]

Summary
In this chapter we examined the support Java provides for loops. We have illustrated 
the use of the for, for-each, while, and do-while statements. These demonstrations 
provided insight into their correct usage, when they should be used, and when they 
should not be used.

The use of the break and continue statements was shown, along with the use of 
labels. We saw the utility of the break statement, in particular, in support of infinite 
loops. Labels, while they should be avoided, can be useful in breaking out of deeply 
nested loops.

Various pitfalls were examined and the creation of the summation process was 
studied to gain insight into general programming problems. Specifically, it 
addressed the question of where a code segment should be placed.

Now that we've learned about loops, we're ready to examine the creation of classes, 
methods, and data encapsulation, which is the topic of the next chapter.

Certification objectives covered
In this chapter we addressed the following certification objectives:

• Creating and using the while loops
• Creating and using the for loops including the enhanced for loop
• Creating and using the do/while loops
• Comparing the loop constructs
• Using break and continue

In addition, we provided additional coverage of these objectives:

• Define the scope of variables
• Use operators and decision constructs
• Declaring and using an ArrayList

http://www.it-ebooks.info/


Chapter 5

[ 183 ]

Test your knowledge
1. Given the following declarations, which of the following statement will 

compile?
int i = 5;
int j = 10;

a. while(i < j) {}

b. while(i) {}

c. while(i = 5) {}

d. while((i = 12)!=5) {}

2. Given the following declaration of an array, which statement will display 
each element of the array?
int arr[] = {1,2,3,4,5};

a. for(int n : arr[]) { System.out.println(n);   }

b. for(int n : arr) { System.out.println(n);   }

c. for(int n=1; n < 6; n++) {  System.out.println(arr[n]);   
}

d. for(int n=1; n <= 5; n++) {  System.out.println(arr[n]);   
}

3. Which of the following do/while loops will compile without errors?
a. int i = 0; 

do { 
   System.out.println(i++); 
} while (i < 5);

b. int i = 0; 
do 
   System.out.println(i++); 
while (i < 5);

c. int i = 0; 
do  
   System.out.println(i++); 
while i < 5;

d. i = 0; 
do 
   System.out.println(i); 
   i++; 
while (i < 5);

http://www.it-ebooks.info/


Looping Constructs

[ 184 ]

4. Which of the following loops are equivalent?
a. for(String n : list) {  

   System.out.println(n);
}

b. for(int n = 0; n < list.size(); n++ ){  
   System.out.println(list.get(n)); 
}

c. Iterator it = list.iterator(); 
while(it.hasNext()) { 
   System.out.println(it.next()); 
}

5. What will be output by the following code? 
int i;
int j;
for (i=1; i < 4; i++) {
   for (j=2; j < 4; j++) {
      if (j == 3) {
         continue;
      }
      System.out.println("i: " + i + " j: " + j);
   }
}

a. i: 1 j: 2 
i: 2 j: 2 
i: 3 j: 2

b. i: 1 j: 3 
i: 2 j: 3 
i: 3 j: 3

c. i: 1 j: 1 
i: 2 j: 1 
i: 3 j: 1

http://www.it-ebooks.info/


Classes, Constructors,  
and Methods

In the heart of object-oriented programming are classes and the objects created from 
classes. The initialization of the objects occurs in constructors while the modification 
of the state of an object is carried through methods. The packaging of these 
constructors and methods is the focus of data encapsulation. The fundamentals of 
classes, constructors, methods, and data encapsulation are addressed in this chapter.

We start with an introduction to classes including a discussion of how objects 
are managed in memory. Common aspects of constructors and methods are then 
presented including the concept of a signature, the passing of arguments, and the 
uses of the this keyword.

The usage of constructors is discussed including default constructors, how they are 
overloaded, and the use of private constructors. The Java initialization sequence is 
covered including the use of initializer lists.

Methods and how they are used is explained including how to overload them 
and the creation of accessor and mutator methods. The chapter concludes with a 
discussion of static and instance methods.

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 186 ]

Classes
A class is the definition of a data structure plus actions that operate on them which 
typically corresponds to a real world object or concept. A class is defined once but 
is not used directly within an application. Instead, objects are created (instantiated) 
based on a class and are allocated memory.

Throughout the chapter we will illustrate the use of constructors and methods using 
the Employee class. A part of this class is shown as follows:

public class Employee {
    private String name;
    private int zip;
    private int age;
   …
}

This definition will be expanded to explain the concepts and techniques associated 
with classes and objects.

Object creation
Objects are created using the new keyword. The keyword is used in conjunction with 
a classname and results in memory being allocated from the heap for the object. The 
heap is a region of memory normally located "above" the stack as discussed in the 
Stack and heap section in Chapter 2, Java Data Types and Their Usage.

When a new object is instantiated using the new keyword:

• Memory is allocated for the new instance of the class
• A constructor is then called to perform initialization of the object
• A reference to the object is returned

In the following example, two instances of the Employee class are created and 
references are assigned to the reference variables, employee1 and employee2:

Employee employee1 = new Employee();
Employee employee2 = new Employee();

http://www.it-ebooks.info/


Chapter 6

[ 187 ]

Each instance of a class has its own set of instance variables that are independent of 
each other. This is shown in the following diagram. Notice that both instances of the 
class contain their own copies of the instance variables:

name
zip
age

employee1

employee2

name
zip
age

main

When a new object is created, a constructor for that object is executed. The purpose 
of a constructor is to initialize an object. This process is covered in the Constructors 
section. The class' methods are shared among the instances of the class. That is, there 
is only one copy of the methods.

Memory management
Java memory management is dynamic and automatic. When the new keyword is 
used, it automatically allocates memory on the heap.

In the following example, an instance of the Employee class is created and assigned 
to the employee1 variable. Next, the employee2 variable is assigned the value of the 
employee1 variable.  The effect of this assignment is that both reference variables 
point to the same object:

Employee employee1 = new Employee();
Employee employee2 = employee1;

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 188 ]

This is illustrated in the following diagram:

employee1

employee2

name
zip
age

main

A reference variable may de-reference an instance of an object by:

• Being re-assigned to another object
• Setting it to null

When the garbage collector determines that there are no references to it, the object 
becomes eligible for removal from the heap by a garbage collection thread and 
its memory can be re-used for other objects. This garbage collection process is 
essentially beyond the control of the application.

Data encapsulation
Data encapsulation is concerned with hiding irrelevant information from the 
programmer and exposing the relevant information. Hiding the implementation 
details allow changes without affecting other parts of the program. For example, if a 
programmer wants to display a rectangle on the screen there are several approaches 
that can be used. It may involve drawing the rectangle pixel by pixel or drawing a 
series of lines. Hiding the details of the operation is referred to as data encapsulation.

The primary purpose of data encapsulation is to reduce the level of software 
development complexity. By hiding the details of what is needed to perform an 
operation, the use of that operation is simpler. The method is not that complex to  
use, as the user does not have to worry about the details of its implementation. The 
user can focus on what it does, not on how it does it. This, in turn, allows developers 
to do more.

http://www.it-ebooks.info/


Chapter 6

[ 189 ]

For example, consider the implementation of the Employee class. Originally, the 
instance variables were both declared as private:

public class Employee {
    public String name;
    private int age;

   ...
    
    public int getAge() {
        return age;
    }

    private void setAge(int age) {
        this.age = age;
    }

}

The access modifier type of the name variable has been changed to public and the 
access modifier for the setAge method has been made private. This means that 
any user of the class can access the name field but they can only read the age of the 
employee. Data encapsulation has been affected when we explicitly decide what 
should and should not be exposed to the users of a class.

The details of a class and its implementation should be hidden from the user. This 
allows modification of the implementation of the class' internals without changing 
the public aspects of the class. As a general rule, instance variables are made private 
and methods are made public. Exceptions to this rule are made based on the needs of 
the class.

It is also possible to control access to constructors. This topic is covered in the 
Constructors section.

Referencing instance variables
A reference variable holds a reference, or pointer, to an object. A field or variable of 
the object is accessed by following the object reference variable name with a period 
and then the field or method name. The following code snippet illustrates possible 
references using the Employee class based upon the declaration of Employee found 
in the previous section:

Employee employee = new Employee();
int employeeAge = employee.getAge(24);
String employeeName = employee.name;

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 190 ]

Notice that we did not use the age field as this was declared as private to the 
Employee class. The use of modifiers is covered in the Access modifiers section in 
Chapter 1, Getting Started with Java.

Signature
The signature of a constructor or method is used to uniquely identify a constructor or 
method. A signature consists of:

• Method or constructor name
• Number of parameters
• Type of the parameters
• Order of the parameters

All constructors or methods within the same class must have unique signatures. 
Note that the return type of the method is not part of a signature. The following table 
shows the signatures that overload the Employee class constructor. The third and 
fourth constructors differ in the order of the constructor's parameters. A method or 
constructor is said to be overloaded if there is more than one method or constructor 
with the same name, and in the same class, but with different signatures:

Method Number of 
Arguments

Argument Types

Employee() 0
Employee(String name) 1 String

Employee(String name, int zip) 2 String, int
Employee(int zip, String name) 2 int, String
Employee(String name, int zip, int age) 3 String, int, int

Using the this keyword
There are four uses of the this keyword:

• Performing constructor chaining
• Accessing instance variables
• Passing the current object to a method
• Returning the current object from a method

http://www.it-ebooks.info/


Chapter 6

[ 191 ]

Constructor chaining is covered in the Overloading constructors section. Let's examine 
the use of the this keyword to access instance variables. The setAge method could 
have been implemented as follows:

public class Employee {
    public String name;
    private int age;
   ...
    
    private void setAge(int age) {
        age = age;
    }

}

This code would not have the intended consequences of modifying the age instance 
variable. The scope of the instance variables is the entire class. The scope of the 
parameters is only the method. The parameters will have "precedence" over the 
instance variables. The effect is that the age passed to the method was assigned to 
itself. The instance variable was not modified.

There are two ways of correcting this problem:

• Change the parameter name
• Use the this keyword

We could change the name of the parameter. However, devising a different name to 
designate the same thing leads to strange or awkward names. For example, we could 
have used the following method instead:

public class Employee {
  private int age;
     …
    private void setAge(int initialAge) {
        age = initialAge;
    }

}

The initialAge parameter will be assigned as the initial value to the member 
variable age. However, any number of other potentially meaningful names could be 
used. There is no standard naming convention for naming parameters of this type.

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 192 ]

Another approach is to declare the parameter as a constant using the final 
keyword, as shown in the following code snippet. When we take this approach, a 
syntax error is generated because we are trying to modify the parameter. As it is 
constant we cannot change it:

public void setAge(final int age) {
   age = age;
}

The syntax error message that is generated is as follows:

final parameter age may not be assigned

Assignment To Itself

The preferred approach is to use the this keyword to clearly specify which variable 
is the member variable and which is the parameter. This is illustrated in  
the following implementation:

public class Employee {
  private int age;
   …
  private void setAge(int age) {
      this.age = age;
  }

}

In this assignment statement we referenced the member variable by prefixing it with 
the this keyword and a period. Consider the following statement:

       this.age = age;

The this keyword references the age instance variable, on the left-hand side of the 
assignment statement. On the right-hand side, the age parameter, was used. Thus, 
the parameter is assigned to the instance variable. Using the this keyword avoids 
having to devise some non-standard and potentially confusing name for parameters 
being assigned to a member variable.

The this keyword can also be used to pass or return a reference to the current 
object. In the following sequence, the validateEmployee method is assumed to be 
a member of the Employee class. If a condition is met, then the current employee, 
as identified by the this keyword, is added to a class maintaining department 
information as referenced by the department variable. A reference to the current 
object is passed to the add method:

http://www.it-ebooks.info/


Chapter 6

[ 193 ]

private Department department;
   …
private void validateEmployee() {
   if(someCondition) {
      department.add(this);
   }
}

The this keyword can also be used to return a reference to the current object. In the 
next sequence, the current object is returned by the getReference method which is 
assumed to be a method of the Employee class:

private Employee getReference() {
   …
   return this;
}

Passing parameters
Within any method there may exist two types of variables—parameters and local 
variables. Parameters contain values passed to the method when it is invoked. Local 
variables are part of the method and are used to assist the method in the completion 
of its task. The techniques discussed here apply to both constructors and methods 
though we will only use methods for the examples in this section.

Parameters are passed as part of a parameter list. This list uses a comma to delimit 
the declaration of the type and name of a parameter. For example, the method in the 
following code snippet is passed two parameters—an integer and a string:

public void passParameters(int number, String label) {
   …
}

Either a primitive data type or an object is passed to a method.  The following terms 
are used to identify the data being passed:

• Argument: This is the variable being passed
• Parameter: This is the element defined within the method's signature

For example, in the following code sequence number and employee1 are the 
arguments while num and employee are the corresponding parameters to the 
changeValues method:

public static void main(String[] args) {
   int number = 10;
   Employee employee1 = new Employee();
   changeValues(number, employee1);

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 194 ]

   …
}

private static void changeValues(int num, 
   Employee employee) {
   …
}

In Java, only primitive data types and object references are passed to a method or 
constructor. This is performed using a technique called passing by value. When a 
method is called, a copy of the argument is assigned to the parameter.

When a primitive data type is passed, only a copy of the value is passed. This means 
if the copy in the called method is changed, the original data is not changed.

When a reference variable is passed, only a copy of the reference is passed. The 
object itself is not passed or copied. At this point we have two references to the same 
object—the argument reference variable and the parameter reference variable. We 
can modify the object using either reference variable.

We can also change what the parameter references. That is, we can modify the 
parameter to reference a different object. If we modify the parameter we are not 
modifying the argument. The parameter and the argument reference variables are 
distinct variables.

Consider the following program where we pass an integer and a reference to a 
Employee object, to the changeValues method. In the method we change the integer, 
a field of the Employee object, and the employee reference variable.

public static void main(String[] args) {
   …
   int number = 10;
   employee = new Employee();
   employee.setAge(11);
   changeValues(number, employee);

   System.out.println(number);
   System.out.println(employee.getAge());

}

private static void changeValues(int num, 
      Employee employee) {
   num = 20;
   employee.setAge(22);
   employee = new Employee();
   employee.setAge(33);
}

http://www.it-ebooks.info/


Chapter 6

[ 195 ]

When executed we get the following output:

10

22

Notice that when we changed the value of the num parameter, the 
main method's number variable did not change. Also, we changed 
the object's age field using the changeValues method's employee 
reference variable. However, when we modified what the 
changeValues method's employee reference variable pointed to 
by creating a new employee, we did not change the main method's 
employee reference variable. It still references the original object.

The following diagram illustrates how this works. The stack and heap reflect the 
state of the application when the changeValues method is started and immediately 
before it returns. For simplicity, we have ignored the args variable:

num

employee

name

zip

age

main

10

number

employee

10

changeValues

At start of changeValue method

11

num

employee

name

zip

age

main

20

number

employee

10

changeValues

At end of changeValue method

33

name

zip

age 22

Passing an object by value is an efficient parameter passing technique. It is efficient 
because we are are not copying the entire object. We only copy the reference to  
the object.

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 196 ]

Variable number of arguments
It is possible to pass a variable number of arguments to a method. However, there 
are some restrictions:

• The variable number of parameters must all be the same type
• They are treated as an array within the method
• They must be the last parameter of the method

To understand these restrictions, consider the method, in the following code snippet, 
used to return the largest integer in a list of integers:

private static int largest(int... numbers) {
   int currentLargest = numbers[0];
   for (int number : numbers) {
      if (number > currentLargest) {
         currentLargest = number;
      }
   }
   return currentLargest;
}

It is not necessary to declare methods with a variable number of parameters as static. 
We do this here so that we can call it from the static main method. In the following 
code sequence we invoke the method twice:

System.out.println(largest(12, -12, 45, 4, 345, 23, 49));
System.out.println(largest(-43, -12, -705, -48, -3));

The output is as follows:

345

-3

The largest method assigns the first parameter, the first element of the numbers 
array, to currentLargest. It makes the assumption that the largest number is the 
first parameter. If it is not, then it will eventually be replaced. This avoids having to 
assign the smallest possible value to the currentLargest variable.

The largest and smallest integers are defined in 
the Integer class as Integer.MAX_VALUE and 
Integer.MIN_VALUE respectively.

http://www.it-ebooks.info/


Chapter 6

[ 197 ]

We used a for-each statement to compare each element of the numbers array to the 
largest variable.  If the number is larger, then we replace largest with that number. 
The for-each statement is detailed in the The for-each statement section of Chapter 5, 
Looping Constructs.

If we call the method with no arguments, as attempted below:

System.out.println(largest());

The program will execute but a ArrayIndexOutOfBoundsException exception will 
be generated. This occurs because we tried to access the first element of the array in 
the method which does not exist because the array is empty. If we had not referenced 
the first element in the method, this problem would not have occurred. That is, a 
method that uses a variable number of arguments can, in most circumstances, be 
called with no arguments.

We could have implemented a version of the largest method that handles the 
situation where no arguments are passed. However, when nothing is passed what 
should the return value be? Any value we returned would imply that that number is 
the largest when, in fact, there is not a largest number. The best we can probably do 
is to return an exception reflecting this problem. However, this is effectively what the 
current version does. The exception, ArrayIndexOutOfBoundsException, is perhaps 
not as meaningful as a custom exception.

We can use other parameters in a method possessing a variable number of 
arguments. In the following example we pass a string, and zero or more floats, to a 
displayAspects method. The intent of the method is to display information about 
the element identified by the first argument:

private static void displayAspects(String item, 
    float... aspects) {
   ...    
}

The following code is an example of how the method might be invoked:

displayAspects("Europa", 2.3f, 56.005f, 0.0034f);

Variable arguments must be all of the same type and must 
be the last ones in the parameter list.

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 198 ]

Immutable objects
Immutable objects are objects whose state cannot be changed. By state, we mean the 
value of its member variables. These types of objects can simplify an application and 
are less error prone. There are several classes in the JDK core that are immutable 
including the String class.

To create an immutable object:

• Make the class final which means that it cannot be extended (covered in 
the Using the final keyword with classes section in Chapter 7, Inheritance and 
Polymorphism)

• Keep the fields of the class private and ideally final
• Do not provide any methods that modify the state of the object, that is do not 

provide setter or similar methods
• Do not allow mutable field objects to be changed

The following is an example of the declaration of an immutable class representing a 
header for a page:

package packt;

import java.util.Date;

final public class Header {
    private final String title;
    private final int version;
    private final Date date;

    public Date getDate() {
        return new Date(date.getTime());
    }

    public String getTitle() {
        return title;
    }

    public int getVersion() {
        return version;
    }
    
    public Header(String title, int version, Date date) {
        this.title = title;
        this.version = version;

http://www.it-ebooks.info/


Chapter 6

[ 199 ]

        this.date = new Date(date.getTime());
    }
    
    public String toString() {
        return  "Title: " + this.title + "\n" +
                "Version: " + this.version + "\n" +
                "Date: " + this.date + "\n";
    }
}

Notice that the getDate method created a new Date object based on the header's 
date field. Any Date object is mutable, so by returning a copy of the date as opposed 
to a reference to the current date, the user is unable to access and otherwise modify 
the private field. The same approach was used in the three-argument constructor.

Constructors
Constructors are used to initialize the member variables of a class. When an object 
is created, memory is allocated for the object and the constructor for the class is 
executed. This typically occurs using the new keyword.

Initialization of an object's instance variables is important. One of the developer's 
responsibilities is making sure that the state of an object is always valid. To assist in 
this process, constructors are executed whenever an object is created.

An alternate approach, which is not used by Java, is to use an initialization method 
that the programmer should call after an object is created. However, the use of such 
an initialization method is not a foolproof technique. The programmer may not be 
aware that the method exists, or may forget to call the method. To avoid these types 
of problems, a constructor is automatically invoked when an object is created.

The important characteristics of constructors include:

• Constructors have the same name as the class
• Constructor overloading is permitted
• Constructors are not methods
• Constructors do not have a return type, not even void

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 200 ]

The following code snippet illustrates how constructors are defined. In this example, 
three overloaded constructors are defined. For the moment, we have left out their 
bodies. The intent of these constructors is to initialize the three instance variables that 
make up the class:

public class Employee {
   private String name;
   private int zip;
   private int age;

   public Employee() {

   }

   public Employee(String name) {

   }

   public Employee(String name, int zip) {

   }

}

Default constructors
A default constructor is normally present for a class. If a class does not have any 
constructors explicitly declared, it automatically has a default constructor. A default 
constructor is a constructor that has no arguments. This is illustrated in the following 
code snippet, for the Employee class where no constructors are defined:

public class Employee {
   private String name;
   private int zip;
   private int age;

   …

}

http://www.it-ebooks.info/


Chapter 6

[ 201 ]

The default constructor will essentially initialize its instance variables to 0 as explained 
in the Initializing identifiers section in Chapter 2, Java Data Types and Their Usage. 
The values assigned to member variables are found in the following table which is 
duplicated from Chapter 2, Java Data Types and Their Usage, for your convenience:

Data Type Default Value (for fields)
boolean false
byte 0
char '\u0000'
short 0
int 0
long 0L
float 0.0f
double 0.0d
String (or any object)   null

However, we can also add an explicit default constructor, as shown in the following 
code snippet. The default constructor is a constructor that has no arguments. As we 
can see, we are free to initialize the fields of the class to whatever values we choose. 
For those fields that we do not initialize, the JVM will initialize them to zeroes as 
detailed above:

public Employee() {
    this.name = "Default name";
    this.zip = 12345;
    this.age = 21;
}

Note the use of the this keyword. In this context it is used to unambiguously specify 
that the variables following the period are class member variables, and not some 
other local variables. Here, there are no other variables that might cause confusion. 
The this keyword was detailed in the Using the this keyword section. It is a common 
practice to use the this keyword with member variables.

If the programmer adds a constructor to the class, then the class will no longer have 
a default constructor added automatically. The programmer must explicitly add 
a default constructor for the class to have one. In the following declaration of the 
Employee class, the default constructor has been left out:

public class Employee {
   private String name;
   private int zip;
   private int age;

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 202 ]

   public Employee(String name) {

   }

   …

}

If we try to create an object using the default constructor, as shown in the following 
code snippet, then we will get a syntax error:

Employee employee1 = new Employee();

The error message that is generated is as follows:

no suitable constructor found for Employee()

As a general rule, always add a default constructor to a class. 
This is particularly important when the class is a base class.

Overloading the constructors
Constructors can be overloaded. By overloading the constructors, we provide the 
users of the class with more flexibility in how an object can be created. This can 
simplify the development process.

Overloaded constructors have the same name but different signatures. The definition 
of a signature was provided in the Signature section, discussed earlier. In the 
following version of the Employee class we provide four constructors. Notice how 
each constructor assigns default values for those member variables not passed with 
the constructor:

public class Employee {
   private String name;
   private int zip;
   private int age;

   public Employee() {
       this.name = "Default name";
       this.zip = 12345;
       this.age = 21;
   }
   public Employee(String name) {
       this.name = name;
       this.zip = 12345;
       this.age = 21;
   }

http://www.it-ebooks.info/


Chapter 6

[ 203 ]

   public Employee(String name, int zip) {
       this.name = name;
       this.zip = zip;
       this.age = 21;
   }

   public Employee(String name, int zip, int age) {
       this.name = name;
       this.zip = zip;
       this.age = age;
   }

}

This example duplicates work between the constructors. An alternate approach, 
shown as follows, uses the this keyword to reduce this duplication of effort and 
simplify the overall process:

public class Employee {
   private String name;
   private int zip;
   private int age;

   public Employee() {
       this("Default name", 12345, 21);
   }

   public Employee(String name) {
       this(name, 12345, 21);
   }

   public Employee(String name, int zip) {
       this(name, zip, 21);
   }

   public Employee(String name, int zip, int age) {
       this.name = name;
       this.zip = zip;
       this.age = age;
   }
}

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 204 ]

In this case, the this keyword is used at the beginning of a constructor with an 
argument list. The effect is to call the same class' constructor that matches the 
signature used. In this example, each of the first three constructors calls the last 
constructor. This is called constructor chaining. All of the work is performed in the 
last constructor reducing the amount of repeated work being performed and chances 
for errors, especially when new fields are added.

This can be even more productive if the field variables are checked within a 
constructor prior to their assignment. For example, if we need to verify that the name 
meets a specific set of naming criteria, it only needs to be performed in one location 
instead of each constructor that is passed a name.

Private constructors
A constructor can be declared as private which serves to hide it from the user. This 
may be done to:

• Restrict access to some, but not all, of the class' constructors
• Hide all of the constructors from a user

In some situations, we may desire to make constructors private or protected  
(See Chapter 7, Inheritance and Polymorphism, for a discussion of the protected 
keyword) to limit access to certain initialization sequences. For example, a private 
constructor may be used to initialize fields of a class in a less rigorous manner.  
As we are invoking the constructor from other constructors, we may be more 
confident of the values being assigned and do not feel that extensive checking  
of its parameters is needed.

It is not uncommon to find classes where all of the constructors are declared as 
private. This restricts the creation of objects by a user to the public methods of the 
class. The java.util.Calendar class is an example of such a class. The only way to 
obtain an instance of this class is to use its static getInstance method.

The use of private constructors is used to control the number of instances of the 
class that can be created by an application. The singleton design pattern dictates that 
only one instance of a class is ever created. This design pattern can be supported by 
making all of its constructors private and providing a public getInstance method 
that creates a single instance of the class.

http://www.it-ebooks.info/


Chapter 6

[ 205 ]

The following illustrates this approach for the Employee class. The constructor is 
made private and the getInstance method insures that only a single object is 
ever created:

public class Employee {
   private static Employee instance = null;
   private String name;
   private int zip;
   private int age;

   private Employee instance = null;
   ...

   private Employee() {
      this.name = "Default name";
      this.zip = 12345;
      this.age = 21;
   }
    
   public Employee getInstance() {
      if(instance == null) {
         instance = new Employee();
      }
      return instance;
   }

   ...
}

The first time the getInstance method is called the instance variable is null, 
which results in a new Employee object being created. In subsequent calls to the 
getInstance method, instance will not be null and a new Employee object is not 
created. The current reference to the single object is returned.

Constructor issues
If a "constructor" has a return type, it is actually a method that happens to have the 
same name as the class. This is true even if the return type is void, as illustrated in 
the following code snippet:

public void Employee(String name) {

}

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 206 ]

We can create a new instance of the Employee class and then apply the Employee 
method against this object, as shown in the following code snippet:

Employee employee = new Employee();
employee.Employee("Calling a method");

While this is legal, it is not good style and can be confusing. In addition, as we saw in 
the Java naming conventions section in Chapter 1, Getting Started with Java, the naming 
conventions for methods suggest that the initial word of a method's name should 
begin with a lowercase letter.

Java initialization sequence
Constructors are concerned with the initialization of the fields of an object. 
However, there are two other approaches that can be used to complement the use 
of constructors. The first is to use instance variable initializers. Using the Employee 
class we can initialize the age to 21, shown as follows:

public class Employee {
   ...
   private int age = 21;

   ...

}

If we initialize an instance variable in this manner, we do not have to initialize it  
in a constructor.

The second approach is to use an initialization block. This type of block is executed 
before the constructor is executed. The following code snippet illustrates this 
approach:

public class Employee {
   ...
   private int age;
    

   // Initialization block
   {
      age = 31;
   }
   ...
}

Initialization blocks are useful when more complex initialization sequences are 
needed which cannot be supported with the simpler instance variable initializers. 
This initialization can also be performed in a constructor.

http://www.it-ebooks.info/


Chapter 6

[ 207 ]

Thus, there are several ways of initializing member variables. If we use one or more 
of these techniques to initialize the same variable, then we may wonder in what 
order they are performed. The actual initialization sequence is a bit more complex 
than described here. However, the general order is as follows:

1. The zeroing of fields performed when the object is instantiated
2. The initialization of final and static variables
3. The assignment of instance variables initializers
4. The execution of initialization blocks
5. The code within a constructor

More detail about the initialization sequence can be found in the Java Language 
Specification (http://docs.oracle.com/javase/specs/).

Methods
A method is a group of statements used to complete a specific task. A method has 
a return value, a name, a set of parameters, and a body. Parameters are passed 
to a method and are used to perform an action. If a value is to be returned from 
a method, the return statement is used. A method may have zero or more return 
statements. A method that returns void may use a return statement but the statement 
does not have an argument.

Defining methods
Methods are defined as part of the class definition and normally follow the 
declaration of the instance variables. The method declaration specifies a return  
type. The return type void means that the method does not return a value.

The Java naming convention for methods specifies that the first 
word is not capitalized but subsequent words are capitalized. 
Method names should be verbs.

In the following example, the method returns boolean and is passed two 
integer parameters:

public boolean isAgeInRange(int startAge, int endAge) {
    return (startAge <= age) && (age <= endAge);
}

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 208 ]

All methods within the same program must have unique signatures. Signatures are 
discussed in the Signature section, discussed earlier. Note that the return type of the 
method is not part of a signature. As an example, consider the declarations in the 
following code snippet:

   public int getAgeInMonths() {
      …
   }

   public float getAgeInMonths() {
      …
   }

The signatures for both of these methods are identical. The return type is not used. If 
we attempt to declare both methods in the Employee class we will get the following 
syntax error message:

getAgeInMonths() is already defined in packt.Employee

Calling methods
The syntax used for invoking methods appears similar to using instance variables. 
Instance methods will always execute against an object. The normal syntax uses the 
name of the object followed by a period and then the name of the method and any 
parameters that are needed. In the following example, the getAgeInMonths method 
is invoked against the employee reference variable:

Employee employee = new Employee();
System.out.println(employee.getAgeInMonths());

Static methods are invoked using either the class name or an object. Consider the 
following declarations for a static variable called entityCode:

public class Employee {
    // static variables
    private static int entityCode;

    public static void setEntityCode(int entityCode) {
        Employee.entityCode = entityCode;
    }
   ...
}

http://www.it-ebooks.info/


Chapter 6

[ 209 ]

Both the method calls in the following code snippet will invoke the same method:

Employee employee = new Employee();
employee.setEntityCode(42);
Employee.setEntityCode(42);

However, it is not good practice to use a reference variable to invoke a static method. 
Instead, always use the classname. Attempts to use an object will result in the 
following syntax warning:

Accessing static method setEntityCode

Static methods are detailed in the Instance and static class 
members section.

A parameter list may be empty if no parameters are passed to a method. In the 
following simplified method, the age of an employee is returned in months. No 
parameters are passed to the method and an integer is returned. The method is 
simplified as the actual value would need to consider the current date and the  
date of birth for the employee:

public int getAgeInMonths() {
    int months = age*12;
    return months;
}

Overloading methods
Multiple methods with the same name are permitted in Java. This provides 
a convenient technique for implementing methods that differ in argument 
types. Overloaded methods all have the same method name. The methods are 
differentiated in that each overloaded method must have a unique signature. 
Signatures are discussed in the earlier Signature section. Recall that the return 
type of the method is not part of a signature.

The following code snippet illustrates the overloading of a method:

int max(int, int);
int max(int, int, int);  // Different number of parameters
int max(int …);         // Varying number of arguments
int max(int, float);    // Different type of parameters
int max(float, int)    // Different order of parameters

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 210 ]

Care must be taken when calling an overloaded method, as the compiler may be 
unable to determine which method to use. Consider the following declarations of  
the max method:

class OverloadingDemo {

    public int max(int n1, int n2, int n3) {
        return 0;
    }

    public float max(long n1, long n2, long n3) {
        return 0.0f;
    }

    public float max(float n1, float n2) {
        return 0.0f;
    }
}

The following code sequence illustrates situations that will give the  
compiler problems:

int num;
float result;
OverloadingDemo demo = new OverloadingDemo();
num = demo.max(45, 98, 2);
num = demo.max(45L, 98L, 2L);  // assignment issue
result = demo.max(45L, 98L, 2L);
num = demo.max(45, 98, 2L);       // assignment issue
result = demo.max(45, 98, 2L);
result = demo.max(45.0f, 0.056f);
result = demo.max(45.0, 0.056f);  // Overload problem

The second and fourth assignment statements will match the method call with the 
three long argument method. This is expected for the second one. For the fourth 
assignment, only one of the arguments is long but it uses the three long argument 
method anyway. The problem with these assignments is that the method returns 
long and not int. It is unable to assign a float value to a int variable without a loss 
of precision, as indicated by the following syntax error message:

possible loss of precision

  required: int

  found:    float

http://www.it-ebooks.info/


Chapter 6

[ 211 ]

The last assignment cannot find an acceptable overloaded method. The following 
syntax error message results:

no suitable method found for max(double,float)

Closely related to overloading is the process of overriding a method. 
With overriding, the signatures of two methods are identical 
but they reside in different classes. This topic is covered in the 
Overriding Methods section in Chapter 7, Inheritance and Polymorphism.

Accessors/mutators
An accessor method is one that reads or accesses a variable of a class. A mutator 
method is one that modifies a variable of a class. These methods are usually public 
and the variables are normally declared as private. This is an important part of  
data encapsulation. Private data is hidden from the user but access is provided 
through methods.

There is a consistent naming convention that you should use with accessor and 
mutator methods. This convention uses the private member variable name as a base 
and prefixes the base with either a get or set prefix. The get method returns the value 
of the variable while the set method takes an argument that is assigned to the private 
variable. In both methods, the member variable name is capitalized.

This approach is illustrated for the private age field of the Employee class:

public class Employee {
   ...
   private int age;
   ...
   public int getAge() {
      return age;
   }

   public void setAge(int age) {
      this.age = age;
   }
}

Notice that the return type of getAge is int and is also the parameter type of the 
setAge method. This is the standard format of accessors and mutators. Accessor 
methods are commonly referred to as getters and mutator methods are referred  
to as setters.

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 212 ]

Private data is frequently encapsulated by making it private and providing public 
methods to access it. Fields that have private or non-existent setters are referred to 
as read-only fields. Fields that have private or non-existent getters are referred to as 
write-only fields, but are not as common. The chief reason for getters and setters is 
to restrict access and provide additional processing of the fields.

For example, we might have a getWidth method that returns the width of a 
Rectangle class. However, the value returned may be dependent on the unit of 
measure being used. It may return a value depending on whether another unit of 
measurement field is set to inches, centimeters or pixels. In a security conscious 
environment, we might want to restrict what can be read or written dependent  
upon the user or perhaps the time of day.

Instance and static class members
There are two types of variables or methods:

• Instance
• Static

An instance variable is declared as a part of the class and is associated with an object. 
A static variable is declared in the same way, except that it is preceded by the static 
keyword. When an object is created, it has its own set of instance variables. However, 
all objects share a single copy of static variables.

Sometimes, it makes sense to have a single variable that can be shared and accessed 
by all instances of a class. When used with a variable, it is called a class variable and 
is local to the class itself.

Consider the following Employee class:

public class Employee {
    // static variables
    private static int minimumAge;

    // instance variables
    private String name;
    private int zip;
    private int age;

   ...
}

http://www.it-ebooks.info/


Chapter 6

[ 213 ]

Each Employee object will have its own copies of the name, zip, and age variables. 
All Employee objects may share the same minimumAge variable. The use of a single 
copy of a variable insures that all of the class can access and use the same value, and 
space is conserved.

Consider the following code sequence:

Employee employee1 = new Employee();
Employee employee2 = new Employee();

The following diagram illustrates the allocation of the two objects in the heap.  
Each object has its own set of instance variables. The single static variable is  
shown allocated above the heap in its own special area of memory:

name
zip
age

employee1

employee2

name
zip
age

main

minimalAge

There is only one copy of each method for a class regardless of whether the method 
is an instance method or a static method. A static method is declared the same way 
as an instance method, except that the static keyword precedes the declaration 
of the method. The static setMinimumAge method, in the following code snippet, 
illustrates the declaration of a static method:

public static void setMinimumAge(int minimumAge) {
   Employee.minimumAge = minimumAge;
}

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 214 ]

All instance methods must execute against an object. It is not possible to execute 
against the name of a class as it is possible with a static method. Instance methods 
are designed to access or modify instance variables. As such, it needs to execute 
against an object that possesses instance variables. If we attempt to execute an 
instance method against a classname, shown as follows:

Employee.getAge();

It will result in the following syntax error message:

non-static method getAge() cannot be referenced from a static context

A static method can execute against either an object or the class name. Static methods 
may not access instance variables or call instance methods. As a static method can 
execute against a classname this means that it can execute even though there may not 
be any objects in existence. If there are no objects, then there cannot be any instance 
variables. Thus, static methods cannot access instance variables.

A static method may not call an instance method. If it were able to access an instance 
method, then it would indirectly be able to access an instance variable. As there may 
not be any objects in existence, the calling of instance methods by a static method is 
not allowed.

An instance method may access a static variable or call a static method. Static 
variables are always present. Thus, there is no reason why an instance method 
should not be able to access static variables and methods.

The following table summarizes the relationship between static/instance variables 
and methods:

Variable Method
Instance Static Instance Static

Instance 
method
Static 
method

http://www.it-ebooks.info/


Chapter 6

[ 215 ]

Summary
In this chapter we examined many of the important aspects of a class. This included 
how memory is managed when an instance of a class is created, the initialization 
process, and how methods can be invoked to use a class.

There are several issues relevant to both constructors and methods. These were 
discussed before the details of constructors and methods were detailed and included 
the use of the this keyword, passing parameters, and signatures. Constructors 
and various initialization techniques were illustrated including the order that these 
initializations take place. The declaration of methods was also discussed including 
how to overload methods.

We also examined the difference between instance and static, variables, and 
methods. Throughout the chapter we illustrated how memory is allocated.

Now that we have learned about the basics of classes we are ready to address the 
topics of inheritance and polymorphism, as discussed in the next chapter. In that 
chapter we will expand upon how memory is allocated, the initialization sequence, 
and introduce new topics, such as overriding methods.

Certification objectives covered
The certification objectives covered in this chapter include:

• Creating methods with arguments and return values
• Applying the static keyword to methods and fields
• Creating an overloaded method
• Differentiating between default and user-defined constructors
• Applying access modifiers
• Applying encapsulation principles to a class
• Determining the effect upon object references and primitive values when 

they are passed into methods that change the values

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 216 ]

Test your knowledge
1. Which of the following declares a method that takes a float and an integer 

returns an array of integers?
a. public int[] someMethod(int i, float f)  

{ return new int[5];}
b. public int[] someMethod(int i, float f)  

{ return new int[];}

c. public int[] someMethod(int i, float f)  
{ return new int[i];}

d. public int []someMethod(int i, float f)  
{ return new int[5];}

2. What happens if you try to compile and run the following code:
public class SomeClass { 
   public static void main(String arguments[]) {
      someMethod(arguments);
   }
   public void someMethod(String[] parameters) {
      System.out.println(parameters);
   }
}

a. Syntax error – main is not declared correctly.
b. Syntax error – the variable parameters cannot be used as it is in the 

println method.
c. Syntax error – someMethod needs to be declared as static.
d. The program will execute without errors.

3. Which of the following statements about overloaded methods are true?
a. Static methods cannot be overloaded.
b. The return value is not considered when overloading a method.
c. Private methods cannot be overloaded.
d. An overloaded method cannot throw exceptions.

4. Given the following code, which of the following statements are true?
public class SomeClass { 
   public SomeClass(int i, float f) { } 
   public SomeClass(float f, int i) { }
   public SomeClass(float f) { }
   public void SomeClass() { }
}

http://www.it-ebooks.info/


Chapter 6

[ 217 ]

a. A syntax error will occur because void cannot be used with  
a constructor.

b. A syntax error will occur because the first two constructors are  
not unique.

c. The class does not have a default constructor.
d. No syntax errors will be generated.

5. Which of the following keywords cannot be used when declaring a class?
a. public

b. private

c. protected

d. package

6. Assuming that the following classes are in the same package, which 
statements are true?
class SomeClass { 
   void method1() { } 
   public void method2( { }
   private void method3( { }
   protected void method4() { }
}

class demo [
   public void someMethod(String[] parameters) { 
      SomeClass sc = new SomeClass();
      sc.method1();
      sc.method2();
      sc.method3();
      sc.method41(); 
   }
}

a. sc.method1() will generate a syntax error.
b. sc.method2() will generate a syntax error.
c. sc.method3() will generate a syntax error.
d. sc.method4() will generate a syntax error.
e. No syntax errors will be generated.

http://www.it-ebooks.info/


Classes, Constructors, and Methods

[ 218 ]

7. What is the output of the following code?
public static void main(String args[]) { 
    String s = "string 1";
    int i = 5;
    someMethod1(i);
    System.out.println(i);
    someMethod2(s);
    System.out.println(s);
}

public static void someMethod1(int i) { 
    System.out.println(++i);
}
public static void someMethod2(String s) { 
    s = "string 2"; 
    System.out.println(s);
}

a. 5 5 string 2 string 1

b. 6 6 string 2 string 2

c. 5 5 string 2 string 2

d. 6 5 string 2 string 1

http://www.it-ebooks.info/


Inheritance and 
Polymorphism

In this chapter, we will examine how Java supports several important object-oriented 
concepts including inheritance and polymorphism. When the term "inheritance" 
comes to mind, we think of that rich uncle who will leave us his vast fortune. Or 
we say that she has her mother's eyes. In programming terms we talk about classes 
and how they are related to each other. The terms, "parent class" and "child class", 
are used to describe an inheritance relationship between classes where the class has 
access to the capabilities of the parent class.

There are several terms used to designate a parent class and a 
child class. You may see the parent class referred to as the super 
class or base class. The child class may be called the subclass or 
the derived class. In this chapter we will use the terms base class 
and derived class.

The base class typically has methods that implement common functionality needed 
by that class and the classes that are derived from that class. For example, we may 
have a person class that represents an individual. It may have methods that allow us 
to maintain the name or age of a person. We may create other classes that represent 
different types of people—butcher, baker, or candle-stick maker. These different 
types of people have different capabilities above and beyond those capabilities we 
define for the person class.

When we implement a baker for example, that class might have a method called 
cook that is used to cook something. However, the baker still has a name and an age. 
Instead of re-implementing the code to support the modification of the name or age 
we would prefer to re-use the code we developed for the person class. The process of 
doing this is called inheritance.

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 220 ]

Inheritance allows us to re-use the capabilities of the base class. This, in turn, 
promotes the re-use of software and can make the developer more productive.

We will also explain how polymorphism is supported in Java. This concept is 
important and assists in making an application more maintainable. Polymorphism is 
the result of overriding methods of a base class. Overriding is similar to overloading 
but it uses the same signature as a base class method.

Polymorphism is frequently used in conjunction with abstract classes. An abstract 
class is one which cannot be instantiated. That is, it is not possible to create an 
instance of that class. While we cannot create an instance of an abstract class, we 
can create an instance of a class derived from the abstract class. This capability can 
enhance the structure of an application.

With inheritance comes the need to invoke constructors of a base class. We will 
examine the approach used by Java to control the initialization sequence. Also, the 
idea of determining the type of a class and casting between classes of an inheritance 
hierarchy becomes important in some situations.

The last topic addressed in this chapter is concerned with the organization of 
memory as it relates to inheritance. Understanding how memory is organized  
and handled will deepen your understanding of the language and assist in 
debugging applications.

Inheritance
Inheritance is concerned with the relationship between two classes—the base class 
and the derived class. In this section we will cover the following:

• Implementing a subclass
• Using the protected keyword
• Overriding methods
• Using the @Override annotation
• Using the final keyword with classes
• Creating abstract methods and classes

The use of constructors and inheritance is covered in the The super keyword and 
constructors section.

When inheritance occurs, the derived class inherits all of the methods and attributes 
of the base class. However, it can only access the public and protected members of 
the class. It cannot access the private members of the class.

http://www.it-ebooks.info/


Chapter 7

[ 221 ]

When a method is added to a derived class that has the same signature and 
accessibility of a base class method, the method is said to override the base class 
method. This allows the derived class to redefine the meaning of that method. The 
examples in this chapter will use a Employee base class and a SalaryEmployee class 
that is derived from the base class.

Implementing a subclass
A class is implemented through the use of the extends keyword, followed by the 
base classname. In the following example, the Employee base class is defined:

class Employee {
   // Implementation of Employee class
}

The SalaryEmployee class can be derived from the base class Employee, as shown in 
the following code snippet:

class SalaryEmployee extends Employee  {
   // Implementation of SalaryEmployee class
}

Inheritance is used extensively throughout Java libraries. For example, applets are 
created by extending the Applet class.

A significant part of becoming a skilled Java programmer is 
learning to find, understand, and use those classes found in 
libraries relevant to your application's domain.

In the following example, the HelloWorldApplet class extends and inherits all of 
the methods and properties of this class. In this case, the paint method is overridden 
by HelloWorldApplet:

import java.awt.Graphics;

public class HelloWorldApplet extends java.applet.Applet {

   public void paint (Graphics g) {
      g.drawString ("Hello World!", 5, 15);
   }

}

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 222 ]

It is possible, and entirely desirable, for a base class to have one or more derived 
classes. In the case of the Employee base class, we might create not only a 
SalaryEmployee class but also a HourlyEmployee class. They will share the common 
capabilities of the base class and yet contain their own unique capabilities.

Let's examine the Employee base class and the SalaryEmployee class more carefully. 
First, let's start with a more detailed implementation of the Employee class, as shown 
in the following code snippet:

class Employee {
   private String name;
   private int zip;
   private int age;
   …

   public int getAge() {
      return age;
   }

   public void setAge(int age) {
      this.age = age;
   }

   …
}

In this implementation we have only included a private age instance variable and a 
getter and setter method for it. In the following SalaryEmployee class, we have not 
added any fields:

class SalaryEmployee extends Employee  {
   // Implementation of SalaryEmployee class
}

However, even though we haven't added anything new to the SalaryEmployee 
class, it has the capabilities of the base class. In the following sequence we create  
an instance of both classes and use their methods:

public static void main(String[] args) {
   Employee employee1 = new Employee();
   SalaryEmployee employee2 = new SalaryEmployee();

   employee1.setAge(25);
   employee2.setAge(35);

   System.out.println("Employee1 age: " +
      employee1.getAge());
   System.out.println("Employee2 age: " + 
      employee2.getAge());
}

http://www.it-ebooks.info/


Chapter 7

[ 223 ]

When the code is executed, we get the following output:

Employee1 age: 25

Employee2 age: 35

As the getAge and setAge methods were public we can use them with the 
SalaryEmployee class even though we haven't defined new versions. However, 
if we attempt to access the private age variable, as shown in the following code 
snippet, we will get a syntax error:

employee2.age = 35;

The syntax error generated is as follows:

age has private access in Employee

In the A review of scope section, we will explore scoping and inheritance in 
more depth.

Java does not support multiple inheritance between classes. That 
is, a derived class cannot extend more than one class. A derived 
class can extend one and only one class. However, Java does 
support multiple inheritance between interfaces.

Using the protected keyword
In the previous example, we determined that we cannot access private members 
from an instance variable, employee2.age in the example. We cannot access it 
from methods or constructors of the derived class either. In the following 
implementation of the SalaryEmployee class, we attempt to initialize the age 
variable in its default constructor:

public class SalaryEmployee extends Employee{

   public SalaryEmployee() {
      age = 35;
   }

}

The syntax error is as follows:

age has private access in Employee

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 224 ]

However, any base class members declared as public can be accessed from either 
a member method, or constructor of the derived class, or by an instance variable 
referencing the derived class.

There are situations where a member variable should be accessible from a derived 
class constructor, or method, but not from its instance variables. We may want to 
restrict access to the member at a finer level than either public or private. In the case 
of the age variable, we may trust the derived class to use the variable correctly but 
we may not trust the user of the instance variable. Using a protected field limits 
where the field can be modified within the application and where potential problems 
can be introduced.

This is where the protected access modifier comes in. By using the keyword, 
protected, with a base class member, we restrict access to that member. It is 
accessible from only within the base class or from derived class constructors  
or methods.

In the following implementation of the Employee class, the age variable is declared 
as protected:

class Employee {
   protected int age;
   …

   public int getAge() {
      return age;
   }

   public void setAge(int age) {
      this.age = age;
   }

   …
}

The age variable is now accessible from the SalaryEmployee class, as illustrated 
below where it is initialized:

public SalaryEmployee() {
   age = 35;
}

http://www.it-ebooks.info/


Chapter 7

[ 225 ]

This initialization does not generate a syntax error. However, we still cannot access 
the age variable from an instance reference variable. The following code will still 
result in a syntax error assuming that the class the statement resides in is not in  
the same package as the SalaryEmployee class. This is explained in the A review 
of scope section:

employee2.age = 35;

The protected keyword can also be used with methods. Its use with methods 
furthers your ability to control access to class members. As an example, the  
following implementation of the Employee class uses the protected keyword 
with the setAge method:

class Employee {
   protected int age;
   …

   public int getAge() {
      return age;
   }

   protected void setAge(int age) {
      this.age = age;
   }

   …
}

This means that any user of the class can use the getAge method but only the base 
class, classes in the same package, or derived classes can access the setAge method.

Overriding methods
While methods of a base are automatically available for use in a derived class, the 
actual implementation may not be correct for a derived class. Consider the use of a 
method to compute the pay of an employee. A computePay method in the Employee 
class may simply return a base amount, as shown in the following code snippet:

class Employee {
   private float pay = 500.0f;

   public float computePay() {
      return pay;
   }

  …
}

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 226 ]

This example is based on the float data type which is not necessarily the best data 
type for representing currency values. The java.math.BigDecimal class is better 
suited for this purpose. We used the float data type here to simplify the example.

However, for a derived class such as HourlyEmployee, the computePay method is 
not correct. This situation can be rectified by overriding the computePay method, as 
shown in the following simplified HourlyEmployee implementation:

public class HourlyEmployee extends Employee{
   private float hoursWorked;
   private float payRate;

   public HourlyEmployee() {
      this.hoursWorked = 40.0f;
      this.payRate = 22.25f;
   }

   public float computePay() {
      return hoursWorked * payRate;
   }

}

An overridden method possesses two basic characteristics:

• Has an identical signature as a base class method
• Is found in the derived class

The signature of a class is composed of its name, the number of parameters, the type 
of the parameters, and the order of the parameters. This is discussed in more detail 
in the Signature section of Chapter 6, Classes, Constructors, and Methods.

The terms overloading and overriding are easily confused. The following table 
summarizes the key differences between these terms:

Characteristic Overloading Overriding
Method name Same Same
Signature Different Same
Class Same class In a derived class

http://www.it-ebooks.info/


Chapter 7

[ 227 ]

Let's look at the use of the computePay method. In the following sequence, 
the computePay method is executed against the employee1 and employee3 
instance variables:

Employee employee1 = new Employee();
HourlyEmployee employee3 = new HourlyEmployee();

System.out.println("Employee1 pay: " +  
   employee1.computePay());
System.out.println("Employee3 pay: " +  
   employee3.computePay());

The output will be as follows:

Employee1 pay: 500.0

Employee3 pay: 890.0

The computePay method of the Employee base class is executed against the 
employee1 reference variable while the computePay method of HourlyEmployee is 
executed against the employee3 reference variable. The Java Virtual Machine (JVM) 
determines which method to use as the program executes. This is actually an example 
of polymorphic behavior, which we will address in the Polymorphism section.

In a more complex hierarchy of classes, intermediate classes may not override 
a method. For example, if a SupervisorEmployee class was derived from the 
SalaryEmployee class it is not necessary for the SalaryEmployee class to 
implement the computePay method. The SupervisorEmployee class can override 
the computePay method of Employee, whether or not its immediate base class 
overrode it.

The @Override annotation
One Java language design issue concerns method overriding. The problem is that a 
developer may intend to override a method but may not, due to a simple error in the 
method declaration. In the following attempt to override the computePay method, 
however, the method name is misspelled:

public float computPay() {
     return hoursWorked * payRate;
}

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 228 ]

While it may (or may not be) obvious that the method is misspelled, the developer 
may not notice the mistake. Using the previous example:

Employee employee1 = new Employee();
HourlyEmployee employee3 = new HourlyEmployee();

System.out.println("Employee1 pay: " + 
   employee1.computePay());
System.out.println("Employee3 pay: " + 
   employee3.computePay());

The program will still execute but will not generate the expected output as  
shown below:

Employee1 pay: 500.0

Employee3 pay: 500.0

Notice that the base class' computePay method is used in both cases. This is because 
the computePay method was invoked instead of the misspelled computPay method. 
As the HourlyEmployee class no longer has a computePay method, the JVM uses the 
base class method. Obviously, this is not what was intended.

It can be hard to immediately spot these types of errors. To assist in preventing these 
types of mistakes, we can use the @Override annotation with the method as follows:

@Override
public float computPay() {
   return hoursWorked * payRate;
}

This annotation informs the compiler to make sure that the method that follows, 
actually overrides a base class method. In this case, it does not because the name of 
the method is misspelled. When this happens, a syntax error is generated indicating 
that there is a problem. The syntax error message is as follows:

method does not override or implement a method from a supertype

When the spelling of the method is corrected, the syntax error message will go away.

As the name annotation implies, an annotation is a way of adding additional 
information to parts of a Java application that can be processed at a later time. In 
the case of the @Override annotation at compile time, a check is made to verify that 
overriding actually took place. Annotations can be used for other purposes, such as 
marking a method as deprecated.

It is a good practice to always use the @Override annotation with 
overridden methods.

http://www.it-ebooks.info/


Chapter 7

[ 229 ]

Using the final keyword with classes
The public, abstract, and final keywords can be used when declaring a class. The 
public keyword specifies the scope of the class, as will be explained in the A review 
of scope section. The use of the abstract keyword is covered in the next section, 
Abstract methods and classes. When the final keyword is used before the class 
keyword, it signifies that the class cannot be extended. It will be the last class in that 
branch of the inheritance hierarchy.

In the following example, the Employee class is designated as a final class. While it 
will not make sense to make the Employee class final for this chapter's examples, it 
does illustrate the syntax required to make a class final:

final class Employee {
   …
}

By restricting other classes from extending a class, you can be assured that the 
intended operation of the class will not be compromised by a derived class' 
overriding a base class method. If it is well implemented, this can result in a more 
reliable foundation from which to build applications.

The java.lang.String class is an example of a class found in the core JDK that 
is defined as final. It is not possible to extend this class or modify its behavior. 
This means that developers worldwide can use the class and not worry about the 
possibility of inadvertently using a derived class instead of the String class.

The final keyword can also be used with a method definition. When used in this 
context, it means that the method cannot be overridden in a derived class. This 
provides more flexibility than making a class final. The developer can specify those 
methods that may be overridden and those that cannot be overridden.

The following illustrates making the getAge method final in the Employee class:

public class Employee {
   ...
   public final int getAge() {
      return age;
   }
}

If we attempt to override the method in a derived class, such as the SalaryEmployee 
class, we will get the following error message:

getAge() in SalaryEmployee cannot override getAge() in Employee

  overridden method is final

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 230 ]

Abstract methods and classes
Abstract classes are useful in the design of an object-oriented inheritance hierarchy. 
They are typically used to force a derived class to implement a specific set of 
methods. The base class and/or one or more methods of the class are declared as 
abstract. An abstract class cannot be instantiated. A non-abstract class, in contrast, 
must have all of the abstract methods in its hierarchy tree, if any, implemented.

The following example illustrates how to make the Employee class abstract. In this 
example, there are no abstract methods but the abstract keyword was used to 
designate the class as abstract:

public abstract class Employee {
   ...
}

As the Employee class has no abstract methods, none of the derived classes will be 
forced to implement any additional methods. The above definition effectively has no 
effect on the previous examples in this chapter.

The next definition of the Employee class makes the computePay method 
abstract. Notice that the method does not have a body but is terminated with  
a semicolon instead:

public abstract class Employee {
   ...
   public abstract float computePay();
   ...
}

All classes that are immediately derived from the Employee class must implement 
the abstract method or they, themselves, will become abstract. If they elect not to 
implement the computePay method, the class must be declared as abstract.

When we declare a method as abstract, we are forced to use the abstract keyword 
with the class. An abstract class can also possess non-abstract methods.

In complex hierarchies you may find a mixture of non-abstract and abstract classes. 
For example, in the java.awt package you will find that the non-abstract Container 
class extends the abstract Component class that extends the non-abstract Object class. 
An abstract class may be introduced at any level in a hierarchy to meet the needs of 
the library.

http://www.it-ebooks.info/


Chapter 7

[ 231 ]

Abstract classes can have final methods but they cannot be declared as final. That is, 
the final keyword cannot be used as a modifier of an abstract class or method. If 
this was possible, it would be impossible to extend the class. As it is abstract it could 
never be instantiated and, thus, would be useless. However, an abstract class can 
have final methods. These methods must be implemented in that abstract class. The 
class can still be extended, but the final methods cannot be overridden.

Polymorphism
Polymorphism is a key object-oriented programming concept but it can be hard 
to understand initially. The primary purpose of using polymorphism is to make 
applications more maintainable. When we speak of polymorphism, we typically  
say that a method exhibits polymorphic behavior.

A method is said to be polymorphic if the behavior of the 
method is dependent on the object it is executing against.

Suppose we want to draw something. Each class may have a method called draw 
that it can use to draw itself. For example, a circle class might have a draw method 
that actually draws itself as a circle. A person class might have a draw method that 
displays an image of that person. The signature of the methods is identical.

Thus, if we apply the draw method against different objects of different classes 
with the same ultimate base class, then the result of the draw will differ depending 
on whether we are applying the draw method against a circle or a person. That is 
polymorphic behavior.

By designing our application to use polymorphism, we can add new classes that 
have a draw method and integrate them into our application a lot easier than 
previously possible in non-object oriented programming languages.

When an instance of an object is created, the object goes through a series of 
initialization steps as detailed in the Java initialization sequence section in Chapter 6, 
Classes, Constructors, and Methods. This applies to objects that are derived from base 
classes also. Java memory management is dynamic and automatic. When the new 
keyword is used, it automatically allocates memory from the heap.

In Java, a reference to a base class and any of its derived classes can be assigned to a 
base class reference variable. This is possible because of the way memory is allocated 
for base and derived classes. In a derived class, the instance variables of the base class 
are allocated first, followed by the instance variables of the derived class. When a 
base class reference variable is assigned to a derived class object, it sees the base class 
instance variables that it expects plus the "extra" derived class instance variables.

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 232 ]

Let's use the following definitions of the Employee and SalaryEmployee classes:

public class Employee {
   private String name;
   private int age;

   ...

}

public class SalaryEmployee extends Employee {
   private float stock;
   …
}

In the following example, assigning either a Employee or a SalaryEmployee object 
to the base class reference makes sense from the perspective of the reference variable 
because it expects to see the instance variables name and age. We can assign a new 
Employee object to the employee variable, as shown in the following code snippet:

Employee employee;
employee = new Employee();

This is also illustrated in the following diagram:

employee
name
age

We can also assign a new SalaryEmployee object to the employee variable using the 
following code. Notice that in the previous figure, and in this figure, the employee 
reference variable points to a name and a age field in that order. The employee 
reference variable expects a Employee object consisting of a name field and then an 
age field and that is what it sees:

employee = new SalaryEmployee();

This scenario is depicted in the following diagram:

employee
name
age

stock

http://www.it-ebooks.info/


Chapter 7

[ 233 ]

If the following code snippet is executed, based upon the previous declarations of the 
Employee and SalaryEmployee classes, the computePay method of SalaryEmployee 
will be executed, and not that of the Employee class:

Employee employee = new SalaryEmployee();
System.out.println(employee.computePay());

The computePay method is said to be polymorphic in relation to the object it is 
running against. If the computePay method ran against an Employee object, the 
Employee's computePay method would execute.

A reference to a derived object can be assigned to that class' object reference variable 
or to any of that class' base classes.  The advantage of polymorphic behavior can be 
better understood through the next example.  Here, the sum of all of the employee's 
pay from the employees array is calculated:

Employee employees[] = new Employee[10];
float sum = 0;

// initialize array
employees[0] = new Employee();
employees[1] = new SalaryEmployee();
employees[2] = new HourlyEmployee();
...

for(Employee employee : employees) {
   sum += employee.computePay();
}

The computePay method is executed against each element of the array. Based on 
the object it is executing against, the appropriate computePay method is invoked. 
If a new class is derived from the Employee class, such as a SalesEmployee class, 
the only modification needed to make the summation process work is to add a 
SalesEmployee object to the array. No other changes are needed. The result is a 
more maintainable and extensible application.

The allocation of the memory for derived classes helps explain how polymorphism 
works. We can assign a reference to a SalaryEmployee to either a SalaryEmployee 
reference variable or to an Employee reference variable. This is illustrated in the 
following code sequence:

Employee employee1 = new Employee();
SalaryEmployee employee2 = new SalaryEmployee();
employee1 = new SalaryEmployee();
employee1 = employee2;

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 234 ]

All of the above assignments are legal. It is possible to assign a derived class object 
to a base class reference variable because the base class reference variable is actually 
pointing to the memory whose first part contains the base class instance variables. 
This is illustrated in the following diagram, where each stack reflects the cumulative 
effect of the four assignment statements:

employee1

name
age

stock

name
age

employee2

employee1

name
age

employee2

name
age

stock

employee1

name
age

employee2

name
age

stock

name
age

stock

employee1

name
age

employee2

name
age

stock

Notice that some objects are no longer referenced by the application. These objects 
are eligible for garbage collection. At some point, if needed, they will be returned  
to the heap.

Managing classes and objects
This section is concerned with a number of issues relating to the general 
management of classes and objects. It includes the:

• Creation and initialization of objects
• Accessing methods of a base class
• Determining the type of objects
• Use of the Object class
• Casting objects
• Controlling the scope of classes and members

http://www.it-ebooks.info/


Chapter 7

[ 235 ]

The super keyword and constructors
As we saw in the Using the this Keyword section of Chapter 6, Classes, Constructors, and 
Methods, the this keyword refers to the current object. It can be used to:

• Access instance variables
• Pass the current object to a method
• Return the current object from a method

The super keyword is used in a complementary fashion within a derived class. 
It is used to:

• Call the base class constructor
• Access an overridden method in the base class

Calling a base class constructor
Let's examine its use in calling base class constructors. When a derived class object is 
created, it is initialized by calling its constructor. The use of constructors is covered 
in the Constructors section of Chapter 6, Classes, Constructors, and Methods. However, 
before a derived class constructor is executed, the base class constructor is invoked. 
This results in the base class being initialized before the derived class. This is 
particularly important should the derived class use any of the base class methods in 
the initialization sequence.

The invocation of the base class' default constructor occurs automatically unless we 
use the super keyword to invoke an alternative base class constructor. The following 
is an implementation of the Employee class which defines two constructors—a 
default constructor and a three argument constructor:

public class Employee {
   private String name;
   private int zip;
   private int age;
   ...

   public Employee() {
      this("Default name", 12345, 21);
   }

   public Employee(String name, int age, int zip) {
      this.name = name;
      this.zip = zip;
      this.age = age;
   }

   ...
}

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 236 ]

Notice the use of the this keyword to call the three argument constructor. The 
following is a partial implementation of the SalaryEmployee class. Only a default 
constructor is defined:

public class SalaryEmployee extends Employee {
   private int age;
   …
   public SalaryEmployee() {
      age = 35;
   }
}

In this example, the default constructor of the Employee class is automatically 
invoked.  However, we can make this invocation explicit by using the super 
keyword followed by a set of open and close parentheses, as shown below:

public SalaryEmployee() {
   super();
   age = 35;
}

In both cases, member variables of the Employee base class in the SalaryEmployee 
object are initialized as specified in the base class constructor.

If we explicitly use the super keyword to invoke a base class 
constructor, it must be the first line of the derived class' constructor. 
The this keyword must be the first statement in a constructor to 
invoke another constructor of the same class. Both of these keywords 
cannot be used in the same constructor to invoke another constructor.

However, there are situations where we may wish to invoke some constructor other 
than the default base class constructor. To do this we use the super keyword as the 
first statement in a derived class constructor and supply a list of parameters that match 
those of another base class constructor. In the following example, the four argument 
constructor of SalaryEmployee calls the base class' three argument constructor:

public SalaryEmployee(String name, int age, int zip, 
         float stock) {
   super(name, age, zip);
   this.stock = stock;
}

http://www.it-ebooks.info/


Chapter 7

[ 237 ]

If we could not choose the base class constructor, then we would need to explicitly 
call the appropriate setter methods to initialize the base class variables after the 
base class' default constructor has executed. This is illustrated in the following  
code snippet:

public SalaryEmployee(String name, int age, int zip, 
         float stock) {
   this.setName(name);
   this.setAge(age);
   this.setZip(zip);
   this.stock = stock;
}

This approach is not the preferred approach. It is best to allow the base class to 
initialize its own member variables. A derived class is not always in a position to 
determine how they should be initialized, and if they are completely hidden the 
derived class may not even be aware of their existence.

If a constructor invokes base class methods, these methods should 
be declared as final. Otherwise, a derived class that overrides 
them could adversely affect the initialization sequence.

Accessing an overridden method in the base class
We can also use the super keyword to access the overridden method of a base class 
method. For example, it is always a good idea to override the toString method 
of a class to return a string that represents that instance of the class. One possible 
implementation of this method for the Employee class is provided in the following 
code snippet:

public class Employee {
   …
   @Override
   public String toString() {
      return "Name: " + this.name +
             "  Age: " + this.age;
   }
}

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 238 ]

An implementation for the SalaryEmployee class is shown in the following code 
snippet, which uses the base class getter methods to return the name and age:

public class SalaryEmployee extends Employee {
   …
   @Override
   public String toString() {
      return "Name: " + this.getName() +
             "  Age: " + this.getAge() +
             "  Stock: " + this.stock;
   }
}

However, this implementation is awkward, as it requires invocation of the getter 
methods. Another problem with this approach is that each derived class may 
provide a different representation of the base class variables resulting in possible 
confusion on the part of the user of this method.

Ideally, we would simply call the base class' toString method in this example to get 
the string representation of the base class. However, calling the toString method 
from within the derived class's toString method results in a recursive call. That is, 
the runtime system thinks we are calling the current method. This is illustrated in the 
following code snippet:

public class SalaryEmployee extends Employee {
   …
   @Override
   public String toString() {
      // Results in a recursive call to the current method
      return toString() + "  Stock: " + this.stock;
   }
}

We can avoid these issues by using the super keyword to invoke a base class 
method. This is done by prefixing the name of the base class method with the super 
keyword and a period, as shown in the following code snippet:

public class SalaryEmployee extends Employee {
   …
   @Override
   public String toString() {
      return super.toString() + "  Stock: " + this.stock;
   }
}

http://www.it-ebooks.info/


Chapter 7

[ 239 ]

The effect of using the super keyword is illustrated in the next code sequence:

   Employee employee1 = new Employee("Paula", 23, 12345);
   SalaryEmployee employee2 = 
      new SalaryEmployee("Phillip", 31, 54321, 32);

   System.out.println(employee1);
   System.out.println(employee2);

The output will appear as follows:

Name: Paula  Age: 23

Name: Phillip  Age: 31  Stock: 32.0

Notice that the toString method is not explicitly invoked in the println 
method. When an object reference is used within a print or a println method, 
the toString method is automatically invoked if no other methods are used with 
the reference variable.

Unlike having to use the super keyword as the first statement in a constructor to 
invoke a base class constructor, when used to invoke a derived class method the 
super keyword can be used anywhere. It does not have to be used in the same 
overridden method.

In the example that follows, the display method invokes the base class's 
toString method:

public class SalaryEmployee extends Employee {
   …
   public void display() {
      System.out.println("Employee Base Data");
      System.out.println(super.toString());
      System.out.println("SalaryEmployee Data");
      System.out.println("Stock: " + this.stock);
    }
}

Here, the display method is invoked against the employee2 reference variable:

SalaryEmployee employee2 = new SalaryEmployee();
employee2.display();

The resulting output follows:

Employee Base Data

Name: Phillip  Age: 31

SalaryEmployee Data

Stock: 32.0

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 240 ]

It is not possible to call a base method above the current base class. That is, assuming 
an inheritance hierarchy of Employee – SalaryEmployee – Supervisor, a base class 
method of the Employee class cannot be called directly from a Supervisor method. 
The following code will result in a syntax error message:

super.super.toString();  //illegal

Determining the type of an object
There are times when it is useful to know an object's class. There are a couple of ways 
to determine its type. The first approach is to get the classname using the Class 
class. The second approach is to use the instanceof operator.

There is actually a class in Java named Class and it is found in the java.lang 
package. It is used to obtain information regarding the current object. For our 
purposes we will use its getName method to return the name of the class. First we 
obtain an instance of Class using the getClass method. This method is a member 
of the Object class.  The following illustrates this approach:

Employee employee1 = new Employee();
SalaryEmployee employee2 = new SalaryEmployee();

Class object = employee1.getClass();
System.out.println("Employee1 type: " + object.getName());
object = employee2.getClass();
System.out.println("Employee2 type: " + object.getName());

When this sequence is executed, we get the following output. In this example, the 
class names are prefixed with the name of their package. All classes developed for 
this book were placed within the packt package:

Employee1 type: packt.Employee

Employee2 type: packt.SalaryEmployee

While knowing the name of the class may be useful in some situations, the 
instanceof operator is frequently more useful. We can use the operator to 
determine whether one object is an instance of a class. This is demonstrated in 
the following example where we determine the type of classes referenced by the 
employee1 and employee2 variables:

System.out.println("Employee1 is an Employee: " +  
   (employee1 instanceof Employee));
System.out.println("Employee1 is a SalaryEmployee: " +  
   (employee1 instanceof SalaryEmployee));   
System.out.println("Employee1 is an HourlyEmployee: " +  
   (employee1 instanceofHourlyEmployee));  

http://www.it-ebooks.info/


Chapter 7

[ 241 ]

System.out.println("Employee2 is an Employee: " +  
   (employee2 instanceof Employee));
System.out.println("Employee2 is a SalaryEmployee: " +  
   (employee2 instanceof SalaryEmployee)); 

This sequence displays a true or false value based on the operator's operands. The 
output is as follows:

Employee1 is an Employee: true

Employee1 is a SalaryEmployee: false

Employee1 is an HourlyEmployee: false

Employee2 is an Employee: true

Employee2 is a SalaryEmployee: true

The Object class
The Object class is found in the java.lang package. This class is the ultimate 
base class of all Java classes. If a class does not explicitly extend a class, Java will 
automatically extend that class from the Object class. To illustrate this, consider the 
following definition of the Employee class:

public class Employee {
   // Implementation of Employee class
}

While we did not explicitly extend the Object class, it is extended from the Object 
class. To verify this, consider the following code sequence:

Employee employee1 = new Employee();
System.out.println("Employee1 is an Object: " +  
      (employee1 instanceof Object)); 

The output is as follows:

Employee1 is an Object: true

The application of the instanceof operator confirms that the Employee class is 
ultimately an object of Object. The above definition of the Employee class has 
the same effect as if we had derived it from the Object explicitly, as shown in the 
following code snippet:

public class Employee extends Object  {
   // Implementation of Employee class
}

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 242 ]

Using a common base class in Java guarantees that all classes have common 
methods. The Object class possesses several methods that most classes may 
need, as listed in the following table:

Method Meaning
clone Produces a copy of the object.
equals Returns true if two objects are "equal".
toString Returns a string representation of the object.
finalize Performed before an object is returned to the heap manager.
getClass Returns a Class object that provides additional information 

about an object.
hashCode Returns a unique hash code for the object.
notify Used in thread management.
notifyAll Also used in thread management.
wait Overloaded method used in thread management.

When a new class is created it is always a good idea to override 
the toString, equals, and hashCode methods.

Before an object can be cloned, its class must implement the 
java.lang.Cloneable interface. The clone method is 
protected.

Casting objects
In Java, we are able to cast an object to a different class, other than that of the original 
object. The cast can be up or down the hierarchy chain. When we cast a derived class 
object to a base class reference variable, it is called upcasting. When we cast a base 
class object to a derived class reference variable, it is called downcasting. Let's start 
with the following declaration where Employee is the base class of SalaryEmployee:

Employee employee1;
SalaryEmployee employee2;

The following example illustrates upcasting. An instance of the derived class, 
SalaryEmployee is assigned to the base class reference variable employee1. This is 
legal and is an important part of polymorphic behavior:

employee1 = new SalaryEmployee();

http://www.it-ebooks.info/


Chapter 7

[ 243 ]

The next statement attempts to perform downcasting. An instance of the base class is 
being assigned to the derived class reference variable. This statement will result in a 
syntax error:

employee2 = new Employee(); // Syntax error

However, the syntax error can be avoided by using the cast operator as follows:

employee2 = (SalaryEmployee) new Employee(); 

But, a ClassCastException exception, shown as follows, will be thrown when the 
preceding statement is executed:

java.lang.ClassCastException: packt.Employee cannot be cast to packt.
SalaryEmployee

Upcasting is possible because the derived object contains everything that the base 
class has, plus something more. Downcasting is not a good idea as the reference 
variable expects an object with more capabilities than is supplied.

Notice, with upcasting, that the methods available to the reference variable are those 
of the base class and not the derived class. Even though the reference variable points 
to the derived class object, it can only use the base class methods because that's 
what we've told the Java compiler the object is. This is illustrated in the following 
statement where we try to use the derived class' setStock method:

employee1.setStock(35.0f);

The following syntax error will be generated for this statement:

cannot find symbol

symbol:   method setStock(float)

  location: variable employee1 of type Employee

A review of scope
Scope refers to when a variable is visible and can be accessed. In earlier chapters 
we learned how the public and private keywords are used to control the scope 
of member variables. In the Using the protected keyword section of this chapter, we 
explored how the protected keyword works. However, the declaration of a member 
variable does not require the use of any of these keywords. When modifiers are not 
used, the variable declaration is called package-private. As the name implies, the 
scope of the variable is restricted to those classes in the same package.

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 244 ]

We also need to consider the use of the public keyword when used with a class 
definition. If a class is declared as public, it is visible to all classes. If no declaration  
is used, its visibility is limited to the current package. The class is said to have 
package-private visibility.

The use of the private and protected keywords cannot be 
used with a class definition unless the class is an inner class. 
An inner class is a class that is declared within another class.

The following table summarizes the scope of access modifiers as applied to class 
member variables and methods:

Modifier Class Package Derived Class Other
public

private

protected

none

Let's also consider the following package/class arrangement, which provides a more 
detailed look into the scoping rules:

Package abc Package de

class A

class B class C class E

class D

Assume that class A has the following declarations:

public class A {
   public int v1;
   private int v2;
   protected int v3;
   int v4;
}

http://www.it-ebooks.info/


Chapter 7

[ 245 ]

The following table summarizes the scoping rules for these declarations. These rules 
apply to both variables and methods declared in class A. It is slightly different from 
the previous table as it illustrates the placement of a derived class in a different 
package. Thus, the access permissions in the protected row appear to be different 
from the previous table:

Variable A B C D E
public int v1;

private int v2;

protected int v3;

int v4;

It may be necessary to declare an instance of class A in some of these classes in order 
to have access to the instances variables of A. For example, in class D the following 
code is needed to access class A:

A a = new A();
a.v1 = 35;
…

In general, use the most restrictive access that makes sense. 
This will improve the reliability of the application by 
avoiding situations where accidental access to a member 
results in unanticipated consequences.

Summary
In this chapter we have studied inheritance and polymorphic behavior, as defined 
by Java. We have examined how objects are allocated in memory to gain a more 
comprehensive understanding of how polymorphism and constructors work. The 
use of the this and super keywords were examined with regards to their use in 
constructors and derived class methods. In addition, abstract classes were examined, 
along with how they impact on polymorphic behavior.

The protected and final keywords were covered. We saw how the final keyword 
can affect inheritance and overriding methods. The protected keyword allowed us 
to better control the access to information in a derived class.

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 246 ]

The management of classes and objects was addressed including the organization 
of classes in a package and how to obtain information about objects using the Class 
class. The use of package-protected members was introduced. Also covered was the 
use of casting with classes.

In the next chapter we will cover the important topic of exception handling. 
Knowing how to properly use exception handling will enable you to create more 
robust and maintainable programs.

Certification objectives covered
The certification objectives addressed in this chapter include:

• Implementing inheritance
• Developing the code that demonstrates the use of polymorphism
• Differentiating between the type of a reference and the type of an object
• Determining when casting is necessary
• Using super and this to access objects and constructors
• Using abstract classes and interfaces

Test your knowledge
1. Which set of statements result in ClassB and ClassC being derived 

from ClassA?
a. class ClassB extends ClassA {}

b. class ClassB extends ClassC {}

c. class ClassA extends ClassB {}

d. class ClassC extends ClassB {}

e. No combination will work

2. Which of the following must be true for a method to support polymorphism?
a. The method must override a base class method
b. The method must overload a base class method
c. The method's class must extend a base class that has the  

overridden method
d. The method must execute against a base class reference variable

http://www.it-ebooks.info/


Chapter 7

[ 247 ]

3. What method is used to determine the type of an object?
a. isType

b. typeOf

c. instanceof

d. instanceOf

4. Which of the following are valid casts?
a. num1 = num2;

b. num1 = (int)num2;

c. num1 = (float)num2;

d. num1(int) = num2;

5. Given the following class definitions:
public class ClassA {
   public ClassA() {
      System.out.println("ClassA constructor");
   }
    
   public void someMethod() {
      System.out.println("ClassA someMethod");
   }
}

class ClassB extends ClassA {
   public ClassB() {
      System.out.println("ClassB constructor");
   }
    
   public void someMethod() {
      // comment
      System.out.println("ClassB someMethod");
   }    
   public static void main(String args[]) {
      ClassB b = new ClassB();
      b.someMethod();

   }
}

http://www.it-ebooks.info/


Inheritance and Polymorphism

[ 248 ]

What statement is needed at the comment line to generate the  
following output:
ClassA constructor
ClassB constructor
ClassA someMethod
ClassB someMethod

a. super();

b. super().someMethod;

c. super.someMethod();

d. someMethod();

e. None of the above

6. Which of the following statements are true?
a. An abstract class must use the abstract keyword when declared
b. An abstract class must have one or more abstract methods
c. An abstract class cannot extend a non-abstract class
d. An abstract class cannot implement an interface

http://www.it-ebooks.info/


Handling Exceptions in  
an Application

Exceptions are objects that are thrown by an application or the Java Virtual 
Machine (JVM) when an error of some sort occurs. Java provides a wide range 
of predefined exceptions and allows the developer to declare and create their own 
exception classes.

While there are a number of ways of classifying exceptions, one scheme classifies 
them into three types:

• Program errors
• Improper use of code
• Resource-related failures

Program errors are internal flaws in a code sequence. The programmer may or may 
not be able to do much about these types of errors. For example, a common exception 
is NullPointerException. This is frequently a result of not properly initializing or 
assigning a value to a reference variable. This type of error can be hard to avoid and 
anticipate when first writing a piece of code. However, once detected, the code can 
be revised to correct the situation.

Code may be improperly used. Most libraries are designed to be used in a specific 
manner. They may expect data to be organized in one way and if the user of the 
library fails to follow the format, an exception may be thrown. For example, the 
parameter of a method may not be structured as expected by the method or may  
be of the wrong type.

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 250 ]

Some errors are related to resource failure. When the underlying system is not able 
to satisfy the program's needs, a resource type of exception can occur. For example, a 
failure in the network may prevent the program from executing properly. This type 
of error may require re-executing the program at a later time.

A traditional approach to handling exceptions is to return an error code from a 
procedure. For example, a function may normally return a zero if it executed without 
an error. If an error did not occur, a non-zero value would be returned. The problem 
with this approach is that the calling of the function may either:

• Be unaware that the function returns an error code (for example,  
C's printf function)

• Forget to check for an error
• Ignore the error completely

When the error is not caught, the continued execution of the program can lead to 
unpredictably and possibly disastrous consequences.

An alternative to this method is to "catch" errors. Most modern block structured 
languages such as Java use this approach. This technique requires less coding and is 
more readable and robust. When a routine detects an error, it "throws" an exception 
object. The exception object is then returned to the caller which then catches and 
handles the error.

Exceptions should be caught for a number of reasons. Failure to deal with exceptions 
can result in the application failing, or ending up in an invalid state with incorrect 
output. It is always a good idea to maintain a consistent environment. Also, if you 
open a resource, such as a file, you should always close the resource when you are 
done except for the most trivial programs.

The exception handling mechanisms available in Java allow you to do this. When a 
resource is opened, it can be closed even if an exception occurs in the program. To 
accomplish this task, a resource is opened in a try block and closed in a catch or 
finally block. The try, catch, and finally blocks constitute the core of the 
exception handling mechanism used in Java.

http://www.it-ebooks.info/


Chapter 8

[ 251 ]

Exception types
Java has provided an extensive set of classes to support exception handling in 
Java. An exception is an instance of a class derived directly, or indirectly, from the 
Throwable class. Two predefined Java classes are derived from Throwable—Error 
and Exception. From the Exception class is derived a RuntimeException class. As 
we will see shortly, programmer-defined exceptions are normally derived from the 
Exception class:

Throwable

RuntimeException

Error Exception

Programmer
Defined Exception

There are numerous pre-defined errors that are derived from the Error and 
RuntimeException classes. There is little that a programmer will do with the 
exceptions derived from the Error object. These exceptions represent problems with 
the JVM and normally can't be recovered. The Exception class is different. The two 
classes that derive from the Exception class support two types of exceptions:

• Checked: These are exceptions that need to be dealt with in the code
• Unchecked: These are exceptions that do not need to be dealt with in the code

Checked exceptions include all exceptions derived from the Exception class and are 
not derived from the RuntimeException class. These must be handled in code or the 
code will not compile cleanly, resulting in compile-time errors.

Unchecked exceptions are all other exceptions. They include exceptions, such as 
division by zero and array subscripting errors. These do not have to be caught but 
like the Error exceptions, if they are not caught, the program will terminate.

We can create our own exception classes. When we do, we need to decide whether 
to create a checked or unchecked exception. A general rule of thumb is to declare the 
exception as an unchecked exception if the client code cannot do anything to recover 
from the exception. Otherwise, if they can handle it, make it a checked exception.

The users of a class do not have to account for unchecked exceptions 
that can result in the program terminating, if the client program does 
not ever deal with them. A checked exception requires the client to 
either catch the exception or explicitly pass it up the call hierarchy.

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 252 ]

Exception handling techniques in Java
There are three general techniques we can use when dealing with exceptions in Java:

• Traditional try block
• The new "try-with-resources" block introduced in Java 7
• Pass the buck

The third technique is used when the current method is not the appropriate place 
to handle the exception. It allows the exception to be propagated higher into the 
sequence of method calls. In the following example, anotherMethod may encounter 
some condition where it may throw IOException. Instead of dealing with the 
exception in someMethod, the throws keyword in the someMethod definition results 
in the exception being passed to the code that called this method:

public void someMethod() throws IOException {
   …
   object.anotherMethod(); // may throw an IOException
   …
}

The method will skip all of the remaining lines of code in the method and 
immediately return to the caller. Uncaught exceptions are propagated to the next 
higher context until they are caught or they are thrown from main, where an error 
message and stack trace will be printed.

Stack trace
The printStackTrace is a method of the Throwable class that will display the 
program stack at that point in the program. It is used automatically when an 
exception is not caught or can be called explicitly. The output of the method 
pinpoints the line and method that caused the program to fail. You have seen this 
method in action before, whenever you had an unhandled runtime exception. The 
method is automatically called when an exception is not handled.

The ExceptionDemo program illustrates the explicit use of the method:

public class ExceptionDemo {

   public void foo3() {
      try {
         …
         throw new Exception();
      }

http://www.it-ebooks.info/


Chapter 8

[ 253 ]

      catch (Exception e) {
         e.printStackTrace();
      }
   }

   public void foo2() { foo3(); }
   public void foo1() { foo2(); }

   public static void main(String args[]) {
      new ExceptionDemo().foo1();
   }
}

The output is shown as follows:

java.lang.Exception

        at ExceptionDemo.foo3(ExceptionDemo.java:8)

        at ExceptionDemo.foo2(ExceptionDemo.java:16)

        at ExceptionDemo.foo1(ExceptionDemo.java:20)

        at ExceptionDemo.main(ExceptionDemo.java:25)

Using Throwable methods
The Throwable class possesses a number of other methods that can provide more 
insight in to the nature of the exception. To illustrate the use of many of these 
methods we will use the following code sequence. In this sequence we attempt to 
open a non-existent file and examine the exception thrown:

private static void losingStackTrace(){
   try {
      File file = new File("c:\\NonExistentFile.txt");
      FileReader fileReader = new FileReader(file);
   } 
   catch (FileNotFoundException e) {
      e.printStackTrace();

      System.out.println();
      System.out.println("---e.getCause(): " + 
                   e.getCause());
      System.out.println("---e.getMessage(): " + 
                   e.getMessage());
      System.out.println("---e.getLocalizedMessage(): " + 
                   e.getLocalizedMessage());
      System.out.println("---e.toString(): " + 
                   e.toString());
   }
}

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 254 ]

Due to the nature of some IDEs, an application's standard output and standard error 
output can be interleaved. For example, the execution of the above sequence may 
result in the following output. You may not or may see the interleaving in your output.  
The dashes in front of the output are used to help see the interleaving behavior:

java.io.FileNotFoundException: c:\NonExistentFile.txt (The system cannot 
find the file specified)

---e.getCause(): null

---e.getMessage(): c:\NonExistentFile.txt (The system cannot find the 
file specified)

   at java.io.FileInputStream.open(Native Method)

---e.getLocalizedMessage(): c:\NonExistentFile.txt (The system cannot 
find the file specified)

---e.toString(): java.io.FileNotFoundException: c:\NonExistentFile.txt 
(The system cannot find the file specified)

   at java.io.FileInputStream.<init>(FileInputStream.java:138)

   at java.io.FileReader.<init>(FileReader.java:72)

   at packt.Chapter8Examples.losingStackTrace(Chapter8Examples.java:64)

   at packt.Chapter8Examples.main(Chapter8Examples.java:57)

The methods used in this example are summarized in the following table:

Method Meaning
getCause Returns the cause of the exception. If it cannot be 

determined it returns null.
getMessage Returns a detailed message.
getLocalizedMessage Returns a localized version of the message.
toString Returns the string version of the message.

Notice that the first line of the printStackTrace method is the output of the 
toString method.

The getStackTrace method returns an array of StackTraceElement objects where 
each element represents a line of the stack trace. We can duplicate the effect of the 
printStackTrace method with the following code sequence:

try {
   File file = new File("c:\\NonExistentFile.txt");
   FileReader fileReader = new FileReader(file);
} 
catch (FileNotFoundException e) {
   e.printStackTrace();

http://www.it-ebooks.info/


Chapter 8

[ 255 ]

   System.out.println();
   StackTraceElement traces[] = e.getStackTrace();
   for (StackTraceElement ste : traces) {
      System.out.println(ste);
   }
}

When executed we get the following output:

java.io.FileNotFoundException: c:\NonExistentFile.txt (The system cannot 
find the file specified)

   at java.io.FileInputStream.open(Native Method)

   at java.io.FileInputStream.<init>(FileInputStream.java:138)

   at java.io.FileReader.<init>(FileReader.java:72)

   at packt.Chapter8Examples.losingStackTrace(Chapter8Examples.java:64)

   at packt.Chapter8Examples.main(Chapter8Examples.java:57)

java.io.FileInputStream.open(Native Method)

java.io.FileInputStream.<init>(FileInputStream.java:138)

java.io.FileReader.<init>(FileReader.java:72)

packt.Chapter8Examples.losingStackTrace(Chapter8Examples.java:64)

packt.Chapter8Examples.main(Chapter8Examples.java:57)

The traditional try-catch block
The traditional technique to handle exceptions uses a combination of a try, catch, 
and finally blocks. A try block is used to surround code that might throw 
exceptions and is followed by zero or more catch blocks and then, optionally, by a 
single finally block.

The catch blocks are added after a try block to "catch" exceptions. The statements 
in the catch block provide blocks of code to "handle" the error. A finally clause 
can optionally be used after the catch blocks. It is guaranteed to execute even if code 
within a try or a catch block throws or does not throw an exception.

However, a finally block will not execute if the System.exit 
method is invoked in a try or catch block.

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 256 ]

The following sequence illustrates the use of these blocks. Within the try block, a 
line is read in and an integer is extracted. Two catch blocks are used to handle the 
exceptions that might be thrown:

try {
   inString = is.readLine();
   value = Integer.parseInt (inString);
   …
} 
catch (IOException e) {
   System.out.println("I/O Exception occurred");
} 
catch (NumberFormatException e) {
   System.out.println("Bad format, try again...");
} 
finally {
   // Perform any necessary clean-up action
}

One of two types of errors is possible in this code sequence:

• Either an error will occur trying to read a line of input or
• An error will occur trying to convert the string to an integer

The first catch block will catch IO errors and the second catch block will catch 
conversion errors. Only one catch block is ever executed when an exception is 
thrown.

An error may, or may not, occur. Regardless, the finally block will execute either 
after the try block completes or after a catch block executes. The finally clause is 
guaranteed to run and generally contains "clean-up" code.

Using the try-with-resource block
The use of the previous technique can be cumbersome when multiple resources are 
opened and a failure occurs. It can result in multiple try-catch blocks that become 
hard to follow. In Java 7, the try-with-resources block was introduced to address  
this situation.

The advantage of the try-with-resources block is that all resources opened with the 
block are automatically closed upon exit from the block. Any resources used with the 
try-with-resources block must implement the interface java.lang.AutoCloseable.

http://www.it-ebooks.info/


Chapter 8

[ 257 ]

We will illustrate this approach by creating a simple method to copy one file to 
another. In the following example, one file is opened for reading and the other is 
opened for writing. Notice how they are created between the try keyword and the 
block's open curly brace:

try (BufferedReader reader = Files.newBufferedReader(
    Paths.get(new URI("file:///C:/data.txt")),
      Charset.defaultCharset());
    BufferedWriter writer = Files.newBufferedWriter(
      Paths.get(new URI("file:///C:/data.bak")),
      Charset.defaultCharset())) {

  String input;
  while ((input = reader.readLine()) != null) {
    writer.write(input);
    writer.newLine();
  }
} catch (URISyntaxException | IOException ex) {
  ex.printStackTrace();
}

Resources to be managed are declared and initialized inside a set of parentheses and 
are placed between the try keyword and the opening curly brace of the try block. 
The first resource is a BufferedReader object that uses the data.txt file and the 
second resource is a BufferedWriter object used with the data.bak file. The Paths 
class is new to Java 7 and provides improved IO support. 

Resources declared with a try-with-resources block must be separated by semicolons 
otherwise a compile-time error will be generated. More in-depth coverage of the try-
with-resources block can be found in The Java 7 Cookbook.

The use of the vertical bar in the catch block is new to Java 7 and allows us to  
catch multiple exceptions in a single catch block. This is explained in the Using 
the | operator in a catch block section.

Catch statement
The catch statement has exactly one argument. The catch statement will trap the 
exception if its parameter:

• Exactly matches the exception type
• Is a base of the exception type
• Is an interface that the exception type implements

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 258 ]

Only the first catch statement that matches the exception will execute.  If no matches 
are made, the method will terminate and the exception will bubble up to the calling 
method where it may be handled.

A part of the earlier try block is duplicated as follows. The format of the catch 
statement consists of the catch keyword followed by a set of open and close 
parentheses enclosing an exception declaration. The set of parentheses is then 
followed by zero or more statements in a block statement:

try {
   …
} 
catch (IOException e) {
   System.out.println("I/O Exception occurred");
} 
catch (NumberFormatException e) {
   System.out.println("Bad format, try again...");
} 

The process of handling an error is up to the programmer. It may be as simple as 
displaying an error message or it can be quite complex. The programmer may use 
the error object to retry the operation or otherwise deal with it. This may involve 
propagating it back to the calling method in some situations.

Order of the catch blocks
The order in which catch blocks are listed after a try block can be significant. When 
an exception is thrown, the exception object is compared to the catch blocks in the 
order that they are listed. The comparison checks to see if the thrown exception is a 
type of the exception in the catch block.

For example, if a FileNotFoundException is thrown, it will match either a catch 
block that has an IOException or a FileNotFoundException exception because 
FileNotFoundException is a sub-type of IOException. As the comparison is 
stopped when the first match is found, if the catch block for IOException is listed 
before the catch block for FileNotFoundException, the FileNotFoundException 
block will never be executed.

http://www.it-ebooks.info/


Chapter 8

[ 259 ]

Consider the following hierarchy of exception classes:

Exception

AException

CExceptionBException

DException

Given the following code sequence:

try {
   …
}
catch (AException e) {…}
catch (BException e) {…}
catch (CException e) {…}
catch (DException e) {…}

If an exception is thrown that is one of these types of exceptions, the AException 
catch block will always be executed. This is because an AException, BException, 
CException, or a DException are all of the AException type. The exception 
will always match the AException exception. The other catch blocks will 
never be executed.

The general rule is always to list the "most-derived" exceptions first. The following is 
the correct way of listing the exceptions:

try {
   …
}
catch (DException e) {…}
catch (BException e) {…}
catch (CException e) {…}
catch (AException e) {…}

Notice, that it doesn't make any difference with this hierarchy of exceptions whether 
the BException immediately precedes or follows the CException, as they are at the 
same level.

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 260 ]

Using the | operator in a catch block
Sometimes it is desirable to handle multiple exceptions in the same way. Instead of 
duplicating the code in each catch block, we can use a vertical bar to permit one catch 
block to capture more than one exception.

Consider the situation where two exceptions are potentially thrown and are handled 
in the same way:

try {
   …
} 
catch (IOException e) {
   e.printStackTrace();
} 
catch (NumberFormatException e) {
   e.printStackTrace();
} 

A vertical bar can be used to catch two or more exceptions in the same catch 
statement as illustrated in the following code snippet. This can reduce the amount of 
code needed to handle two exceptions that are handled in the same way.

try {
   …
} 
catch (IOException | NumberFormatException e) {
   e.printStackTrace();
}

This approach works when more than one exception can be handled in the same 
way. Keep in mind that the catch block's parameter is implicitly final. It is not 
possible to assign a different exception to the parameter. The following attempt is 
illegal and will not compile:

catch (IOException | NumberFormatException e) {
   e = new Exception();  // Compile time error
}

http://www.it-ebooks.info/


Chapter 8

[ 261 ]

The finally block
The finally block follows a series of catch blocks and consists of the finally 
keyword followed by a block of statements. It contains one or more statements that 
will always be executed to clean up previous actions. The finally block will always 
execute regardless of the existence or non-existence of exceptions. However, if a 
try or catch block invokes the System.exit method, the program immediately 
terminates and the finally block does not execute.

The purpose of a finally block is to close or otherwise handle any resources 
that were opened within the try block. It is always a good practice to close 
resources after they have been opened and are no longer needed. We will this  
in the next example.

However, in practice this is often tedious and can be error prone if it is necessary to 
close multiple resources where the close process may also generate exceptions. In 
addition, if one resource throws an exception while being opened and another one 
was not opened, we have to be careful not to attempt to close the second one. As a 
result, in Java 7 the try-with-resources block has been introduced to address this type 
of problem. This block was discussed in the Using the try-with-resource block section. 
Here, we will cover the simplified use of the finally block.

A simple example of using the finally block is shown as follows. In this sequence 
we will open a file for input and then display its content:

BufferedReader reader = null;     
try {
   File file1 = new File("c:\\File1.txt");

   reader = new BufferedReader(new FileReader(file1));
   // Copy file
   String line;
   while((line = reader.readLine()) != null) {
      System.out.println(line);
   }
} 
catch (IOException e) {
   e.printStackTrace();
}
finally {
   if(reader != null) {
      reader.close();
   }
}

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 262 ]

The file will be closed regardless of whether an exception was thrown or not. If the 
file does not exist, a FileNotFoundException will be thrown. This will be caught 
in the catch block. Notice how we checked the reader variable to make sure it was 
not null.

In the following example, we open two files and then try to copy one file to another.  
The finally block is used to close the resources. This illustrates a problem with the 
finally block when dealing with multiple resources:

BufferedReader br = null;
BufferedWriter bw = null;        
try {
   File file1 = new File("c:\\File1.txt");
   File file2 = new File("c:\\File2.txt");

   br = new BufferedReader(new FileReader(file1));
   bw = new BufferedWriter(new FileWriter(file2));
   // Copy file
} 
catch (FileNotFoundException e) {
   e.printStackTrace();
}
catch (IOException e) {
   e.printStackTrace();
}
finally {
   try {
      br.close();
      bw.close();
   } catch (IOException ex) {
      // Handle close exception
   }
}

Notice, that the close methods may also throw a IOException. We must also handle 
these exceptions. This may require a more complicated exception handling sequence 
which can be error prone. In this case, note that the second file will not be closed if an 
exception is thrown when the first file is closed. In this situation it is better to use the 
try-with-resources block, as discussed in the Using the try-with-resources block section.

A try block needs either a catch block or a finally block. Without 
one or both a compile time error will be generated.

http://www.it-ebooks.info/


Chapter 8

[ 263 ]

Nested try-catch blocks
Exception handling can be nested. This can become necessary when methods 
are used in a catch or finally block that also throws exceptions. The following 
illustrates using a nested try block inside of a catch block:

try {
   // Code that may throw an exception
}
catch (someException e) {
   try {
      // Code to handle the exception
   }
   catch (anException e) {
      // Code to handle the nested exception
   } 
}
catch (someOtherException e) {
   // Code to handle the exception
} 

In the last example of the previous section, we used the close method inside a 
finally block. However, the close method may throw a IOException. As it is a 
checked exception, we will need to catch it. This results in a try block being nested 
inside of a finally block. In addition, when we try to close the BufferedReader, 
a NullPointerException will be thrown in the second try block because we 
attempted to execute the close method against the reader variable which was never 
assigned a value.

To complete the previous example, consider the following implementation:

finally {
   try {
      br.close();
      bw.close();
   } catch (IOException | NullPointerException e) {
       // Handle close exceptions
   }
   }

We used the | bar to simplify the capture of both exceptions as detailed in the Using 
the | operator in a catch block section. This is also another example where we may 
lose the original exception. In this case, the FileNotFoundException was lost to a 
NullPointerException. This will be discussed in the Losing the stack trace section.

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 264 ]

Exception handling guidelines
This section addresses general guidelines for working with exceptions. It is intended 
to provide examples of how to use exception handling in a more useful and 
productive manner. While poor techniques may not result in a compile-time error,  
or an incorrect program, they often reflect a poor design.

Repeating code that threw an exception
When an exception is thrown and then caught we will sometimes want to try and re-
execute the offending code. This is not difficult if the code is structured properly.

In this code sequence, errors are assumed to be present when the try block is 
entered. If an error is generated it is caught and handled by the catch block. As the 
errorsArePresent is still set to true, the try block will be repeated.  However, if 
no errors occur, at the end of the try block the errorsArePresent flag is set to false 
which will allow the program to execute the while loop and continue executing:

boolean errorsArePresent;

…
errorsArePresent = true; 
while (errorsArePresent) {
   try {
      …
      errorsArePresent = false;
   } 

   catch (someException e) {
      // Process error
   } 

}

An assumption is made, in this example, that the code used to process the error will 
necessitate that the try block be re-executed. This may be the case when all we do 
in the process error code sequence is to display an error message that identifies the 
error, such as when the user enters a bad filename.

You need to be careful using this approach if the resource needed is not available. 
This can result in an infinite loop where we check for a resource that is not available, 
throw an exception, and then do it all over again. A loop counter can be added to 
specify the number of times we try to handle the exception.

http://www.it-ebooks.info/


Chapter 8

[ 265 ]

Not being specific in which exception you  
are catching
When catching an exception, be specific about the one you need to catch. For 
example, in the following example the generic Exception is caught. There is nothing 
specific that will reveal more useful information about what caused the exception:

try {
   someMethod();
} catch (Exception e) {
   System.out.println("Something failed" + e);
}

A more useful version follows which catches the actual exception thrown:

try {
   someMethod();
} catch (SpecificException e) {
   System.out.println("A specific exception message" + e);
}

Losing the stack trace
Sometimes an exception is caught and then a different one is re-thrown. Consider the 
following method where a FileNotFoundException exception is thrown:

private static void losingStackTrace(){
   try {
      File file = new File("c:\\NonExistentFile.txt");
      FileReader fileReader = new FileReader(file);
   }
   catch(FileNotFoundException e) {
      e.printStackTrace();
   }
}

Assuming that the file does not exist, the following stack trace is generated:

java.io.FileNotFoundException: c:\NonExistentFile.txt (The system cannot 
find the file specified)

   at java.io.FileInputStream.open(Native Method)

   at java.io.FileInputStream.<init>(FileInputStream.java:138)

   at java.io.FileReader.<init>(FileReader.java:72)

   at packt.Chapter8Examples.losingStackTrace(Chapter8Examples.java:49)

   at packt.Chapter8Examples.main(Chapter8Examples.java:42)

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 266 ]

We can tell what the precise exception was and where it occurred. Next,  
consider the use of using the MyException class instead of the 
FileNotFoundException exception:

public class MyException extends Exception {
   private String information;
    
   public MyException(String information) {
      this.information = information;
   }
}

If we re-throw the exception, as shown in the following code snippet, we will lose 
information about the original exception:

private static void losingStackTrace() throws MyException {
   try {
      File file = new File("c:\\NonExistentFile.txt");
      FileReader fileReader = new FileReader(file);
   }
   catch(FileNotFoundException e) {
      throw new MyException(e.getMessage());
   }
}

The stack trace that results from this implementation is as follows:

Exception in thread "main" packt.MyException

   at packt.Chapter8Examples.losingStackTrace(Chapter8Examples.java:53)

   at packt.Chapter8Examples.main(Chapter8Examples.java:42)

Notice, that the details of the actual exception have been lost. In general it is a good 
idea not to use this approach as information crucial for debugging is lost. Another 
example of this problem is found in the Nested try-catch blocks section.

It is possible to re-throw and preserve the stack trace. To do this we need to do  
the following:

14. Add a constructor with a Throwable object as a parameter.
15. Use this when we want to preserve the stack trace.

The following shows such a constructor added to the MyException class:

public MyException(Throwable cause) {
   super(cause);
}

http://www.it-ebooks.info/


Chapter 8

[ 267 ]

In the catch block we will use this constructor, as shown below.

catch (FileNotFoundException e) {
   (new MyException(e)).printStackTrace();
}

We could have thrown the exception. Instead, we use the printStackTrace method, 
shown as follows:

packt.MyException: java.io.FileNotFoundException: c:\NonExistentFile.txt 
(The system cannot find the file specified)

   at packt.Chapter8Examples.losingStackTrace(Chapter8Examples.java:139)

   at packt.Chapter8Examples.main(Chapter8Examples.java:40)

Caused by: java.io.FileNotFoundException: c:\NonExistentFile.txt (The 
system cannot find the file specified)

   at java.io.FileInputStream.open(Native Method)

   at java.io.FileInputStream.<init>(FileInputStream.java:138)

   at java.io.FileReader.<init>(FileReader.java:72)

  at packt.Chapter8Examples.losingStackTrace(Chapter8Examples.java:136)

Scoping and block lengths
The scope of any variable declared within a try, catch, or finally block is limited 
to that block. It is a good idea to limit the scope of a variable as much as possible. In 
the following example, it is necessary to define the reader variable outside of the try 
and catch blocks because it is needed in the finally block:

BufferedReader reader = null;
try {
   reader = …
   …
}
catch (IOException e) {
   …
} finally {
   try {
      reader.close();
   } 
   catch (Exception e) {
      …
   }
}

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 268 ]

The length of a block should be limited. However, blocks that are too small can result 
in your code becoming cluttered with the exception handling code. Let's assume 
there are four methods that can each throw distinct exceptions. If we use separate try 
blocks for each method we will wind up with code similar to the following:

try {
   method1();
}
catch (Exception1 e1) {
   …
} 
try {
   method2();
}

catch (Exception1 e2) {
   …
} 
try {
   method3();
}
catch (Exception1 e3) {
   …
} 
try {
   method4();
}
catch (Exception1 e4) {
   …
} 

This is somewhat unwieldy and also presents problems if a finally block is needed 
for each try block. A better approach, if these are logically related, uses a single try 
block, shown as follows:

try {
   method1();
   method2();
   method3();
   method4();
}
catch (Exception1 e1) {
   …
} 
catch (Exception1 e2) {
   …

http://www.it-ebooks.info/


Chapter 8

[ 269 ]

} 
catch (Exception1 e3) {
   …
} 
catch (Exception1 e4) {
   …
} 

finally {
      …
}

Depending on the nature of the exceptions we can also use a common base class 
exception or, as introduced in Java 7, we can use the | operator with a single catch 
block. This is particularly useful if the exceptions can be dealt with in the same way.

However, it is a bad practice to place the entire body of a method in a try/catch block 
which contains code not related to the exception. It is better to separate the exception 
handling code from the non-execution handling code if possible.

A general rule of thumb is to keep the length of the exception handling code to a 
size that can be seen all at once. It is perfectly acceptable to use multiple try blocks. 
However, make sure that each block contains operations that are logically related. 
This helps modularize your code and makes it more readable.

Throwing a UnsupportedOperationException 
object
Methods that are intended to be overridden will sometimes return an "invalid" value 
to indicate that the method needs to be implemented. For example, in the following 
code sequence the getAttribute method returns null:

class Base {
   public String getAttribute() {
      return null;
   }
   …
}

However, if the method is not overridden and the base class method is used, 
problems such as an incorrect result may result, or a NullPointerException 
may be generated, if a method is executed against the return value.

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 270 ]

A better approach is to throw an UnsupportedOperationException to indicate that 
the method functionality has not yet been implemented. This is illustrated in the 
following code sequence:

class Base {
   public String getAttribute() {
      throw new UnsupportedOperationException();
   }
   …
}

The method cannot be used successfully until a valid implementation is 
provided. This approach is used frequently in the Java API. The java.util.
Collection class' unmodifiableList method uses this technique (http://
docs.oracle.com/javase/1.5.0/docs/api/java/util/Collections.
html#unmodifiableList%28java.util.List%29). Similar effects can be 
achieved by declaring the method as abstract.

Ignoring exceptions
It is generally a bad practice to ignore exceptions. They are thrown for a reason and if 
there is something you can do to recover, then you should deal with it. Otherwise, at 
minimum, you can gracefully terminate your application.

For example, it is common to ignore an InterruptedException, as illustrated in the 
following code snippet:

while (true) {
   try {
      Thread.sleep(100000);
   } 
   catch (InterruptedException e) {
      // Ignore it
   }
}

However, even here something went wrong. For example, if the thread is a part  
of a thread pool, the pool may be terminating and you should handle this event. 
Always understand the environment in which your program is running in and 
expect the unexpected.

http://www.it-ebooks.info/


Chapter 8

[ 271 ]

Another example of poor error handling is shown in the following code snippet. In 
this example we ignore the FileNotFoundException exception that may be thrown:

private static void losingStackTrace(){
   try {
      File file = new File("c:\\NonExistentFile.txt");
      FileReader fileReader = new FileReader(file);
   }
   catch(FileNotFoundException e) {
      // Do nothing
   }
}

This user is not aware that an exception was ever encountered. This is rarely an 
acceptable approach.

Handle exceptions as late as you can
When an exception is thrown by a method, the user of the method can either deal 
with it at that point or pass the exception up the call sequence to another method. 
The trick is to handle the exception at the appropriate level. That level is typically  
the one that can do something about the exception.

For example, if input is needed from the application's user to successfully handle the 
exception, then the level best suited for interacting with the user should be used. If 
the method is part of a library, then it may not be appropriate to assume that the user 
should be prompted. When we try to open a file and the file does not exist, we don't 
expect, or want the method we called, to prompt the user for a different file name. 
Instead, we are more inclined to do it ourselves. In some cases there may not even be 
a user to prompt as is the case with many server applications.

Catching too much in a single block
When we add catch blocks to an application, we are frequently tempted to use a 
minimal number of catch blocks by using a base class exception class to capture 
them. This is illustrated below where the catch block uses the Exception class to 
capture multiple exceptions. Here, we assume that multiple checked exceptions  
can be thrown and need to be handled:

try {
   …
}
catch (Exception e) {
   …
} 

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 272 ]

If they are all handled exactly the same way, this might be alright. However, if they 
differ in how they should be handled then we need to include additional logic to 
determine what actually happened. If we ignore the differences, then it can make any 
debugging process more difficult because we may have lost useful information about 
the exception. In addition, not only is this approach too coarse but we also catch all 
RuntimeExceptions which we may not be able to handle.

Instead, it is generally better to catch multiple exceptions in their own catch block, as 
illustrated in the following code snippet:

try {
   …
}
catch (Exception1 e1) {
   …
} 
catch (Exception1 e2) {
   …
} 
catch (Exception1 e3) {
   …
} 
catch (Exception1 e4) {
   …
} 

Logging exceptions
A common practice is to log exceptions even if they are handled successfully. This 
can be useful in assessing the behavior of an application. Of course, if we cannot 
handle the exception and need to gracefully terminate the application, error logs can 
be quite useful in determining what went wrong in the application.

Log the exception only once. Logging multiple times can confuse 
whoever is trying to see what happened and create log files larger 
than they need to be.

http://www.it-ebooks.info/


Chapter 8

[ 273 ]

Do not use exceptions to control normal  
logic flow
It is a poor practice to use exceptions where validation should be performed. In 
addition, throwing an exception uses up additional resources. For example, the 
NullPointerException is a common exception that results when a method is 
attempted to be executed against a reference variable that has a null value assigned 
to it. Instead of catching this exception, we should detect this condition and 
handle it in the normal logic sequence. Consider the following where we catch a 
NullPointerException:

String state = ...  // Somehow assigned a null value
try {
   if(state.equals("Ready") { … }
}
catch(NullPointerException e) {
   // Handle null state
}

Instead, we should check the value of the state variable before it is used:

String state = ...  // Somehow assigned a null value

if(state != null) {
   if(state.equals("Ready") { … }
} else {
   // Handle null state
}

The need for the try block is eliminated altogether. An alternate approach uses 
short-circuiting as illustrated in the following code snippet and is covered in the 
Short circuit evaluation section of Chapter 3, Decision Constructs. The use of the equals 
method is avoided if the state variable is null:

String state = ...  // Somehow assigned a null value

if(state != null && state.equals("Ready") { 
   // Handle ready state
} else {
   // Handle null state
}

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 274 ]

Do not try to handle unchecked exceptions
It is usually not worth the effort to deal with unchecked exceptions. Most of these 
are beyond the control of the programmer and would require significant effort to 
recover from. For example, a ArrayIndexOutOfBoundsException, while the result 
of a programming error, is not easily dealt with at runtime. Assuming that it would 
be feasible to modify the array index variable, it may not be clear what new value 
should be assigned to it or how to re-execute the offending code sequence.

Never catch Throwable or Error exceptions. These should 
never be handled or suppressed.

Summary
Proper exception handling in your program will enhance its robustness and 
reliability. The try, catch, and finally blocks can be used to implement exception 
handling within an application. In Java 7, the try-with-resources block has been 
added which more easily handles the opening and closing of resources. It is also 
possible to propagate an exception back up the call sequence.

We learned that the order of catch blocks is important in order to properly handle 
exceptions. In addition, the | operator can be used in a catch block to handle more 
than one exception in the same way.

Exception handling may be nested to address problems where the code within 
a catch, or finally block, may also throw an exception. When this happens, the 
programmer needs to be careful to insure that previous exceptions are not lost and 
that the new exceptions are handled appropriately.

We also addressed a number of common problems that can occur when handling 
exceptions. They provided guidance as to avoid poorly structured and error prone 
code. These included not ignoring exceptions when they occur and to handle 
exceptions at the appropriate level.

Now that we've learned about the exception handling process, we're ready to wrap 
up our coverage of the Java certification objectives in the next chapter.

http://www.it-ebooks.info/


Chapter 8

[ 275 ]

Certification objectives covered
The certification objectives covered in this chapter include:

• Describe what exceptions are used for in Java
• Differentiate among checked exceptions, runtime exceptions, and errors
• Create a try-catch block and determine how exceptions alter normal  

program flow
• Invoke a method that throws an exception
• Recognize common exception classes and categories

Test your knowledge
1. Which of the following implement checked exceptions?

a. Class A extends RuntimeException

b. Class A extends Throwable

c. Class A extends Exception

d. Class A extends IOException

2. Given the following set of classes:
class Exception A extends Exception {}

class Exception B extends A {}

class Exception C extends A {}

class Exception D extends C {}

What is the correct sequence of catch blocks for the following try block:
try {
   // method throws an exception of the above types
}

a. Catch A, B, C, and D
b. Catch D, C, B, and A
c. Catch D, B, C, and A
d. Catch C, D, B, and A

http://www.it-ebooks.info/


Handling Exceptions in an Application

[ 276 ]

3. Which of the following statements are true?
a. Checked exceptions are those derived from the Error class.
b. Checked exceptions should normally be ignored as we cannot not 

handle them.
c. Checked exceptions must be re-thrown.
d. Checked exceptions should be handled at the appropriate method in 

the call stack.

4. When a method throws a checked exception which of the following are  
valid responses?

a. Place the method in a try-catch block.
b. Do not use these types of methods.
c. Do nothing as we normally cannot handle checked exceptions.
d. Use the throws clause on the method which calls this method.

5. What exceptions may the following code generate at runtime?
String s;
int i = 5;
try{
   i = i/0;
   s += "next";
}

a. ArithmeticException

b. DivisionByZeroException

c. FileNotFoundException

d. NullPointerException

http://www.it-ebooks.info/


The Java Application
In this chapter we will examine the structure of a Java application from the 
perspective of packages. The use of the packages and import statements will  
be covered, along with the underlying directory structure used for packages.

We will also see how Java supports internationalization through the use of locales 
and resource bundles. An introduction to the use of JDBC will be presented, as well 
as examining how unused objects are reclaimed. This is commonly referred to as 
garbage collection.

Code organization
The organization of code is an essential part of an application. One can go as far as 
to say that it is this organization (along with data organization) that determines the 
quality of an application.

A Java application is organized around packages. Packages contain classes. Classes 
contain data and code. Code is found in either an initializer list or in a method. This 
basic organization is shown in the following diagram:

Package

Class

Data

Initializer list

Method

http://www.it-ebooks.info/


The Java Application

[ 278 ]

Code can be thought of as being both static and dynamic in nature. The organization 
of a Java program is structured statically around packages, classes, interfaces, 
initializer lists, and methods. The only change in this organization comes from 
different versions of an executing program. However, as a program executes, the 
myriad of different possible execution paths result in an often complex sequence  
of execution.

The Java API is organized into many packages of hundreds of classes. New packages 
and classes are being added on a regular basis making it challenging to keep up with 
all of the capabilities of Java.

However, as mentioned in the The Object class section in Chapter 7, Inheritance and 
Polymorphism, all classes in Java have as a base class—java.lang.Object—either 
directly or indirectly. In the classes that you defined, if you do not explicitly extend 
another class, Java will automatically extend this class from the Object class.

Packages
The purpose of a package is to group related classes and other elements together. 
Ideally, they form a cohesive set of classes and interfaces. A package can consist of:

• Classes
• Interfaces
• Enumerations
• Exceptions

It is natural that classes with similar functionality should somehow be grouped 
together. Most of Java's IO classes are grouped together in the java.io or java.nio 
related packages. All of Java's network classes are found in the java.net package. 
This grouping mechanism provides us with a single logical grouping that is easier to 
talk about and to work with.

All classes belong to a package. If the package is not specified, then the class belongs 
to an unnamed default package. This package consists of all the classes in the 
directory that have not been declared as belonging to a package.

The directory/file organization of packages
To place a class within a package it is necessary to:

• Use the package statement in the class source file
• Move the corresponding .class file to the package directory

http://www.it-ebooks.info/


Chapter 9

[ 279 ]

The package statement needs to be the first statement in the class' source file.  
The statement consists of the keyword, package, followed by the name of the 
package. The following example declares that the class Phone belongs to the 
acme.telephony package:

package acme.telephony;

class Phone {
   …
}

Java source code files are placed in a file with the same name as the class using 
a .java extension. If more than one class is saved in a file, only one class can be 
declared as public and the file must be named after this public class. The java.lang 
package contains many commonly used classes and is included automatically in 
every application.

The second requirement is to move the class file to the appropriate package 
directory. Somewhere on the system there must exist a directory structure that 
reflects the package name. For example, for a package name employee.benefits 
there needs to be a directory named employee that has a subdirectory named 
benefits. All of the class files for the employee package are placed in the employee 
directory. All of the class files for the employee.benefits package are placed in 
the benefits subdirectory. This is illustrated in the following diagram where the 
directories and files are located somewhere off in the C drive:

c:\
employee

Class1.class
Class2.class

benefits
Class3.class
Class4.class

You may also find that a package's directories and classes are compressed into a Java 
Archive (JAR) or .jar file. If you look for a specific package structure in a directory 
system, you may find a JAR file instead. By compressing packages into a JAR file, 
memory can be minimized. If you find such files, do not unzip them because the Java 
compiler and JVM expect them to be in a JAR file.

Most IDEs will separate the source files from the class files by placing them in 
separate directories. This separation makes them easier to work with and deploy.

http://www.it-ebooks.info/


The Java Application

[ 280 ]

The import statement
The import statement provides information to the compiler in terms of where to 
find the definition of a class used in the program. There are several considerations 
regarding the import statement that we will examine:

• Its use is optional
• Using the wildcard character
• Accessing multiple classes with the same name
• The static import statement

Avoiding the import statement
The import statement is optional. In the following example, instead of using the 
import statement for the BigDecimal class we explicitly use the package name 
directly in code:

private java.math.BigDecimal balance;
     …
this.balance = new java.math.BigDecimal("0");

This is more verbose but it is more expressive. It leaves no doubt that the 
BigDecimal class is the one found in the java.math package. However, if we used 
the class many times in the program then this becomes an annoyance. Normally, the 
import statement is used.

Using the import statement
To avoid having to prefix each class with its package name, the import statement can 
be used to indicate to the compiler where the class can be found. In this example the 
class, BufferedReader of the java.io package, can be used without having to prefix 
the class name with its package name each time it is used:

import java.io.BufferReader;
   …
   BufferedReader br = new BufferedReader();

http://www.it-ebooks.info/


Chapter 9

[ 281 ]

Using the wildcard character
If more than one class needs to be used, and they are found in the same package, 
an asterisk can be used instead of including multiple import statements, one 
for each class. For example, if we need to use both the BufferedReader and the 
BufferedWriter classes in an application we could use two import statements, 
as follows:

import java.io.BufferedReader;
import java.io.BufferedWriter;

By explicitly listing each class, the reader of the code will know immediately  
where to find the class. Otherwise, the reader might be left guessing from which 
package a class originates when the wild card character is used with multiple  
import statements.

While the explicit import of each class is better documentation, the import list can  
get quite long. Most IDEs support the ability to collapse, or otherwise hide the list.

The alternative approach is to use one import statement with the asterisk, shown  
as follows:

import java.io.*;

All of the package's elements can now be used without using the package name. 
However, this does not mean that the classes of sub-packages can be used in the 
same way. For example, there are numerous packages that start with java.awt. 
A few of these with some of their elements are shown in the following diagram:

Button
Canvas
Color

java.awt

ActionEvent
FocusAdapter
ItemEvent

java.awt.event

LineMetrics
TextAttribute

java.awt.font java.awt.image

DataBuffer
ImageFilter
Raster

It may seem the wild card character should include those classes found in these 
additional packages when used against the "base" package, as shown in the  
following code:

import java.awt.*;

http://www.it-ebooks.info/


The Java Application

[ 282 ]

However, it imports only those classes in the java.awt package and none of the 
classes in the java.awt.font or similar packages. In order to also reference all of 
the classes of java.awt.font also, a second import statement is necessary:

import java.awt.*;
import java.awt.font.*;

Multiple classes with the same name
As it is possible to have more than one class with the same name in different 
packages, the import statement is used to specify which class to use. However,  
the second class will need to explicitly use the package name.

For example, let's assume that we have created a BigDecimal class in a com.
company.account package and we need to use it and the java.math.BigDecimal 
class. We cannot use an import for both classes, as shown in the following code 
snippet, because this will generate a syntax error to the effect that the names collide.

import java.math.BigDecimal;
import com.company.customer.BigDecimal;

Instead, we need to either:

• Declare one using the import statement and explicitly prefix the class name 
of the second when we use it, or

• Do not use the import statement at all and explicitly prefix both classes as we 
use them

Assuming that we use the import statement with the java.math class, we use both 
classes in code, as follows:

this.balance = new BigDecimal("0");
com.company.customer.BigDecimal secondary = 

   new com.company.customer.BigDecimal();

Notice that we had to prefix both usages of BigDecimal in the second statement 
otherwise it would have assumed that the un-prefixed one was in the java.math 
package generating a type mismatch syntax error.

http://www.it-ebooks.info/


Chapter 9

[ 283 ]

The static import statement
The static import statement can be used to simplify the use of methods. This is 
commonly used in conjunction with the println method. In the following example, 
we use the println method several times:

System.out.println("Employee Information");
System.out.println("Name: ");
System.out.println("Department: ");
System.out.println("Pay grade: ");

In each case, the classname, System, was required. However, if we use the following 
import statement where we added the static keyword we will not need to use the 
System classname.:

import static java.lang.System.out;

The following sequence of code statements achieves the same result:

out.println("Employee Information");
out.println("Name: ");
out.println("Department: ");
out.println("Pay grade: ");   

While this approach saves the time spent in typing, it can be confusing to anyone 
who does not understand the use of the static import statement.

Garbage collection
Java performs automatic garbage collection. When memory is allocated using the new 
keyword, the memory is obtained from the program heap. This is an area of memory 
above the program stack. The object allocated is held by the program until the 
program releases it. This is done by removing all references to the object. Once it is 
released, the garbage collection routine will eventually run and reclaim the memory 
allocated by the objects.

The following code sequence illustrates how a String object is created. It is then 
assigned to a second reference variable:

String s1 = new String("A string object");
String s2 = s1;

http://www.it-ebooks.info/


The Java Application

[ 284 ]

At this point, s1 and s2 both reference the string object. The following diagram 
illustrates the memory allocation for s1 and s2:

main

"A string object"

s1
s2

Heap

The new keyword was used in this situation to ensure that the string object is 
allocated from the heap. If we had used a string literal, as shown below, the  
object is allocated to an internal pool as discussed in the String comparisons 
section in Chapter 2, Java Data Types and Their Usage:

String s1 = "A string object";

The next two statements illustrate how the references to the object can be removed:

s1 = null;
s2 = null;

The following diagram shows the state of the application after these statements have 
been executed:

main

"A string object"

s1
s2

Heap

null
null

http://www.it-ebooks.info/


Chapter 9

[ 285 ]

There exists a JVM background thread, which executes periodically to reclaim the 
unused objects. At some point in the future, the thread will execute. When an object 
is ready to be reclaimed, the thread will do the following:

• Execute the method's finalize method
• Reclaim the memory for re-use by the heap manager

The finalize method is not normally implemented by a developer. Its original 
intent was to correspond to the destructor found in languages such as C++. They 
were used to perform cleanup activities.

In Java, you should not rely on the method to execute. For small programs, the 
garbage collection routine may never run as the program may terminate before it has 
a chance to execute. Over the years, several attempts have been made to provide the 
ability for a programmer to force the method to execute. None of these attempts have 
been successful.

Resource bundles and the Locale class
The Locale class is used to represent a part of the world. Associated with a locale is 
a set of conventions concerned with such activities as controlling the way currency 
or dates are displayed. The use of locales aids in the internationalization of an 
application. The developer specifies the locale and then uses the locale in various 
parts of the application.

In addition to the Locale class, we can also use resource bundles. They provide 
a way to customize the appearance based on the locale for data types other than 
numbers and dates. It is particularly useful when working with strings that change 
based on the locale.

For example, a GUI application will have different visual components whose 
text should differ when used in different parts of the world. In Spain, the text 
and currency should be displayed in Spanish. In China, Chinese characters and 
conventions should be used. The use of locales can simplify the process of adapting 
an application to different regions of the world.

In this section we will discuss three approaches used to support internationalization 
of an application:

• Using the Locale class
• Using a property resource file
• Using the ListResourceBundle class

http://www.it-ebooks.info/


The Java Application

[ 286 ]

Using the Locale class
To illustrate the use of locales we first create an instance of the Locale class. This 
class has a number of predefined locale constants. In the following example we will 
create a locale for the US and then display the locale:

Locale locale;

locale = Locale.US;
System.out.println(locale);

The output appears as follows:

en_US

The first part, en_, is short for English. The second part specifies US. If we change the 
locale to Germany as follows:

locale = Locale.GERMANY;
System.out.println(locale);

you will get the following output:

de_DE

You can use locales to format currency values. In the following example we 
have used the static getCurrencyInstance method to return an instance of a 
NumberFormat class using the locale for the US. The format method is then used to 
format a double number:

NumberFormat currencyFormatter = 
   NumberFormat.getCurrencyInstance(Locale.US);
System.out.println(currencyFormatter.format(23.45));

The output appears as follows:

$23.45

If we had used the German locale, we would get the following output:

23,45 €

Dates can also be formatted based on a locale. The DateFormat class' 
getDateInstance method is used in the following code snippet, with the US locale. 
The format method uses a Date object to obtain a string representation of the date, 
as illustrated in the following code snippet:

DateFormat dateFormatter = 
   DateFormat.getDateInstance(DateFormat.LONG, Locale.US);
System.out.println(dateFormatter.format(new Date()));

http://www.it-ebooks.info/


Chapter 9

[ 287 ]

The output would be similar to the one that follows:

May 2, 2012

In the following code snippet we will use a locale for France:

dateFormatter = DateFormat.getDateInstance(
   DateFormat.LONG, Locale.FRANCE);
System.out.println(dateFormatter.format(new Date()));

The output of this example is as follows:

2 mai 2012

Using resource bundles
Resource bundles are collections of objects organized by the locale. For example, we 
might have one resource bundle containing strings and GUI components for English 
speaker and another set for Spanish speakers. These language groups can be further 
divided into language subgroups such as US versus Canadian English speakers.

A resource bundle can be stored as a file or may be defined as a class. A property 
resource bundle is stored in a .properties file and is restricted to strings. 
ListResourceBundle is a class and can hold strings and other objects.

Using a property resource bundle
A property resource bundle is a file consisting of a set of key-value string pairs 
where the file name ends with .properties. The string key is used to identify a 
specific string value. For example, a WINDOW_CAPTION key can be associated with 
a string value Editor. The following shows the content of a ResourceExamples.
properties file:

WINDOW_CAPTION=Editor

FILE_NOT_FOUND=The file could not be found

FILE_EXISTS=The file already exists

UNKNOWN=Unknown problem with application

http://www.it-ebooks.info/


The Java Application

[ 288 ]

To access the value in a resource file, we need to create an instance of a 
ResourceBundle class. We can do this by using the ResourceBundle class' static 
getBundle method, as shown in the following code snippet. Notice that the resource 
file name is used as an argument of the method, but it does not include the file 
extension. If we know the key, we can use it with the getString method to return its 
corresponding value:

ResourceBundle bundle = ResourceBundle.getBundle(
      "ResourceExamples");
System.out.println("UNKNOWN" + ":" +
      bundle.getString("UNKNOWN"));

The output will appear as follows:

UNKNOWN:Unknown problem with application

We can use the getKeys method to obtain an Enumeration object. As shown in the 
following code snippet, the enumeration to display all of the key-value pairs of the 
file, is used:

ResourceBundle bundle = ResourceBundle.getBundle(
      "ResourceExamples");

Enumeration keys = bundle.getKeys();
while (keys.hasMoreElements()) {
   String key = (String) keys.nextElement();
   System.out.println(key + ":" + bundle.getString(key));
}

The output of this sequence is as follows:

FILE_NOT_FOUND:The US file could not be found
UNKNOWN:Unknown problem with application
FILE_EXISTS:The US file already exists
WINDOW_CAPTION:Editor

Notice that the output does not match the order or the contents of the 
ResourceExamples.properties file. The order is controlled by the enumeration. 
The content is different for the FILE_NOT_FOUND and FILE_EXISTS keys. This is 
because it actually used a different file, ResourceExamples_en_US.properties. 
There is a hierarchical relationship between the property resource bundles. The code 
sequence was executed with a default locale of the US. The system looked for the 
ResourceExamples_en_US.properties file as it represents the strings specific to 
that locale. Any missing elements in a resource file are inherited from its "base" file.

http://www.it-ebooks.info/


Chapter 9

[ 289 ]

We will create four different resource bundle files to illustrate the use of resource 
bundles and the hierarchical relationship between them:

• ResourceExamples.properties

• ResourceExamples_en.properties

• ResourceExamples_en_US.properties

• ResourceExamples_sp.properties

These are related to each other hierarchically, as depicted in the following diagram:

ResourceExamples_en

ResourceExamples

ResourceExamples_sp

ResourceExamples_en_US

These files will contain strings for four keys as summarized in the following table:

File Key Value
WINDOW_CAPTION Editor
FILE_NOT_FOUND The file could not be found
FILE_EXISTS The file already exists
UNKNOWN Unknown problem with application

en WINDOW_CAPTION Editor
FILE_NOT_FOUND The English file could not be found
UNKNOWN Unknown problem with application

en_US WINDOW_CAPTION Editor
FILE_NOT_FOUND The US file could not be found
FILE_EXISTS The US file already exists
UNKNOWN Unknown problem with application

sp FILE_NOT_FOUND El archivo no se pudo encontrar
FILE_EXISTS El archivo ya existe
UNKNOWN Problema desconocido con la aplicación

http://www.it-ebooks.info/


The Java Application

[ 290 ]

The en entry is missing a value for the FILE_EXISTS key and the sp entry is missing 
the WINDOW_CAPTION key. They will inherit the value for the default resource file, as 
illustrated below for the en locale:

bundle = ResourceBundle.getBundle("ResourceExamples",
      new Locale("en"));
System.out.println("en");
keys = bundle.getKeys();
while (keys.hasMoreElements()) {
   String key = (String) keys.nextElement();
   System.out.println(key + ":" + bundle.getString(key));
}

The output lists a value for FILE_EXISTS even though it is not found in the 
ResourceExamples_en.properties file:

en

WINDOW_CAPTION:Editor

FILE_NOT_FOUND:The English file could not be found

UNKNOWN:Unknown problem with application

FILE_EXISTS:The file already exists

The inheritance behavior of these files allows the developer to create a hierarchy of 
resources files based on a base file name and then extend them by adding a locale 
suffix. This results in strings being used automatically that are specific for the  
current locale. If a locale other than the default one is needed, then the specific  
locale can be specified.

Using the ListResourceBundle class
The ListResourceBundle class is also used to hold resources. Not only can it hold 
strings, it can also hold other types of objects. However, the keys are still string 
values. To demonstrate the use of this class, we will create the ListResource class 
which derives from the ListResourceBundle class as listed below. A static two 
dimensional array of objects is created containing key-value pairs. Notice the last 
pair contains an ArrayList. The class' getContents method returns the resources 
as a two dimensional array of objects:

public class ListResource extends ListResourceBundle {

   @Override
   protected Object[][] getContents() {
      return resources;
   }
    

http://www.it-ebooks.info/


Chapter 9

[ 291 ]

   static Object[][] resources = {
      {"FILE_NOT_FOUND", "The file could not be found"},
      {"FILE_EXISTS", "The file already exists"},
      {"UNKNOWN", "Unknown problem with application"},
      {"PREFIXES",new 
            ArrayList(Arrays.asList("Mr.","Ms.","Dr."))}
            
   };
}

The ArrayList created is intended to store various name prefixes. It is created using 
the asList method, which is passed a variable number of string arguments and it 
returns a List to the ArrayList constructor.

The following code demonstrates how to use ListResource. An instance of 
ListResource is created and then the getString method is executed using string 
keys. For the PREFIXES key, the getObject method is used:

System.out.println("ListResource");
ListResource listResource = new ListResource();

System.out.println(
   listResource.getString("FILE_NOT_FOUND"));
System.out.println(
   listResource.getString("FILE_EXISTS"));
System.out.println(listResource.getString("UNKNOWN"));
ArrayList<String> salutations = 
       (ArrayList)listResource.getObject("PREFIXES");
for(String salutation : salutations) {
   System.out.println(salutation);
}

The output of this sequence is as follows:

ListResource
The file could not be found
The file already exists
Unknown problem with application
Mr.
Ms.
Dr.

http://www.it-ebooks.info/


The Java Application

[ 292 ]

Using JDBC
JDBC is used to connect to a database and manipulate tables in the database. 
The process to use JDBC includes the following steps:

1. Connecting to a database
2. Creating an SQL statement to submit to the database
3. Handling the results and any exceptions that may be generated

In Java 7, the use of JDBC has been enhanced with the addition of the  
try-with-resources block, which simplifies the opening and closing of connections. 
A detailed explanation of this block is found in the Using the try-with-resource block 
section in Chapter 8.

Connecting to a database
Connecting to a database involves two steps:

1. Loading a suitable driver
2. Establishing a connection

This assumes that a database has been setup and is accessible. In the following 
examples, we will be using MySQL Version 5.5. MySQL comes with the Sakila 
schema which contains a customer table. We will use this table to demonstrate 
various JDBC techniques.

Loading a suitable driver
First we need to load a driver. JDBC supports a number of drivers, as discussed 
at http://developers.sun.com/product/jdbc/drivers. Here, we will use the 
MySQLConnector/J driver. We load the driver using the Class class' forName 
method, as shown in the following code snippet:

try {
   Class.forName(
            "com.mysql.jdbc.Driver").newInstance();
} catch (InstantiationException | 
         IllegalAccessException |
         ClassNotFoundException e) {
   e.printStackTrace();
}

The method throws several exceptions which need to be caught.

http://www.it-ebooks.info/


Chapter 9

[ 293 ]

Note that starting with JDBC 4.0 the above sequence is no longer needed, assuming 
that the JDBC drivers used support JDBC 4.0. This is the case for the MySQL drivers 
used with MySQL Version 5.5. This sequence is used here because you will probably 
run across this approach in older programs.

Establishing a connection
Next, a connection to the database needs to be established. The java.sql.
Connection represents a connection to a database. The DriverManager class' 
static getConnection method will return a connection to a database. Its 
arguments include:

• A URL representing the database
• A user ID
• A password

The following code sequence will use a try-with-resources block to establish a 
connection to the database. The first parameter is a MySQL specific connection 
string.  Connection strings are vendor specific:

try (Connection connection = DriverManager.getConnection(
      "jdbc:mysql://localhost:3306/", "id", "password")) {
         ...
} catch (SQLException e) {
   e.printStackTrace();
}

Creating a SQL statement
Next, we need to create a Statement object that will be used to execute a query. The 
Connection class' createStatement method will return a Statement object. We will 
add it to the try-with-resources block to create the object:

try (Connection connection = DriverManager.getConnection(
      "jdbc:mysql://localhost:3306/", "root", "explore");
     Statement statement = connection.createStatement()) {
      ...
} catch (SQLException e) {
   e.printStackTrace();
}

http://www.it-ebooks.info/


The Java Application

[ 294 ]

A query string is then formed that will select the first and last name of those 
customers in the customer table whose address_id is less than 10. We choose this 
query to minimize the size of the result set. The executeQuery method is used to 
execute the query and returns a ResultSet object that holds the rows of the table 
matching the selected query:

try (Connection connection = DriverManager.getConnection(
      "jdbc:mysql://localhost:3306/", "root", "explore");
     Statement statement = connection.createStatement()) {
      String query = "select first_name, last_name"
         + " from sakila.customer "
         + "where address_id < 10";
      try (ResultSet resultset = 
                        statement.executeQuery(query)) {
         ...
      }
         ...
} catch (SQLException e) {
   e.printStackTrace();
}

Handling the results
The last step is to use a while loop to iterate through the result set and display the 
rows returned. In the following example the next method will advance from row to 
row in the resultset. The getString method returns the value corresponding to 
the method's argument that specifies the column to be accessed:

try (Connection connection = DriverManager.getConnection(
      "jdbc:mysql://localhost:3306/", "root", "explore");
     Statement statement = connection.createStatement()) {
      String query = "select first_name, last_name"
         + " from sakila.customer "
         + "where address_id < 10";
      try (ResultSet resultset = 
                        statement.executeQuery(query)) {
         while (resultset.next()) {
            String firstName = 
                       resultset.getString("first_name");
            String lastName = 
                       resultset.getString("last_name");
            System.out.println(firstName + " " + lastName);
         }
      }
} catch (SQLException e) {
   e.printStackTrace();
}

http://www.it-ebooks.info/


Chapter 9

[ 295 ]

The output is as follows:

MARY SMITH

PATRICIA JOHNSON

LINDA WILLIAMS

BARBARA JONES

ELIZABETH BROWN

JDBC supports the use of other SQL statements such as update and delete. In 
addition, it supports the use of parameterized queries and stored procedures.

Summary
In this chapter we have re-examined the overall structure of a Java application. 
We examined the use of the import and package statements and discussed 
the relationship between a package library and its supporting directory/file 
underpinnings. We learned how to use the asterisk wildcard with the import 
statement. In addition, we saw the use of the static import statement.

We discussed the use of the initializer list and how garbage collection works  
in Java. This process results in the automatic recovery of objects once they are  
no longer needed.

The support provided for internationalization was explored starting with the Locale 
class and then with resource bundles. Both, property resource bundles and the 
ListResourceBundle class were covered. We learned how inheritance works with 
property resource bundles when organized using a consistent naming convention.

Finally, we covered the use of JDBC. We saw how a driver is needed to establish  
a connection to a database and how to use the Statement class to retrieve a 
ResultSet object. This object allowed us to iterate through the rows returned 
by a select query.

Certification objectives covered
The certification objectives covered in this chapter include:

• Defining the structure of a Java class
• Selecting a resource bundle based on locale
• Using the proper JDBC API to submit queries and read results from  

the database.

http://www.it-ebooks.info/


The Java Application

[ 296 ]

Test your knowledge
1. Which of the following will compile without an error?

a. package somepackage;
import java.nio.*;
class SomeClass {}

b. import java.nio.*;
package somepackage;
class SomeClass {}

c. /*This is a comment */
 
package somepackage;
import java.nio.*;
class SomeClass {}

2. For a hierarchy of a resource property file, if a key is missing from one of the 
derived files, which of the following are true about the value returned, based 
on a missing key?

a. The return value will be an empty string
b. The return value will be a null value
c. The return value will be a string from a base resource bundle
d. A runtime exception will be thrown

3. Which exception is not thrown by the forName method:
a. InstantiationException

b. ClassNotFoundException

c. ClassDoesNotExistException

d. IllegalAccessException

http://www.it-ebooks.info/


Test Your Knowledge  
– Answers

Chapter 1: Getting Started with Java
Question 
No.

Answer Explanation

1 a The second command line argument is displayed.
2 a, b, and d Option c is incorrect because you cannot assign a double 

value to an integer variable.

Chapter 2: Java Data Types and  
Their Usage

Question 
No.

Answer Explanation

1 c You cannot access an instance variable from a static method.
2 c and e Option a is incorrect because single quotes are used 

for character data. Option b requires a suffix of f as in 
3.14159f. A byte accepts only the values from -128 to +127.

3 b and d Option a is incorrect because instance variables need to be 
used with an object. Option c is incorrect because instance 
variables cannot be used with a classname.

4 a, b, and d There is no StringBuilder toInteger method.

http://www.it-ebooks.info/


Test Your Knowledge – Answers

[ 298 ]

Question 
No.

Answer Explanation

5 b The lastIndexOf method takes a single argument of 
char. The charAt method returns the letter at the position. 
The last use of indexOf does not take both a string and a 
char argument.

6 c Option a only compares equality of objects. Option b is 
incorrect because there is no such method as matchCase In 
option d, the equals method uses the case which is different 
in the two strings.

Chapter 3: Decision Constructs
Question 
No.

Answer Explanation

1 b The % operator is the modulo operator and returns 
the remainder.

2 a and c Option b evaluates to -24. Option d evaluates to 11.
3 b The bit sequence 0001000 is shifted to the right 3 positions 

with a zero sign fill.
4 a and c Option b results in a comparison between i and j which 

returns a Boolean value. This value cannot be compared 
against the integer k. Option d requires an operand before the 
expression, >k.

5 b The default case can be positioned anywhere within the 
switch. As all of the cases, except the first one, are missing 
a break statement, flow falls through each of the last three 
cases. While it is not common, constants can be used for 
switch statements.

http://www.it-ebooks.info/


Appendix

[ 299 ]

Chapter 4: Using Arrays and Collections
Question 
No.

Answer Explanation

1 a and d The number of elements in an array declaration is not used in 
the declaration. However, we can use the following:

int arr[] = new int[5];

2 b At least the first dimension of a multidimensional array must 
be specified.

3 a and c The contains method will return true if the object is found 
and indexOf takes an object reference and returns the index 
of the object if found, otherwise it returns a -1. The indexOf 
method does not take an integer argument and the hasObject 
method does not exist.

Chapter 5: Looping Constructs
Question 
No.

Answer Explanation

1 a and d The other options will not work because the expression does 
not evaluate to a Boolean value.

2 b, c, and d You cannot use [] in a for-each statement.
3 a and b Option c needs parentheses around the expression, i < 

5. Option d requires a block statement if more than one 
statement is used between the do and while keywords.

4 a, b, c, 
and d

They are all equivalent.

5 a The continue statement skips values 3 for j.

http://www.it-ebooks.info/


Test Your Knowledge – Answers

[ 300 ]

Chapter 6: Classes, Constructors,  
and Methods

Question 
No.

Answer Explanation

1 a, c, and d Option b fails to initialize the array properly.
2 c You cannot access an instance method from a static method.
3 a The return value is not considered when overloading  

a method.
4 c and d The last line is a method that happens to have the same name 

as the constructor. As there are constructors defined but no 
default constructor, the class has no default constructor.

5 a and b Only the private and public keywords can be used when 
declaring a class and the private keyword can only be used 
with inner classes.

6 c As the classes are on the same package and all of the methods 
are visible except for the private method.

7 d The i variable in the main is not modified, as it is passed 
by value. While the string is passed by reference, the local 
variable s was modified in the third method, not the one in 
the main method.

Chapter 7: Inheritance and Polymorphism
Question 
No.

Answer Explanation

1 a and d This results in ClassC being the "grandchild" of ClassA.
2 a and d Overloading only occurs within the same class. It is not 

necessary to have a base class. A common implemented 
interface will also work for polymorphic behavior.

3 d The other methods do not exist.
4 b The others will generate syntax errors.
5 c The first answer is used only as the first statement of a 

constructor. The second answer generates a syntax error. The 
fourth option results in unbounded recursion.

6 a An abstract class does not have to have abstract methods and 
can extend other classes, whether they are abstract or not. It is 
common to find abstract classes that implement an interface.

http://www.it-ebooks.info/


Appendix

[ 301 ]

Chapter 8: Handling Exceptions in  
an Application

Question 
No.

Answer Explanation

1 c and d Checked exceptions are those classes that extend the 
Exception class but not the RuntimeException class.

2 b and c The derived most class should be caught first. The order of 
classes at the same hierarchy level is not important.

3 d Checked exceptions should be handled. They may be handled 
using a try-catch block or may be re-thrown to another 
method in the call stack which is better suited to deal with  
the exception.

4 a and d We can normally handle checked exceptions and they should 
be used.

5 a and d DivisionByZeroException does not exist. No file 
operations are performed here.

Chapter 9: The Java Application
Question 
No.

Answer Explanation

1 a and c The package declaration must come before any other code. 
However, comments may appear anywhere within the code.

2 c A string from a base resource bundle will be returned,  
if present.

3 c This exception does not exist.

http://www.it-ebooks.info/


http://www.it-ebooks.info/


Index
Symbols
@Deprecated annotation  35
@Override annotation  13, 35, 227, 228
@SuppressWarnings annotation  35

A
abstract classes  230
abstract methods  230
Abstract Windowing Toolkit (AWT)  36
access modifiers

about  25, 60
package  60
package scoped  25
private  25, 60
protected  25, 60
public  25, 60

accessor methods  23, 211
activation record  41
add method  143
annotations  35
anotherMethod  252
append method  75
applets  12
args parameter  43
array  40
arraycopy method  134
ArrayList class  140

about  143
ArrayList object, sorting  148
ArrayList object, traversing  146, 147
characteristics  143
creating  144
elements, adding  144, 145
elements, retrieving  145

for-each statement, using with  162
methods  148

ArrayList methods  148, 149
ArrayList object

about  140
sorting  148
traversing  146, 147

array of objects  123, 124
arrays

about  118
array of objects  123
Arrays class  140
characteristics  141
multidimensional arrays  124
one-dimensional arrays  118
techniques  127

Arrays class
about  141
asList method  140
deepToString method  140
java.util.Arrays class  140
toString method  140

arrays, comparing
about  130
deepEquals method, using  132, 133
element-by-element comparison  131
equality operator, using  131
equals method, using  132
techniques  130

arrays, copying
about  133
Arrays.copyOf method, using  136
Arrays.copyOfRange method, using  136
clone method, using  137
deep copy  134
shallow copy  134

http://www.it-ebooks.info/


[ 304 ]

simple element-by-element copy  134
System.arraycopy method, using  134-136
techniques  134

arrays, passing  137
arrays, traversing

about  127
for-each statement, using  129
simple loops, using  128, 129

array techniques
about  127
arrays, comparing  130
arrays, copying  133
arrays, passing  137, 138
arrays, traversing  127, 128
command-line arguments, using  139

asList method  140
autoboxing  49

B
base class  219
base class constructor

calling  235-237
basic coding activities  112
BigDecimal class  47, 280
BigDecimal constructor  43
boolean  46
Boolean variables

about  81, 82
declaring  81

break keyword  101
break statement  113, 171
byte  46

C
casting  63
catch block  250
C/C++  8
char  46
Character class

about  64, 66
methods  66

character literals  55
Character methods

about  66
isDigit  66
isLetter  66

isLetterOrDigit  66
isLowerCase  66
isSpace  66
isUpperCase  66
toLowerCase  66
toUpperCase  66

charAt method  72
CharSequence class  64
Charset class  64
checked exceptions  251
class

about  20, 186
data encapsulation  188, 189
instance variables, referencing  189
memory management  187
object, creating  186, 187
signature  190

ClassCastException exception  243
class diagram  9
classes and objects, managing

about  234
base class constructor, calling  235-237
Object class  241
objects, casting  242, 243
object type, determining  240
overridden method, accessing in base class  

237-239
scope  243-245
super keyword  235

CLASSPATH environmental variable  34
class structure

about  19
access modifiers  25
classes  19
constructors  21
documentation  26
interfaces  21
methods  19, 22
objects  20, 21
packages  19

class variable  212
clone method  137
code organization

about  277, 278
directory/file organization, of packages  

278
garbage collection  283

http://www.it-ebooks.info/


[ 305 ]

import statement  280
packages  278

Collator class  64
Collections Framework

about  142
ArrayList class  143
collections, encapsulating  149, 150
interfaces and classes  142
iterators  142
ListIterator interface  143
reference link  142

command-line arguments
using, arrays  139

comma operator, for statement  156
comments  27
compareTo method  70
computePay method  233
conditional operator

about  80, 99
ElseExpression  99
essential form  99
LogicalExpression  99
ThenExpression  99

Constants  51, 56
constructor chaining  204
constructors

about  21, 199
characteristics  199
default constructor  200, 201
issues  205
Java initialization sequence  206
overloading  202, 203
private constructors  204, 205

continue statement  172
control statements

about  80
conditional operator  99
if statement  87
switch statement  100

Control structure issues
about  105
comparing objects  111
decision constructs issues  105, 106
floating point number considerations  106, 

107
goto statement  112, 113
three basic coding activities  112

control structures  80
copyOf method  136
copyOfRange method  136
createStatement method  293
Currency class  48
Customer class  17
Customer class, Java application  18
Customer constructor  43
CustomerDriver class  15  19

D
data encapsulation  10, 11, 188
data handling

about  40
access modifiers  60
autoboxing  49
constants  51
data summary  61
enumerations  51
heap  41
identifiers, initializing  49, 50
instance and static data  58
Java identifiers  40
lifetime  59
literals  51
memory  40
objects  40
primitive data types  46
scope  58
stack  41
variable, declaring  45
wrapper classes  48

data structures  40
data summary  61
decision constructs issues  105, 106
deep copy  134
deepEquals method  132
deepToString method  140
default constructor  200, 201
derived class  219
directories, IDE file structure

.classpath  31

.project  31

.settings  31
bin  31
src  31

http://www.it-ebooks.info/


[ 306 ]

directories, SDK file structure
bin  31
db  31
demo  31
inlcude  31
jre  31
sample  31

displayArray method  137
documentation

about  26
comments  27
Javadocs, using  28
Java naming conventions  28

doGet method  13
Do nothing comment  90
doPut method  13
double  47
do-while statement

about  169
using  170

downcasting  242

E
element-by-element comparison  131
elements

adding, to ArrayList  144
retrieving , in ArrayList  145

elements, main method
args  24
public  24
static  24
void  24

else if variation  91
Employee base class  221
Employee class

about  186
methods  190

end loop operation, for statement  155
endsWith method  70
Enterprise Java Beans (EJB)  14
enumeration-based switch statements  103, 

104
Enumeration object  288
enumerations  51, 57, 58
equality operator  82
equalsIgnoreCase method  70

equals method  70 132
Exception class

about  251
Checked  251
Unchecked  251

exception handling
about  250
mechanisms  250

exception handling techniques  252
exception types  251
executeQuery method  294
expressions

building, operators used  61

F
FILE_EXISTS key  290
fill method  140
finalize method  44
final keyword

about  57
using, with classes  229

finally block  250
float  47
floating point  47
floating point number considerations

about  106
floating point numbers, comparing  109, 110
rounding errors  110
special floating point values  107-109
strictfp keyword  111

floating point numbers
comparing  109, 110

flow of control, Java application
about  80
control statement  80

for-each statement
about  160
advantages  160
drawbacks  161
Iterator interface, implementing  164, 165
usage issues  165
using  160
using, with list  162

for loop variations, for statement  158
for statement

about  154

http://www.it-ebooks.info/


[ 307 ]

comma operator  156
end loop operation  155
for loop variations  158, 159
initial operation  154
scope  157
terminal condition  154
using  155

G
garbage collection  277, 283, 285
getBundle method  288
getConnection method  293
getDate method  199
getInstance method  204
getKeys method  288
getObject method  291
getString method  288
getter methods  23
getWidth method  212
goto statement  112
Graphical User Interface (GUI)  36 112
Graphical User Interface (GUI)  

development  8

H
hasNext method  143, 164
hasPrevious method  143
heap  41, 119

I
IDE file structure

about  31
directories  31

identifiers
initializing  49, 50

IEEE 754 Floating Point Arithmetic standard
URL  106

if statement
about  80, 87-90
else if variation  91, 92
empty statement  90
graphical depiction diagram  87, 88
nesting  90
usage issues  92

immutable objects
about  58, 198
creating  198
declaring  198, 199

import statement, Java application
about  17, 280
avoiding  280
multiple classes, with same name  282
static import statement  283
using  280
wildcard character, using  281

indexOf method  72
IndexOutOfBoundsException exception  135
infinite loop

about  159, 175
using  175, 176

inheritance
@Override annotation  227, 228
about  11, 220
abstract classes  230
abstract methods  230
final keyword, using with classes  229
methods, overriding  225-227
protected keyword, using  223-225
subclass, implementing  221-223

initialAge parameter  191
initial operation, for statement  154
instance

versus, static data  58
instance method  214
instance variables  45, 212
instance variables, Java application  18
int  46
integer  47
integer-based switch statements  101-103
Integrated Development Environments 

(IDE)  30
interfaces  21
intern method  70
isDigit method  66
isLetter method  66
isLetterOrDigit method  66
isLowerCase method  66
isSpace method  66
isUpperCase method  66

http://www.it-ebooks.info/


[ 308 ]

Iterator interface
implementing  164
MyIterable class  164
MyIterator class  164

iterators, Collections Framework
about  142
hasNext method  142
next method  142
remove method  142

J
Java

about  8
arrays  117, 118
break statement  171
characters  64
classes  186
Collection Framework  142
conditional operator  99
constructors  199
continue statement  172
data handling  40
do-while statement  169
enumerations  57, 58
exception handling techniques  252
final keyword  57
for-each statement  160
for statement  154
if statement  87
immutable objects  58
infinite loops  175
instance methods  214
instance variable  212
labels, using  174, 175
logical expressions  81
looping constructs  153
methods  207
nested loops  172
object-oriented software development  8
OOP principles  10
programming constructs  79
static method  214
static variable  212
StringBuffer class  74
StringBuilder class  74
strings  64

this keyword  190
types of Java applications  12
Unicode characters  65
while statement  167

Java 2 Enterprise Edition (J2EE)  31
Java application

code organization  277
compiling  30
exceptions, handling  250
flow of control  80
JDBC  292
Locale class  285
resource bundles  287

Java application development process
annotations  35
IDE file structure  31
investigating  29
Java application, compiling  30
Java class libraries  35, 36
Java environment  33, 34
on Windows platform, Java 7 used  32, 33
SDK file structure  31

Java applications
compiling, on Windows platform using 

Java 7  32
executing, on Windows platform using Java 

7  32
Java Archive (JAR) file  30, 279
java.awt  36
Java class libraries

about  35
java.awt  36
java.io  36
java.lang  36
java.net  36
java.util  36

Java console program structure
exploring  15
simple Java application  15-17

Java Development Kit (JDK)  8, 30
Javadoc tool

about  28
using  28

Java Enterprise Edition (JEE)  31
Java environment

about  33
variables  34

http://www.it-ebooks.info/


[ 309 ]

JAVA_HOME root directory  31
JAVA_HOME variable  34
Java initialization sequence  206
java.io  36
java.lang  36
Java naming conventions

about  28
rules and examples  28

java.net  36
Java Runtime Environment (JRE)  30
JavaServer Page (JSP)  13
java.util  36
java.util.ArrayList class  117
java.util.Arrays class  117
java.util.Collection interface  160
java.util.Iterable interface  160
JAVA_VERSION variable  34
Java Virtual Machine (JVM)  8, 29, 249
JDBC

connection, establishing  293
database, connecting to  292
driver, loading  292
results, handling  294, 295
SQL statement, creating  293
using  292

L
labels

about  174
using  174

lastIndexOf method  72
length method  72
lifetime  59
ListIterator interface

about  143
methods  143

ListResourceBundle class
using  290, 291

literal  51
literal constants 

about  51
numeric literals  51

Locale class
about  18, 285
using  286

local variables  45

logical expressions
about  81
Boolean variables  81
equality operator  82
logical operators  83, 84
operands  81
operators  81
relational operators  82, 83
short circuit evaluation  85

logical operators
!  84
&&  84
||  84
about  81, 83
using  84

long  47
looping constructs

about  153
do-while statement  169
for-each statement  160
for statement  154
pitfalls  179, 180, 181
while statement  167

M
main method

about  12, 24
elements  24
value, returning from application  25

memory management  187
methods

about  22, 207
accessor method  211
calling  208
declaring  22, 23
defining  207
main method  24
mutator method  211
overloading  209, 210
overriding, in inheritance  225
signature  23

methods, ListIterator interface
add  143
hasNext  143
hasPrevious  143
next  143

http://www.it-ebooks.info/


[ 310 ]

nextIndex  143
previous  143
previousIndex  143
remove  143
set  143

methods, Object class
clone  242
equals  242
finalize  242
getClass  242
hashCode  242
notify  242
notifyAll  242
toString  242
wait  242

miscellaneous String methods
about  74
replace  74
tolowercase  74
toUpperCase  74
trim  74
using  74

multidimensional arrays  124-126
mutator methods  23, 211
MyIterable class  164
MyIterator class  164

N
narrowing  63
nested if statements  90
nested loops

about  172
using  172-174

nextIndex method  143
next method  143
NullPointerException  249
NullPointerException exception  135
number/string conversions  73
numeric literals

about  51, 52
using  53, 54

O
Oak  7
object

creating  186, 187

Object class
about  241, 242
methods  242

Object Oriented Analysis. See  OOA
Object Oriented Design. See  OOD
Object Oriented Programming. See  OOP
object-oriented (OO) language  8
Object-oriented software development  8
objects

about  21
casting  242
comparing  111

object type
determining  240, 241

one-dimensional arrays
about  118-120
ages array  119
initializing  121, 122
placement of brackets  120

OOA  9
OOD  9
OOP  9
OOP principles

about  10
data encapsulation  10
inheritance  11
polymorphism  11

OO technologies
OOA  9
OOD  9
OOP  9

operands  61
operators

classifying  62
OS_ARCH variable  34
OS_NAME variable  34
OS_VERSION variable  34
out variable  13
overloaded constructors  202, 203
overridden method

accessing, in base class  237-239

P
package-private  243
packages, code organization

about  278

http://www.it-ebooks.info/


[ 311 ]

classes  278
directory/file organization  278, 279
enumerations  278
exceptions  278
interfaces  278

package statement, Java application  17
passing by value  194
PATH variable  34
person class  219
placement of brackets  120, 121
polymorphism

about  11, 220, 231
using  232-234

precedence and associativity table  62, 63
PREFIXES key  291
previousIndex method  143
previous method  143
primitive data types

about  46
boolean  46
byte  46
char  46
double  47
float  47
int  46
long  47
short  46

println methods  13
private constructors  204, 205
program errors  249
programming constructs

about  79
conditional operator  99
control statement  80
if statement  87
logical expressions  81
switch statement  100

property resource bundle
using  287-290

protected keyword
using, in inheritance  223, 224

public keyword  244

R
ragged arrays  126
read-only fields  212

read-only member variable  23
Rectangle class  212
reference variable  189
relational operators

<  83
<=  83
==  83
>  83
>=  83
about  82, 83

remove method  143, 148
replace method  74
residual value  93
resource bundles

about  287
ListResourceBundle class, using  290, 291
property resource bundle, using  287-290

ResourceExamples_en_US.properties file  
288

rounding errors  110
RuntimeException class  251

S
SalaryEmployee class  221
scope

about  58, 243
review  243

scope, of variables
explaninig  60

scoping rules  59
SDK file structure

about  31
directories  31

servlet  13
setAge method  189
setBalance method  43
set method  143
setName method  22
setter methods  23
shallow copy  134
short  46
short circuit evaluation

about  85
avoiding  86

short circuiting
about  85

http://www.it-ebooks.info/


[ 312 ]

logical && operator, using  85
logical || operator, using  86

signature  190
signature, method  24
simple element-by-element copy  134
simple Java application

about  15
ackage statement  17
customer class  18
CustomerDriver class  19
import statement  17
instance variables  18
methods  18

SJava Software Development Kit (SDK)  31
someMethod  252
special floating point values  107-109
SQL statement

creating  293
stack  41
stack frame  41
startsWith method  70
static import statement  283
static/instance variables and method

relationship  214
static method  214
static setMinimumAge method  213
static variables  45, 212
StreamTokenizer class  64
strictfp keyword  111
string-based switch statements  104
StringBuffer class  64, 74
StringBuilder array  135
StringBuilder class  18, 64, 74
String class

about  64-67
miscellaneous methods  74
Number/string conversions  73
String comparisons  68-71
String length  73
String methods  72

string classes
using  64, 65

String comparisons
performing  68-71
using  70, 71

String data type
about  47

BigDecimal class  47
floating point  47
integer  47

string issues, switch statements  105
String length  73
string literals  56
String methods

about  70
charAt  72
compareTo  70
endsWith  70
equals  70
equalsIgnoreCase  70
indexOf  72
lastIndexOf  72
length  72
startsWith  70
substring  72

String objects  67, 68
StringTokenizer class  64
subclass

implementing, in inheritance  221
substring method  72
summation process  177-179
super keyword  235
supplementary characters  66
surrogate pairs  66
switch statement

about  80, 100
enumeration-based switch statements  103
integer-based switch statements  101-103
string-based switch statements  104
string issues  105
using  101

T
terminal condition, for statement  154
ternary operator  99
this keyword

immutable objects  198
parameters, passing  193, 195
uses  190-192
variable number of arguments  196, 197

thread  65
Throwable class  251
toLowerCase method  66, 74

http://www.it-ebooks.info/


[ 313 ]

toString method
about  18, 122, 140

toUpperCase method  66, 74
trim method  74
try block  250
types, Java applications

about  12
Applets  12
Enterprise Java Beans (EJB)  14
JavaServer Page (JSP)  13
servlet  13

U
unboxing  49
unchecked exceptions  251
Unicode characters  65, 66
Unified Modeling Language (UML)  9
UnsupportedOperationException exception  

162
upcasting  242
usage issues, for-each statement

about  165
null values  166
variable number of arguments  167

usage issues, if statement
about  92
block statement, avoiding  96, 97
Boolean variables, using instead of logical 

expressions  94, 95
dangling else problem  97, 98
equality operator, misusing  92
inverse operations, using  93, 94
true and false keywords, using  95

UTF-16 (16-bit Unicode Transformation 
Format)  66

V
valid variable examples

$newValue  45
_byline  45
_engineOn  45
mileage  45
numberCylinders  45
numberWheels  45
ownerName  45

variables
declaring  45
instance variables  45
local variables  45
static variables  45

W
while statement

about  167
using  168, 169

WINDOW_CAPTION key  290
wrapper classes

about  48
data types  48

write-only fields  212
write-only member variable  23

http://www.it-ebooks.info/


http://www.it-ebooks.info/


 

Thank you for buying 
Oracle Certified Associate, Java SE 7 

Programmer Study Guide

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective 
MySQL Management" in April 2004 and subsequently continued to specialize in publishing 
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting 
and customizing today's systems, applications, and frameworks. Our solution based books give 
you the knowledge and power to customize the software and technologies you're using to get 
the job done. Packt books are more specific and less general than the IT books you have seen in 
the past. Our unique business model allows us to bring you more focused information, giving 
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality, 
cutting-edge books for communities of developers, administrators, and newbies alike. For  
more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to 
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to 
books published on enterprise software – software created by major vendors, including (but 
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer 
information relevant to a range of users of this software, including administrators, developers, 
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals should 
be sent to author@packtpub.com. If your book idea is still at an early stage and you would like 
to discuss it first before writing a formal book proposal, contact us; one of our commissioning 
editors will get in touch with you. 

We're not just looking for published authors; if you have strong technical skills but no writing 
experience, our experienced editors can help you develop a writing career, or simply get some 
additional reward for your expertise.

http://www.it-ebooks.info/


Java 7 New Features Cookbook
ISBN: 978-1-849685-62-7             Paperback: 384 pages

Over 100 comprehensive recipes to get you  
up-to-speed with all the exciting new features  
of Java 7

1. Comprehensive coverage of the new features of 
Java 7 organized around easy-to-follow recipes

2. Covers exciting features such as the try-with-
resources block, the monitoring of directory 
events, asynchronous IO and new GUI 
enhancements, and more

3. A learn-by-example based approach that 
focuses on key concepts to provide the 
foundation to solve real world problems

Java 7 JAX-WS Web Services
ISBN: 978-1-849687-20-1             Paperback: 64 pages

A practical, focused mini book for creating Web 
Services in Java 7

1. Develop Java 7 JAX-WS web services using the 
NetBeans IDE and Oracle GlassFish server

2. End-to-end application which makes use of the 
new clientjar option in JAX-WS wsimport tool

3. Packed with ample screenshots and practical 
instructions

 

Please check www.PacktPub.com for information on our titles

http://www.it-ebooks.info/


EJB 3.1 Cookbook
ISBN: 978-1-849682-38-1             Paperback: 436 pages

Build real world EJB solutions with a collection of 
simple but incredibly effective recipes

1. Build real world solutions and address many 
common tasks found in the development of EJB 
applications

2. Manage transactions and secure your  
EJB applications

3. Master EJB Web Services

4. Part of Packt's Cookbook series: Comprehensive 
step-by-step recipes illustrate the use of Java to 
incorporate EJB 3.1 technologies

Java EE 6 Cookbook for 
Securing, Tuning, and Extending 
Enterprise Applications
ISBN: 978-1-849683-16-6            Paperback: 356  pages

Packed with comprehensive recipes to secure, tune, 
and extend your Java EE applications

1. Secure your Java applications using Java EE 
built-in features as well as the well-known 
Spring Security framework

2. Utilize related recipes for testing various Java 
EE technologies including JPA, EJB, JSF, and 
Web services

3. Explore various ways to extend a Java EE 
environment with the use of additional 
dynamic languages as well as frameworks

 

Please check www.PacktPub.com for information on our titles

http://www.it-ebooks.info/

	Cover
	Copyright
	Credits
	About the Author
	About the Reviewers
	www.PacktPub.com
	Table of Contents
	Preface
	Chapter 1: Getting Started with Java
	Understanding Java as a technology
	Object-oriented software development
	OOP principles
	Examining the types of Java applications

	Exploring the structure of a Java 
console program
	A simple Java application
	Package
	Import
	The Customer class
	Instance variables
	Methods
	The CustomerDriver class' main method


	Exploring the structure of a class
	Classes, interfaces, and objects
	Classes and objects
	Constructors
	Interfaces

	Methods
	Method declaration
	Method signature
	The main method

	Access modifiers
	Documentation
	Comments
	Java naming conventions
	Using Javadocs


	Investigating the Java application development process
	Compiling a Java application
	SDK file structure
	IDE file structure
	Developing Java applications without an IDE
	Java environment
	Annotations
	Java class libraries

	Summary
	Certification objectives covered
	Test your knowledge

	Chapter 2: Java Data Types and 
Their Usage
	Understanding how Java handles data
	Java identifiers, objects, and memory
	Stack and heap
	Declaring a variable
	Primitive data types
	Wrapper classes and autoboxing
	Initializing identifiers
	Java constants, literals, and enumerations
	Literals
	Constants
	The final keyword
	Enumerations
	Immutable objects

	Instance versus static data
	Scope and lifetime
	Scoping rules

	Access modifiers
	Data summary

	Building expressions using operands and operators
	Precedence and associativity
	Casting


	Working with characters and strings
	The String, StringBuffer, and StringBuilder classes
	Unicode characters

	The Character class
	The Character class – methods

	The String class
	String comparisons
	Basic string methods
	String length
	Number/string conversions
	Miscellaneous String methods

	The StringBuffer and StringBuilder classes

	Summary
	Certification objectives covered
	Test your knowledge

	Chapter 3: Decision Constructs
	Flow of control
	Control statement – an overview

	Logical expressions
	Boolean variables
	Equality operator
	Relational operators
	Logical operators
	Short circuit evaluation
	Using the && operator
	Using the || operator
	Avoiding short circuit evaluation


	The if statement
	Nested if statements
	The else if variation
	The if statement – usage issues
	Misusing the equality operator
	Using inverse operations
	Using Boolean variables instead of 
logical expressions
	Using true or false in a logical expression
	The perils of not using the block statement
	The dangling else problem


	Conditional operator
	The switch statement
	Integer-based switch statements
	Enumeration-based switch statements
	String-based switch statements
	String issues with the switch statement


	Control structure issues
	General decision constructs issues
	Floating point number considerations
	Special floating point values
	Comparing floating point numbers
	Rounding errors
	The strictfp keyword

	Comparing objects
	Three basic coding activities
	The goto statement

	Summary
	Certification objectives covered
	Test your knowledge

	Chapter 4: Using Arrays and Collections
	Arrays
	One-dimensional arrays
	The placement of array brackets
	Initializing arrays

	Arrays of objects
	Multidimensional arrays
	Array techniques
	Traversing arrays
	Comparing arrays
	Copying arrays
	Passing arrays
	Using command-line arguments

	Arrays class
	Key points to remember when using arrays

	Collections
	Iterators
	ArrayList
	Creating a ArrayList
	Adding elements
	Retrieving elements
	Traversing a ArrayList object
	Sorting a ArrayList object
	Other ArrayList methods

	Encapsulating collections

	Summary
	Certification objectives covered
	Test your knowledge

	Chapter 5: Looping Constructs
	The for statement
	The comma operator
	The for statement and scope
	The for loop variations

	The for-each statement
	Using the for-each statement with a list
	Implementing the Iterator interface
	The for-each statement – usage issues
	Null values
	Variable number of arguments


	The while statement
	The do-while statement
	The break statement
	The continue statement
	Nested loops
	Using labels
	Infinite loops
	Timing is everything
	Pitfalls
	Summary
	Certification objectives covered
	Test your knowledge

	Chapter 6: Classes, Constructors, 
and Methods
	Classes
	Object creation
	Memory management
	Data encapsulation
	Referencing instance variables
	Signature

	Using the this keyword
	Passing parameters
	Variable number of arguments

	Immutable objects

	Constructors
	Default constructors
	Overloading the constructors
	Private constructors
	Constructor issues
	Java initialization sequence

	Methods
	Defining methods
	Calling methods
	Overloading methods
	Accessors/Mutators

	Instance and static class members
	Summary
	Certification objectives covered
	Test your knowledge

	Chapter 7: Inheritance and Polymorphism
	Inheritance
	Implementing a subclass
	Using the protected keyword
	Overriding methods
	The @Override annotation
	Using the final keyword with classes
	Abstract methods and classes

	Polymorphism
	Managing classes and objects
	The super keyword and constructors
	Calling a base class constructor
	Accessing an overridden method in the base class

	Determining the type of an object
	The Object class
	Casting objects
	A review of scope

	Summary
	Certification objectives covered
	Test your knowledge

	Chapter 8: Handling Exceptions in 
an Application
	Exception types
	Exception handling techniques in Java
	Stack trace
	Using Throwable methods

	The traditional try-catch block
	Using the try-with-resource block
	Catch statement
	Order of catch blocks
	Using the | operator in a catch block

	Finally block
	Nested try-catch blocks
	Exception handling guidelines
	Repeating code that threw an exception
	Not being specific in which exception you 
are catching
	Losing the stack trace
	Scoping and block lengths
	Throwing a UnsupportedOperationException object
	Ignoring exceptions
	Handle exceptions as late as you can
	Catching too much in a single block
	Logging exceptions
	Do not use exceptions to control normal 
logic flow
	Do not try to handle unchecked exceptions

	Summary
	Certification objectives covered
	Test your knowledge

	Chapter 9: The Java Application
	Code organization
	Packages
	The directory/file organization of packages
	The import statement
	Avoiding the import statement
	Using the import statement
	Using the wildcard character
	Multiple classes with the same name
	The static import statement

	Garbage collection

	Resource bundles and the Locale class
	Using the Locale class
	Using resource bundles
	Using a property resource bundle
	Using the ListResourceBundle class


	Using JDBC
	Connecting to a database
	Loading a suitable driver
	Establishing a connection

	Creating an SQL statement
	Handling the results

	Summary
	Certification objectives covered
	Test your knowledge

	Appendix: Test Your Knowledge 
– Answers
	Chapter 1: Getting Started with Java
	Chapter 2: Java Data Types and 
Their Usage
	Chapter 3: Decision Constructs
	Chapter 4: Using Arrays and Collections
	Chapter 5: Looping Constructs
	Chapter 6: Classes, Constructors, 
and Methods
	Chapter 7: Inheritance and Polymorphism
	Chapter 8: Handling Exceptions in 
an Application
	Chapter 9: The Java Application

	Index



